平成15年度環境測定分析統一精度管理調查 結果説明会

排ガス吸収液試料 (SOx及びNOxの分析)

平成16年7月14日 仙台 平成16年7月20日 東京 平成16年7月26日 大阪 平成16年8月 4日 岡山 平成16年8月 9日 福岡

試料

- ·基本精度管理調査 3回の併行測定
- ・分析対象項目と調製濃度
 - SOx 吸収液中SO2としては51.4mg/I(ガスとして200ppm程度を想定) 感度の良くない分析方法での定量下限値程度
 - NOx 吸収液中NO2としては0.985mg/I(ガスとして250ppm程度を想定) 排出基準値程度
- ·共通試料1 1(SOx分析用) 過酸化水素水(1+25)の水溶液
- ·共通試料1 2(NOx分析用) 0.01mmol/l硫酸の水溶液
- いずれの試料とも塩化物イオンを含める (ガスとしてHC!700mg/m3程度を想定)

分析方法(推奨方法)

```
JIS K 0103(SOx)
JIS K 0104(NOx)
```

・共通試料1(排ガス吸収液試料)に関する分析方法の概要

分析方法	S0x	NOx
沈殿滴定法(アルセナゾ 法)		
イオンクロマトグラフ法		
沈殿滴定法(トリン法)		
中和滴定法		
比濁法(光散乱法)		
亜鉛還元ナフチルエチレンジアミン吸光光度 法(Zn-NEDA法)		
フェノールジスルホン酸吸光光度法(PDS法)		

回答数等

外れ値等により棄却した回答数(排ガス吸収液試料)

分析項目	回答数	棄却数	棄却率			
		n 3	ND等	Grubbs	計	%
S O x N O x	299 289	1	0 2	14 48	15 51	5.0(4.7) 17.7(16.7)

注1)棄却率=(棄却数:回答数)×100。

注2)()内は統計的外れ値(Grubbsの方法による外れ値)の棄却率を示す。

棄却限界値と平均値

棄却限界値(排ガス吸収液試料)

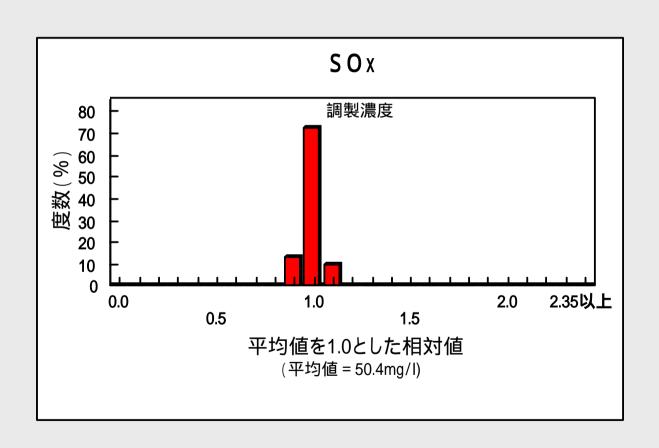
分析項目	Grubbsの方法		(参考) 外れ値棄却	(参考) 調製濃度
	下限値	上限値	後の平均値	神 彩 振及 (設定値)
S O x N O x	41.6 0.628	59.3 1.24	50.4 0.936	51.4 0.985

注)単位は「mg/I」である。

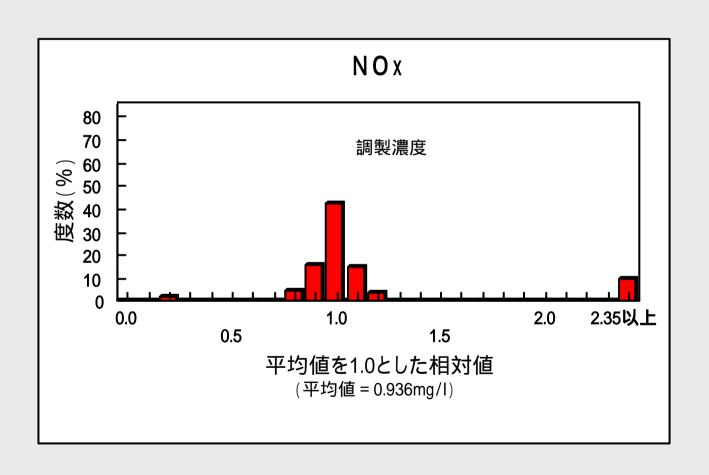
室間精度等

外れ値棄却前後の平均値及び精度等(排ガス吸収液試料)

