5.調査結果(総括表)

- 5-1 臭素系ダイオキシン類及び塩素化ダイオキシン類(PBDDs/DFs・PCDDs/DFs・Co-PCB及びMoBPCDDs/DFs)
- 1)施設関連項目 排出ガス

a. 難燃プラスチック成形加工施設 表-50 排出が 入中のPBDDs/DFs及びPCDDs/DFs・Co-PCBの分析結果(毒性等量相当値/毒性等量)

毒性	排性等量相当値/毒性等量 A-1施		施設	A-2施設	A-3施設	A-4施設
	(ng-TEQ/m ³ _N)	発泡炉上部	湿式集塵機出口	押出ライン	集塵機出口	電線接着上部
PRI	DDs/DFs(TEQ)	33	0.15	0.16	0	0
1 0	DD3/DI3(TEQ)	(33)	(0.17)	(0.17)	(0.034)	(0.034)
DCI	DDs/DFs(TEQ)	0.16	0.0082	0.011	0.072	0.0036
1 0	DDS/DIS(ILQ)	(0.16)	(0.0093)	(0.012)	(0.072)	(0.0051)
Co	-PCB(TEQ)	0.00036	0.00021	0.000045	0.000055	0.000032
00	-TOD(TEQ)	(0.00041)	(0.00021)	(0.000099)	(0.00011)	(0.000086)
DCI	DDs/DFs,Co-PCB(TEQ)	0.16	0.0084	0.011	0.072	0.0036
FU	DDS/DFS,CO-FCB(TEQ)	(0.16)	(0.0095)	(0.012)	(0.072)	(0.0051)

ŧ	毒性等量相当值/毒性等量	A-5	施設	A-6施設		
	(ng-TEQ/m ³ _N)	脱臭装置入口	脱臭装置出口	成形加工前工程	成形加工後工程	
	PBDDs/DFs(TEQ)	0.052	0	0.51	1.4	
	I DDDS/DIS(IEQ)	(0.080)	(0.034)	(0.53)	(1.5)	
	DODD- (DE- (TEO)	0.12	0.086	0.0030	0.0028	
	PCDDs/DFs(TEQ)	(0.12)	(0.086)	(0.0044)	(0.0043)	
	Co-PCB(TEQ)	0.00020	0.000048	0.00011	0.000065	
	CO-FCB(TEQ)	(0.00026)	(0.00010)	(0.00016)	(0.00012)	
	PCDDs/DFs,Co-PCB(TEQ)	0.12	0.086	0.0031	0.0029	
	FCDDS/DFS,CO-FCB(TEQ)	(0.12)	(0.086)	(0.0046)	(0.0044)	

表-51 <u>排出がス中のPBDDs/DFs・PCDDs/DFs・Co-PCB及びMoBPCDDs/DFsの分析結果</u>(実測濃度)

:曲庄(~~(~ ³)	A-1	A-1施設		A-3施設	A-4施設
濃度(ng/m³N)	発砲炉上部	湿式集塵機出口	押出ライン	集塵機出口	電線接着上部
PBDDs	120	0.045	4.0	ND	ND
PBDFs	7000	21	13	ND	ND
PBDDs/DFs	7100	21	17	ND	ND
PCDDs/DFs	9.7	3.2	0.70	1.9	0.48
Co-PCB	3.2	0.29	0.40	0.47	0.26
PCDDs/DFs,Co-PCB	13	3.5	1.1	2.4	0.74
MoBPCDDs/MoBPCDFs	0.14	0.033	ND	ND	ND

濃度(ng/m³ _N)	A-57	施設	A-6施設		
辰及(IIg/Ⅲ N)	脱臭装置入口	脱臭装置出口	成形加工前工程	成形加工後工程	
PBDDs	ND	ND	0.87	1.1	
PBDFs	1.3	ND	180	430	
PBDDs/DFs	1.3	ND	180	430	
PCDDs/DFs	4.8	2.4	0.54	0.76	
Co-PCB	1.8	0.41	1.1	0.62	
PCDDs/DFs,Co-PCB	6.7	2.9	1.6	1.4	
MoBPCDDs/MoBPCDFs	0.088	0.003	ND	ND	

- 注1) PBDDs/DFs(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFに準じて算出した参考値である。
- 注2) PCDDs/DFs,Co-PCB(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFを用いて算出した値である。
- 注3) 毒性等量相当値/毒性等量の表中の上段は、検出下限未満を「0」として算出したものである。 下段の括弧付の数値は、検出下限未満を検出下限の1/2として算出したものである。
- 注4)実測濃度の表中の「ND」は、検出下限未満であることを示す。

b. 下水道終末処理施設

表-52 排出が ス中のPBDDs/DFs及びPCDDs/DFs・Co-PCBの分析結果 (毒性等量相当値/毒性等量)

큪	責性等量相当値/毒性等量		B-1施設			B-2施設			
	$(ng-TEQ/m^3_N)$	脱臭装置入口	脱臭装置出口	焼却炉	脱臭装置入口	脱臭装置出口	焼却炉		
	PBDDs/DFs(TEQ)	0.011	0	0	0.023	0	0		
	I DDDS/DI S(TEQ)	(0.040)	(0.034)	(0.034)	(0.052)	(0.034)	(0.034)		
	DCDDa /DEa /TEO)	0.095	0.016	0.035	0.097	0.016	0.0074		
	PCDDs/DFs(TEQ)	(0.096)	(0.017)	(0.036)	(0.098)	(0.017)	(0.0087)		
	Co-PCB(TEQ)	0.00021	0.000036	0.00079	0.0015	0.000022	0.000059		
	CO-FCB(TEQ)	(0.00026)	(0.000090)	(0.00079)	(0.0015)	(0.000076)	(0.00011)		
I	DODD- (DE- 0- DOD (TEO)	0.095	0.016	0.035	0.098	0.016	0.0075		
l	PCDDs/DFs,Co-PCB(TEQ)	(0.096)	(0.017)	(0.036)	(0.099)	(0.017)	(0.0088)		

毒性等量相当值/毒性等量	B-3施設					
(ng-TEQ/m³ _N)	脱臭装置入口	脱臭装置出口	焼却炉			
PBDDs/DFs(TEQ)	0	0	0			
1 55507 51 3 (1EQ)	(0.034)	(0.034)	(0.034)			
PCDDs/DFs(TEQ)	0.048	0.076	2.8			
1 CDDS/ DI S (IEQ)	(0.048)	(0.077)	(2.8)			
Co-PCB(TEQ)	0.00029	0.00016	0.0011			
CO-1 CD(1EQ)	(0.00034)	(0.00022)	(0.0011)			
PCDDs/DFs,Co-PCB(TEQ)	0.048	0.076	2.8			
FODDS/DFS,CO-PCB(TEQ)	(0.048)	(0.078)	(2.8)			

排出がス中のPBDDs/DFs・PCDDs/DFs・Co-PCB及びMoBPCDDs/DFsの分析結果(室測濃度) 表-53

X OO JIFM N. I. O	71 00037 01 3	1 0003/ 01 3	00 1 00/8	O MODI ODDS	7 01 3027171		/成汉 /		
		B-1施設				B-2施設			
濃度(ng/m³ _N)	的自壮军》口	脱臭装置出口	焼	却炉	脱臭装置入口	吸色壮黑山口	焼却炉		
			実測濃度	0₂換算濃度			実測濃度	0₂換算濃度	
PBDDs	ND	ND	ND	ND	ND	ND	ND	ND	
PBDFs	0.022	ND	ND	ND	0.047	ND	ND	ND	
PBDDs/DFs	0.022	ND	ND	ND	0.047	ND	ND	ND	
PCDDs/DFs	4.0	0.93	0.93	2.0	3.6	0.82	0.71	1.0	
Co-PCB	1.8	0.32	0.33	0.68	1.7	0.19	0.38	0.54	
PCDDs/DFs,Co-PCB	5.8	1.3	1.3	2.6	5.3	1.0	1.1	1.6	
MoBPCDDs/MoBPCDFs	ND	0.004	0.007	0.015	ND	ND	0.011	0.015	

	B-3施設					
濃度(ng/m³ _N)	昭自注罢) 口	脱臭装置出口	焼却炉			
	加英农且八口	加夹衣 且山口	実測濃度	0₂換算濃度		
PBDDs	ND	ND	0.017	0.039		
PBDFs	ND	ND	ND	ND		
PBDDs/DFs	ND	ND	0.017	0.039		
PCDDs/DFs	2.9	5.5	22	50		
Co-PCB	2.7	1.7	4.2	9.7		
PCDDs/DFs,Co-PCB	5.5	7.2	26	59		
MoBPCDDs/MoBPCDFs	ND	ND	0.070	0.16		

- 注1) PBDDs/DFs(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFに準じて算出した参考値である。
- 注2) PCDDs/DFs,Co-PCB(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFを用いて算出した値である。
- 注3) 毒性等量相当値/毒性等量の表中の上段は、検出下限未満を「0」として算出したものである。 下段の括弧付の数値は、検出下限未満を検出下限の1/2として算出したものである。 注4)実測濃度の表中の「ND」は、検出下限未満であることを示す。

②排出水

a. 難燃プラスチック成形加工施設

表-54 排出水中のPBDDs/DFs及びPCDDs/DFs・Co-PCBの分析結果 (毒性等量相当値/毒性等量)

