5 . 1 . 3 NO によるタイトレーション効果

(1) PO を用いた近年の知見

NO はオゾン (O_3) と反応し NO $_2$ と O_2 になるためオゾンを減少させる。この「NO + O_3 NO $_2$ + O_2 」の反応によってオゾン濃度が減少する効果をここでは「NO タイトレーション (titration)効果」と呼ぶこととする。オゾン濃度の変動要因についてオゾン濃度のみに注目した場合、オゾン生成そのものによるものか、タイトレーションによるオゾン減少によるのかを判断することが困難である。

ポテンシャルオゾン(PO)は NO によるタイトレーションでは変化せず、過酸化ラジカルと NO の反応やオゾンの他地域からの移流の影響などがあった場合は増加する。このことから、光化学オキシダント濃度の変化量(Ox)と PO 濃度の変化量(PO)より以下のことが推定できる。

Ox に比べ PO が小 : NO によるタイトレーション効果の影響が大きい

・ Ox と PO の差が小 : 地域内生成または他地域からの移流により実質的 に Ox 増加

近年、オゾン濃度の変動の要因解明のため PO を用いた様々な解析が行われており、ここでは、近年の研究成果を示すと共に、常時監視測定局におけるモニタリングデータを用いて関東地域、関西地域、九州地域について整理した結果を示す。

「大原編,2010]では $1990 \sim 1994$ 年度及び $2001 \sim 2005$ 年度における常時監視測定局の一般環境局 701 局 (41 都府県)を解析対象とし、光化学オキシダント濃度と PO 濃度の変化について解析を行なっている。解析では国立環境研究所「環境数値データベース」の「大気環境時間値データ」の光化学オキシダント、 NO_2 及び NOx 濃度を用いて PO 濃度の時間値を算出している。PO の算出に当っては、光化学オキシダント等に関する C 型共同研究(現 型共同研究)で開発された「大気時間値集計解析プログラム」を使用している。本プログラムでは(1)式により PO 濃度の算出を行なっているが、 値は日本で推定されてきた一般的な値である「0.1」を使用している。

光化学オキシダントの濃度差 (Ox) 及び PO (PO) の濃度差は下式により算出を行なっている。

[Ox]=[2001~2005 年度の Ox 平均濃度] - [1990~1994 年度の Ox 平均濃度]・・・(2) [PO]=[2001~2005 年度の PO 平均濃度] - [1990~1994 年度の PO 平均濃度]・・・(3) PO の増加量は中国四国や九州など大陸に近い西日本で高くなっている。また、関東甲信越や東海近畿では PO 増加量に比べてオキシダント増加量が大きくなっており、これらの地域の光化学オキシダント濃度の増加には、NO のタイトレーション効果で消費されるオゾンが減少したことによる影響も大きいことが推定された(図 5.1.3-1)。

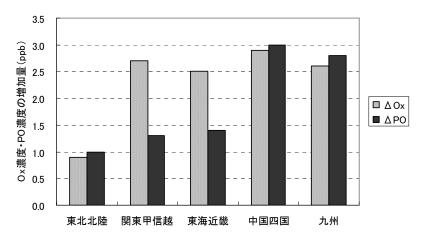
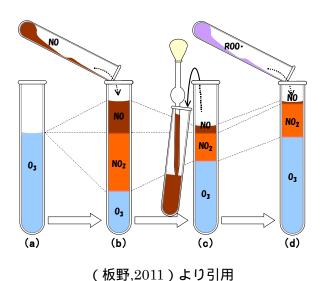


図 5.1.3-1 1990~1994 年度と 2001~2005 年度における地域別の 光化学オキシダント濃度及び PO 濃度の増加量(大原編,2010 より作成) 測定局数:東北北陸(72)、関東甲信越(287)、東海近畿(189)、中国四国(89)、 九州(64)


【参考:ポテンシャルオゾンについて】

 O_3 は NO_2 の光分解生成物と O_2 の反応により生じる一方、NO との反応で分解する。 NO による O_3 の分解生成物は NO_2 であるため、反応 (1) のように平衡状態となる。

平衡反応(1)では O_3 + NO_2 の量は保存されることから、 O_3 と NO_2 の和をポテンシャルオゾン (PO) として扱うことで、 O_3 濃度の変動解析について、NO によるタイトレーションの影響を切り分けて評価を行うことが可能となっている。

 O_3 、NO、 NO_2 が互いに混ざり合わない液体として試験管内に存在すると仮定する。 試験管(a)に外部から NO を加えると、平衡反応(1)の左向きの反応で O_3 は分解される。そこから NO を抜き取ると、平衡反応(1)の右向きの反応によって O_3 は増加する。過酸化ラジカル(ROO・)を加えると、 O_3 を消費することなく NO_2 が生成されるため O_3 は増加する。 O_3 のみに注目していた場合、 O_3 の増加が NO の減少によるものかROO・の存在によるものかが判断できないため、PO を指標とした解析が有効となる(板野,2011)。

OH ラジカル 1 分子が生成し得るオゾン量として定義されることのある「オキシダントポテンシャル」とは無関係である。

都市域における経年的な解析としては、大阪市における解析が行われている。大阪市内の一般局 5 局のデータを使用し、P.130 の(1)式に示す PO 算出手法を用いて整理を行なっている。解析結果を見ると、光化学オキシダント濃度が増加傾向を示す一方、PO 濃度はほとんど変化が認められないか、もしくはわずかながら減少傾向が認められている。この結果から、大阪市におけるオキシダント濃度の増加は NO によるオゾン消費の縮小(NO タイトレーション効果の縮小)により生じているものと示唆される(図 5.1.3-2) Itano et al.,2007,板野,2011)

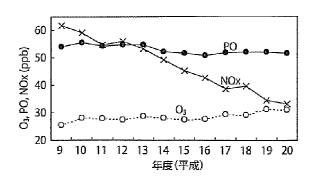


図 5.1.3-2 PO を用いた大阪市の長期変動解析(板野,2011)

測定局数:10局

O₃: 昼間 (5~20 時) の年平均値

NOx:全日の年平均値

PO:上記の年平均値を用いて算出(は0.1を使用)

次に、PO を用いて沿岸部の発生源により生成されたオキシダントが海風に乗って内陸部に移流している状況を明らかにした結果を図 5.1.3-3 に示す (大原編,2010)。この解析結果では、海風の進入と共に風下側の測定局ほど濃度がピークとなる時間が遅く現れていることが明らかとなっている。

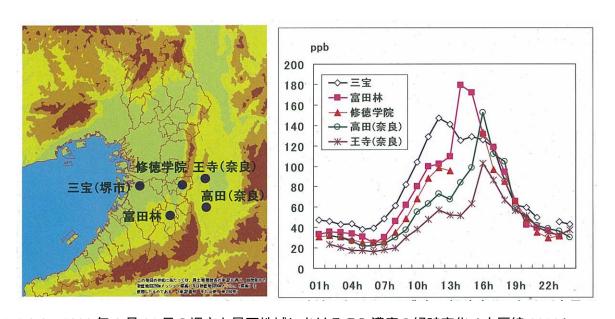


図 5.1.3·3 1993 年 8 月 31 日の堺市と風下地域における PO 濃度の経時変化(大原編,2010)

このように、PO を用いた解析では O₃-NO 反応による分解の影響を除くことが可能となっているが、一方で、PO の経年的な変動結果から増加要因について地域内生成によるものか他地域からの輸送によるものか推定することは困難である。 [板野・高倉,2011]では都市大気中の PO には日内変動パターンと季節変動パターンが認められ、前者はその場の光化学生成など局地的なプロセス、後者は半球規模汚染影響や大気循環など広域的なプロセスが関与していることに着目し、それらをベイズ統計を用いて分離する手法を検討している。ベイズ統計学は、ある事象に関する既存の知見をもとに統計モデルを構築し、モデルに関連するパラメータを推定できる手法である。

ここでは、都市大気 Ox 濃度の変動をそれぞれ異なる機構で生じる日内変動と 季節変動の合成と考え、以下のようなモデルで表現している。

 $Cmh=Am+Bm \times Dh$

Omh ~ Norm(Cmh,), $m=1 \sim 12, h=1 \sim 24$

【仮定】

観測された PO 濃度には、観測地点の代表性などによるサンプリング誤差、測定誤差、および月内の日間での変動誤差が加わっており、それらを総合した誤差は真の PO 濃度を平均値に持つ正規分布に従う。

m:月、h:時刻

Am: 月により変化する季節変動成分、Bm: 月により変化する変動幅

Dh:月に依存しない変動パターン、Cmh:m月の各日h時における真のPO濃度

Omh: 観測された PO 濃度の m 月 h 時におけるデータ群

Omh が真の PO 濃度 Cmh を平均に持つ標準偏差が の正規分布に従うことを表す

このモデルに基づき、PO の観測データから各パラメータ Am、Bm、Dh 及びを推定している。

大阪市における 2000 年度から 2009 年度の常時監視測定局のデータについて ベイズ統計手法を活用した解析結果を見ると、季節変動成分、日内変動成分とも に横ばいとなっており、その場の光化学生成または越境輸送等による影響が顕著 に変化していることを示す結果は得られなかった(板野ほか,2011) 図 5.1.3-4)。

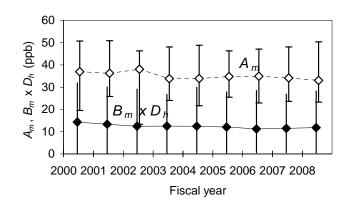
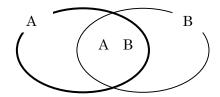


図 5.1.3-4 季節変動成分および日内変動成分の経年変化(板野ほか,2011)

各点は推定された事後分布の中央値、エラーバーは95%信用区間を表す


Am:季節変動成分(越境輸送等の寄与濃度) Bm×Dh:日内変動成分(その場の光化学生成)

【参考:ベイズ統計を活用したモニタリングデータの解析について】

従来の統計学の頻度主義的客観確率に対して、ベイズ統計では主観確率を扱う。例えば古典的な統計学では、それぞれのさいころの目が出る確率は 1/6 である。しかしベイズ統計では、ずっとある目が続いている場合に何らかの原因でその目に偏ってるのではないかなどという主観を事前確率とし、事後確率を求めるものである。

ベイズ統計の基本公式は【事後分布 尤度(もっともらしさ) \times 事前分布】であり、これは乗法定理 P(A B) = P(B | A) P(A)から導かれる。

P(B|A)は事象 A が起こったという条件のもとで事象 B の起こる確率

具体的なベイズ統計の基本公式は、P(A|B) = P(B|A)P(A)/P(B)となり、P(A|B) を事後確率、P(B|A) を尤度、P(A) を事前確率という。A を原因(仮定)、B をデータ(結果)と読み替えることで、データB が得られた後に、その原因となる仮定 A が成立していた確率を求める公式となる。事前情報がないときは確率がある値をとる理由がないので確率は一定と考え(理由不十分の原則)、初期の事前分布には一様分布を用いる。得られた事後分布を次の段階の事前分布とし、データを付け加え(ベイズ更新)新しい事後分布を得る。これを繰り返して得た事後分布から母数を推定するのがベイズ推定となる(涌井,2009)。

大気濃度は、日変動や季節変動など異なった因子が複合することにより濃度変動しており、 重回帰分析のような従来の統計解析手法では対応できない事象が存在する。

そこで、モニタリングデータを各要因パラメータの合成としてモデル化し、ベイズ統計を 用いて、パラメータを推定する。

ベイズ統計を利用することで、各要因ごとにトップダウンで解析することができる。この方法は、詳細なプロセスのシミュレーションには不向きであるが、目的となる汚染物質の測定データを利用するため、その中の存在する因子を抽出するという点において優位であるといえる(板野・高倉,2011)。

(2)POを用いた地域ごとの解析

春季 (4~5月)及び夏季 (7~8月)の PO の経年変化について、関東地方 (東京都、埼玉県、栃木県)は図 5.1.3~5 に、東海地方 (愛知県)は図 5.1.3~6 に、近畿地方 (大阪府、京都府、奈良県)は図 5.1.3~7 に、九州地方 (福岡県)は図 5.1.3~8 に示す。解析に使用したデータは「4~1~3~ 地域的な状況」で解析対象とした測定局 (光化学オキシダントをこの 10~ 年間継続局している局)と同じとしているが、解析対象期間は平成 12~21~ 年度 (2000~2009~ 年度)までの 10~ 年間とした。なお、大陸からの越境輸送により夜間において高濃度の光化学オキシダントが観測されるなどの報告もあることから、PO 濃度の解析対象時間は全日 (24~ 時間)とした。

PO の集計にあたっては P.130 の [大原編,2010]に示す手法と同じ手法を用いた。

関東地方における PO 濃度は東京湾沿岸部の東京都から内陸部の栃木県まで比較的似通った変動傾向を示しており、春季は横ばいまたはやや上昇しているのに対し、夏季は平成 18~19 年度 (2006~2007 年度)付近を境に低下している。東海地方の愛知県では、春季及び夏季は横ばいまたはやや上昇となっているが、年々変動が大きく傾向は明確ではない。近畿地方では自治体により変動傾向にばらつきが見られる。春季を見ると、大阪府では横ばいとなっており、京都府では上昇傾向を示している。夏季を見ると、大阪府及び奈良県では低下傾向となっているが、京都府では横ばいとなっている。九州地方の福岡県では、春季は上昇傾向を示しており、夏季は横ばいとなっている。