分析項目	棄却	回答数	平均值	室間精度		最小值	最大値	調製濃度 (設定値)
	*	XX	(mg/l)	S.D. (mg/I)	CV %	(mg/I)	(mg/I)	(mg/l)
S 0 x	前後	298 284	60.2 50.4	149 2.38	246.9 4.7	5.28 43.7	2610 57.7	51.4
NOx	前後	286 238	5.97 0.936	56.2 0.0857	940.6 9.2	0.0990 0.668	931 1.23	0.985


注)*:「棄却前」には統計的外れ値は含むが、「n 3」のもの及び分析結果が「ND等」であるものは含まない。

室内精度等


外れ値棄却後の精度等(排ガス吸収液試料)

分析項目	棄却	室内測定	回答数	室内併行測定精度		室内併行	CV %	
	디디	別た 回数 n	女人	S.D. (mg/l)	CV %	最小値	最大値	中央値
S 0 x	後	3	284	0.685	1.4	0	8.5	0.5
NOx	後	3	238	0.0274	2.9	0	14.0	1.2

ヒストグラム(SOX)

ヒストグラム(NOx)

分析方法別回答数(SOX)

分析方法	回答数	棄却された回答数			
		n 3	ND等	Grubbs	計
1.沈殿滴定法(アルセナゾ 法) 2.イオンクロマトグラフ法 3.沈殿滴定法(トリン法) 4.中和滴定法 5.比濁法(光散乱法) 6.その他	28 226 0 1 44 0	1 0 0 0 0	0 0 0 0 0	0 7 0 1 6	1 7 0 1 6
合計	299	1	0	14	15

```
    (1)沈殿滴定法(アルセナゾ 法)
    試料 適量(通常10ml)
    2-プ いパノール40ml
    酢酸1ml
    アルセナゾ 溶液4~6滴
```

滴定 5mmol/l酢酸パリウム溶液 (終点:青い色が1分間継続)

(2)イオンクロマトグラフ法 試料

(試料の希釈)

I Cへの注入 適量 (10~250 µ l)

定量(硫酸イオン)

(3)沈殿滴定法(トリン法)

試料 適量

2-プロパンール80ml

トリン溶液4滴

滴定 0.005mol/l過塩素酸パリウム溶液

(終点:だいだい色-黄色 うすいピンク色)

(4)中和滴定法

試料適量

メチル・ット・- メチレンフ・ルー混合指示薬6~8滴

滴定 0.05mol/l水酸化ナトリウム溶液

(終点:紫色 緑色)

(5)比濁法(光散乱法)

試料適量

試料 適量(左と同量)

 かくはん

塩化バリウム0.3g

かくはん 1分間

静置 4分間

かくはん 15秒間

かくはん

かくはん 1分間

静置 4分間

かくはん 15秒間

(試料)吸光度測定420nm (対照)

外れ値の原因(SOX)

イオンクロマトグラフ法

機関	分析結 果	分析方法	添付資料等から推測でき る外れ値の原因・理由	アンケート調査での当該機関の回答
F		イオンクロ マトグラフ 法	妥当な理由である(BLK が大きい:汚染が疑われ る)	BLK液 (H202(1+25)の調整時のミス (器具の洗浄がたりない。外部からの 汚染等による影響)。イオンクロマト グラフの検量線の上限を試験サンプル がオーバーしたためサンプルを5倍に 希釈して測定をした。
D		イオンクロ マトグラフ 法	妥当な理由である(アン ケートのとおり)	記憶違いによる希釈倍率の差異で分析 結果が2倍になってしまった。
Н	Grubbs (大き い値)	イオンクロ マトグラフ 法	妥当な理由である(アン ケートのとおり)	PC操作のミスにより、分析時の検量線ではなく、別の検量線で検量してしまったためにこの様な結果となった。
I	Grubbs (大き い値)	イオンクロ マトグラフ 法	理由は不明である	回答なし
J	Grubbs (大き い値)	イオンクロ マトグラフ 法	妥当な理由である (アン ケートのとおり)	報告すべき数値をさらに希釈倍率(5 倍)をかけてしまった。
L	Grubbs (大き い値)	イオンクロ マトグラフ 法	妥当な理由である (アン ケートのとおり)	桁数の取り間違い。
N		イオンクロ マトグラフ 法	妥当な理由である (アン ケートのとおり)	機器操作に不慣れであり、作成した検 量線でなく、更新を忘れて前回の検量 線で測定した。