毒性等量相当值/毒性等量	A-1施設		A-2施設	
毎任寺里竹ヨ恒/毎任寺里 (pg-TEQ/L)	総合排水	工業用水 (地下水)	総合排水	工業用水 (地下水)
PBDDs/DFs(TEQ)	14	0	0.10	0.11
I DDDS/ DI'S (ILQ)	(17)	(3.9)	(3.9)	(4.0)
PCDDs/DFs(TEQ)	0.74	0.18	0.10	0. 23
FCDDS/DFS(TEQ)	(0.78)	(0.24)	(0.17)	(0.29)
Co-PCB (TEQ)	0.019	0.0028	0.0036	0.0025
CO TCD(TEQ)	(0.023)	(0.0065)	(0.0071)	(0.0063)
PCDDs/DFs, Co-PCB(TEQ)	0. 76	0.18	0.11	0. 23
I CDDS/ DI-S, CO-FCB (IEQ)	(0.81)	(0.25)	(0.18)	(0.30)

			Λ_9-	施設	
君	≨性等量相当値/毒性等量 (pg-TEQ/L)	コンパウンド	電線冷却水	総合排水	工業用水
		冷却水	-B/0101 12 - 1// 1 1	1/G. [2] 1/1/3 ·	(地下水)
	PBDDs/DFs(TEQ)	0. 23	63	2.8	0
	I DDDS/ DFS (IEQ)	(4. 1)	(66)	(6. 1)	(3.9)
	PCDDs/DFs(TEQ)	0. 55	0. 92	0. 58	0. 25
	FCDDS/DFS(IEQ)	(0.56)	(0.95)	(0.62)	(0.29)
	Co-PCB (TEQ)	0.0083	0.018	0.078	0.0015
	CO I CD (IEQ)	(0.012)	(0.022)	(0.081)	(0.0053)
	PCDDs/DFs, Co-PCB(TEQ)	0. 56	0.93	0.66	0. 25
	FCDDS/DFS, CO-FCD(IEQ)	(0.57)	(0.97)	(0.70)	(0.29)

毒性等量相当値/毒性等量	A-4施設		A-5施設	
毎任寺里竹三恒/毎任寺里 (pg-TEQ/L)	総合排水	工業用水	総合排水	工業用水 (地下水)
PBDDs/DFs(TEQ)	0	0	0	0
I DDDS/ DI'S (ILQ)	(3.9)	(3.9)	(3.9)	(3.9)
PCDDs/DFs(TEQ)	0.045	0.012	0. 56	0. 12
TCDDS/DFS(TEQ)	(0.14)	(0.11)	(0.60)	(0.19)
Co-PCB (TEQ)	0.0022	0.0013	0.0036	0.0017
CO TCD(TEQ)	(0.0060)	(0.0051)	(0.0073)	(0.0055)
PCDDs/DFs, Co-PCB(TEQ)	0.047	0.014	0. 56	0.12
1 CDDS/ DFS, CO 1 CD (1EQ)	(0.14)	(0.12)	(0.60)	(0.20)

毒性等量相当値/毒性等量	A-6施設					
再注等里相当他/毋注等里(pg-TEQ/L)	真空ポンプ・ シール水	冷却槽水	総合排水	工業用水		
PBDDs/DFs(TEQ)	0 (3.9)	1. 5 (4. 9)	0 (3. 9)	0 (3. 9)		
PCDDs/DFs (TEQ)	0. 62	0. 27	0. 51	0. 19		
	(0. 66)	(0. 34)	(0. 55)	(0. 28)		
Co-PCB (TEQ)	0. 0073	0.0060	0. 10	0. 033		
	(0. 011)	(0.0097)	(0. 10)	(0. 033)		
PCDDs/DFs, Co-PCB (TEQ)	0. 63	0. 27	0. 62	0. 22		
	(0. 67)	(0. 35)	(0. 65)	(0. 31)		

- 注1) PBDDs/DFs(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFに準じて算出した参考値である。
- 注2) PCDDs/DFs, Co-PCB(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFを用いて算出した値である。
- 注3) 毒性等量相当値/毒性等量の表中の上段は、検出下限未満を「0」として算出したものである。 下段の括弧付の数値は、検出下限未満を検出下限の1/2として算出したものである。

表-55 排出水中のPBDDs/DFs・PCDDs/DFs・Co-PCB及びMoBPCDDs/DFsの分析結果(実測濃度)

<u> </u>	DDD 0 DI 0			HODI ODDO D
	A-1施設		A-2施設	
濃度(pg/L)	総合排水	工業用水 (地下水)	総合排水	工業用水 (地下水)
PBDDs	55	ND	ND	ND
PBDFs	3000	1.1	13	15
PBDDs/DFs	3000	1.1	13	15
PCDDs/DFs	79	31	11	21
Co-PCB	140	25	23	23
PCDDs/DFs, Co-PCB	220	56	34	44
MoBPCDDs/MoBPCDFs	0. 2	ND	0.4	ND

		A-3施設				
濃度(pg/L)	コンパウンド 冷却水	電線冷却水	総合排水	工業用水 (地下水)		
PBDDs	ND	43	ND	ND		
PBDFs	25	9200	580	ND		
PBDDs/DFs	25	9300	580	ND		
PCDDs/DFs	9. 5	44	26	5. 4		
Co-PCB	70	160	650	14		
PCDDs/DFs, Co-PCB	79	200	680	19		
MoBPCDDs/MoBPCDFs	ND	ND	ND	ND		

	A-43	A-4施設		施設
濃度(pg/L)	総合排水	工業用水	総合排水	工業用水 (地下水)
PBDDs	ND	ND	ND	ND
PBDFs	ND	ND	1. 3	ND
PBDDs/DFs	ND	ND	1. 3	ND
PCDDs/DFs	13	8. 3	13	15
Co-PCB	21	13	33	16
PCDDs/DFs, Co-PCB	34	21	47	31
MoBPCDDs/MoBPCDFs	0.5	ND	ND	ND

	A-6施設				
濃度(pg/L)	真空ポンプ・ シール水	冷却槽水	総合排水	工業用水	
PBDDs	ND	ND	ND	ND	
PBDFs	ND	290	ND	ND	
PBDDs/DFs	ND	290	ND	ND	
PCDDs/DFs	60	28	31	70	
Co-PCB	61	51	300	61	
PCDDs/DFs, Co-PCB	120	79	330	130	
MoBPCDDs/MoBPCDFs	0.4	ND	0.4	0.6	

注1) 実測濃度の表中の「ND」は、検出下限未満であることを示す。

b. 下水道終末処理施設 表-56 排出水中のPBDDs/DFs及びPCDDs/DFs・Co-PCBの分析結果(毒性等量相当値/毒性等量)

毒性等量相当値/毒性等量	B-1施設				
#I工 等 重作当ill/ #I工 等 重 (pg-TEQ/L)	流入水	最初沈殿池流出水	最終沈殿池流出水	放流水	
PBDDs/DFs(TEQ)	14 (17)	0 (3.9)	0 (3.9)	0 (3, 9)	
PCDDs/DFs(TEQ)	0. 85	0. 40	0. 14	0. 21	
	(0. 85)	(0. 44)	(0. 23)	(0. 29)	
Co-PCB (TEQ)	0. 038	0. 011	0. 0027	0. 0034	
	(0. 041)	(0. 015)	(0. 0064)	(0. 0072)	
PCDDs/DFs, Co-PCB(TEQ)	0.89	0. 41	0. 14	0. 21	
	(0.89)	(0. 46)	(0. 24)	(0. 29)	

毒性等量相当値/毒性等量	B−2施設				
再任守重相勻但/毋任守重 (pg−TEQ/L)	流入水	最初沈殿池流出水	最終沈殿池流出水	放流水	
PBDDs/DFs(TEQ)	0. 25	0. 18	0	0	
	(4. 1)	(4. 0)	(3. 9)	(3. 9)	
PCDDs/DFs(TEQ)	0.89	0. 53	0. 21	0. 14	
	(0.93)	(0. 57)	(0. 29)	(0. 22)	
Co-PCB (TEQ)	0. 040	0. 023	0. 0053	0. 0034	
	(0. 044)	(0. 026)	(0. 0090)	(0. 0072)	
PCDDs/DFs, Co-PCB(TEQ)	0. 93	0. 55	0. 21	0. 14	
	(0. 97)	(0. 59)	(0. 30)	(0. 23)	

毒性等量相当値/毒性等量	B-3施設				
中工等重作当他/ #II等重 (pg-TEQ/L)	流入水	最初沈殿池流出水	最終沈殿池流出水	放流水	
PBDDs/DFs(TEQ)	63	30	1. 9	2. 2	
	(65)	(33)	(5. 8)	(6. 0)	
PCDDs/DFs(TEQ)	1. 9	0. 65	0. 0097	0. 27	
	(2. 0)	(0. 69)	(0. 11)	(0. 35)	
Co-PCB (TEQ)	0. 40	0. 063	0. 0030	0. 034	
	(0. 40)	(0. 066)	(0. 0068)	(0. 0071)	
PCDDs/DFs, Co-PCB(TEQ)	2. 3	0.71	0. 013	0. 28	
	(2. 4)	(0.75)	(0. 12)	(0. 36)	

- 注1) PBDDs/DFs(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFに準じて算出した参考値である。
- 注2) PCDDs/DFs, Co-PCB(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFを用いて算出した値である。
- 注3) 毒性等量相当値/毒性等量の表中の上段は、検出下限未満を「0」として算出したものである。 下段の括弧付の数値は、検出下限未満を検出下限の1/2として算出したものである。

表-57 排出水中のPBDDs/DFs・PCDDs/DFs・Co-PCB及びMoBPCDDs/DFsの分析結果(実測濃度)

7 1 7 1 7 1	B-1施設				
濃度(pg/L)	流入水	最初沈殿池流出水	最終沈殿池流出水	放流水	
PBDDs	1.0	ND	ND	ND	
PBDFs	2900	ND	ND	ND	
PBDDs/DFs	2900	ND	ND	ND	
PCDDs/DFs	130	17	4. 7	8. 4	
Co-PCB	320	120	25	32	
PCDDs/DFs, Co-PCB	450	130	29	40	
MoBPCDDs/MoBPCDFs	0.4	0.2	ND	ND	