このように、地域内における光化学生成が活発な夏季の PO 濃度は近年頭打ちとなっている。一方で、春季の PO 濃度は増加傾向を示す地域が多く、特に濃度がやや低い地域(栃木県、京都府、福岡県等)で上昇している傾向が見られる。春季のオゾン濃度の上昇については、シミュレーションモデル等の研究成果から東アジアからの越境輸送の影響を受けていることが示唆されるが、PO 濃度の上昇傾向からは地域内の光化学生成の変化によるものか、越境輸送等他地域からの輸送によるものか判断ができない。適切な光化学オキシダント対策の検討をすすめるために、前述のベイズ統計を活用した解析を行い、モニタリングデータから近年の春季における光化学オキシダント濃度の上昇傾向の要因を検証する必要がある。

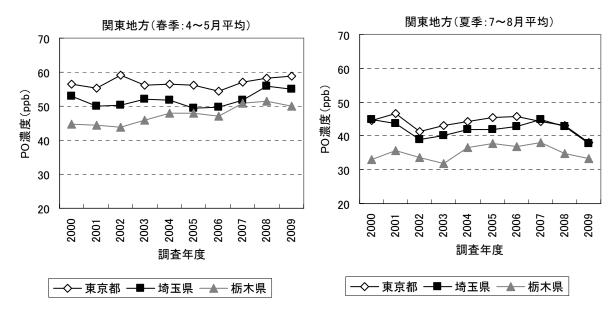


図 5.1.3-5 関東地方(東京都、埼玉県、栃木県)における PO 平均値の経年変化(春季・夏季) 測定局数:東京都(38) 埼玉県(57) 栃木県(19)

東京都の測定局数が「4.1.3 地域的な状況」と異なるが、これは NOx の測定を行なっていない測定局があったためである。

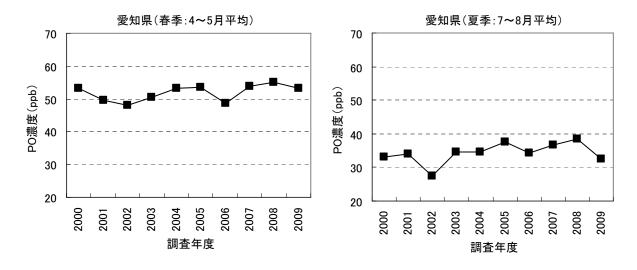


図 5.1.3-6 東海地方(愛知県)における PO 平均値の経年変化(春季・夏季) 測定局数: 愛知県(2000~2002年度 61、2003~2008年度 62、2009年度 69)

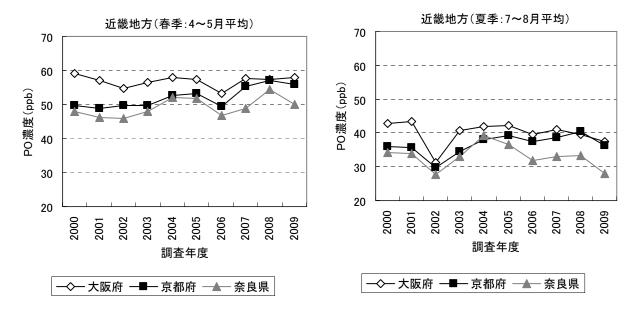


図 5.1.3-7 近畿地方 (大阪府、京都府、奈良県) における PO 平均値の経年変化 (春季・夏季) 測定局数:大阪府 (55^{-1})、京都府 (20^{-2})、奈良県 (8)

- 1 大阪府の測定局数が「4.1.3 地域的な状況」と異なるが、これは NOx の測定を行なっていない測定局があったためである。
- 2 京都府については、日本海側である福知山、東舞鶴、綾部、宮津、京丹後の測定局については解析の対象外とした。

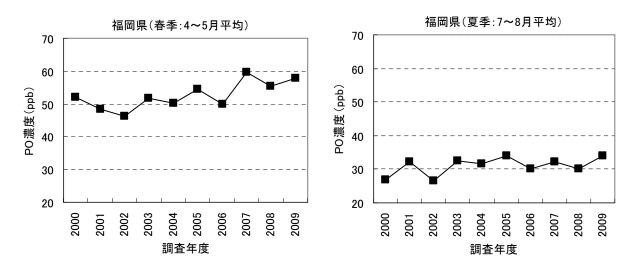


図 5.1.3-8 九州地方(福岡県)における PO 平均値の経年変化(春季・夏季) 測定局数:福岡県(36)

5 . 1 . 4 気象状況による影響

紫外線量が増加すると光化学反応が進み、光化学オキシダント濃度が上昇する可能性がある。札幌、つくば、那覇における紅斑紫外線年積算値の推移を見ると、札幌を除き統計的に有意ではない(有意水準 5%)ものの、長期的には緩やかな増加傾向を示している(図 5.1.4-1)。この紅斑紫外線量の増加傾向は、エアロゾル量や天気傾向の変化が原因である可能性があるとされている(気象庁,2011)。この紫外線量の増加が光化学オキシダント濃度上昇の一因となっている可能性は否定できないが、その定量的な評価はなされていない。

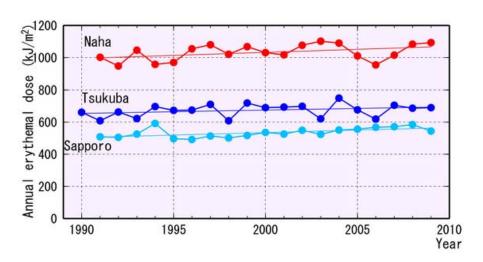


図 5.1.4-1 国内 3 地点(札幌、つくば、那覇)における 紅斑紫外線量年積算値の推移(気象庁,2011) 直線は全期間の長期的な傾向(回帰直線)

また、気温との関係については、暖候期の光化学オキシダント高濃度発生頻度と日最高気温平均値の間に正の相関関係があるという報告があるが(Wakamatsu et al.,1996)、実際の観測結果では、気温と光化学オキシダント濃度の変動傾向は一致していないとの報告もある(大原・坂田,2003)。

「4.1.3 地域的な状況」では全天日射量及び平均気温と光化学オキシダント濃度の関係について整理を行ったが、地域や季節によりこれらの気象要因との関係性は異なっていた。また、これら以外の気象要因による光化学オキシダント濃度への影響因子も考えられる。今後、気象要因による光化学オキシダント濃度への影響の定量的な把握や、光化学オキシダント濃度の変動から気象要因による影響をより適切に除外する手法の検討が今後必要といえる。

5.1.5 成層圏オゾン降下との関係

春季に成層圏から対流圏へのオゾン降下の寄与が大きくなることが知られている(Wakamatsu et al.,1989)。成層圏からの流入は、中高緯度の低気圧活動にともなう圏界面の折れ込みや寒冷渦付近での圏界面の不安定化などによって起こる。その発生場所は、ジェット気流の蛇行と密接に関連するという特徴がある(気象庁,2011)。全球化学輸送モデルによる解析結果では、札幌や鹿児島の境界層のオゾンに対し成層圏から輸送されたオゾン濃度は春季に高く、夏季に低くなる変動を示しており、4月の月平均値で10ppb程度となっている(Sudo and Akimoto,2007)。(図 5.1.5-1)

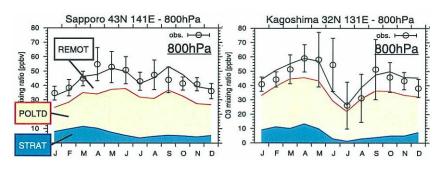


図 5.1.5-2 観測及び計算によるオゾン濃度の季節変化(左列:札幌、右列:鹿児島) STRAT: 成層圏由来、POLTD: 汚染地域由来、REMOT: 清浄地域由来(Sudo and Akimoto, 2007)

このように、成層圏オゾンの降下はオゾン濃度の季節変動や地域における濃度差に寄与するが、成層圏オゾンの降下が、地表オゾン濃度の変動にどこまで影響しているかは、まだ定量的には不明である。[大原編,2007]の解析結果からは、成層圏オゾンによる対流圏オゾン年平均濃度レベルの長期的上昇に及ぼす影響はみられなかった。

このため、光化学オキシダント対策の効果を検討するに当たり、光化学オキシダント高濃度発生時の検討を行う際には成層圏オゾンの降下の影響について注意をする必要があるが、経年的な光化学オキシダント濃度のトレンドを検討する際には、当面成層圏オゾンの降下の影響については無視しても良いものと思われる。

なお、成層圏オゾン降下の影響については、比湿や 7Be を指標とした研究(大原編,2007)や、ウィンドプロファイラーレーダー、高頻度のオゾンゾンデ観測及びコンピューターによるオゾンの輸送モデルを組み合わせた研究(Hocking et al.,2007)などが行われており、今後、成層圏オゾンの降下による地表オゾン濃度への影響について定量的な把握が進むことが望まれる。

【参考:比湿、7Be について】

比湿とは空気塊に含まれる水蒸気の重量とその空気塊の重量の比のことであり、下部対流圏に比べ、成層圏及び上部対流圏では低い。大気中の7Be は成層圏で酸素や窒素と宇宙線との核反応によって生成される。

5.2 ヨーロッパ、東アジア等から排出される大気汚染物質との関係

5.2.1 オゾン前駆物質の排出量

排出量の推移

ヨーロッパ及び北米大陸における NO_X の排出量は、1980 年代以降概ね横ばいとなった。 さらに、ヨーロッパ大陸では 90 年代から減少傾向に転じ (Akimoto,2003, EEA,2011)、米国では 2000 年頃から減少傾向が顕著にみられるようになった(EPA,2011)。

一方、アジア大陸の NOx 排出量は、70 年代には少なかったが、その後の急激な増加により、90 年代半ばにはヨーロッパ及び北米両大陸の排出量を凌ぐレベルに至っており(Akimoto, 2003,山地・秋元,2007)、1980 年~2003 年の期間に、アジア全体の NOx 排出量は 2.8 倍 (中国は 3.8 倍)に増加している。また、非メタン揮発性有機化合物 (NMVOC) 排出量も、アジア全体で 2.1 倍 (中国は 2.5 倍)に増加している(Ohara et al.,2007a)(図 5.2.1-1,図 5.2.1-2)。この他、2001年~2006年で中国における NOx 排出量が 55%増加しているとの研究もある (Zhang et al.,2009)。

中国を中心とする東アジアでは排出量が急激に増加していることから、光化学 オキシダント対策の検討を行う際に、現状及び将来の排出量の変化について適切 な設定を行うことが重要である。

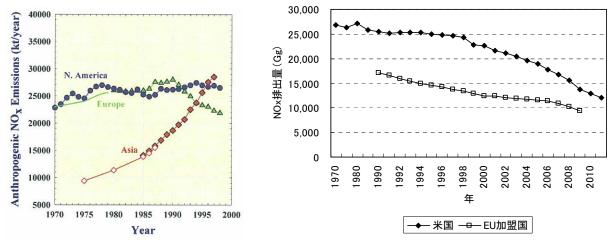
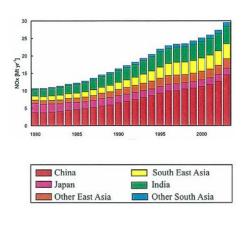



図 5.2.1-1 人為起源 NOx 排出量のトレンド (左側: 1970~2000年の北米 (米国及びカナダ) ヨーロッパ (旧ソ連を含む) アジア (東アジア、東南アジア及び南アジア) (Akimoto,2003)、

右側:近年の米国及び EU 加盟国のトレンド(EPA,2011 及び EEA,2011 より作成)) EU 加盟国(27 カ国):ベルギー,ドイツ,フランス,イタリア,ルクセンブルク,オランダ,デンマーク,アイルランド,英国,ギリシャ,ポルトガル,スペイン,オーストリア,フィンランド,スウェーデン,キプロス,チェコ,エストニア,ハンガリー,ラトビア,リトアニア,マルタ,ポーランド,スロバキア,スロベニア,ブルガリア,ルーマニア

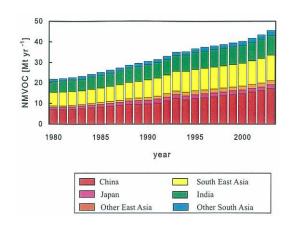
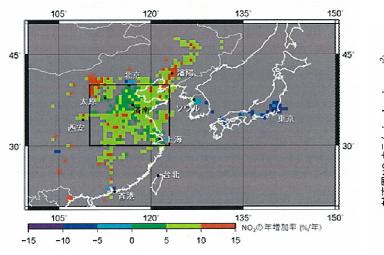



図 5.2.1-2 アジア全体の NOx 及び NMVOC 排出量推計値(Ohara et al.,2007a)