外れ値の原因(SOX)

比濁法

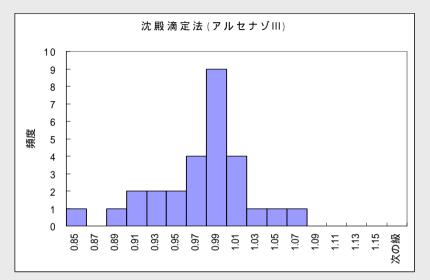
$\overline{}$			1	
機関	分析結 果	分析方法	添付資料等から推測でき る外れ値の原因・理由	アンケート調査での当該機関の回答
С			妥当な理由である(アン ケートのとおり)	測定後、試料希釈倍率を含まず計算した。
A	Grubbs (大き い値)		15. 1 1	S042-濃度に0.667を掛ける操作を行わなかった。
E				社内での移動があり、分析データ等を 紛失してしまい、原因がわからない。
G		比濁法(光 散乱法)	計算違いと思われる	回答なし
K		比濁法(光 散乱法)	理由は不明である	標準物質秤量中の吸湿及び塩化バリウムの撹拌不足と考えられる。
M		比濁法(光 散乱法)	理由は不明である	回答なし

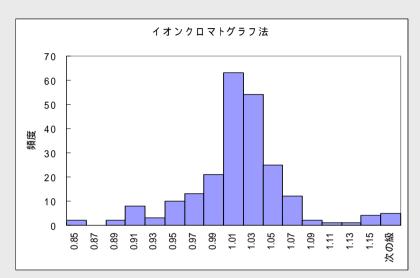
要因別の解析(SOx)

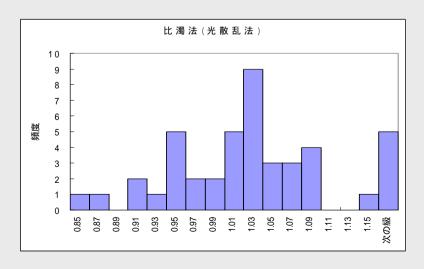
外れ値等を棄却後の解析 分析結果に影響のあった要因

- ·分析機関区分
- ・分析機関の国際的な認証等の取得
- ·分析者の経験度: 昨年度分析を行った試料数分析業務経験年数
- ・分析に要した日数
- ·*室内測定精度(*CV%)
- 分析方法
- ・空試験と試料の指示値の比
- ・イオンクロマトグラフ法における装置の型式

分析方法別の解析(SOX)


外れ値等を棄却後の解析


分析方法		平均值	室間料	青 度
刀们刀伍	数	(mg/l)	S.D.(mg/I)	CV %
1.沈殿滴定法(アルセナゾ 法) 2.イオンクロマトグラフ法 3.沈殿滴定法(トリン法) 4.中和滴定法 5.比濁法(光散乱法) 6.その他	27 219 0 0 38 0	48.8 50.6 - - 50.6	2.14 2.21 - - 3.04	4.4 4.4 - - 6.0


注)偏り(平均値の差):1と2、1と5

精度の違い : 2と5

分析方法別のヒストグラム(SOX)

室内測定精度別の解析(SOX)

外れ値等を棄却後の解析

C V (%)	回答数	平均值	室間料	青度
C V (90)	ΦX	(mg/l)	S.D.(mg/I)	CV %
1. 2未満 2. 2以上 5未満 3. 5以上10未満 4. 10以上	261 19 4 0	50.5 50.8 47.8	2.20 3.92 3.41	4.4 7.7 7.1

注)偏り(平均値の差):1と3

注)精度の違い:1と2

代表的な分析実施上の留意点等 (SOX)

沈殿滴定法(アルセナゾ 法)

・滴定の終点の見極め

イオンクロマトグラフ法

- ・器具等からの汚染防止
- ・過酸化水素水によるイオンクロマトに及ぼす影響

比濁法(光散乱法)

- ・かくはん時間、静置時間が各試料で等しく
- ・硫酸バリウムが沈降

分析方法別回答数(NOx)

分析方法	回答数	棄却された回答数			
		n 3	ND等	Grubbs	計
1. Zn-NEDA法 2. イオンクロマトグラフ法 3. PDS法 4. その他 - NEDA吸光光度法	37 196 55 1	0 0 1 0	0 1 1 0	8 27 12 1	8 28 14 1
合計	289	1	2	48	51

分析フロー(NOx)