		B-2施設				
濃度(pg/L)	流入水	最初沈殿池流出水	最終沈殿池流出水	放流水		
PBDDs	1. 9	2. 0	ND	ND		
PBDFs	110	49	ND	ND		
PBDDs/DFs	110	51	ND	ND		
PCDDs/DFs	100	30	8.6	8.8		
Co-PCB	350	210	37	34		
PCDDs/DFs, Co-PCB	450	240	45	42		
MoBPCDDs/MoBPCDFs	ND	ND	ND	ND		

	B-3施設					
濃度(pg/L)	流入水	最初沈殿池流出水	最終沈殿池流出水	放流水		
PBDDs	150	0. 9	ND	ND		
PBDFs	13000	5700	1100	1400		
PBDDs/DFs	13000	5700	1100	1400		
PCDDs/DFs	210	43	5.8	13		
Co-PCB	440	330	29	30		
PCDDs/DFs, Co-PCB	650	370	35	43		
MoBPCDDs/MoBPCDFs	ND	ND	ND	ND		

注1) 実測濃度の表中の「ND」は、検出下限未満であることを示す。

③建屋内空気

難燃プラスチック成形加工施設 表-58 建屋内空気中のPBDDs/DFs及びPCDDs/DFs・Co-PCBの分析結果(毒性等量相当値/毒性等量)

毒性等量相当値/毒性等量 (pg-TEQ/m³)		A-17	施設	A-2施設	A-3施設	A-4施設
		樹脂混練作業場周辺	発泡炉周辺	押出ライン周辺	電線製造場周辺	製品加工作業場周辺
PBDDs/DFs(T	EO)	2. 1	13	6.3	1.0	0.038
1 DDDS/ D1 S (1)	LQ)	(2.4)	(13)	(6.4)	(1.3)	(0.44)
DCDDa /DEa (T	PCDDs/DFs(TEQ)	0.063	0.072	0.074	0.11	0.075
FCDDS/DFS(I		(0.083)	(0.092)	(0.087)	(0.13)	(0.088)
Co-PCB (TEQ)		0.0010	0.0020	0.017	0.065	0.00066
CO-FCD(IEQ)		(0.0021)	(0.0031)	(0.018)	(0.066)	(0.0018)
DCDD-/DE- C	PCDDs/DFs, Co-PCB(TEQ)	0.064	0.074	0.091	0. 17	0.075
PCDDS/DFS, C		(0.085)	(0.095)	(0.10)	(0.20)	(0.089)

書	\$性等量相当值/毒性等量	A-5施設		A-6施設			
	(pg-TEQ/m ³)	製品巻取り作業場周辺	押出工程周辺	成形加工前工程周辺	成形加工後工程周辺		
	PBDDs/DFs(TEQ)	0	0.014	0.63	5. 0		
	I DDDS/ DFS (IEQ)	(0.42)	(0.42)	(0.93)	(5.0)		
	PCDDs/DFs(TEQ)	0.062	0.039	0.033	0.025		
		(0.076)	(0.061)	(0.057)	(0.049)		
	Co-PCB (TEQ)	0.0017	0.0044	0.0015	0.0030		
	CO TCB(TEQ)	(0.0028)	(0.0055)	(0.0026)	(0.0041)		
	PCDDs/DFs, Co-PCB(TEQ)	0.064	0.044	0.035	0.028		
	PUDDS/DFS, CO-PUB(IEQ)	(0.079)	(0.066)	(0.059)	(0.053)		

建屋内空気中のPBDDs/DFs・PCDDs/DFs・Co-PCB及びMoBPCDDs/DFsの分析結果(実測濃度) 表-59

11		▼	$S = I \cup D \cup S / D \cup S$	$15 \text{ CO } 1\text{ CD}_{2}$	C MODI CDD	5/ DI 5 V /J //
		A-17	施設	A-2施設	A-3施設	A-4施設
	濃度(pg/m³)	樹脂混練作業場周辺	発泡炉周辺	A-2施設 A-3施設	製品加工作業場周辺	
P	'BDDs	210	220	250	ND	ND
P	BDFs	510	2000	700	150	18
P	PBDDs/DFs	730	2200	960	150	18
P	PCDDs/DFs	5. 3	5.8	3. 6	6. 3	3. 0
C	Co-PCB	9. 7	18	160	550	6. 3
P	PCDDs/DFs, Co-PCB	15	24	160	560	9. 3
M	loBPCDDs/MoBPCDFs	ND	ND	2. 5	ND	ND

	A-5施設	A-5施設 A-6施設			
濃度(pg/m³)	製品巻取り作業場周辺	押出工程周辺	成形加工前工程周辺	成形加工後工程周辺	
PBDDs	ND	ND	ND	61	
PBDFs	0.49	7. 3	130	970	
PBDDs/DFs	0.49	7. 3	130	1000	
PCDDs/DFs	2.6	2. 5	1. 1	1.5	
Co-PCB	15	39	13	27	
PCDDs/DFs, Co-PCB	17	41	14	29	
MoBPCDDs/MoBPCDFs	ND	ND	ND	0. 23	

- 注1) PBDDs/DFs(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFに準じて算出した参考値である。
- 注2) PCDDs/DFs, Co-PCB(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFを用いて算出した値である。
- 注3) 毒性等量相当値/毒性等量の表中の上段は、検出下限未満を「0」として算出したものである。 下段の括弧付の数値は、検出下限未満を検出下限の1/2として算出したものである。
- 注4) 実測濃度の表中の「ND」は、検出下限未満であることを示す。

④汚泥

下水道終末処理施設

表-60 汚泥中のPBDDs/DFs及びPCDDs/DFs・Co-PCBの分析結果(毒性等量相当値/毒性等量)

毒性等量相当值/毒性等量	B-1施設	B-2施設	B-3施設
再注等重拍当他/再注等重 (ng-TEQ/g-dry)	汚泥	汚泥	汚泥
PBDDs/DFs(TEQ)	0.0011	0.0076	0. 29
I DDDS/ DFS (IEQ)	(0.0044)	(0.010)	(0.29)
PCDDs/DFs(TEQ)	0.0098	0.019	0.011
FCDDS/DFS(TEQ)	(0.0098)	(0.019)	(0.011)
Co-PCB (TEQ)	0.00035	0.00043	0.00032
CO TCD(TEQ)	(0.00036)	(0.00044)	(0.00033)
PCDDs/DFs, Co-PCB(TEQ)	0.010	0.020	0.011
I CDDS/ DI'S, CO-FCB (IEQ)	(0.010)	(0.020)	(0.011)

表-61 汚泥中のPBDDs/DFs・PCDDs/DFs・Co-PCB及びMoBPCDDs/DFsの分析結果(実測濃度)

	B-1施設	B-2施設	B-3施設
濃度(ng/g-dry)	汚泥	汚泥	汚泥
PBDDs	0.017	0.019	0. 27
PBDFs	0. 13	0.65	170
PBDDs/DFs	0. 15	0. 67	170
PCDDs/DFs	0. 93	8. 6	1.4
Co-PCB	3. 3	3. 9	2.8
PCDDs/DFs, Co-PCB	4. 2	12	4. 2
MoBPCDDs/MoBPCDFs	ND	ND	ND

- 注1) PBDDs/DFs(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFに準じて算出した参考値である。
- 注2) PCDDs/DFs, Co-PCB(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFを用いて算出した値である。
- 注3) 毒性等量相当値/毒性等量の表中の上段は、検出下限未満を「0」として算出したものである。 下段の括弧付の数値は、検出下限未満を検出下限の1/2として算出したものである。
- 注4) 実測濃度の表中の「ND」は、検出下限未満であることを示す。

⑤焼却灰

下水道終末処理施設

表-62 焼却灰中のPBDDs/DFs及びPCDDs/DFs・Co-PCBの分析結果(毒性等量相当値/毒性等量)

毒性等量相当値/毒性等量	B-1施設	B-2施設	B-3施設
海性等単作当他/海性等単 (ng-TEQ/g-dry)	焼却灰	焼却灰	焼却灰
PBDDs/DFs(TEQ)	0	0	0.0079
I DDDS/ DI'S (IEQ)	(0.0034)	(0.0034)	(0.011)
PCDDs/DFs(TEQ)	0.0017	0.0011	0.0043
FCDDS/DFS (TEQ)	(0.0017)	(0.0012)	(0.0044)
Co-PCB (TEQ)	0.0000031	0.0000031	0.000034
CO TCD(TEQ)	(0.0000085)	(0.0000085)	(0.000040)
PCDDs/DFs, Co-PCB(TEQ)	0.0017	0.0011	0.0043
1 CDDS/ DFS, CO 1 CD (1EQ)	(0.0017)	(0.0012)	(0.0045)

表-63 焼却灰中のPBDDs/DFs・PCDDs/DFs・Co-PCB及びMoBPCDDs/DFsの分析結果(実測濃度)

		B-1施設	B-2施設	B-3施設	
	濃度(ng/g-dry)	焼却灰	焼却灰	焼却灰	
	PBDDs	ND	ND	ND	
	PBDFs	ND	ND	0. 26	
	PBDDs/DFs	ND	ND	0. 26	
	PCDDs/DFs	0. 18	0. 16	0.44	
	Co-PCB	0.028	0.027	0.31	
	PCDDs/DFs, Co-PCB	0. 21	0. 19	0.74	
	MoBPCDDs/MoBPCDFs	ND	ND	ND	

