シマジン（C A T）資料

水産動植物の被害防止に係る農薬登録保留基準として
環境大臣が定める基準の設定に関する資料

シマジン（C A T）

1．評価対象農薬の概要

<table>
<thead>
<tr>
<th>化学名</th>
<th>6-クロロ- (N^2, N^4)-ジエチル-1, 3, 5-トリアジン-2, 4-ジアミン</th>
</tr>
</thead>
<tbody>
<tr>
<td>分子式</td>
<td>(\text{C}_2\text{H}_5\text{NH})</td>
</tr>
<tr>
<td>構造式</td>
<td></td>
</tr>
</tbody>
</table>

2．作用機構等
シマジン（C A T）は、トリアジン骨格を有する除草剤であり、その作用機構は処理後根によって吸収され、体内に移行し発芽後光合成を阻害して枯死させる。
本邦での初回登録は1981年である。
製剤は粒剤及び水和剤が、適用農作物等は雑穀、果樹、野菜、豆、花き、芝等である。
原体の輸入量は、1976年度（平成8年度）の201.7CASNo.122-34-9であった。
原体の輸入量は、1976年度（平成8年度）の201.7CASNo.122-34-9であった。

3．各種物性

<table>
<thead>
<tr>
<th>外観・臭気</th>
<th>白色粉末固体、無臭</th>
<th>土壌吸着係数</th>
<th>(\text{P}{	ext{吸}} = \text{P}{	ext{吸}}(\text{H}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>融点</td>
<td>(\text{熔点})</td>
<td>オクタノール/水分配係数</td>
<td>(\text{P}{	ext{吸}} = \text{P}{	ext{吸}}(\text{H}))</td>
</tr>
<tr>
<td>沸点</td>
<td>(\text{沸点})</td>
<td>生物濃縮性</td>
<td>-</td>
</tr>
<tr>
<td>蒸気圧</td>
<td>(\text{蒸気圧})</td>
<td>密度</td>
<td>(\text{密度})</td>
</tr>
<tr>
<td>加水分解性</td>
<td>(\text{加水分解性})</td>
<td>水溶解度</td>
<td>(\text{水溶解度})</td>
</tr>
</tbody>
</table>
水中光分解性

半減期
> 70日（東京春季太陽光換算 > 70日）
（減菌蒸留水、巻き、周期毎（巻き-巻き）、巻き（巻き-巻き）
70日（東京春季太陽光換算 70日）
（自然水、巻き、巻き（巻き-巻き）、巻き（巻き-巻き）
70日（東京春季太陽光換算 70日）
（減菌蒸留水、巻き、巻き（巻き-巻き）、巻き（巻き-巻き）
東京春季太陽光換算 70日）
（減菌蒸留水、巻き、巻き（巻き-巻き）、巻き（巻き-巻き）

１．水産動物への毒性

１．魚類

（１）申請者から提出された試験データ

薬魚類急性毒性試験 [] (コイ)
コイを用いた魚類急性毒性試験が実施され、いずれも > の測定が行なわれたのである。

<table>
<thead>
<tr>
<th>被験物質</th>
<th>原体</th>
</tr>
</thead>
<tbody>
<tr>
<td>供試生物</td>
<td>コイ (Cyprinus carpio)</td>
</tr>
<tr>
<td>暴露方法</td>
<td>止水式</td>
</tr>
<tr>
<td>暴露期間</td>
<td>～</td>
</tr>
<tr>
<td>設定濃度 (g/L)</td>
<td>～</td>
</tr>
<tr>
<td>実測濃度 (g/L)</td>
<td>～</td>
</tr>
<tr>
<td>（幾何平均値、有効成分換算値）</td>
<td>～</td>
</tr>
<tr>
<td>死亡数 (供試生物数 (96時間後；尾)</td>
<td>～</td>
</tr>
<tr>
<td>助剤</td>
<td>アルキルフェノールポリグリコールエーテル</td>
</tr>
<tr>
<td></td>
<td>～</td>
</tr>
<tr>
<td></td>
<td>> ～ (実測濃度 (有効成分換算値) 基づく)</td>
</tr>
</tbody>
</table>
（2）環境省が文献等から収集した毒性データ