(1) 亜鉛還元ナフチルエチレンジアミン吸光光度法(Zn-NEDA法)

試料 適量、100ml全量フラスコ

スルファニルアミト 溶液15ml

水

100ml とする

亜鉛粉末0.5g

振り混ぜ 1分間

ろ過

ろ液 初めのろ液約20mlは捨てる

ろ液の分取 20ml

塩酸(1+1)3ml

N-1-ナフチルエチレンシ アミン溶液 1ml

放置 約15分間

吸光度測定 545nm

分析フロー(NOx)

(2)イオンクロマトグラフ法 試料

(試料の希釈)

I Cへの注入 適量 (10~250 μ l)

定量(硝酸イオン及び亜硝酸イオン)

分析フロー(NOx)

(3) フェノールジスルホン酸吸光光度法(PDS法) 試料 適量 蒸発皿 水酸化ナトリウム溶液 アルカリ性とする

蒸発乾固 水浴

冷却

フェノールシ[・]スルホン西袋2ml

水1ml

硫酸4滴

加熱 水浴 3分間

プ 10m l

アンモニア水 (又 は 水酸化ナトリウム溶液) 15ml

ろ過

(蒸発皿を水で洗浄し、ろ過を繰り返す) ろ液を100mlとする

吸光度測定 400nm

外れ値の原因(NOx)

試料の採取量が少ない、

測定感度が小さい 9回答

Zn-NEDA法: 1、イオンクロマトグラフ法: 4、PDS法: 4

配布試料濃度として回答 10回答

Zn-NEDA法: 1、イオンクロマトグラフ法: 8、PDS: 1

硝酸濃度への換算の間違い

分析濃度算出の際の単純な計算間違い 10回答

Zn-NEDA法: 2、イオンクロマトグラフ法: 6、PDS法: 2

原因が不明 15機関

Zn-NEDA法: 3、イオンクロマトグラフ法: 8、PDS法: 4

その他

検量線の作成が適当でない(PDS法)

亜硝酸のみを分析している(NEDA法)

機器の調整不足によるベースラインが変動(イオンクロマトグラフ法)

試薬と乾固試料の混合が不十分(PDS法)

要因別の解析(NOx)

外れ値等を棄却後の解析 *分析結果に影響のあった要因*

- ·分析機関区分
- ・分析機関の国際的な認証等の取得
- ・分析者の経験度:昨年度分析を行った試料数
- 分析業務経験年数
- ・分析に要した日数
- ·室内測定精度(CV%)
- 分析方法
- · 空試験と試料の指示値の比: Zn-NEDA法

イオンクロマトグラフ法

PDS法

・イオンクロマトグラフ法における装置の型式

分析方法別の解析(NOx)

外れ値等を棄却後の解析

分析方法		平均值	室間料	青 度
刀们刀伍	数	(mg/l)	S.D.(mg/I)	CV %
1.Zn-NEDA法 2.イオンクロマトグラフ法 3.PDS法 4.その他 - NEDA吸光光度法	29 168 41 0	0.959 0.934 0.926	0.0933 0.0718 0.124 -	9.7 7.7 13.4 -

注)精度の違い:2と3

空試験と試料の指示値別の解析 (NOx)

外れ値等を棄却後の解析 (イオンクロマトグラフ法)

指示値の比 (空試験/試料)	回答数	平均值	室間精度	
		(mg/l)	S.D.(mg/I)	CV %
1. 0.05未満 2. 0.05以上0.1未満 3. 0.1 以上0.2未満 4. 0.2 以上	31 29 35 67	0.894 0.948 0.931 0.947	0.0986 0.0890 0.0592 0.0467	11.0 9.4 6.4 4.9

注)偏り(平均値の差):1と2、1と4

注)精度の違い:1と3、1と4、2と3、2と4

代表的な分析実施上の留意点等 (NOx)

亜鉛還元ナフチルエチレンジアミン吸光光度法(Zn-NEDA法)

・亜鉛の還元条件が一定にする

イオンクロマトグラフ法

- ・器具等からの汚染防止
- ・標準液の調製(濃度、範囲等)
- ・亜硝酸イオン濃度が定量下限未満であり、合量には含めない
- ・塩素イオンのピークと亜硝酸イオンのピークが近いので注意

フェノールジスルホン酸吸光光度法(PDS法)

- ・汚染の防止
- ·今回の試料はPDS法で分析するには濃度が低い
- ・蒸発乾固させた後の残さとフエノールジスルオン酸溶液の接触