- 注1) PBDDs/DFs(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFに準じて算出した参考値である。
- 注2) PCDDs/DFs, Co-PCB(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFを用いて算出した値である。
- 注3) 毒性等量相当値/毒性等量の表中の上段は、検出下限未満を「0」として算出したものである。 下段の括弧付の数値は、検出下限未満を検出下限の1/2として算出したものである。
- 注4) 実測濃度の表中の「ND」は、検出下限未満であることを示す。

2)周辺環境関連項目 ①環境大気

a. 難燃プラスチック成形加工施設周辺

環境大気中のPBDDs/DFs及びPCDDs/DFs・Co-PCBの分析結果(毒性等量相当値/毒性等量)

1		- I DDD o DI o	$\mathcal{N} \cup \mathcal{N} \cup $	71 0 0 1 01	/ · / / / / / / / / / / /		
毒	性等量相当值/毒性等量	A-1施	設周辺	A-2施設周辺		A-3施	設周辺
	$(pg-TEQ/m^3)$	施設東	施設西	施設南	施設北	施設北東	施設南西
	PBDDs/DFs(TEQ)	0.10	0.004	0.004	0	0	0.007
	I DDDS/ DFS (ILQ)	(0.17)	(0.086)	(0.086)	(0.083)	(0.083)	(0.089)
	PCDDs/DFs(TEQ)	0.054	0.078	0.042	0.039	0.066	0.037
	FCDDS/DFS(IEQ)	(0.055)	(0.080)	(0.042)	(0.041)	(0.067)	(0.039)
	Co-PCB (TEQ)	0.0039	0.0048	0.0029	0.0034	0.0032	0.0022
	CO-PCB(IEQ)	(0.0039)	(0.0048)	(0.0029)	(0.0034)	(0.0032)	(0.0022)
	PCDDs/DFs, Co-PCB(TEQ)	0.058	0.083	0.045	0.042	0.069	0.040
	T CDDS/ DFS, CO-FCB (TEQ)	(0.059)	(0.085)	(0.045)	(0.044)	(0.070)	(0.041)

毒性等量相当值/毒性等量	A-4施設周辺		A-5施設周辺		A-6施設周辺	
(pg-TEQ/m ³)	施設南西	施設東	施設南西	施設北	施設北西	施設東
PBDDs/DFs(TEQ)	0	0	0	0.004	0.003	0
I DDDS/ DI'S (ILQ)	(0.083)	(0.083)	(0.083)	(0.086)	(0.085)	(0.083)
PCDDs/DFs(TEQ)	0.024	0.073	0.10	0. 25	0.075	0.039
I CDDS/ DFS (IEQ)	(0.026)	(0.075)	(0.10)	(0.25)	(0.077)	(0.041)
Co-PCB (TEQ)	0.0015	0.0016	0.0053	0.0063	0.0022	0.0015
CO TCD(TEQ)	(0.0015)	(0.0016)	(0.0053)	(0.0063)	(0.0022)	(0.0015)
PCDDs/DFs, Co-PCB(TEQ)	0.026	0.075	0.11	0. 26	0.077	0.041
TCDDS/DFS, CO TCD(TEQ)	(0.027)	(0.077)	(0.11)	(0.26)	(0.079)	(0.042)

表-65 環境大気中のPBDDs/DFs・PCDDs/DFs・Co-PCB及びMoBPCDDs/DFsの分析結果(実測濃度)

	* > 1 DDD 0 / D1 0	I CDDD/ DI C) 00 I 0D/X	C MODI CDDS	$/$ DI $0 \leftrightarrow 2 JJ V I /$	
濃度(pg/m³)	A-1施	A-1施設周辺		A-2施設周辺		設周辺
優吳(pg/m)	施設東	施設西	施設南	施設北	施設北東	施設南西
PBDDs	35	39	ND	ND	2. 3	ND
PBDFs	13	1. 2	2.0	0. 20	2. 1	2.0
PBDDs/DFs	47	40	2.0	0. 20	4. 3	2.0
PCDDs/DFs	3. 7	4. 5	3. 0	3. 2	3. 9	2.6
Co-PCB	3. 3	5. 2	2.4	2. 4	5. 9	2. 2
PCDDs/DFs, Co-PCB	7. 0	9.8	5. 3	5. 6	9. 9	4.7
MoBPCDDs/MoBPCDFs	0.007	0.011	ND	ND	0.017	0.36

が ・	A-4施設周辺		A-5施設周辺		A-6施設周辺	
濃度(pg/m³)	施設南西	施設東	施設南西	施設北	施設北西	施設東
PBDDs	0.02	ND	ND	0. 21	1. 9	0.07
PBDFs	0.10	0.43	0.31	2. 2	4. 0	1.5
PBDDs/DFs	0.12	0.43	0.31	2. 5	5.8	1.6
PCDDs/DFs	2. 1	5. 0	9. 0	12	3. 7	2.4
Co-PCB	0.90	0.94	1.3	1.5	2.6	2. 1
PCDDs/DFs, Co-PCB	3.0	6. 0	10	13	6. 3	4.5
MoBPCDDs/MoBPCDFs	ND	0.11	0.059	ND	ND	ND

- 注1) PBDDs/DFs(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFに準じて算出した参考値である。
- 注2) PCDDs/DFs, Co-PCB(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFを用いて算出した値である。
- 注3) 毒性等量相当値/毒性等量の表中の上段は、検出下限未満を「0」として算出したものである。 下段の括弧付の数値は、検出下限未満を検出下限の1/2として算出したものである。
- 注4) 実測濃度の表中の「ND」は、検出下限未満であることを示す。

b. 下水道終末処理施設周辺

表-66 環境大気中のPBDDs/DFs及びPCDDs/DFs・Co-PCBの分析結果(毒性等量相当値/毒性等量)

毒性等量相当值/毒性等量	B-1施	設周辺	B−2施	設周辺	B-3施	設周辺
(pg-TEQ/m ³)	施設北	施設南	施設北	施設南	施設南西	施設南東
PBDDs/DFs(TEQ)	0.0066	0.002	0	0.005	0.003	0.022
I DDDS/ DFS (IEQ)	(0.089)	(0.084)	(0.083)	(0.087)	(0.085)	(0.095)
PCDDs/DFs(TEQ)	0.30	0.097	0.058	0.13	0.19	0.074
TCDDS/DFS(TEQ)	(0.30)	(0.097)	(0.059)	(0.13)	(0.19)	(0.074)
Co-PCB (TEQ)	0.0065	0.0034	0.0048	0.0066	0.0045	0.0043
CO TCB(TEQ)	(0.0065)	(0.0034)	(0.0048)	(0.0066)	(0.0045)	(0.0043)
PCDDs/DFs, Co-PCB(TEQ)	0.30	0.10	0.062	0.13	0. 20	0.078
I CDDS/ DI'S, CO-FCD (IEQ)	(0.30)	(0.10)	(0.064)	(0.13)	(0.20)	(0.078)

表-67 環境大気中のPBDDs/DFs・PCDDs/DFs・Co-PCB及びMoBPCDDs/DFsの分析結果(実測濃度)

迪庄 (/ 3)	B-1施設周辺		B-2施設周辺		B−3施設周辺	
濃度(pg/m³)	施設北	施設南	施設北	施設南	施設南西	施設南東
PBDDs	0. 25	2. 1	0.40	3. 3	0.06	0.03
PBDFs	4. 7	2. 1	0.90	4.6	4. 0	4. 3
PBDDs/DFs	5. 0	4. 2	1. 3	7. 9	4. 1	4. 3
PCDDs/DFs	12	5. 3	3. 5	7. 6	110	4. 5
Co-PCB	3.0	2.4	3. 2	3. 1	2. 5	3. 5
PCDDs/DFs, Co-PCB	15	7.8	6. 7	11	110	8. 0
MoBPCDDs/MoBPCDFs	0.088	ND	0.034	0.016	0.026	0.015

- 注1) PBDDs/DFs(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFに準じて算出した参考値である。
- 注2) PCDDs/DFs, Co-PCB(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFを用いて算出した値である。
- 注3) 毒性等量相当値/毒性等量の表中の上段は、検出下限未満を「0」として算出したものである。 下段の括弧付の数値は、検出下限未満を検出下限の1/2として算出したものである。
- 注4) 実測濃度の表中の「ND」は、検出下限未満であることを示す。

②降下ばいじん

a. 難燃プラスチック成形加工施設周辺 表-68 降下ばいじん中のPBDDs/DFs及びPCDDs/DFs・DL-PCBの分析結果(毒性等量相当値/毒性等量)

畫	性等量相当值/毒性等量	A-1施設周辺	A-2施設周辺	A-3施設周辺	A-4施設周辺	A-5施設周辺	A-6施設周辺
	(pg-TEQ/m ² /day)	施設西	施設北	施設南西	施設東	施設北	施設東
	PBDDs/DFs(TEQ)	3. 2	0. 5	1.3	0	2.6	0
	I DDD3/ DI 3 (ILW)	(20)	(18)	(18)	(17)	(20)	(17)
	PCDDs/DFs(TEQ)	11	40	13	9. 1	12 13	13
	TCDDS/DFS(TEQ)	(11)	(40)	(13)	(9.1)	(13)	(13)
	DL-PCB (TEQ)	2.0	0.84	4. 1	0.48	0.98	0.85
	DE TOD(TEM)	(2.0)	(0.84)	(4.1)	(0.49)	(0.98)	(0.85)
I	PCDDs/DFs, DL-PCB(TEQ)	13	41	17	9. 5	13	13
	FCDDS/DFS, DL-FCD (IEQ)	(13)	(41)	(17)	(9.5)	(14)	(14)

表-69 降下ばいじん中のPBDDs/DFs・PCDDs/DFs・Co-PCB及びMoBPCDDs/DFsの分析結果(実測濃度)