衛星観測による排出量の把握

中国における NO_2 の排出量の増加は、衛星観測(対流圏大気化学衛星センサー)の結果からも確認されており、中国での NO_2 の大気中濃度が 1996 年以降、増加の一途をたどり、 $2007\sim2008$ 年はこれまでの最高レベルに達したことを明らかにしている(Irie et al.,2009 ,海洋研究開発機構プレスリリース,2009)(図 5.2.1-3)。

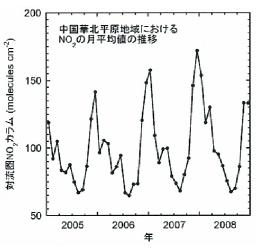


図 5.2.1-3 左図: 2005 年から 2008 年までの NO₂ 濃度の年々の増加率の地理的分布 右図: 中国華北平原地域(左図の四角で囲まれた領域)における NO₂ 濃度の 月平均値の推移(海洋研究開発機構プレスリリース,2009)

排出量インベントリの検証

排出量インベントリについては、一般的にはエネルギー消費量などの基礎活動量と排出係数から推計、計算されているが、近年では衛星観測データと大気化学モデルを用いて排出量を逆推計する手法も開発されている。[Kurokawa et al.,2009]では衛星観測センサーGOME による NO_2 カラム濃度月平均値、逆推計前 NOx 排出量に REAS を使用し、1996、1999、2002 年 7 月の中国東部における NOx 排出量の逆推計を行なっている。中国東部における逆推計前後の NOx 排出量のトレンドを見ると、逆推計後の排出量増加率は逆推計前に比べて大きくなり、 $GOME\ NO_2$ カラム濃度観測結果の増加率に近くなっている(図 5.2.1-4)。この結果から、REAS は 1996 年から 2002 年にかけての中国東部 NOx 排出量の増加率を過小評価している可能性が示された。シミュレーションモデルによる越境輸送の解析において、東アジアにおけるオゾン前駆物質の排出インベントリの精緻化が重要であり、これらの衛星観測のデータと排出インベントリの検証を進める必要がある。

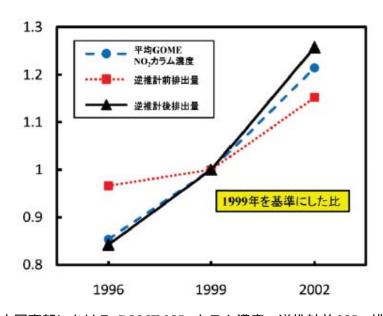


図 5.2.1-4 中国東部における GOME NO₂ カラム濃度、逆推計前 NO_x 排出量、 逆推計後 NO_x 排出量の 1999 年を基準にしたトレンド(黒川,2011)

5 . 2 . 2 東アジアからの影響

東アジアからの影響量の推移

東アジアは越境汚染を引き起こす大気汚染物質の大きな排出源と考えられており、東アジアからの我が国の光化学オキシダント濃度に与える影響については様々な研究が行われている。経年変化に与える影響としては、 $[Ohara\ et\ al.,2007b]$ で気象と中国の排出量の経年変化・年々変動に対するオゾン濃度の応答について解析を行なっている。各年の気象と排出量を与えた計算「CNTL (EyyMyy)」と 2000年の気象に固定し、排出量のみ各年のデータを用いた気象固定の計算「EyyM00」の結果をみると、オゾン濃度の年々変動は気象変動に起因しているが、経年的なオゾン濃度の上昇はアジアの排出量の増加に支配されていると考えられる(図 5.2.2-1)。

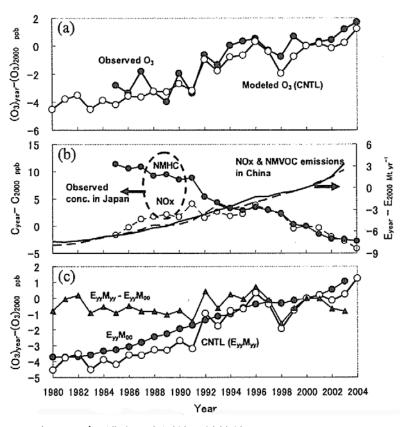


図 5.2.2-1 上段 (a) 日本のオゾン濃度の実測値と計算値、

中段(b)日本のNOx、NMHC実測濃度と中国のNOx、NMVOC排出量、

下段(c)計算結果 EyyMyy(排出量の経年変化に対する応答)

EyyM00 (2000 年の気象に固定し、排出量のみ各年のデータを用いた計算) EyyMyy - EyyM00 (気象の年々変動による応答)による日本のオゾン濃度 (Ohara et al.,2007b) また、[茶谷,2011]では 1996 年から 2005 年における日本国内地表面オゾンに対する東アジア排出量の影響及び東アジア外からの輸送の影響について検討を行なっており、東アジア排出量は、日本都市部の地表面オゾン年間平均濃度の増加傾向(0.18ppb/年)に対して半分程度の寄与を有し(東アジア排出量に起因する増加率:0.09ppb/年)東アジア外からの輸送の影響(0.06ppb/年)を合わせると、増加傾向の大部分を説明付けられるとしている。また、季節別に見ると、春季の濃度増加傾向は東アジア排出量の変化でほぼ説明付けられている。一方で夏季については、東アジア排出量に起因する影響量は観測値の 1/4 程度の値となっている(図 5.2.2-2)。

なお、本研究では東アジア排出量に REAS を用いているが、REAS では 1996 ~ 2005 年の日本国内の前駆物質排出量はほぼ一定であることから、東アジア排出量の変化による影響は「日本以外の前駆物質排出量の増加の影響が現れていると考えられる。」としている。

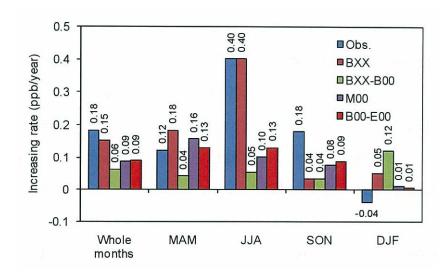
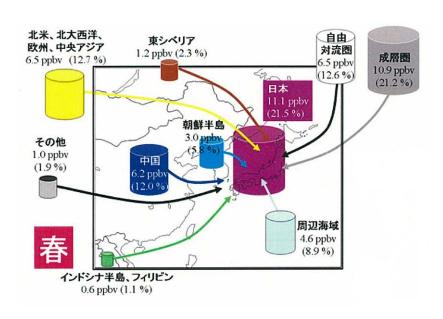


図 5.2.2-2 地表オゾン濃度(昼間平均)の観測値と計算値の 増加率の比較(1996~2005年)(茶谷,2011)

Obs: 観測値(常時監視測定局 一般局 1,045 局)


BXX:各年の排出量、気象、東アジア外からの輸送を考慮した計算値の増加率

BXX-B00:東アジア外からの輸送に起因する増加率

M00:2000年の気象場における東アジア排出量に起因する増加率 B00-E00:各年の気象場における東アジア排出量に起因する増加率 MAM:3~5月、JJA:6~8月、SON:9~11月、DJF:12~2月

東アジア等各種領域からの影響量

中国等各種領域からの日本のオゾン濃度への寄与率を求めたものとして、全球モデルでのソース・レセプター解析により日本の地表オゾンの起源解析を行なった研究成果がある(Nagashima et al.,2010)。春季($3\sim5$ 月)における日本の地表オゾンの起源は多様であり、中国からの影響は 12%、朝鮮半島からの影響は 5.8%となっている。また、夏季においても中国からの影響は 10.2%存在している(図 5.2.2-3)。

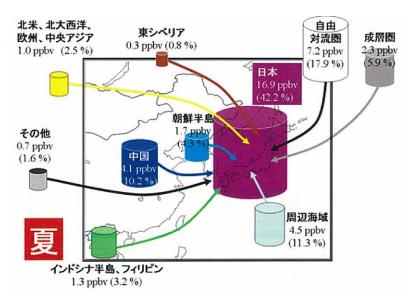


図 5.2.2-3 タグ付トレーサー法で評価した 2000 年代前半(2000~2005年)の 日本の地表オゾンに対する各ソース領域からの寄与(上段:春季、下段:夏季) (国立環境研究所ニュース,2010)

越境汚染による高濃度事例

日本において中国からの越境汚染の影響が大きかったと考えられる事例(2007年5月8,9日)について見ると、80ppb以上の高濃度オゾンに対する中国寄与率の期間平均値は青森県以北を除く日本全国で25%以上であり、九州地域では $40 \sim 45\%$ に達すると見積もられている(図5.2.2-4)(大原ほか,2008)。このような越境輸送によるオゾン高濃度の出現頻度について、福岡県において近年増加しているとの報告もある(岩本ほか,2008)。

光化学オキシダント注意報等の発令時にはオキシダント原因物質の大きな製造業などが生産調整(生産ラインの活動抑制・停止)したり、屋外活動の自粛(イベントの中止)を行うなど社会的・経済的な影響が大きく、行政措置をする上で効率的な高濃度要因の推定方法(高濃度オキシダントが越境輸送、地域生成のいずれの影響が大きいかの判定)について検討を行う必要がある。

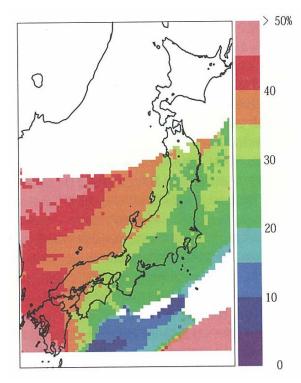


図 5.2.2-4 80ppb 以上の高濃度オゾンに対する中国起源のオゾン濃度の寄与率 (2007 年 5 月 8,9 日)(大原ほか,2008)

シミュレーションモデルの再現性

近年、中国における NO2 排出量は増加傾向が見られており、東アジアからの光化学オキシダントの影響量について定量的に把握することが今後の光化学オキシダント対策を検討する上で重要となる。図 4.1.4-5 (P.107)で示したように、シミュレーションによる計算値は実測値の再現を定量的にはできていない部分もあり、[茶谷,2011]でも1~4月まではオゾン濃度の観測値とシミュレーションモデル(WRF/chem)による計算値がほぼ一致しているが、5月以降は計算値が過大評価となることが報告されている。これらの要因としては気象モデルによる風速場の再現性や化学反応モデルが東アジアの大気中で起こっている光化学反応を十分に再現できていない可能性のほか、排出インベントリの不確実性が考えられる。東アジアからの光化学オキシダントの影響量について定量的に把握する上で、シミュレーションモデルの精度向上に加え、東アジアにおける排出量インベントリの精緻化を進めることが重要である。

5 . 2 . 3 半球規模でのオゾンの輸送

アジア・北米・ヨーロッパの間のオゾン輸送は、それぞれの大陸間で相違がみられる。アジアからのオゾンの生成・輸送は上部対流圏で活発に起こるため、北半球全域に影響する。これに対し、ヨーロッパからアジアへのオゾン輸送は境界層内部から下部対流圏で起こり、北米からヨーロッパへの輸送は中部対流圏での輸送が主となっている(Wild and Akimoto,2001, 秋元, 2006)。(図 5.2.3-1)

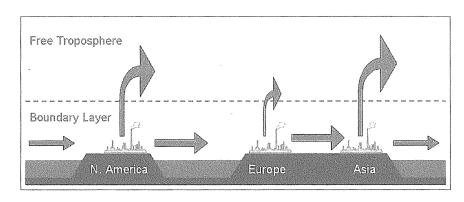


図 5.2.3-1 北米からヨーロッパへ、ヨーロッパからアジアへ、アジアから北米へ渡る 大気汚染物質の大陸間輸送の概念図(秋元,2006)

ヨーロッパ及び北米からのオゾン濃度の影響量についてシミュレーションモデルによる研究が行われており、全球モデルを用いた夕グ付きトレーサー実験の結果、ヨーロッパから鹿児島の境界層オゾンへの影響は 4 月に $2 \sim 2.5$ ppb 程度、北米からの影響は 4 月に $1 \sim 2$ ppb 程度となっており、夏季には影響が低くなっている(Sudo and Akimoto,2007)。また、八方におけるモデル計算の結果でも、ヨーロッパ及び北米の影響は冬季から春季に大きくなり、夏季に低くなっている(Wild et al.,2004)。(図 5.2.3-2)

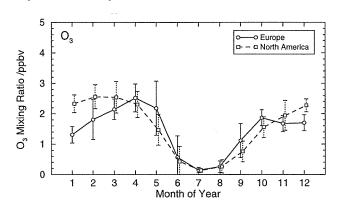


図 5.2.3-2 八方におけるヨーロッパ及び北米からのオゾン影響濃度の季節変化(Wild et al.,2004)

次に、ヨーロッパ、北米及び南アジアにおけるオゾン前駆物質の排出量が変化したときに東アジアに与える影響量について解析した結果を見る。[HTAP2010]ではオゾン前駆物質 (NOx,CO,VOC)を 20%削減した際の影響量年平均値を計算しており、ヨーロッパ及び北米は同程度の影響量となっている (表 5.2.3-1)。

表 5.2.3-1 オゾン前駆物質を 20%削減した際の影響量年平均値(HTAP2010 より作成)