魚類急性毒性試験[]（ヒメダカ）

環境省は、テストガイドラインに準拠し、ヒメダカの急性毒性試験を実施した。>

表2 魚類急性毒性試験結果

<table>
<thead>
<tr>
<th>被験物質</th>
<th>純度</th>
</tr>
</thead>
<tbody>
<tr>
<td>供試生物</td>
<td>ヒメダカ</td>
</tr>
<tr>
<td>暴露方法</td>
<td>半止水式</td>
</tr>
<tr>
<td>暴露期間</td>
<td>時間</td>
</tr>
<tr>
<td>設定濃度</td>
<td>時間</td>
</tr>
<tr>
<td>(有効成分換算値)</td>
<td></td>
</tr>
<tr>
<td>実測濃度</td>
<td>時間</td>
</tr>
<tr>
<td>(時間加重平均値)</td>
<td></td>
</tr>
<tr>
<td>遊泳阻害数 / 供試生物数</td>
<td>時間後</td>
</tr>
<tr>
<td>助剂</td>
<td>なし</td>
</tr>
</tbody>
</table>

出典）環境省：平成15年度生態影響試験（シマジンのヒメダカによる時間急性毒性試験）
2. 甲殻類
（1）ミシジンコ類急性遊泳阻害試験 [①]（オオミシジンコ）
オオミシジンコを用いたミシジンコ類急性遊泳阻害試験が実施され、
> 96時間の結果であった。

<table>
<thead>
<tr>
<th>被験物質</th>
<th>原体</th>
</tr>
</thead>
<tbody>
<tr>
<td>供試生物</td>
<td>オオミシジンコ（Daphnia magna） 96頭/群</td>
</tr>
<tr>
<td>暴露方法</td>
<td>止水式</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>暴露期間</th>
<th>96時間</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>設定濃度（μ g/L）</th>
<th>1</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>400</th>
<th>800</th>
<th>1600</th>
</tr>
</thead>
<tbody>
<tr>
<td>実測濃度（μ g/L）</td>
<td>1</td>
<td>25</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>400</td>
<td>800</td>
<td>1600</td>
</tr>
</tbody>
</table>

| 游泳阻害数（供試生物数×頭） | 98.7 | 20.3 | 27.8 | 57.0 | 70.0 | 85.0 |

| 助剤 | アルキルフェノールポリグリコールエーテル：50% (使用した最高濃度) |

| EC50（μ g/L） | > 4000 (実測濃度（有効成分換算値）に基づく) |

3. 藻類
（1）藻類生長阻害試験 [②]（ムレミカヅキモ）

<table>
<thead>
<tr>
<th>被験物質</th>
<th>原体</th>
</tr>
</thead>
<tbody>
<tr>
<td>供試生物</td>
<td>Pseudokirchneriella subcapitata</td>
</tr>
<tr>
<td>暴露方法</td>
<td>振とう培養</td>
</tr>
<tr>
<td>暴露期間</td>
<td>72時間</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>設定濃度（μ g/L）</th>
<th>1</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>400</th>
<th>800</th>
<th>1600</th>
</tr>
</thead>
<tbody>
<tr>
<td>実測濃度（μ g/L）</td>
<td>1</td>
<td>25</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>400</td>
<td>800</td>
<td>1600</td>
</tr>
</tbody>
</table>

| 生長量（乾燥重量）（mg/L） | 0 | 15 | 30 | 60 | 120 | 250 | 500 | 1000 |

| 生長量（乾燥重量）（mg/L） | 0 | 15 | 30 | 60 | 120 | 250 | 500 | 1000 |

| 生長阻害率（%） | 4.2 | 88.7 | 43.0 | 30.7 | 7.63 | 4.00 | 2.10 | 0.03 |

| 助剤 | を用いた藻類生長阻害試験が実施され、|

| EC50（μ g/L） | > 1200 (実測濃度（有効成分換算値）に基づく) |
（2）藻類生長阻害試験 []（イカダモ）

"D. subspicatus" を用いた藻類生長阻害試験が実施され、藻類生長阻害率を "D. subspicatus" で示すに変った。

表5 藻類生長阻害試験結果

<table>
<thead>
<tr>
<th>被検物質</th>
<th>原体</th>
</tr>
</thead>
<tbody>
<tr>
<td>供試生物</td>
<td>"D. subspicatus" 初期生物量 "D. subspicatus"</td>
</tr>
<tr>
<td>暴露方法</td>
<td>振とう培養</td>
</tr>
<tr>
<td>暴露期間</td>
<td>72h</td>
</tr>
<tr>
<td>設定濃度（g/L）</td>
<td>0</td>
</tr>
<tr>
<td>実測濃度（g/L）</td>
<td>3.7</td>
</tr>
<tr>
<td>実測濃度（g/L）（幾何平均値）</td>
<td>172</td>
</tr>
<tr>
<td>実測濃度（g/L）（信頼限界 ±0.1）（実測濃度（有効成分換算値）に基づく）</td>
<td>172 (±10)</td>
</tr>
<tr>
<td>実測濃度（g/L）（信頼限界 ±1.0）（実測濃度（有効成分換算値）に基づく）</td>
<td>172 (±10)</td>
</tr>
<tr>
<td>助剂</td>
<td>なし</td>
</tr>
</tbody>
</table>