濃度(pg/m²/day)	A-1施設周辺	A-2施設周辺	A-3施設周辺	A-4施設周辺	A-5施設周辺	A-6施設周辺
侲及(pg/m/day)	施設西	施設北	施設南西	施設東	施設北	施設東
PBDDs	400	ND	6	ND	34	11
PBDFs	1200	140	390	140	1100	550
PBDDs/DFs	1600	140	400	140	1200	560
PCDDs/DFs	890	2400	1200	1200	1200	1100
Co-PCB	2600	940	4000	570	610	1100
PCDDs/DFs, Co-PCB	3500	3300	5200	1700	1800	2200
MoBPCDDs/MoBPCDFs	44	1. 3	12	5. 6	ND	46

b. 下水道終末処理施設周辺 表-70 降下ばいじん中の

<u>降下ばいじん中のPBDDs/DFs及びPCDDs/DFs・Co-PCBの分析結果(毒性等量相当値/毒性等量)</u>

毒性等量相当值/毒性等量	B-1施設周辺	B-2施設周辺	B-3施設周辺
(pg-TEQ/m ² /day)	施設南	施設南	施設南東
PBDDs/DFs(TEQ)	0.5	0	0.4
I DDDS/DI'S (IEQ)	(18)	(17)	(18)
PCDDs/DFs(TEQ)	20	11	12
FCDDS/DFS (TEQ)	(20)	(11)	(12)
Co-PCB (TEQ)	3. 3	2. 5	0.78
CO I CB(IEQ)	(3.3)	(2.5)	(0.78)
PCDDs/DFs, Co-PCB(TEQ)	23	13	13
I CDDS/ DI'S, CO-FCB (IEQ)	(23)	(14)	(13)

表-71 <u>降下ばいじん中のPBDDs/DFs・PCDDs/DFs・Co-PCB及びMoBPCDDs/DFsの</u>分析結果(実測濃度)

濃度(pg/m²/day)	B-1施設周辺 施設南	B-2施設周辺 施設南	B-3施設周辺 施設南東
PBDDs	36	22	6
PBDFs	640	220	290
PBDDs/DFs	680	240	300
PCDDs/DFs	1900	800	1800
Co-PCB	3100	2300	870
PCDDs/DFs, Co-PCB	5000	3100	2700
MoBPCDDs/MoBPCDFs	16	ND	9.9

- 注1) PBDDs/DFs(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFに準じて算出した参考値である。
- 注2) PCDDs/DFs, Co-PCB(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFを用いて算出した値である。
- 注3) 毒性等量相当値/毒性等量の表中の上段は、検出下限未満を「0」として算出したものである。 下段の括弧付の数値は、検出下限未満を検出下限の1/2として算出したものである。
- 注4) 実測濃度の表中の「ND」は、検出下限未満であることを示す。

③公共用水域水質

a. 難燃プラスチック成形加工施設周辺

表-72 公共用水域水質中のPBDDs/DFs及びPCDDs/DFs・Co-PCBの分析結果(毒性等量相当値/毒性等量)

_			Del Di elle			VIVIENT CFF	1 1 1
	毒性等量相当値/毒性等量	A-1施	設周辺	A-2施	設周辺	A-3施	設周辺
	(pg-TEQ/L)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	海域(排水口付近)	海域
	PBDDs/DFs(TEQ)	0	0.04	0.04	0	0	0
	I DDDS/ DI'S (IEQ)	(1.8)	(1.8)	(1.8)	(1.8)	(1.8)	(1.8)
	PCDDs/DFs(TEQ)	0.0077	0.26	1.6	1.0	0.011	0 (1. 8) 0. 0098 (0. 065) 0. 0094 (0. 0095) 0. 019
	FCDDS/DFS(IEQ)	(0.063)	(0.30)	(1.6)	(1.0)	(0.066)	(0.065)
	Co-PCB (TEQ)	0.0017	0.033	0.025	0.0038	0.0012	設周辺 海域 0 (1.8) 0.0098 (0.065) 0.0094 (0.0095)
	CO T CB (TEQ)	(0.0038)	(0.033)	(0.025)	(0.0060)	(0.0034)	(0.0095)
	PCDDs/DFs, Co-PCB(TEQ)	0.0094	0. 29	1.6	1.0	0.012	0.019
	FCDDS/DFS, CO-FCD (IEQ)	(0.067)	(0.33)	(1.6)	(1.0)	(0.069)	(0.075)

毒性等量相当值/毒性等量	A-4施	設周辺	A-5施	設周辺	A-6施	設周辺
(pg-TEQ/L)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)
PBDDs/DFs(TEQ)	0	0	0	0.10	0	0
FDDDS/DFS (TEQ)	(1.8)	(1.8)	(1.8)	(1.9)	(1.8)	(1.8)
PCDDs/DFs(TEQ)	0.0049	0.0062	0.028	0.015	0. 19	0. 12
FCDDS/DFS (IEQ)	(0.060)	(0.061)	(0.082)	(0.070)	(0.23)	(0.16)
Co-PCB (TEQ)	0.00072	0.00072	0.00082	0.00081	0.0084	0.019
CO-PCB (IEQ)	(0.0029)	(0.0029)	(0.0030)	(0.0030)	(0.011)	(0.019)
PCDDs/DFs, Co-PCB(TEQ)	0.0056	0.0069	0.029	0.016	0. 20	0. 14
rebbs/brs, co-reb(reg)	(0.063)	(0.064)	(0.085)	(0.073)	(0.24)	(0.18)

表-73 公共用水域水質中のPBDDs/DFs・PCDDs/DFs・Co-PCB及びMoBPCDDs/DFsの分析結果 (実測濃度)

<u> </u>		設周辺	A-2施	設周辺	A-3施	
仮及 (pg/L)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	海域 (排水口付近)	海域
PBDDs	ND	44	ND	ND	ND	ND
PBDFs	ND	4.8	7. 1	0.4	ND	ND
PBDDs/DFs	ND	49	7. 1	0.4	ND	ND
PCDDs/DFs	6.8	42	1000	820	10	8. 9
Co-PCB	15	69	43	38	12	16
PCDDs/DFs, Co-PCB	22	110	1100	860	23	25
MoBPCDDs/MoBPCDFs	ND	0.9	0.6	0.6	ND	ND

濃度(pg/L)	A-4施	設周辺	A-5施	設周辺	A-6施	設周辺
仮及 (pg/L)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)
PBDDs	ND	ND	ND	ND	ND	ND
PBDFs	ND	ND	ND	12	ND	ND
PBDDs/DFs	ND	ND	ND	12	ND	ND
PCDDs/DFs	7.0	10	38	35	43	22
Co-PCB	6. 7	6. 9	7. 7	7. 4	64	42
PCDDs/DFs, Co-PCB	14	17	46	43	110	64
MoBPCDDs/MoBPCDFs	ND	ND	ND	ND	ND	1. 4

- 注1) PBDDs/DFs(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFに準じて算出した参考値である。
- 注2) PCDDs/DFs, Co-PCB(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFを用いて算出した値である。
- 注3) 毒性等量相当値/毒性等量の表中の上段は、検出下限未満を「0」として算出したものである。 下段の括弧付の数値は、検出下限未満を検出下限の1/2として算出したものである。
- 注4) 実測濃度の表中の「ND」は、検出下限未満であることを示す。

b. 下水道終末処理施設周辺

公共用水域水質中のPBDDs/DFs及びPCDDs/DFs・Co-PCBの分析結果 (毒性等量相当値/毒性等量)

7	舞性等量相当値/毒性等量	B-1施	設周辺	B-2施	設周辺	B-3施	4 1.5 (3.3) 6 0.054 0) (0.097) 63 0.0046	
	(pg-TEQ/L)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	
	PBDDs/DFs(TEQ)	0	0	0	0	0.04	1.5	
	I DDDS/ DI'S (IEQ)	(1.8)	(1.8)	(1.8)	(1.8)	(1.8)	(3.3)	
	PCDDs/DFs(TEQ)	0. 27	0.40	1.6	0.42	0.36	河川 (下流) 1.5 (3.3) 0.054 (0.097)	
	I CDDS/ DI'S (IEQ)	(0.31)	(0.43)	(1.6)	(0.46)	(0.40)	(0.097)	
	Co-PCB (TEQ)	0. 18	0.011	0.0052	0.0068	0.063	0.0046	
	CO I CB (IEQ)	(0.18)	(0.013)	(0.0073)	(0.0089)	(0.064)	(0.0067)	
	PCDDs/DFs, Co-PCB (TEQ)	0.45	0.41	1.6	0.43	0.43	0.059	
		(0.49)	(0.45)	(1.6)	(0.46)	(0.46)	(0.10)	

公共用水域水質中のPBDDs/DFs・PCDDs/DFs・Co-PCB及びMoBPCDDs/DFsの分析結果 (実測濃度) 表-75

濃度(pg/L)	B-1施	設周辺	B-2施	設周辺	B-3施	設周辺
仮及 (pg/L)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)
PBDDs	0. 5	ND	1.0	ND	ND	ND
PBDFs	ND	2.5	0.4	ND	5. 1	1000
PBDDs/DFs	0. 5	2.5	1.5	ND	5. 1	1000
PCDDs/DFs	52	57	100	56	320	4. 4
Co-PCB	490	100	49	63	140	43
PCDDs/DFs, Co-PCB	540	160	150	120	460	47
MoBPCDDs/MoBPCDFs	0.3	0.3	ND	ND	1. 3	3. 3