発生源地域	前駆物質 20%削減による 東アジアへの影響量
	単位:ppb
ヨーロッパ	$0.24(0.24) \pm 0.08$
北米	$0.22(0.24) \pm 0.05$
南アジア	$0.14(0.13) \pm 0.03$

平均値(中央値) ±標準偏差(15種のモデルから集計)

第5章のまとめ

- 1.オキシダント生成メカニズムにおける VOC、NOx の関与について
 - ・ オゾンは VOC と OH ラジカルの反応により開始される連鎖反応の中で、NOx が関与する複雑な機構により生成し、VOC と NOx の濃度バランスにも影響を受ける。
 - ・ NOx や VOC 削減によるオキシダント濃度低減効果をシミュレーションで推定することは可能であるが、前駆物質排出量やモデル自体の不確実性、気象条件の代表性などに注意が必要。
- 2. 植物起源 VOC の重要性について
 - ・ 国内の植物起源 VOC 排出量は人為起源と同程度もしくはそれ以上あるとされている。また、オキシダント生成挙動 (NOx、VOC 排出削減との関係)が植物起源 VOC 排出量に大きく左右されるとの研究結果も報告されており、より正確な排出量の把握が必要。
- 3 . 未同定 VOC による OH 反応性について
 - OHラジカル(OH・)は、オゾン生成の連鎖反応サイクルの推進力。
 - ・ 数百種類存在するとされる VOC の個々の物質のオキシダント生成能を把握するのは限界があり、対象とする空気塊総体の OH ラジカルの反応性を把握することで、未同定 VOC による OH 反応性の寄与の程度を把握する研究が進行中。
- 4.NOによるタイトレーションについて
 - ・ NO はオゾンと反応し NO2 になりオゾンを減少させる(タイトレーション)ため、オゾン濃度のみに注目すると、オゾン濃度の変動がオゾン生成そのものによるものか、タイトレーションによるオゾン減少によるのかを判断することが困難。
 - ポテンシャルオゾン(PO)はNOによるタイトレーションでは変化しないため、POを活用したモニタリングデータの解析が重要。
- 5. 東アジアなどからの広域汚染の影響について
 - ・ 近年東アジアでの大気汚染物質排出量のより精密な把握や、日本への影響に関するシミュレーションと広域観測を結合した研究が進み、広域汚染の影響に関する科学的・定量的知見の蓄積が進展している。

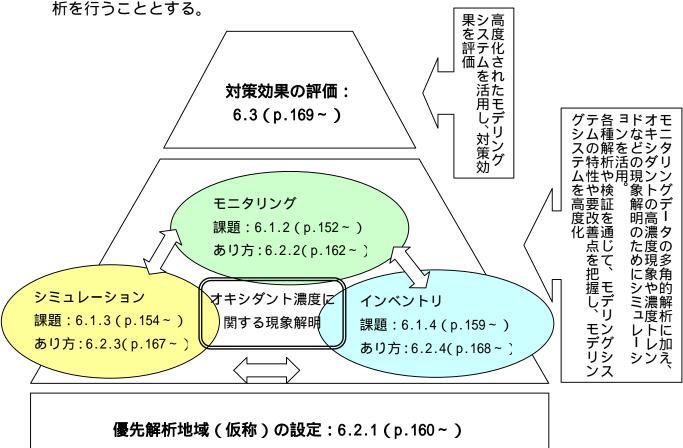
【調査研究のあり方への反映】

NOx や VOC 削減対策の効果把握も含め、モニタリングデータの多角的解析が 重要。データ解析においてはポテンシャルオゾン (PO) の活用も有効。 植物起源 VOC 排出量の精緻化が必要。

OH ラジカルの反応性に着目した評価手法は、個別の VOC の計測が不要であるなど、地域でのオゾン生成の現象解明の観点から注目すべき手法である。 広域汚染の影響に着目したモニタリングデータの解析を、地域別・季節別・時間帯別などで進めることが重要。

第6章 今後の課題及び調査研究のあり方

6 . 1 平成 18 年度以降の新たな知見を踏まえた主要課題の整理


6.1.1 調査研究から対策効果の評価への道筋

本検討は今後有効なオキシダント対策の立案に必要な調査研究のありかたをとりまとめるものである。そのため、オキシダント生成や環境濃度に寄与する排出源に関する対策効果の評価手法に関する事項までを射程とし、これにより今後行われる対策の検討や決定への基盤となる情報提供を行うこととする。

対策効果を評価するためには、オキシダント濃度に関する現象解明をさらに進めることが必須となる。

この現象解明は、モニタリングデータの多角的な解析と、モニタリングデータを様々に活用したシミュレーションにより行う。また、シミュレーションのためには、排出インベントリとシミュレーションモデルを合わせた「モデリングシステム」の高度化が必要で、これによりこれまでの排出インベントリ実績に基づくオキシダント濃度等の再現性の検証や、インベントリの不確実性にも対応した対策効果の評価が可能となる。

また、モニタリングデータの解析やシミュレーションを活用した検討を行う際には、現象解明のため有効な知見を得る観点から、地域別にデータ整理や各種解析を行うこととする

6.1.2 モニタリングに関する主要課題の整理

第4章で整理した各地域でのオキシダント等の濃度の状況を踏まえ、第5章に示した新たな知見を活かす観点から、モニタリングに関する主要課題を以下のとおり整理した。

(1)モニタリングデータを活用した現象解明について

従来、光化学オキシダントの評価については、環境基準達成率、光化学オキシダント注意報等発令日数及び昼間の日最高 1 時間値の年平均値を指標とし、全国あるいは自治体行政単位で行ってきた。しかし、これらの指標だけからは光化学オキシダントの濃度上昇等に係る現象解明や対策効果を適切に評価することは困難で、新たな評価指標の設定とともに、地域、前駆物質濃度及び気象条件等に着目した多角的な解析が必要である。

優先解析地域の設定

地域ごとに前駆物質の排出量及び地理的気象的条件等が異なるため、国内各地のうち重点的に解析する地域を選択することが有効である。

モニタリングデータの多角的解析

光化学オキシダントは、NOx や VOC を前駆物質として二次生成される物質であること、またその濃度は気象条件に大きく影響を受けることから、光化学オキシダント濃度上昇等の現象解明のためには、光化学オキシダント濃度、前駆物質濃度、気象条件及び大陸からの移流等を考慮し、より総合的かつ多角的に整理・解析する必要がある。

評価指標の設定及び1時間値の統計的解析

光化学オキシダントについては、環境基準が 1 時間値として定められていることから、その評価については 1 時間値を基本に実施している。

しかし、オキシダントの生成は、その時の気象の影響を受け、特に 1 時間値のピーク濃度は短時間の気象変化に大きく左右される。また、光化学オキシダント注意報等発令については、「気象条件からみて当該大気の汚染の状態が継続すると認められるときとする。」(大気汚染防止法施行令第 11 条)とされ、その発令基準は濃度だけでなく気象条件等も加味されていることから、その発令日数を現象解明のための基礎データや対策効果の評価指標とするには適していない。

従って、新たな評価指標の設定とともに、パーセンタイル評価や地域内生成と 越境移流の寄与の分離が可能となる統計手法など、対策効果の評価に有効な手法 の検討を進めていく必要がある。

(2)揮発性有機化合物(VOC)などのモニタリングの充実

光化学オキシダント濃度上昇等の現象解明には、VOC などについて以下に示すようなモニタリングの充実が必要である。

モニタリング対象物質

VOC モニタリングについては、現在、常時監視として非メタン炭化水素 (NMHC) が揮発性有機化合物 (VOC) に相当するものとして測定され、また 環境省では 19 種類の VOC について環境濃度の測定を約 50 地点で月 1 回実施されている。

オキシダント濃度に関する現象解明の観点から、総 VOC 濃度だけでなく、オキシダント生成能力の高い VOC 種についての濃度把握が重要であるが、現状のモニタリングでは、測定方法が確立されている物質のうち固定蒸発発生源からの排出が多い物質が選定されている。

モニタリング頻度

モニタリング頻度に関しては、現状は月 1 回の測定で日平均値を把握しているが、オキシダント生成能力の高い VOC 種については、シミュレーションや排出量の時間変動との検証の観点から、1時間値の把握が求められる。

モニタリング地点

モニタリング地点については、内陸部の低人口密度地域に測定局がほとんど存在していないため、植物起源の VOC の影響や内陸部への空気塊の移動過程でのオキシダント生成・消失の状況把握が困難な状況である。

(3) 光化学オキシダント自動測定機の精度管理について

常時監視によって得られたデータは、汚染状況の的確な把握や光化学オキシダントの緊急時対応はもとより、環境影響評価や広域的汚染のメカニズム解明、各種計画等の策定に係る基礎資料となるなど、国及び地方公共団体における大気環境施策立案の際の根幹となる基礎データとなることから、データに対する信頼性を常に確保する必要がある。

リファレンスシステムの構築

光化学オキシダント自動測定機については、トレーサビリティの確保された精度管理体制が整備されたが、その校正の適切な伝搬を確認するなど、リファレンスシステムの構築が課題の一つである。今後は、常時監視におけるリファレンスシステムのあり方(精度管理方法、国、地方公共団体及び製造会社等の役割分担及び型式認定等)について検討を進めていく必要がある。

SRP の国家標準化

現在、国環研の SRP は実質的に国際標準とトレーサブルではあるが、我が国の国家標準としては指定されていない。日本のオゾンの標準とともに常時監視データが国際的にさらに認められるためには、国家標準の指定に向けた体制の整備も必要である。

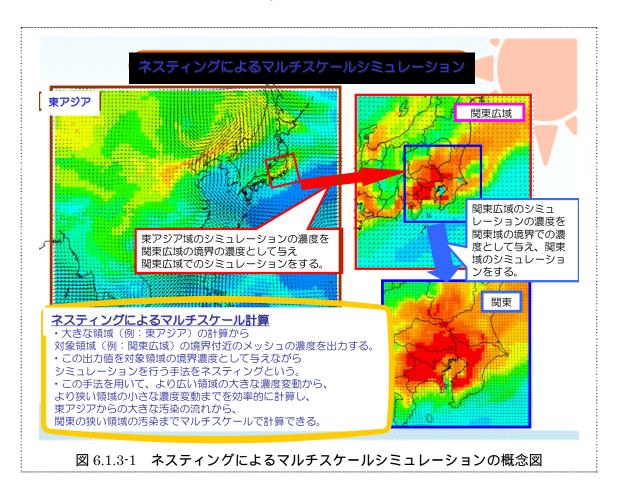
6 . 1 . 3 シミュレーションモデルに関する主要課題の整理 (1)シミュレーションモデルに関する経過

シミュレーションモデルについては、中央環境審議会大気環境部会の揮発性有機化合物排出抑制専門委員会報告「揮発性有機化合物の排出抑制に係る自主的取り組みのあり方について」(平成 18 年 3 月 30 日)において、「浮遊粒子状物質(SPM)及び光化学オキシダントの生成に係るシミュレーションの改良や広範囲な大気汚染物質の移流の影響の評価等、科学的知見のさらなる充実を図っていく必要がある」と指摘されたことを受け、環境省において平成 18 年度から 22 年度にかけて シミュレーションフレーム(対象年、地域、評価物質と統計量、精度、入力用・検証用データ)の検討、高濃度事例のシミュレーション、長期シミュレーション、感度解析及び VOC 排出削減効果の検討などが行われた。

この検討においては専門家で構成する「揮発性有機化合物(VOC)の浮遊粒子状物質及び光化学オキシダントの生成に係る調査検討会」が設置され、調査内容や調査結果のとりまとめについて検討が行われた。

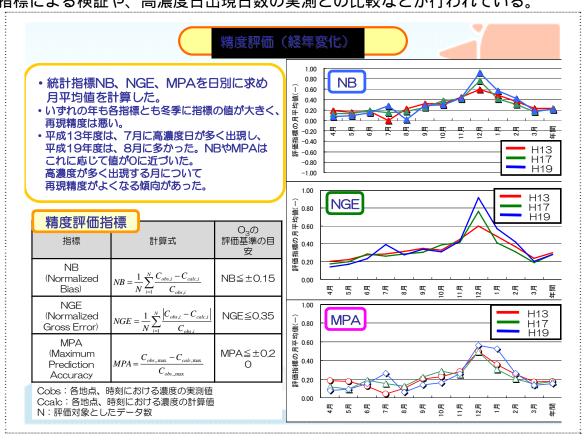
(2)現在のシミュレーションモデルについて) シミュレーションモデルの概要を表 6.1.3-1 に示す。

Notice 1 7 1 2 27 77 07 1/1/2			
項目	モデルの内容		
予測モデルの構成等	化学輸送モデル(CMAQ)と気象モデル(WRF)で構成		
	東アジア:東西5440km ×南北4320km ×鉛直21km		
計算領域	関東広域:東西600km ×南北600km ×鉛直16km		
	関東域 : 東西250km ×南北250km ×鉛直16km		
	H15モデルをより精緻化した手法によって算定された発生源		
	データを使用。		
	・JATOPの排出量算定システムにより算定された排出量デートリ タを利用。		
排出インベントリ			
	・ただし、ばい煙発生施設は環境省マップ調査を適用。VOC		
	は、環境省VOCインベントリの総量となるように補正。		
	活動量、排出係数については入手できる最新のものに更新		