生物量（cells/mL）	104	123	119	94.7	27.0	5.3
生物量（cells/mL）（標準偏差）	104	123	119	94.7	27.0	5.3
生物量（cells/mL）（標準偏差）（幾何平均値）	104	123	119	94.7	27.0	5.3
生物量（cells/mL）（標準偏差）（信頼限界 ±0.1）（実測濃度（有効成分換算値）に基づく）	104 (±10)	123 (±10)	119 (±10)	94.7 (±10)	27.0 (±10)	5.3 (±10)
生物量（cells/mL）（標準偏差）（信頼限界 ±1.0）（実測濃度（有効成分換算値）に基づく）	104 (±10)	123 (±10)	119 (±10)	94.7 (±10)	27.0 (±10)	5.3 (±10)
水産動植物被害予測濃度（水産）

1. 製剤の種類及び適用農作物等
 農薬登録情報提供システム（独）農林水産消費安全技術センター）によれば、本農薬は製剤として粒剤及び水和剤があり、適用農作物は雑穀、果樹、野菜、豆、花き、芝等がある。

2. 水産の算出
 (1) 非水田使用時の算出
 非水田使用時において、以下が最も高くなる使用方法（下表左欄）について、第段階の算出を算出する。算出に当たっては、農薬取締法テストガイドラインに準拠して下表右欄のパラメーターを用いた。

<table>
<thead>
<tr>
<th>算出に関する使用方法</th>
<th>各パラメーターの値</th>
</tr>
</thead>
<tbody>
<tr>
<td>適用農作物等</td>
<td>果樹</td>
</tr>
<tr>
<td>剤型</td>
<td>□□□水和剤</td>
</tr>
<tr>
<td>当該剤の単回・単位面積当たり最大使用量</td>
<td>□□□当該剤 □□□当該剤 □□□当該剤を希釈水 □□□当該剤に添加 □□□当該剤 □□□当該剤を希釈水 □□□当該剤に添加</td>
</tr>
<tr>
<td>地上防除（航空防除の別）</td>
<td>地上防除</td>
</tr>
<tr>
<td>使用方法</td>
<td>全面土壌散布</td>
</tr>
</tbody>
</table>

これらのパラメーターより、非水田使用時の算出結果は以下のとおりとなる。

<table>
<thead>
<tr>
<th>非水田算出結果</th>
</tr>
</thead>
</table>

(2) 水産算出結果
 (1) より水産算出結果は以下のとおりとなる。
§．総合評価

1．水産動植物の被害防止に係る登録保留基準値

各生物種の 使用、影響は以下のとおりであった。

魚類 [1]（コイ急性毒性）

魚類 [1]（ヒメダカ急性毒性）【文献データ】

甲殻類等 [1]（オオミジンコ急性遊泳阻害）

藻類 [1]（ムレミカヅキモ生長阻害）

藻類 [1]（イカダモ生長阻害）

魚類急性影響濃度（L_{LC50}）については、魚類 [1] の L_{LC50}（> 0.059 g/L）を採用し、不確実係数 倍で除した > 0.059 g/Lとした。

甲殻類等急性影響濃度（L_{EC50}）については、甲殻類等 [1] の L_{EC50}（> 0.059 g/L）を採用し、不確実係数 倍で除した > 0.059 g/Lとした。

藻類急性影響濃度（L_{EC50}）については、藻類 [1] の L_{EC50}（> 0.059 g/L）を採用し、 > 0.059 g/Lとした。

これらのうち最小の L_{LC50}より、登録保留基準値は L_{LC50}とする。

2．リスク評価

水産 使用は 使用であり、登録保留基準値 を超えていないことを確認した。

＜検討経緯＞

平成 年 6月 18日 平成 年度水産動物植物登録保留基準設定検討会（第2回）

平成 年 4月 5日 平成 年度水産動物植物登録保留基準設定検討会（第3回）

平成 年 9月 9日 中央環境審議会土壤農薬部会農薬小委員会（第 回）