- 注1) PBDDs/DFs(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFに準じて算出した参考値である。
- 注2) PCDDs/DFs, Co-PCB(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFを用いて算出した値である。
- 注3) 毒性等量相当値/毒性等量の表中の上段は、検出下限未満を「0」として算出したものである。 下段の括弧付の数値は、検出下限未満を検出下限の1/2として算出したものである。 注4) 実測濃度の表中の「ND」は、検出下限未満であることを示す。

④公共用水域底質

a. 難燃プラスチック成形加工施設周辺

表-76 公共用水域底質中のPBDDs/DFs及びPCDDs/DFs・Co-PCBの分析結果(毒性等量相当値/毒性等量)

	<u> </u>		Del Di elle			VIVIENT CFF	1 1 1
3	毒性等量相当值/毒性等量	A-1施	設周辺	A-2施	設周辺	A-3施	設周辺
	(pg-TEQ/g-dry)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	海域(排水口付近)	海域
	PBDDs/DFs(TEQ)	0	0.05	0	0.04	0	0. 22
	I DDDS/ DI'S (IEQ)	(0.83)	(0.88)	(0.83)	(0.86)	(0.83)	(1.0)
	PCDDs/DFs(TEQ)	0. 23	1.4	0.84	1.6	0. 13	3.8
	FCDDS/DI'S (TEQ)	(0.23)	(1.4)	(0.84)	(1.6)	(0.16)	(3.8)
	Co-PCB (TEQ)	0.017	0.30	0.076	0. 15	0.011	0. 22 (1. 0) 3. 8
	CO ICD(IEQ)	(0.017)	(0.30)	(0.076)	(0.15)	(0.011)	(0.44)
	PCDDs/DFs, Co-PCB(TEQ)	0. 24	1.7	0. 92	1. 7	0.14	4. 2
	FCDDS/DI'S, CO-FCD (IEQ)	(0.24)	(1.7)	(0.92)	(1.7)	(0.17)	(4. 2)

毒性等量相当值/毒性等量	A-4施	設周辺	A-5施	設周辺	A-6施	設周辺
(pg-TEQ/g-dry)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)
PBDDs/DFs(TEQ)	0	0.03	0	0. 22	0.02	0.04
I DDDS/ DI'S (IEQ)	(0.83)	(0.85)	(0.83)	(1.0)	(0.84)	(0.86)
PCDDs/DFs(TEQ)	0. 26	1.4	0.56	0.51	0.41	0.70
FCDDS/DFS (TEQ)	(0.27)	(1.4)	(0.58)	(0.53)	(0.43)	(0.71)
Co-PCB (TEQ)	0.010	0.19	0.018	0.033	0.047	0. 24
CO-FCB(IEQ)	(0.010)	(0.19)	(0.018)	(0.033)	(0.047)	(0.24)
PCDDs/DFs, Co-PCB(TEQ)	0. 27	1.6	0. 58	0.55	0.46	0. 94
rebbs/brs, co-reb(reg)	(0.28)	(1.6)	(0.60)	(0.56)	(0.47)	(0.95)

表-77 公共用水域底質中のPBDDs/DFs・PCDDs/DFs・Co-PCB及びMoBPCDDs/DFsの分析結果(実測濃度)

<u> </u>		DD/DID IC	DDS/DIS C		DI CDDS/ DI S	* / JJ VI / H / I
濃度(pg/g-dry)	A-1施	設周辺	A-2施	設周辺	A-3施	設周辺
仮及 (pg/g-ury)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	海域(排水口付近)	海域
PBDDs	ND	10	ND	0.2	ND	1. 3
PBDFs	ND	15	1. 3	13	ND	25
PBDDs/DFs	ND	25	1. 3	13	ND	27
PCDDs/DFs	17	140	310	700	19	780
Co-PCB	46	570	240	190	21	690
PCDDs/DFs, Co-PCB	63	700	550	890	40	1500
MoBPCDDs/MoBPCDFs	ND	7. 2	1. 5	4. 5	ND	9. 3

濃度(pg/g-dry)	A-4施	設周辺	A-5施	設周辺	A-6施	A-6施設周辺	
仮及 (pg/g=dry)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	
PBDDs	ND	ND	ND	0.3	ND	ND	
PBDFs	ND	5. 6	ND	75	3. 9	8. 2	
PBDDs/DFs	ND	5. 6	ND	76	3. 9	8. 2	
PCDDs/DFs	29	230	370	320	62	120	
Co-PCB	19	140	35	120	100	610	
PCDDs/DFs, Co-PCB	48	370	400	430	160	720	
MoBPCDDs/MoBPCDFs	ND	0.16	1. 3	1.3	0. 17	0.89	

- 注1) PBDDs/DFs(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFに準じて算出した参考値である。
- 注2) PCDDs/DFs, Co-PCB(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFを用いて算出した値である。
- 注3) 毒性等量相当値/毒性等量の表中の上段は、検出下限未満を「0」として算出したものである。 下段の括弧付の数値は、検出下限未満を検出下限の1/2として算出したものである。
- 注4) 実測濃度の表中の「ND」は、検出下限未満であることを示す。

b. 下水道終末処理施設周辺

公共用水域底質中のPBDDs/DFs及びPCDDs/DFs・Co-PCBの分析結果 (毒性等量相当値/毒性等量)

毒性等量相当值	毒性等量相当值/毒性等量		設周辺	B-2施	B-2施設周辺 B-3施設周辺		設周辺
(pg-TEQ/g-	dry)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)
PBDDs/DFs(TEG))	0	0.05	0.63	4. 2	0. 93	3. 2
I DDDS/ DI'S (IEX	¥)	(0.83)	(0.87)	(1.3)	(4.8)	(1.6)	(3.8)
PCDDs/DFs(TEG))	0. 53	1.6	5. 6	1.6	4.6	1.6
I CDDS/ DI'S (TEX	¥)	(0.55)	(1.6)	(5.6)	(1.6)	(4.6)	(1.6)
Co-PCB (TEQ)		0. 19	0.029	0.62	0.090	0.69	0.084
CO TCD(TLQ)		(0.19)	(0.030)	(0.62)	(0.090)	(0.69)	(0.084)
PCDDs/DFs, Co-	-DCB (TEU)	0.72	1.6	6. 2	1.7	5. 3	1. 7
I CDDS/ DI'S, CO	ICD(IEQ)	(0.74)	(1.6)	(6.2)	(1.7)	(5.3)	(1.7)

表-79 公共用水域底質中のPBDDs/DFs・PCDDs/DFs・Co-PCB及びMoBPCDDs/DFsの分析結果 (実測濃度)

進序(==/== d===)	B-1施	設周辺	B-2施設周辺 B-3施設周辺			設周辺
濃度(pg/g-dry)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)
PBDDs	ND	1. 1	15	0.2	35	0. 2
PBDFs	ND	15	110	1000	160	680
PBDDs/DFs	ND	16	130	1000	190	680
PCDDs/DFs	53	210	1500	770	1200	590
Co-PCB	850	59	1000	170	1100	180
PCDDs/DFs, Co-PCB	900	260	2500	940	2300	770
MoBPCDDs/MoBPCDFs	0.75	2. 2	14	3.8	10	4. 3

- 注1) PBDDs/DFs(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFに準じて算出した参考値である。
- 注2) PCDDs/DFs, Co-PCB(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFを用いて算出した値である。
- 注3) 毒性等量相当値/毒性等量の表中の上段は、検出下限未満を「0」として算出したものである。 下段の括弧付の数値は、検出下限未満を検出下限の1/2として算出したものである。 注4) 実測濃度の表中の「ND」は、検出下限未満であることを示す。

5-2 臭素系難燃物質 (PBDEs・TBBPA・TBPs及びHBCD)

1)施設関連項目

1)施設関連項目							
排出ガス a. 難燃プラスチック成形加工施設							
					_		
表-80 排出がる		• TBBPA • TE					
濃度	A-17	施設	A-2施設	A-3施設	A-4施設		
辰区	発泡炉上部	湿式集塵機出口	押出ライン	集塵機出口	電線接着上部		
PBDEs(ng/m ³ _N)	2100000	13000	180	20	110		
TBBPA(ng/m ³ _N)	12	4.5	1.1	1.4	5.3		
$TBPs(ng/m_N^3)$	190	24	9.3	3.8	ND		
$HBCD(ng/m_N^3)$	790	18	8.3	9.5	10		

濃度		A-57	i施設 A-6施設		
		脱臭装置入口	脱臭装置出口	成形加工前工程	成形加工後工程
	PBDEs(ng/m³ _N)	1800	16	180000	170000
-	TBBPA(ng/m³ _N)	4.6	2.5	5.7	0.8
	TBPs(ng/m³ _N)	10	4.2	ND	93
	HBCD(ng/m ³ _N)	27	51	6.8	39

b. 下水道終末処理施設 表-81 排出がス中のPBDEs・TBBPA・TBPs及びHBCDの分析結果

			B-1 <i>]</i>	施設		B-2施設			
濃度	脱臭装置入口	昭自牲署中口	焼麸	印炉	脱臭装置入口	昭自牲署中口	焼麸	印炉	
		加英农且八口	忧关衣且山口	実測濃度	0₂換算濃度	加关 农且八口	瓜 类农且山口	実測濃度	0₂換算濃度
PBDEs(ng	/m ³ _N)	110	12	10	21	160	6.7	10	14
TBBPA(ng.	/m ³ _N)	1.9	2.0	1.8	3.7	2.2	1.3	2.3	3.3
TBPs(ng/r	m_N^3)	22	6.4	4.0	8.5	5.4	5.4	3.9	5.6
HBCD(ng/r	m ³ _N)	19	79	3.2	6.6	30	ND	16	23