表 6.1.3-1 シミュレーションモデルの概要

予測モデルに関し、現在のモデルでは化学輸送モデルとして米国環境保護庁(EPA)が開発を主導するモデリングシステムである CMAQ(Community Multiscale Air Quality)を使用している。CMAQ は米国州政府などが行う大気環境改善策の検討や、大気科学研究者が現象解明や実態把握を行うためのツールとして開発されたもので、モデル及びその関連プログラムは、研究者等のコミュニティにおいてすべて無償で公開されている。

モデルの構成としては、化学輸送モデル(CMAQ)の他、気象モデル(WRF:


Weather Research and Forecasting model)が使用され、化学輸送モデルでは化学物質輸送モデル計算として化学物質の水平・鉛直移流及び拡散、ガスの光化学反応、無機・有機粒子化反応、粒子化における液滴反応及び沈着を含んでいる。

計算領域については東アジア域及び関東広域(関東全域に加え、南東北・北陸・東海地域の各一部を)での計算も行っている。また、東アジア域での計算結果から関東広域の境界付近のメッシュ濃度を出力し、この値を関東広域の境界濃度としてシミュレーションを行う仕組みとなっており、東アジアからの越境汚染の影響も評価できるモデルとなっている。

国内の大気汚染に関し大陸からの越境汚染の寄与が指摘される現在、シミュレーションモデルとしては越境汚染の影響が把握できることが必要で、今回モデルのようなモデルを用いた東アジア域での広域大気汚染も考慮した各種データ解析が今後重要である。

また、予測モデルの精度検証については、1年間を通した数値計算を行い、評価 指標による検証や、高濃度日出現日数の実測との比較などが行われている。

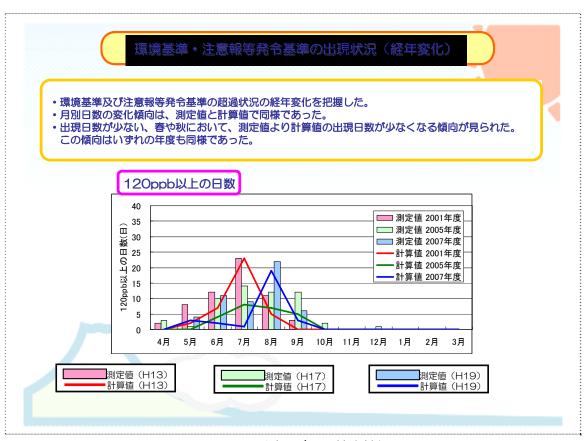


図6.1.3-2 予測モデルの精度検証

(3)H14モデルとの比較、主要課題の整理

シミュレーションモデルに関し、第 2 章で示した平成 14 年度のオキシダント将来予測シミュレーションで採用されたシミュレーションモデル (H14 モデル) との比較を以下に示す。

表 6.1.3-2 H14 モデルと現在のモデルの比較

項目	H14モデル	現在のモデル
気象モデル	局地気象モデル(気流、気温、拡	米国で開発が進められ、モデル及
	散係数)で構成	び関連プログラムが公開されてい
		るWRFを使用
化学輸送モデル	移流・拡散・反応モデル、化学反	米国EPAが開発を主導し、研究者
	応モデル、沈着モデルで構成	間で公開されているCMAQを使用
		2004年以降、数次のバージョンア
		ップにより改善が図られた
計算領域	局地気象モデル:南東北~関東~	関東域(東西南北250km)、関東
	中部地方を包含する領域	広域(東西南北600km)に加え、
	拡散・反応モデル:東京都を中心	東アジア域(東西南北5440km)を
	とする南関東	設定
排出インベント	固定発生源、移動発生源、自然起	排出量算定手法はH14モデルと同
IJ	源発生源のそれぞれについて、環	様であるが、民生(家庭・業務)
	境省の排出量調査結果や自動車	からのVOC、野焼き、土壌等から
	交通量等を基に、排出係数を用い	のNH₃など、想定される全ての排
	て算定	出源や大気汚染物質を網羅
		活動量、排出係数は入手できる最
		新のものに更新
計算領域(国内)	大気環境常時監視測定局の測定	CMAQによる東アジア域の計算結
における境界条	値及び過去の調査・研究に基づき	果を使用
件	設定したバックグラウンド濃度	
	を使用	
実測データを用	フィールド調査(最大6日間)と	夏季集中観測(2週間)との再現性
いた検証	の再現性を定性的に評価	を定性的に評価
	EPA指標による評価は抽出した	2001年度を対象に年間計算を行
	高濃度日の日最高1時間値により	い、EPA指標による検証や、月平
	実施	均値・日平均値の比較、濃度ラン
		ク別出現頻度の比較などを実施
		2001年度、2005年度及び2007年度
		について経年計算を行い、経年変
		化の再現性や高濃度日の出現日数
		などについて検証

以上のように、現在のモデルはこの間の技術進歩を反映するとともに、H14 モデルにはなかった東アジア域からの大気汚染の影響を取り込んだモデルとなっており現在の国内大気汚染の状況を評価するため必要な要素を備えている。

また、予測精度の検証に関しては、H14 モデルでは実測値との定量的な検証が行われたのは日最高 1 時間値のみであったが、現在のモデルでは 1 年間の実測データを用いた定量的な検証や、経年計算による検証など、長期的、統計的な評価も行われている。

今回のモデルを用いて各種検討を行ってきた「揮発性有機化合物(VOC)の浮遊粒子状物質及び光化学オキシダントの生成に係る調査検討会」では、以上の検証の結果、今回モデルの精度検証について次のように総括されている。

【まとめ】

- ・ 光化学オキシダントについて、現況の大気濃度のレベルや変化傾向を概ね再現することが可能となった。
- ・ 濃度や基準値の超過日数の経年変化に対しても、計算値は測定値と概ね同様な傾向を示した。再現性に係る課題も残るものの、シミュレーションモデルは光化学オキシダント低減対策を検討するためのツールの一つとして有効に活用できるものと考えられる。

【課題】

- ・ 気象モデルでは、海陸風の発達や進入時刻などの再現や混合層や逆転層の発達と消滅 の再現性、最低気温が過小評価、日射量の過大評価などの課題があり、モデルの精度向 上が必要である。
- ・ 化学輸送モデルでは、地域によってOx濃度の再現性に差が見られる点、夜間の濃度の 過大評価、高濃度地域の位置や出現時刻の再現性、再現性が著しく低い日があるなどの 課題があり、モデルの精度向上が必要である。
- ・ 排出インベントリでは、空間分布への配分方法や月別・時間配分の方法について、空間配分指標や時間変動指標において信頼性が欠ける部分もある。
- 排出係数について、出典の古いものや、国内情勢に合わないものを使用している発生源 もある。また、未対象発生源、対象外となっている発生源や成分の扱いなども課題。

6.1.4 インベントリに関する主要課題の整理

(1)植物起源 VOC 排出量の把握について

オキシダントの前駆物質のうち、人為発生源については比較的信頼性があると考えられる。一方 VOC については人為発生に加え自然由来の排出量も無視できないものであり、またオキシダント生成能力の点で重要な物質が含まれていることが指摘されている。

自然発生源については森林からのテルペン類の放出を、樹種別森林面積や作物種類別耕地面積から算出する方法(EPAのBEIS2)を用いているが、平成12年度時点での推計値が現在も用いられているなど、排出量としての精度の確認は不十分であり、排出量把握の精緻化を図る手法が求められるところである。

(2)未同定 VOC の把握について

この間測定されている VOC の環境濃度は大きく低下しているが、物質種類としては数百種類以上あるといわれている VOC の全てについて、オキシダント生成への寄与が把握できている訳ではない。このような未計測の VOC のオキシダント濃度への寄与を把握することが重要である。

(3)対策技術の反映について

現在のインベントリは、例えばばい煙発生施設から環境への排出量データが整備されており、今後排出削減のため適用可能である対策技術(燃料転換、汚染物質除去装置など)の情報が不足している。

したがって、今後のインベントリ整備にあたっては現在の排出量に加え、今後 対策が可能と想定される場合の要素に関する情報を含むインベントリが望まれる。 また、特に自動車については排出ガス規制による技術が日進月歩であり最新規 制車の排出係数の把握や、コールドスタートによる排出量増加などについても把 握していくことが重要である。

(4)インベントリの整備・管理体制について

これまで大気汚染物質について、環境省などの行政機関や各種研究機関や企業等がインベントリに関するデータを収集し整理しているが、個々の発生源や物質ごとに調査年次や整理方法(メッシュサイズ、裾きり等)が異なっており、将来の長期的な大気保全施策の検討の基礎となる全国規模で運用できるインベントリは存在しないのが現状である。

今後は対策可能情報の反映やシミュレーションに適用できる情報の包含などの 技術的課題に対応するのに加え、情報管理や公開のあり方などの社会的課題につ いても整理し、社会全体で共有し活用できるナショナルインベントリの構築が望 まれる。

6.2 今後の調査研究のあり方

前節で整理した主要課題に基づき、オキシダント対策をみすえた今後の調査研究 については、以下に示す内容に沿って進めていくことが妥当である。

6.2.1 優先解析地域(仮称)の設定

地域ごとに現象解明を行うことが有効であるため、国内各地域のうち重点的に解析を行う地域を選択し、以降の現象解明などを行うこととする。地域の選択と 具体的なエリア設定の考え方は以下の通り。

(1) 東京都・埼玉県を中心とする関東地域

地域の特徴、設定理由など

注意報発令レベル非超過割合(測定局数の割合)が最も低く、対策が最も求められる地域である。また、ここ5年間、平均濃度(中濃度域)は上昇する一方で高濃度域は減少傾向も見られ、解析により現象解明に資する知見が期待できる。

エリア設定の考え方

東京都心部とその周辺(千葉県及び神奈川県の東京湾岸部、神奈川県東部、埼 玉県南部を含む)はオキシダント常時測定局が多数存在するエリアであり解析エ リアとする。

これに加え、内陸部への空気塊の移動過程でのオキシダント生成・消失や植物 起源 VOC の影響を把握する観点から、埼玉県南部から栃木県及び群馬県のオキ シダント常時測定局が存在するエリアも対象とする。

(2)愛知県を中心とする東海地域(愛知・三重・岐阜など)

地域の特徴、設定理由など

岐阜県、静岡県及び愛知県では注意報発令レベル非超過割合(測定局数の割合)が、平成 15 年度に約8割であったが平成21年度は約3割と大きく低下しており原因解明が必要である。

エリア設定の考え方

人為排出源の立地状況や地形を考慮し、名古屋市を中心とする伊勢湾周辺に加え、内陸部のうち岐阜県南部の濃尾平野のエリアも対象とする。

(3)大阪を中心とする阪神地域

地域の特徴、設定理由など

大阪市内を中心に平坦地がひろがる地域の中に多くの測定局があり、データが 豊富である。また、瀬戸内気候の影響を受け季節や時間帯により風の傾向が明確 で、モニタリングデータの解析に適している。

エリア設定の考え方

阪神地域のうち、人為排出源が集中している大阪湾岸エリア(明石海峡付近~

大阪泉南地域)に加え、大阪府内の淀川及び大和川周辺の平野部のエリアも対象とする。

(4)福岡を中心とする九州地域

地域の特徴、設定理由など

東アジア大陸に近く、越境汚染の影響を検証するのに適している。また、福岡県で平成 21 年より独自に測定されている硫酸イオン濃度の 1 時間値データが活用可能であり、現象解明への寄与が期待できる。

エリア設定の考え方

人為排出源が集中している福岡市内から北九州市内のエリアに加え、越境汚染の影響把握の点でこれに対する比較対象エリアとして福岡県内の瀬戸内海側及び 有明海側のエリアも対象とする。

6.2.2 モニタリングについて

(1)オキシダント濃度に関する現象解明のためのデータの多角的解析

「前駆物質の排出インベントリ」「前駆物質の環境濃度」「気象条件」に着目 した基礎的データ整理

地域別に以下のような内容で基礎的データ整理を行い、現象解明のため有効な知見を得ることとする。

(オキシダント及び前駆物質の環境濃度データの解析)

- ・ オキシダント、NOx 及び VOC などの環境濃度データを地域別に整理し、 経年推移や当該地域及び周辺の排出インベントリとの比較などを行う。
- オキシダントが高濃度になりやすい気象条件の日または時間帯について、 経年変動などを把握する。

(高濃度事例の解析)

・ これまでの典型的な高濃度事例について前駆物質排出量や環境濃度、気温 や日射量、風などの状況とあわせ精密な解析を実施する。

【想定する成果の例】

- ・ オキシダント濃度の季節別、濃度ランク別の経年変化の傾向をもとに、 NOx や VOC 等の動向もあわせて解析し各地域の特徴を把握。
- ・ 高濃度事例も含め、 で解析を行う越境汚染やタイトレーション効果 などの影響の検証に関し、検証の基礎情報を提供。