	B-3施設				
濃度	脱臭装置入口	脱自壮军山口	焼却炉		
		加关衣 且山口	実測濃度	0₂換算濃度	
PBDEs(ng/m ³ _N)	130	19	99	230	
TBBPA(ng/m ³ _N)	1.4	2.1	2.2	5.1	
$TBPs(ng/m^3_N)$	7.9	11	9.6	22	
$HBCD(ng/m^3_N)$	39	13	34	78	

排出水
a. 難燃プラスチック成形加工施設
素.82 排出水中のPRDE。・TRRPA

<u> 衣 - 82</u>							
		A-1	A-1施設 A-2		?施設		
	濃度		工業用水 (地下水)	総合排水	工業用水 (地下水)		
PBDEs(ng/L)	4200	7.3	5.1	4.6		
TBBPA(ng/L)	1.4	0.16	0.32	0.16		
TBPs(n	g/L)	0.62	0.27	7.4	0.37		
HBCD(n	g/L)	5.0	ND	ND	ND		

			A-3施設				
濃度		コンパウンド 冷却水	電線冷却水	総合排水	工業用水 (地下水)		
	PBDEs(ng/L)	140	440	41	11		
	TBBPA(ng/L)	4.0	11	6.7	0.16		
	TBPs(ng/L)	71	6.7	4.1	4.3		
	HBCD(ng/L)	1.2	1.3	1.1	ND		

	A-4	施設	A-5施設		
濃度	総合排水	工業用水	総合排水	工業用水 (地下水)	
PBDEs(ng/L)	3.6	0.56	4.1	0.56	
TBBPA(ng/L)	0.17	0.13	0.15	0.13	
TBPs(ng/L)	0.65	0.34	2.1	0.14	
HBCD(ng/L)	2.5	ND	4.5	ND	

		A-6施設					
濃度		真空ポンプ・ シール水	冷却槽水	総合排水	工業用水		
	PBDEs(ng/L)	3.6	340	2.4	0.77		
	TBBPA(ng/L)	0.18	0.16	0.16	0.13		
	TBPs(ng/L)	0.38	2.0	2.3	0.87		
	HBCD(ng/L)	0.97	0.50	1.8	1.2		

b. 下水道終末処理施設 表-83 排出水中のPBDEs・TBBPA・TBPs及びHBCDの分析結果

表-63 排出小中OPEDES TEBER TEPS及OFFICEDOD为们编来									
			B-1施設						
濃度		流入水	最初沈殿池水	最終沈殿池水	放流水				
	PBDEs(ng/L)	4200	13	3.9	3.2				
	TBBPA(ng/L)	11	4.1	0.56	0.85				
	TBPs(ng/L)	3.4	7.7	6.1	5.9				
	HBCD(ng/L)	11	11	1.6	3.8				

濃度			B-2施設						
		流入水	最初沈殿池水	最終沈殿池水	放流水				
	PBDEs(ng/L)	140	19	5.2	12				
	TBBPA(ng/L)	11	2.0	0.45	1.4				
	TBPs(ng/L)	1.7	1.3	1.4	6.7				
	HBCD(ng/L)	17	9.7	2.5	2.9				

Ī			B-3施設						
	濃度	流入水	最初沈殿池水	最終沈殿池水	放流水				
Γ	PBDEs(ng/L)	490000	100000	16000	18000				
ı	TBBPA(ng/L)	6.7	3.8	0.34	0.33				
ı	TBPs(ng/L)	1.4	2.6	8.1	84				
ı	HBCD(na/L)	17000	620	1200	1200				

③建屋内空気

a. 難燃プラスチック成形加工施設

表-84 建屋内空気中のPBDEs・TBBPA・TBPs及びHBCDの分析結果

	- \	<u> </u>			/ CIBOD -	77 VI/IH/IS	
Г	濃度		A-1施設		A-2施設	A-3施設	A-4施設
			樹脂混練作業場周辺	発泡炉周辺	押出ライン周辺	電線製造場周辺	製品加工作業場周辺
		PBDEs (ng/m³)	11000	320	14	190	10
		TBBPA (ng/m³)	0.31	0. 15	0.89	1. 1	0.81
I		TBPs (ng/m³)	0.77	1. 7	32	0. 28	0.42
L		HBCD(ng/m³)	0. 29	0.12	0. 21	0. 27	0. 15

	A-5施設		A-6施設	
濃度	製品巻取り作業場周辺	押出工程周辺	成形加工前工程周辺	成形加工後工程周辺
PBDEs (ng/m³)	0.97	8. 2	51	550
TBBPA (ng/m ³)	1.6	20	0.43	0.34
TBPs (ng/m³)	0.51	0.47	0.16	0. 23
HBCD(ng/m ³)	2. 1	0. 19	0.16	0.72

④汚泥

下水道終末処理施設

表-85 汚泥中のPBDEs・TBBPA・TBPs及びHBCDの分析結果

	B-1施設	B-2施設	B-3施設
濃度	汚泥	汚泥	汚泥
PBDEs (ng/g-dry)	1000	2200	500000
TBBPA(ng/g-dry)	49	30	37
TBPs (ng/g-dry)	20	10	15
HBCD(ng/g-dry)	39	91	52000

⑤焼却灰

下水道終末処理施設

表-86 焼却灰中のPBDEs・TBBPA・TBPs及びHBCDの分析結果

	B-1施設	B-2施設	B-3施設
濃度	焼却灰	焼却灰	焼却灰
PBDEs (ng/g-dry)	0.83	0.71	7. 9
TBBPA (ng/g-dry)	0.07	0.07	0. 17
TBPs (ng/g-dry)	0.35	0.48	12
HBCD (ng/g-dry)	4. 0	ND	35

2) 周辺環境関連項目

①環境大気

a. 難燃プラスチック成形加工施設周辺

表-87 環境大気中のPBDEs・TBBPA・TBPs及びHBCDの分析結果

1	表 Of RAEACK VALUEDES IDDITE IDES X O IIDCD VA A A A A A A A A A A A A A A A A A A						
	濃度	A-1施設周辺		A-2施設周辺		A-3施設周辺	
	仮及	施設東	施設西	施設南	施設北	施設北東	施設南西
	PBDEs (ng/m ³)	1.5	0. 19	0. 10	0.019	0.032	0. 25
	TBBPA (ng/m³)	0.061	0.018	0.017	0.0074	0.53	0.36
	TBPs (ng/m ³)	0.40	0.15	0. 24	0. 13	0.10	0.076
I	HBCD (ng/m ³)	0.026	0.049	0.0086	0.0059	0.0095	ND

濃度		A-4施設周辺		A-5施設周辺		A-6施設周辺	
	仮及	施設南西	施設東	施設南西	施設北	施設北西	施設東
	PBDEs (ng/m³)	0.035	0.012	0.018	0. 19	0.024	0. 13
	TBBPA (ng/m³)	0.47	0.054	0.095	0.048	0.021	0.041
	TBPs (ng/m ³)	0.048	0.040	0.43	0. 14	0.051	0.065
	HBCD(ng/m ³)	ND	0.012	ND	5. 1	0.043	0. 015

b. 下水道終末処理施設周辺

表-88 環境大気中のPBDEs・TBBPA・TBPs及びHBCDの分析結果

\$ 11						
濃度	B-1施設周辺		B-2施設周辺		B-3施設周辺	
(展) 及	施設北	施設南	施設北	施設南	施設南西	施設南東
PBDEs (ng/m³)	0.53	0.030	0.027	0.052	0.063	0.075
TBBPA (ng/m³)	0.076	0.063	0.014	0.038	0. 12	0.47
TBPs (ng/m³)	0.17	0.065	0.021	0.11	0. 23	0. 90
HBCD (ng/m³)	3.4	ND	0.012	0.027	0. 27	0. 21

②降下ばいじん

a. 難燃プラスチック成形加工施設周辺

表-89 降下ばいじん中のPBDEs・TBBPA・TBPs及びHBCDの分析結果

9	, I DD Do	DDIII IDI	3/ / () II D 0 D /	23 VI/IH/IS		
濃度	A-1施設周辺	A-2施設周辺	A-3施設周辺	A-4施設周辺	A-5施設周辺	A-6施設周辺
派及	施設西	施設北	施設南西	施設東	施設北	施設東
PBDEs (ng/m ² /day)	160	19	78	24	110	54
TBBPA (ng/m ² /day)	20	22	17	3.0	53	50
TBPs (ng/m²/day)	40	56	46	18	110	44
HBCD (ng/m²/day)	17	5.8	32	8.3	2300	11

b. 下水道終末処理施設周辺

表-90 降下ばいじん中のPBDEs・TBBPA・TBPs及びHBCDの分析結果

濃度	B-1施設周辺	B-2施設周辺	B-3施設周辺
(長)支	施設南	施設南	施設南東
PBDEs (ng/m²/day)	72	24	68
TBBPA (ng/m²/day)	30	98	6. 5
TBPs (ng/m²/day)	18	21	38
HBCD(ng/m ² /day)	19	9. 1	11

③公共用水域水質

a. 難燃プラスチック成形加工施設周辺

表-91 公共用水域水質中のPBDEs・TBBPA・TBPs及びHBCDの分析結果

11	式 01 AA/II/N域/N頁 1 VI DDES IDDI II IDI 3人 0 IID CD V 2 / IV IV III R							
	濃度	A-1施	A-1施設周辺		A-2施設周辺		設周辺	
	仮及	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	海域 (排水口付近)	海域	
	PBDEs (ng/L)	0.46	8. 7	1.5	1. 2	0.35	0.32	
	TBBPA (ng/L)	0. 13	0. 52	9. 9	8. 4	0.12	0.46	
	TBPs(ng/L)	3. 5	2. 3	15	9. 6	3. 4	2. 2	
Ī	HBCD (ng/L)	16	36	2. 3	1. 1	ND	ND	