オキシダント濃度への影響要因に関する既存の知見を、モニタリングデータ で検証するためのデータ解析

上述の基礎的データ整理とは別に、この間のオキシダント濃度の変動要因を 構成するとされている事項について、モニタリングデータの解析や現在適用可 能なシミュレーションを用いた解析を行い、現象解明を進める手法である。

(大陸からの越境汚染の影響の程度を検証)

- ・ 対象地域について、季節による比較や後方流跡線の方向に着目した濃度比 較など、越境汚染の影響を抽出できる解析を実施する。
- ・ 大陸からの輸送の影響量は数~数十 ppb 程度であり、越境輸送の影響の増加によりいわゆる中濃度域の濃度ランクの出現頻度が近年増加している可能性が考えられる。また、国内で夜間や朝方にオキシダント濃度が上昇する現象は大陸からの移流が主な原因であると考えられることから、例えばモニタリングデータ(1時間値、昼間平均値など)を濃度ランク別に区分し季節や時間帯、風況データと合わせて解析し、大陸からの輸送が考えられる時期とそれ以外の時期との比較を行う手法が考えられる。

- ・ 国内で観測される硫酸イオン(SO42) は主に大陸で排出された硫黄酸化物(SOx)が移流過程で酸化して生成するもので越境汚染の影響のひとつの指標として活用できる。福岡県において平成21年度より独自に連続測定が行われており、このデータの活用も重要である。また、越境汚染の寄与が大きいときは浮遊粒子状物質(SPM)濃度がオキシダント濃度とほぼ同時に上昇すると言われておりこの点にも留意した解析が重要である。
- ・ これら各種要素に関する解析は、モニタリングデータをはじめ気象データ など関連データを用いることとし、複数の要因の作用が考えられることから 多変量解析などの手法の採用も考慮すべきである。

【想定する成果の例】

・ 高濃度事例 (1 時間値 60ppb 超、120ppb 超などの日) のうち、越境汚 染の寄与が存在する事例を抽出し、年間に占める割合や経年推移を把握。

(NOによるタイトレーション効果に関する検証)

- ・ 第 5 章で示したとおり、NO によるタイトレーション効果は、生成したオゾンが NO と反応して NO2 と O2 に変化した結果オゾン濃度が低下する現象である。国内ではこの間 NOx 排出削減が進み環境濃度も低下したことにより、オキシダント濃度が上昇しているとの指摘がなされている。これに関し、ポテンシャルオゾン(PO)の概念を導入することで地域内におけるタイトレーション効果の影響を除いた、オキシダント濃度の解析が可能である。
- ・ ポテンシャルオゾンを用いて、タイトレーションによるオゾン消失前のオゾン生成について、以下のような解析を行うことが有効である。
- (a) 各解析対象地域において、ポテンシャルオゾン及びオゾン濃度の時間変動 比較や、NOx や非メタン炭化水素 (NMHC)濃度の経年変化などの解析を 行い、タイトレーション効果の出現状況を把握する
- (b) 解析対象地域内でのオゾンの生成に関し、例えば湾岸部から排出された前駆物質を含む空気塊が海風等により内陸部へ移動する過程でオキシダント濃度が上昇する現象に関し、当日の風況により推定される空気塊の移動方向に沿ってオキシダント濃度が変化していく様子を濃度ピーク発生時刻にも着目してデータ追跡していく。このとき常時測定局でのNOx及びNMHC濃度とあわせて解析することで、オゾンの地域内生成に関する現象解明の進展が期待できる。

【想定する成果の例】

- ・ オゾンの生成について、地域での対策効果に関する情報を提供。
- ・ 前駆物質の集中発生源地域とその移流の影響を受ける地域の関係も含め、高濃度オキシダントの生成について地域内の分布を把握。

オゾンなどの1時間値の統計解析等について

- ・ 光化学オキシダントについては、環境基準が 1 時間値として定められていることもあり、オキシダント濃度のトレンド評価や NOx・VOC の削減効果の評価指標として 1 時間値が用いられることが多い。特に高濃度事例の解析においては 1 時間値のピーク濃度の測定値を用いた解析となる。
- ・ オキシダントの生成はその時の気象の影響を受け、特に 1 時間値のピーク 濃度は短時間の気象変化に大きく左右される。したがってオキシダント対策 の効果を評価する観点からはデータ解析を行う際に、評価対象のデータが当 該地域・期間でのオキシダント濃度の状況を正確に反映しているかどうかと いう考察や、対策効果を経年トレンドで評価する場合の期間内変動に関する 考察をあわせて行うことが望ましい。
- ・ このような考察を行う手段としては、大気環境データの解析に従来から用いられている統計的手法の適用が考えられる。例としては以下のような手法が想定される。
- (a)パーセンタイル評価により、出現頻度の低いデータを除外した評価を行う
- (b)日内変動、週内変動、年内変動などについて一般化加法モデル(GAM) を 用いて有意なトレンドを抽出する
- ・ 上記のようなこれまで活用し成果を挙げてきた手法に加え、第5章で示したベイズ統計手法による地域内生成と越境移流の寄与の分離など、対策効果の評価に有効な手法の調査を進めていくべきである。

(昼間の8時間平均値による解析について)

・ 上述したとおりオキシダント濃度の 1 時間値は短時間の気象条件変化の影響を大きく受けることなどから、欧米においては 8 時間平均値を用いたデータ評価や解析等の研究が行われている。

モニタリングデータの解析は複数の視点から多角的な検証を行うことが望ましく、一般的な解析では判明しない知見が得られることも期待されるため、8時間平均値を用いたデータ解析について検討すべきである。

【想定する成果の例】

・ 高濃度 1 時間値について、当該地域や期間代表性の点での見地から合理的根拠を伴う篩い分けを行うことで、様々な要因によって覆われていた傾向を把握することが可能となる。

【参考:一般化加法モデル(GAM: generalized additive model)について】 次のような数式で表される加法回帰モデル(additive regression model)を用い、データの平均や分散の長期トレンドや周期トレンドを分析する手法。

 $y = a + f_1(x_1) + f_2(x_2) + \cdots + f_i(x_i) + \cdots + f_n(x_n) + \varepsilon$

y : 被説明変数、xi : 説明変数

fi:説明変数の変換を行う関数

ε:残差

気象データなどのような複雑な周期的構造をもつデータの解析に有効とされている。 微小粒子状物質 ($PM_{2.5}$)環境基準設定の過程で、3 地点での 7 年間の 1 時間濃度測定 結果に対するトレンド分析のため活用されている。

(2) VOC をはじめとしたモニタリングの拡充

- ・ VOC 環境濃度の連続測定を、ホルムアルデヒドなどオゾン生成の点で重要 な物質について行うことを検討すべきである。
- ・ 内陸部の低人口密度地域においては常時測定局がほとんど存在しない。沿 岸部周辺の人為排出源集中地域からの空気塊の移動過程におけるオキシダン ト生成や消失過程の現象解明のため、適切な地区を選定しオキシダントや NOx 及び VOC(イソプレンなど植物起源 VOC を含む)について数年間の常 時測定を検討すべきである。

【想定する成果の例】

- ・ 主要な VOC 環境濃度や NOx 等の連続測定データを得ることで、内陸 部の低人口密度地域も含めたオキシダント生成・消滅の現象解明が進展。
- ・ VOC 環境濃度の連続測定データは、シミュレーションへの活用が可能。

(3)オキシダント濃度測定の値付け方法の変更や校正状況による影響の検証

- ・ オキシダント濃度測定に関し、平成 18 年に JIS が改正され従来の KI 法から紫外線吸収法に変更された。これを受け環境省では平成 21 年度に常時監視マニュアルを JIS に従い変更した
- ・ 変更された常時監視マニュアルに従い、平成 22 年度から地域ブロックごとに二次標準器、自治体ごとに三次標準器を設置し定期的に校正を行うという、全国的トレーザビリティを考慮した統一的な精度管理態勢となっている。
- ・ 紫外線吸収法においても、現在の精度管理体制を導入する以前では、例えば国内一次標準器(SRP35)と自治体基準器の感度比較で最大 17%の感度差が確認されている。

また、以前の KI 法での JIS に定められた誤差は 5%で、ヨウ素の酸化反応管理(恒温槽の温度管理、流量コントロールなど)は各自治体の判断で行われており、過去のモニタリングデータについては絶対値の精度に加え、測定局間でのデータ比較などを行う際には当該測定局における精度管理の実績(KI 法のスケールの変動など)を可能な限り把握することが重要である。

・ そのため、例えばオキシダント測定方法変更も含めた測定機の使用履歴調査に加え、自治体基準器の校正結果を整理し、基準器の感度変化によるオキシダント濃度への影響を検証するため、値付けの実施履歴等について調査することや、今後の校正状況に関しデータベース化の検討が考えられる。

【想定する成果の例】

・ 使用履歴や校正履歴が確認できる範囲で、校正による測定値の変動を 把握するとともに、今後の安定した精度管理を確保。

6.2.3 シミュレーションについて

(1)これまでの実測データによるオキシダント濃度の再現

重点解析地域ごとにモニタリングデータの整理を進めることにより、オキシダント濃度への影響要因である越境汚染やポテンシャルオゾン、前駆物質排出インベントリや前駆物質濃度に着目したデータが得られる。

これらのデータに関し、経年トレンドの解析や排出量に対する感度解析など、 シミュレーションによる再現性の精密な検証を行い、再現性が良好でない場合の 考察を行うことで、オキシダント生成に関する現象解明が進むとともに、モデリ ングシステムのさらなる改善が期待される。

(2) VOC や NOx 排出量に対するモデルの感度の把握、 VOC 環境濃度の現況再現 に関する検討

オキシダント生成の前駆物質は大気中の VOC と NOx であり、この 2 つに関しては従来から地域や気象条件により異なるオゾン生成の傾向が存在することが知られている。 すなわち NOx 排出量の削減でオキシダント濃度が減少するが VOC 排出量の削減ではほとんど減少しない状態(NOx 律速)と、VOC 排出量の削減でオキシダント濃度が減少するが NOx 排出量の削減ではほとんど減少しない、または逆に増加する状態(VOC 律速)である(図 5.1.1-2 参照)。

このように、気象条件に基づき NOx、VOC 排出量を用いてある地域での NOx や VOC の削減によるオキシダント濃度低減効果をシミュレーションで推定することは可能であるが、シミュレーションの前提となる前駆物質排出量やモデル自体に不確実性があることや、対象日の気象条件の代表性などに注意が必要である。これまでほとんど取り組まれていない、シミュレーションによる VOC 環境濃度の再現性検証を行うことで、上記挙動に関する重要な知見が得られることが期待

特に、VOC 成分のうち環境中濃度が高くオゾン生成能も大きいホルムアルデヒドについて、二次生成も含めた現況再現の検証を進めることが今後重要である。

【想定する成果の例】

できる。

- ・ 高度化したモデリングシステムによる、これまでのモニタリングデータの解析を、不確実性のある前駆物質排出量に係る感度解析も含め行うことで、シミュレーションの精度向上に関する知見が得られる。
- ・ シミュレーションにおいて VOC 環境濃度の現況再現を試みることで、二 次生成も含めた主要な VOC の挙動に関する知見が得られる。

6.2.4 インベントリについて

(1) 自然起源 VOC の精度向上など前駆物質排出インベントリの精緻化

「4.1.2」で示したとおり、国内での自然起源(植物)VOCの排出量は人為起源 VOC 排出量と同程度~数倍と見積もられている。植物 VOC の排出量は直接測定できないため、現在においても植生分類とこれに対応する植物種別の排出係数を用い、気象による排出係数の変化も考慮して算出を行う手法が一般的である。

シミュレーションモデルにおける植物 VOC の排出量については、今回モデルでも H14 モデルと同様の排出量算定を採用している。現在においても新たな算定手法は開発されていないものの、排出係数を変更した算定結果の報告も出されており、これによれば従来の方式の約 2.5 倍の排出量になるとされており、植生面積なども含めた最新の知見の整理が必要である。

(2) 未同定 VOC のオキシダント生成寄与について

VOC 総体の環境濃度の指標である NMHC 濃度は低下傾向にある一方で、VOC は物質として数百種類存在するとされており、主要な物質ごとにオゾン生成能を調査していくのは限界がある。

第 5 章に示した OH ラジカルの反応性に着目した評価手法は、個別の VOC の計測が不要で対象とする空気塊総体のオゾン生成能を把握することが可能とされている。まだ研究進行中の手法であるが、本手法の精度や汎用性を高めることで、地域でのオゾン生成の現象解明に関し進展が期待される。

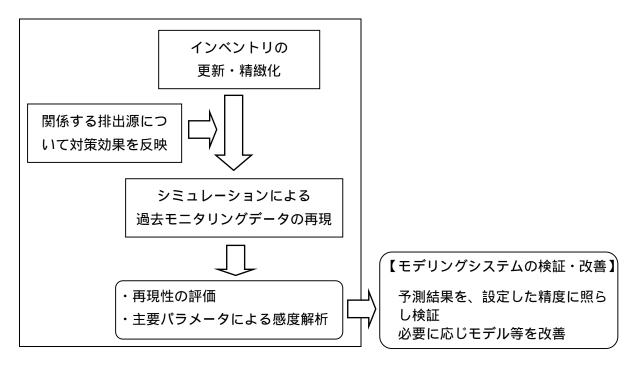
(3) インベントリの整備及び管理体制の構築

インベントリの整備に関し、現在の排出量に加え今後対策が可能と想定される場合の技術に関する情報も含むインベントリの整備を行う。特に自動車については最新規制車の排出係数の把握や、コールドスタートによる排出量増加の程度などについても把握していく。

現在様々な主体で収集整理されているインベントリ情報をもとに、将来の長期的な大気保全施策の検討の基礎として、社会全体で共有し活用できるナショナルインベントリの構築のあり方を検討する。

【想定する成果の例】

- 国内の VOC 排出量の大半を占める植物起源 VOC の精度が向上。
- ・ 未同定 VOC のオキシダント生成寄与について、シミュレーションへの 活用も含め定量化が期待できる。


6.3 対策効果の評価手法について

(1)過去の対策効果の評価手法

評価の流れ

植物起源 VOC をはじめとした排出量の精度向上結果を反映し、過去の排出インベントリの実績を更新する。更新においてはシミュレーションに活用できるよう、地域別(例;6.2.1の優先解析地域)・年度別・月別などでデータ更新を行う。 VOC のうちオゾン生成能の点で重要な物質についてはシミュレーションモデルへの反映や改善を行う。

インベントリ実績値の更新結果に基づき、関係する排出源について各地域においてオキシダント濃度のトレンド解析を行うことにより、関係する排出源に関するこれまでの VOC や NOx 削減対策の効果を評価する。トレンド解析は経年変化を中心に、VOC や NOx 排出量に対する感度解析も行うこととする。

評価における主要フレーム

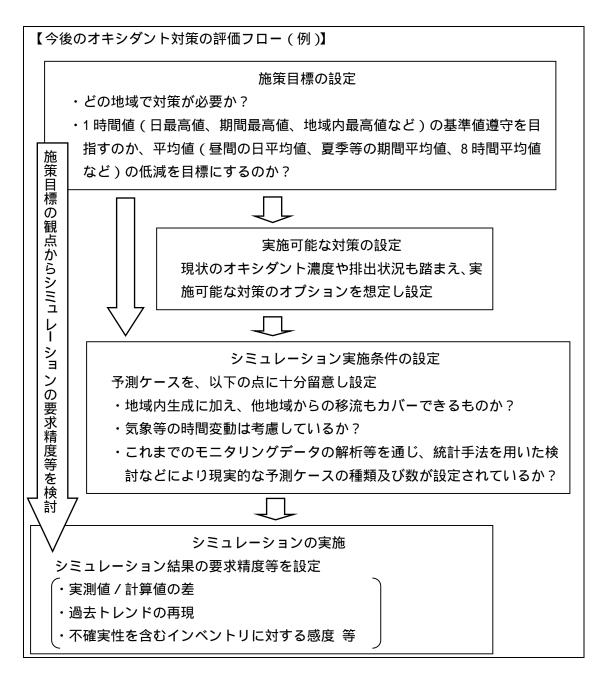

上記の流れで行う評価における主要な要素は以下の通りである。

表 6.3-1 評価における主要な要素

項目	内容
対象地域	6 . 2 . 1で示した優先解析地域
シミュレーション	・年間計算によるトレンド解析(年間値、月平均値など)
の実施内容	・高濃度日における再現性の検証
	・VOC、NOx 排出量に対する感度解析
評価指標	・年間計算や高濃度日では、精度評価指標 (NB、NGE、MPA)を活用
	・VOC、NOx 排出量に対する感度解析では、インベントリの不確実性
	も考慮して評価指標を設定

(2)今後のオキシダント対策の評価手法

今後の対策を検討するためには、5章及び本章で示した新たな知見や、それらの知見に関し今後の調査研究によりさらに進展した成果を明らかにした上で、過去及び現在のオキシダント濃度が再現できる精度の高いモデリングシステムを構築することが前提条件となる。このモデリングシステムを踏まえ、現実的に実施可能な対策が想定できる場合、例えば以下のフローに示すような手順で評価を行うことが考えられる。

この過程のなかで、特に施策目標及び実施可能な対策の設定、シミュレーション実施条件の設定においては、行政や大気分野の専門に加え、対策の対象となる排出源に関する関係団体や関係機関も参画した場での十分な検討が必要である。

6.4 おわりに 今後の施策の実施に向けて

ここでは、これまで整理した今後の調査研究も含めたオキシダントに関連する 各種施策を推進するための実施体制などについてまとめた。

(1)調査研究も含めた施策の推進体制、各主体の役割分担

環境行政の主体である環境省と地方公共団体が中心となり、オキシダントや VOC に関する調査研究を行っている研究機関に加え、この間 VOC 排出抑制を担ってきた関係団体・機関が協力・連携して、調査研究や関連施策の検討を進めていく体制を整えることが重要である。

(2)関連の深い行政課題との連携

現在環境省において策定作業が行われている「第四次環境基本計画」において、 光化学オキシダントに関し環境改善効果を適切に示す指標値について検討を行う とされている。今後の調査研究においては、この指標値の検討と相互に調整を図 りつつ効率的に進めていくことが重要である。

平成 21 年 9 月に環境基準が設定された微小粒子状物質 (PM_{2.5}) は、環境省が平成 24 年 2 月に公表した平成 22 年度大気汚染状況によれば、環境基準達成率が一般局で約 3 割、自排局で 1 割未満と低い水準にある。

PM_{2.5} については、二次生成の割合が大きいこと、広域的な移流の影響が無視できないことなど、オキシダントと共通する課題も存在することから、今後の大気環境行政においては、排出インベントリの充実やシミュレーションなど、PM_{2.5} と光化学オキシダントに係る施策を総合的かつ横断的に構築していくことが望まれる。

<参考文献>

Akimoto, H.(2003); Global Air Quality and Pollution, Science, vol. 302, p. 1716-1719

Chatani, S; Shimo, N; Matsunaga, S; Kajii, Y; Kato, S; Nakashima, Y; Miyazaki, K; Ishii, K; Ueno, H(2009); Sensitivity analyses of OH missing sinks over Tokyo metropolitan area in the summer of 2007, Atmos. Chem. Phys., 9, 8975-8986, doi:10.5194/acp-9-8975-2009

EANET ホームページ;http://www.eanet.cc/jpn/

 ${\tt EEA(2011); Air \ quality \ in \ Europe -- 2011 \ report,}$

http://www.eea.europa.eu/publications/air-quality-in-europe-2011

EMEP ホームページ; http://www.emep.int/

EPA(2008); Our Nation's Air - Status and Trends through 2008, http://epa.gov/airtrends/2010/

EPA(2011); 1970 - 2011 Average annual emissions, all criteria pollutants in MS Excel, http://www.epa.gov/ttnchie1/trends/

EPA ホームページ;National Trends in Ozone levels, http://www.epa.gov/airtrends/ozone.html

ESA ホームページ;http://earth.esa.int/missions/

- Hocking, W.K; T. Carey-Smith; D. Tarasick; S. Argall; K. Strong; Y. Rochon; I. Zawadzki; P. Taylor(2007); Detection of Stratospheric Ozone Intrusions by Windprofiler Radars, Nature, 450, 281-284
- HTAP(2010); HEMISPHERIC TRANSPORT OF AIR POLLUTION 2010 AIR POLLUTION STUDIES No. 17,
 The Task Force on Hemispheric Transport of Air Pollution acting within the framework of the
 Convention on Long-range Transboundary Air Pollution, http://www.htap.org/
- Irie, H; Y. Kanaya; H. Takashima; J.F. Gleason; Z. Wang(2009); Characterization of OMI tropospheric NO2 measurements in East Asia based on a robust validation comparison, SOLA, 5, 117-120, doi:10.2151, 2/sola.2009□030
- Itano Y; Bandow H; Takenaka N; Saitoh Y; Asayama A; Fukuyama J (2007); Impact of NOx reduction on long-term ozone trends in an urban atmosphere., Sci Total Environ 379:46-55
- IPCC(2007); IPCC 第 4 次評価報告書第 1 作業部会報告書 政策決定者向け要約(気象庁翻訳) http://www.data.kishou.go.jp/climate/cpdinfo/ipcc/ar4/ipcc_ar4_wg1_spm_Jpn_rev2.pdf
- Kanaya, Y; M. Fukuda; H. Akimoto; N. Takegawa; Y. Komazaki; Y. Yokouchi; M. Koike; Y. Kondo (2008); Urban photochemistry in central Tokyo: 2. Rates and regimes of oxidant (O₃ + NO₂) production, J. Geophys. Res., 113, D06301, doi:10.1029/2007JD008671.
- Kannari, A; Tonooka, Y; Baba, T; Murano, K (2007); Development of multiple-species 1 km×1 km resolution hourly basis emissions inventory for Japan, Atmos. Environ. 41:3428-3439
- Kurokawa, J; Yumimoto, K; Uno, I; Ohara, T(2009); Adjoint inverse modeling of NOx emissions over eastern China using satellite observations of NO2 vertical column densities, Atmos. Environ., Volume 43, Issue 11, p 1827-1944
- Nagashima, T; Ohara, T; Sudo, K; Akimoto, H(2010); The relative importance of various source regions on East Asian surface ozone, Atmos. Chem. Phys., 10, 11305-11322, doi:10.5194/acp-10-11305-2010
- NASA ホームページ; http://aura.gsfc.nasa.gov/science/index.html
- Ohara,T; Akimoto,H; Kurokawa,J; Horii,N; Yamaji,K; Yan,X; Hayasaka,T (2007a); An Asian emission inventory of anthropogenic emission sources for the period 1980–2020, Atmospheric Chemistry and Physics, vol. 7, p. 4419-4444
- Ohara,T; Yamaji,K; Uno,I; Kurokawa,J; Horii,N; Akimoto,H (2007b); Long-term simulations of surface ozone in East Asia during 1980-2020 with CMAQ and REAS inventory, Proceedings of 29th ITM on air pollution modelling and its application, 2.5

- Stephen Friedfeld; Matthew Fraser; Kathy Ensor; Seth Tribble; Dirk Rehle; Darrin Leleux; FrankTittel(2002); Statistical analysis of primary and secondary atmospheric formaldehyde, Atmos. Environ., 36, p4767-4775
- Sudo, K. and Akimoto, H. (2007); Global source attribution of tropospheric ozone: Long-range transport from various source regions, Journal of Geophysical Research, vol. 112, D12302, doi:10.1029/2006JD007992
- Tanimoto, H; T. Ohara, and I. Uno (2009); Asian anthropogenic emissions and decadal trends in springtime tropospheric ozone over Japan: 1998–2007, Geophys. Res. Lett., 36, L23802, doi:10.1029/2009GL041382.
- University of California ホームページ; SAPRC Atmospheric Chemical Mechanisms and VOC Reactivity Scales http://www.engr.ucr.edu/~carter/SAPRC/saprc07.xls
- Wakamatsu,S; Uno,I; Ueda,H; Uehara,K; Tateishi,H.(1989); Observational study of stratospheric ozone intrusions into the lower troposphere, Atmospheric Environment, vol. 23, p. 1815-1826
- Wakamatsu,S; Ohara,T; Uno,I. (1996); Recent trends in precursor concentrations and oxidant distributions in the Tokyo and Osaka areas, Atmospheric Environment,vol.30,p.715-521
- Wild, O. and Akimoto, H.(2001); Intercontinental transport of ozone and its precursors in a three-dimensional global CTM, Journal of Geophysical Research, vol. 106,D21, p. 27729-27744
- Wild, O; Pochanart, P; Akimoto, H (2004); Trans-Eurasian Transport of Ozone and its Precursors, Journal of Geophysical Research, vol. 109, D11302, doi:10.1029/2003JD004501
- WMO (2011); WMO WDCGG DATA SUMMARY, Japan Meteorological Agency in co-operation with World Meteorological Organization, March 2011,
 - http://gaw.kishou.go.jp/wdcgg/products/publication.html#Summary
- Zhang, Q; Streets, D. G; Carmichael, G. R.; He, K. B; Huo, H; Kannari, A; Klimont, Z; Park, I. S; Reddy, S; Fu, J. S; Chen, D; Duan, L; Lei, Y; Wang, L. T; Yao, Z. L(2009); Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131-5153, doi:10.5194/acp-9-5131-2009
- 秋元肇(2006);大気汚染物質の大陸間輸送と半球規模汚染, 大気環境学会誌, vol. 41, A1-A8
- 石井真理奈;上野広行:石井康一郎(2009); 環境中の植物起源 VOC 濃度測定, 東京都環境科学研究所年報,p118-122
- 石井康一郎;上野広行;秋山薫;星純也;木下輝昭;佐々木啓行; 梶井克純;加藤俊吾;西田哲;中嶋吉弘;下紳郎;松永壮;Alex Guenther;Eric Apel;James P Greenberg(2008); 光化学オキシダント生成原因物質に関する調査, 東京都環境科学研究所年報 2008, p.95-98
- 石井康一郎;上野広行;藤田進;梶井克純;加藤俊吾;中島吉弘(2010); 大気中ホルムアルデヒドの生成排出比率の推定, 東京都環境科学研究所年報 2010, p.141-143
- 石井康一郎;星純也(2011);東京都における光化学オキシダント関連の調査・研究結果,第3回光化学オキシダント調査検討会
- 板野泰之(2006); 都市大気における光化学オキシダント問題の新展開,. 生活衛生, Vol. 50, p.115-122
- 板野泰之(2011);大阪市における光化学汚染対策とその評価手法の最新事情,資源環境対策、Vol.~47,No.5, p. 45-49 板野泰之;高倉耕一(2011);ベイズ統計手法による都市大気オゾンの日内変動と季節変動の分離評価,大気環境学会誌,Vol.~46, No.~3 p. 179-186
- 板野泰之; 高倉耕一; 山神真紀子; 大原利眞(2011); 都市の光化学オキシダント濃度に対するその場の光化学生成とバックグラウンド濃度の分離評価の試み,第 52 回大気環境学会年会講演要旨集, p.260
- 井上和也;安田龍介; 吉門洋; 東野晴行 (2010); 関東地方における夏季地表オゾン濃度の NOx, VOC 排出量に 対する感度の地理分布: 第 I 報 大小 2 種類の植物起源 VOC 排出量推定値を入力した場合の数値シミュレーションによる推定, 大気環境学会誌, Vol. 45, No. 5, p.183-194
- 岩本真二; 大石興弘; 田上四郎; 力寿雄; 山本重一(2008); 福岡県における光化学オキシダントの高濃度要因の分類 , 大気環境学会誌 Vol.43 , No.3, p173-179