濃度	A-4施設周辺		A-5施設周辺		A-6施設周辺	
仮及	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)
PBDEs(ng/L)	0. 26	0.49	1. 7	23	0.45	0. 24
TBBPA (ng/L)	0. 15	0. 29	0.11	0.31	0.09	0.14
TBPs (ng/L)	0.55	0.78	6. 9	12	0.79	0.79
HBCD (ng/L)	0.08	ND	0.31	110	0.42	0.71

b. 下水道終末処理施設周辺

表-92 公共用水域水質中のPBDEs・TBBPA・TBPs及びHBCDの分析結果

_	X =									
	濃度	B-1施	B-1施設周辺		B-2施設周辺		設周辺			
	(反)文	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)			
	PBDEs (ng/L)	1.8	3. 7	1.6	8. 2	27	11000			
	TBBPA (ng/L)	0. 20	0.42	0. 19	0. 27	0.03	0.30			
	TBPs (ng/L)	1.6	2. 5	1. 1	2. 1	0. 13	59			
	HBCD (ng/L)	0.98	3. 5	0. 53	2. 2	37	1200			

④公共用水域底質

a. 難燃プラスチック成形加工施設周辺

表-93 公共用水域底質中のPBDEs・TBBPA・TBPs及びHBCDの分析結果

	(1						
	濃度	A-1施	設周辺	A-2施設周辺		A-3施設周辺	
	仮及	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	海域 (排水口付近)	海域
I	PBDEs (ng/g-dry)	0.50	3. 7	0. 45	2. 1	0.056	4. 1
	TBBPA(ng/g-dry)	0.010	0.079	2.6	14	0.011	0.48
	TBPs (ng/g-dry)	0. 28	0. 15	0.38	0.54	0.073	4.6
	HBCD (ng/g-dry)	21	15	2. 1	3.6	0.052	9. 4

	濃度	A-4施設周辺		A-5施	設周辺	A-6施設周辺	
仮及		河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)
	PBDEs (ng/g-dry)	0.064	0.88	0.34	14	1. 1	1.6
	TBBPA (ng/g-dry)	0.010	0.071	0.012	0.044	0.031	0.056
	TBPs (ng/g-dry)	0. 37	0. 26	0. 25	3. 2	0. 19	0.40
	HBCD(ng/g-dry)	1.5	2. 1	1.4	53	0.70	0.54

b. 下水道終末処理施設周辺

表-94 公共用水域底質中のPBDEs・TBBPA・TBPs及びHBCDの分析結果

* · · · · · · · · · · · · · · · · · · ·						
濃度	B-1施	B-1施設周辺		B-2施設周辺		設周辺
仮及	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)	河川 (上流)	河川 (下流)
PBDEs (ng/g-dry)	0.37	3. 7	37	1100	54	1600
TBBPA (ng/g-dry)	0.070	0.16	1.5	0.68	0.63	0.10
TBPs (ng/g-dry)	0.38	0.58	1.4	0.41	2. 1	0.30
HBCD(ng/g-dry)	0.49	1. 1	5.8	1.0	6. 7	36

5-3 難燃剤、中間原料及び難燃加工品 (PBDDs/DFs,PCDDs/DFs,Co-PCB,MoBPCDDs/DFs,PBDEs,TBBPA,TBPs及びHBCD)

表-95 難燃剤、中間原料及び難燃加工品中のPBDDs/DFs及びPCDDs/DFs・Co-PCBの分析結果 (毒性等量相当値/毒性等量)

() = 0 = 111 = 12 3 1						
毒性等量相当值/毒性等量	A-1	施設	A-2施設	A-3施設		
(ng-TEQ/g)	難燃剤	難燃加工品	難燃加工品	難燃剤(1)	難燃剤(2)	難燃剤(3)
PBDDs/DFs(TEQ)	4.2	190	26	47	0.083	0.042
FBDDS/DFS(TEQ)	(4.3)	(190)	(26)	(47)	(0.17)	(0.12)
PCDDs/DFs(TEQ)	0.00086	0.0013	0.0012	0.0043	0.0048	0.0049
FCDDS/DFS(TEQ)	(0.0054)	(0.0058)	(0.0057)	(0.0088)	(0.0093)	(0.0094)
Co-PCB(TEQ)	0.00054	0.00082	0.00039	0.00057	0.00025	0.00035
CO-PCB(TEQ)	(0.00071)	(0.00098)	(0.00055)	(0.00074)	(0.00041)	(0.00051)
PCDDs/DFs,Co-PCB(TEQ)	0.0014	0.0021	0.0016	0.0048	0.0051	0.0053
PODDS/DFS,CO-POB(TEQ)	(0.0061)	(0.0068)	(0.0062)	(0.0095)	(0.0098)	(0.0099)

表-96 難燃剤、中間原料及び難燃加工品中のPBDDs/DFs及びPCDDs/DFs・Co-PCBの分析結果 (毒性等量相当値/毒性等量)

_									
ŧ	舞性等量相当值/毒性等量		A-3施設		A-5施設				
	(ng-TEQ/g)	中間原料(1)	中間原料(2)	中間原料(3)	難燃剤(1)	難燃剤(2)	難燃加工品		
	PBDDs/DFs(TEQ)	2.9	0	0	3.2	0.050	0.50		
	PBDDS/DFS(TEQ)	(3.0)	(0.083)	(0.083)	(3.2)	(0.13)	(0.59)		
	PCDDs/DFs(TEQ)	0.0050	0.0046	0.0033	0.012	0.0058	0.0039		
	PUDDS/DFS(TEQ)	(0.0095)	(0.0091)	(0.0078)	(0.016)	(0.010)	(0.0084)		
	Co-PCB(TEQ)	0.00073	0.00077	0.00036	0.00050	0.00032	0.00034		
	CO-FCB(TEQ)	(0.00089)	(0.00093)	(0.00052)	(0.00066)	(0.00048)	(0.00050)		
	PCDDs/DFs,Co-PCB(TEQ)	0.0057	0.0054	0.0036	0.012	0.0061	0.0042		
	FCDDS/DFS,CO-FCB(TEQ)	(0.010)	(0.010)	(0.0083)	(0.017)	(0.011)	(0.0089)		

表-97 難燃剤、中間原料及び難燃加工品中のPBDDs/DFs及びPCDDs/DFs・Co-PCBの分析結果 (実利濃度)

						()CMJINKIX)
濃度(ng/g)	A-1	施設	A-2施設	A-3施設		
辰友(IIg/g)	難燃剤	難燃加工品	難燃加工品	難燃剤(1)	難燃剤(2)	難燃剤(3)
PBDDs	2.3	3.3	2.2	ND	ND	ND
PBDFs	2100	84000	6100	42000	34	18
PBDDs/DFs	2100	84000	6100	42000	34	18
PCDDs/DFs	0.052	0.11	0.072	0.22	0.38	0.38
Co-PCB	0.049	0.076	0.045	0.051	0.030	0.042
PCDDs/DFs,Co-PCB	0.10	0.19	0.12	0.27	0.41	0.42
MoBPCDDs/MoBPCDFs	ND	ND	ND	ND	ND	ND

表-98 難燃剤、中間原料及び難燃加工品中のPBDDs/DFs及びPCDDs/DFs・Co-PCBの分析結果 (実測濃度)

濃度(ng/g)		A-3施設			A-5施設			
辰皮(lig/g)	中間原料(1)	中間原料(2)	中間原料(3)	難燃剤(1)	難燃剤(2)	難燃加工品		
PBDDs	ND	ND	ND	ND	ND	ND		
PBDFs	940	ND	ND	3700	25	940		
PBDDs/DFs	940	ND	ND	3700	25	940		
PCDDs/DFs	0.44	0.28	0.13	0.62	0.91	0.36		
Co-PCB	0.067	0.070	0.043	0.044	0.038	0.041		
PCDDs/DFs,Co-PCB	0.51	0.35	0.17	0.67	0.95	0.40		
MoBPCDDs/MoBPCDFs	ND	ND	ND	ND	ND	ND		

- 注1) PBDDs/DFs(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFに準じて算出した参考値である。
- 注2) PCDDs/DFs,Co-PCB(TEQ)は、WHO-TEF(1998)によるPCDDs/DFsのTEFを用いて算出した値である。
- 注3) 毒性等量相当値/毒性等量の表中の上段は、検出下限未満を「0」として算出したものである。下段の括弧付の数値は、検出下限未満を検出下限の1/2として算出したものである。
- 注4) 実測濃度の表中の「ND」は、検出下限未満であることを示す。

表-99 難燃剤、中間原料及び難燃加工品中のPBDEs・TBBPA・TBPs及びHBCDの分析結果

濃度	A-1	A-1施設		A-3施設		
仮反	難燃剤	難燃加工品	難燃加工品	難燃剤(1)	難燃剤(2)	難燃剤(3)
PBDEs(μg/g)	85000	86000	27000	970000	22	7. 9
TBBPA (ng/g)	ND	ND	ND	ND	ND	ND
TBPs (ng/g)	ND	ND	ND	390	ND	ND
HBCD (ng/g)	ND	ND	ND	ND	ND	ND

表-100 難燃剤、中間原料及び難燃加工品中のPBDEs・TBBPA・TBPs及びHBCDの分析結果

濃度	A-3施設			A-5施設			
仮及	中間原料(1)	中間原料(2)	中間原料(3)	難燃剤(1)	難燃剤(2)	難燃加工品	
PBDEs(μg/g)	88000	11	4. 4	980000	7.8	260000	
TBBPA (ng/g)	ND	ND	ND	ND	ND	ND	
TBPs (ng/g)	ND	ND	ND	ND	ND	ND	
HBCD (ng/g)	ND	ND	ND	ND	ND	ND	