- 大原利眞;坂田智之(2003);光化学オキシダントの全国的な経年変動に関する解析,大気環境学会誌, vol. 38, p. 47-54
- 大原利眞編(2007);日本における光化学オキシダント等の挙動解明に関する研究,国立環境研究所研究報告第 195 号(R-195-2007),256p
- 大原利眞; 鵜野伊津志; 黒川純一; 早崎将光; 清水厚(2008); 2007 年 5 月 8,9 日に発生した広域的な光化学オゾン 汚染 - オーバービュー -, 大気環境学会誌, Vol43, No.4, p.198-208
- 大原利眞編(2010);光化学オキシダントと粒子状物質等の汚染特性解明に関する研究,国立環境研究所研究報告第 203号(R-203-2010),219p
- 海洋研究開発機構(2009); 中国での二酸化窒素の大気中濃度、2007~2008 年はこれまでの最高レベルに、海洋研究開発機構プレスリリース, http://www.jamstec.go.jp/j/about/press_release/20090807/
- 梶井克純;吉野彩子;渡邉敬祐;定永靖宗;松本淳;西田哲;加藤俊吾(2006);都市郊外地域のオキシダント生成能の評価, 大気環境学会誌,vol.41,p.259-267
- 梶井克純;宮崎洸治; Helena Sikder;Jeeranut Suthawaree;吉野彩子;中嶋吉弘;加藤俊吾;下紳郎;松永壮; 茶谷聡; Eric Apel;James Greenberg;Alex Guenther;上野広行;木下 輝行;佐々木啓行;石井真理奈;藤田 進;石井康一郎 (2010); 都心における反応性微量成分物質の集中観測と OH 反応性測定による大気質診断,東京都環境科学研究所年報,p60-70
- 鎌滝裕輝;芳住登紀子;橳島智恵子;星純也;国領和夫(2011);VOC 連続測定データを用いた都市大気中 VOC 濃度の解析 ~ VOC の濃度変動と年平均濃度の評価について~第52回大気環境学会年会講演要旨集,p.523
- 環境省(2000~2012); 光化学大気汚染の概要 緊急時発令状況、被害届出状況 -

http://www.env.go.jp/air/osen/photochemi.html

環境省(2003a); 平成 14 年度 浮遊粒子状物質環境汚染実態解析調査報告書(第2編 SPM 濃度予測モデル)

環境省(2003b); 平成 14 年度 浮遊粒子状物質総合対策検討に係る調査報告書

環境省(2007a);環境大気常時監視マニュアル(第5版)

環境省(2007b);平成 19 年度自動車排出ガス原単位及び総量算定検討調査報告書

環境省(2008a);環境大気中の揮発性有機化合物(VOC)濃度モニタリングに係る測定方法マニュアル

環境省(2008b);平成 20 年度自動車排出ガス原単位及び総量算定検討調査報告書

環境省(2008~2009); 環境大気中の揮発性有機化合物 (VOC) 濃度モニタリングに係る調査検討

環境省(2008~2010);揮発性有機化合物(VOC)排出インベントリ

環境省(2010a);大気汚染物質排出量総合調査(平成 20 年度実績)

環境省(2010b);平成 22 年度次期揮発性有機化合物 (VOC) 対策のあり方の基礎的検討業務報告書

環境省(2010c); 平成 22 年度揮発性有機化合物(VOC)の浮遊粒子状物質及び光化学オキシダントの生成に係る調査 報告書

環境省(2011);平成21年度大気汚染状況報告書

環境省(2012);環境省報道発表資料「平成 22 年度大気汚染状況について(微小粒子状物質を除く。) 一般環境大 気測定局、自動車排出ガス測定局の測定結果報告 (お知らせ)」

http://www.env.go.jp/press/press.php?serial=14868

神成陽容;大原利眞(2009); オゾン週末効果反転現象のメカニズム, 大気環境学会誌, Vol. 44, No.2 p.82-90 気象庁(2001);IPCC 第三次評価報告書 ~ 脚注一覧

http://www.data.kishou.go.jp/climate/cpdinfo/ipcc_tar/spm/voc.htm

気象庁(2011); 大気・海洋環境観測報告第 11 号 (2009 年観測成果),

http://www.data.kishou.go.jp/obs-env/cdrom/report2009k.html

揮発性有機化合物 (VOC) 排出抑制検討会(2003); 揮発性有機化合物 (VOC) の排出抑制について ~ 検討結果 ~ 黒川純一(2011); 大気環境の解析への大気化学モデルの活用, 日本化学会情報化学部会誌, Vol. 29, p.66-70 光化学オキシダント・対流圏オゾン検討会(2007); 光化学オキシダント・対流圏オゾン検討会 中間報告 国土交通省ホームページ; 国土数値情報ダウンロードサービス, http://nlftp.mlit.go.jp/ksj/

- 国立環境研究所ホームページ;環境数値データベース, http://www.nies.go.jp/igreen/index.html
- 国立環境研究所(2001); 都市域における VOC の動態解明と大気質に及ぼす影響評価に関する研究(特別研究), 国立環境研究所特別研究報告第42号(SR-42-2001)
- 国立環境研究所記者発表(2010); 「環境 GIS」ホームページ「大気汚染予測システム」について
- ~全国の光化学オキシダント等の詳細予測を開始~(お知らせ),
 - http://www.nies.go.jp/whatsnew/2010/20100427/20100427.html
- 国立環境研究所ニュース(2010); 大気汚染物質のソース・レセプター関係を評価する,
 - http://www.nies.go.jp/kanko/news/29/29-2/29-2-04.html
- ジェイコブ D.J. (著) 近藤豊(訳) (2002);大気化学入門, 東京大学出版会,278p
- 埼玉県環境部大気環境課(2011);平成21年度大気環境調査事業報告書(平成23年1月)
- 酸性雨研究センター(2005); 増えつづける対流圏オゾンの脅威, 26p
- 下原孝章(2011) 九州北部地域における Ox に係る現状について, 第3回光化学オキシダン調査検討会資料
- 鈴木佳祐;大河内博;緒方裕子(2012);首都近郊小規模森林における生物起源揮発性有機化合物 (BVOCs) の大気動態,大気環境学会誌,Vol.47, No.1 p.51-56
- 竹内庸夫;松本利恵(2010);埼玉県における揮発性有機化合物の昼夜別濃度の比較,第37回環境保全・公害防止研究発表会講演要旨集,p56-57
- 竹内庸夫(2011) 埼玉県(都市域+郊外)における光化学オキシダントに係る現状について、第3回光化学オキシダン調査検討会資料
- 力寿雄: 山本重一;藤川和浩; 大石興弘; 岩本眞二; 藤哲士; 古賀康裕; 長田健太郎; 高橋秋彦; 植松京子(2009); 九州北部3県および山口県における環境大気中の揮発性有機化合物 (VOC)調査 光化学オキシダント濃度 との関連について ,第24回全国環境研究所 交流シンポジウム 予稿集,p24-25
- 茶谷聡(2011); 日本国内の大気質に対する都市・半球スケール大気汚染の影響, 名古屋大学大学院環境学研究科地球環境科学専攻学位論文 博士(理学)
- 東京都;光化学オキシダント対策検討会報告書(2005), 東京都環境局,78p
- 中西準子; 篠崎裕哉; 井上和也(2009); 詳細リスク評価書シリーズ 24 オゾン 光化学オキシダント , 丸善, 289p
- 中西準子; 鈴木一寿 (2009); 詳細リスク評価書シリーズ 17 ホルムアルデヒド, 丸善, 183p
- 畠山史郎(2003):酸性雨 誰が森林を傷めているのか?,日本評論社,209p
- 濱名実;定永靖宗;竹中規訓;坂東博(2006);大阪府におけるオゾンと前駆帯濃度の平日/週末間の違い 現状とその要因について ,大気環境学会誌, Vol. 41, No.6 p.300-308
- 星純也;佐々木啓行;天野冴子;樋口雅人;飯村文成;上野広行(2008); 大気中 VOC の成分組成の経年変化とオゾン生成への寄与について、東京都環境科学研究所年報 2008, p.10-17
- 星純也;鎌滝裕輝(2010);東京都における大気中 VOC の組成と濃度,第 51 回大気環境学会年会講演要旨集 , p.190-191
- 向井人史(2011)オキシダント測定器の校正方法について、第3回光化学オキシダン調査検討会資料
- 山地一代;秋元肇(2007);最近のモデル研究による東アジアオゾン汚染の現状と将来予測, 資源環境対策, vol. 43, p. 28-35
- |若松伸司; 篠崎光夫(2001);広域大気汚染 そのメカニズムから植物への影響まで , 裳華房,209p
- 涌井良幸(2009);道具としてのベイズ統計,日本実業出版社,238p

光化学オキシダント調査検討会委員名簿

氏名	所属	職名
秋元 肇	財団法人 日本環境衛生センター アジア大気汚染研究センター	所長
安藤研司	一般社団法人 日本化学工業協会 環境安全部	部長
石井 康一郎	財団法人 東京都環境整備公社 東京都環境科学研究所	主任研究員
板野 泰之	大阪市立環境科学研究所 調査研究課	研究主任
井上 和也	独立行政法人 産業技術総合研究所 安全科学研究部門 環境暴露モデリンググループ	研究員
指宿 堯嗣	社団法人 産業環境管理協会	常務理事
岩崎 好陽	公益社団法人 におい・かおり環境協会	会長
浦野 紘平	横浜国立大学 大学院環境情報研究院	特任教授
大原 利眞	独立行政法人 国立環境研究所 地域環境研究センター	センター長
金谷 有剛	独立行政法人 海洋研究開発機構 地球環境変動領域 物質循環研究プログラム 大気組成研究チーム	チームリーダー
坂本 和彦	埼玉県環境科学国際センター (埼玉大学大学院 理工学研究科)	総長 (教授)
下原 孝章	福岡県保健環境研究所	大気課長
竹内 庸夫	埼玉県環境科学国際センター研究推進室	副室長
土屋を徳之	JX 日鉱日石エネルギー株式会社 社会環境安全部	チーフスタッフ
橋本 光正	社団法人 日本塗料工業会	専務理事
向井 人史	独立行政法人 国立環境研究所 地球環境研究センター	副センター長
若松 伸司	愛媛大学 農学部	教授

(五十音順 敬称略)

(注) :座長

検討会の開催状況

第1回 平成23年8月10日

- (1) 光化学オキシダント調査検討会の開催について
- (2) 光化学オキシダント対策の現状について
- (3)検討会の進め方及びスケジュールについて

第2回 平成23年10月26日

- (1)シミュレーションモデルの概要等について
- (2)科学的知見の収集について 都市域における大気光化学反応について(首都大学東京 梶井教授) 日本における過去 10年間の地表オゾンのトレンド((独)国立環境研究所 谷本室長)
- (3)今後の審議の進め方について

第3回 平成23年11月2日

(1)科学的知見の収集について

光化学オキシダントに関するモデル解析 オキシダント測定器の校正法について 九州北部地域における 0x に係る現状について

大阪市における光化学オキシダント研究と国環研と地環研のC型(II型)共同研究

埼玉県(都市域 + 郊外)における光化学オキシダントに係る現状について 東京都における光化学オキシダント関連の調査・研究結果

第4回 平成23年11月25日

- (1)「今後の対策を見据えた調査検討のあり方」のとりまとめ構成について
- (2)科学的知見の活用について
- (3) モニタリングデータ等の整理について

第5回 平成24年2月9日

(1) 光化学オキシダント調査検討会 報告書(素案)について

第6回 平成24年3月8日

(1) 光化学オキシダント調査検討会 報告書(案) について