安全性評価資料

アンバム

2014年7月
環境省水・大気環境局土壌環境課農薬環境管理室
目次

1. 評価対象農業の概要
2. 物質概要
3. 作用機序等
4. 各種物性

2. 試験結果概要
1. 動物体內毒性試験
 (1) ラット（アンバム）
 (2) ラット（マンセプ）
 (3) ラット（マンセプ）
2. 環境中毒性試験
3. 土壌残留性試験
4. 毒性試験
 (1) 一般薬理試験
 (2) 急性毒性試験
 (3) 皮膚・眼に対する刺激性及び皮膚感作性試験
 (4) 亜急性毒性試験
 (5) 慢性毒性及び発がん性試験
 (6) 生殖発生毒性試験
 (7) 遺伝毒性試験
3. 総合評価
＜検討経緯＞
令和3年 7月 11日 平成 30年度非食用農作物専用農薬安全性評価検討会（第1回）

＜非食用農作物専用農薬安全性評価検討会名簿＞
（令和3年 0月 00日から）
 吉田 綾（座長）
 浅野 哲（座長代理）
 石井 邦雄
 上路 雅子
 太田 敏博
 長尾 哲二
 平塚 明
 平林 容子
 鶴淵 英機
水質汚濁に係る農薬登録保留基準の設定に関する安全性評価資料

アンバム

1．物質概要

<table>
<thead>
<tr>
<th>化学名</th>
<th>ジアンモニウム = エチレンピス（ジチオカルバマート）</th>
</tr>
</thead>
<tbody>
<tr>
<td>分子式</td>
<td>C₄H₁₄N₄S₄</td>
</tr>
<tr>
<td>構造式</td>
<td></td>
</tr>
</tbody>
</table>

2．作用機構等

アンバムは、エチレンピスジチオカーバメート系の有機硫黄殺菌剤であり、その作用機構は、分解生成物による菌に必須の SH 酵素阻害と考えられている。本邦での初回登録は 1960 年である。

製剤は液剤が、適用農作物等は果樹1）、花き、樹木等がある。

申請者の聞き取りによると、原体の輸入量は、3.6 t (平成22年度2)）、3.6 t (平成24年度）であった。

1) 苗木など未結果樹または跡地消毒に使用
2) 年度は農薬年度（前年10月～当該年9月）
３．各種物性
アンバムの各種物性を表１に示した。

<table>
<thead>
<tr>
<th>外観・臭気</th>
<th>無色～淡黄色結晶、弱いアミン臭</th>
<th>土壌吸着係数①</th>
<th>マンゼブは土壌中及び水中で分解するため測定不能</th>
</tr>
</thead>
<tbody>
<tr>
<td>融点</td>
<td>124°C 付近で分解するため測定不能</td>
<td>オクタノール/水分配係数</td>
<td>logPow = -2.33（25°C、pH9.1）</td>
</tr>
<tr>
<td>沸点</td>
<td>124°C 付近で分解するため測定不能</td>
<td>生物濃縮性</td>
<td>-</td>
</tr>
<tr>
<td>蒸気圧</td>
<td>高濃度のアンバムが精製できないため測定不能</td>
<td>密度</td>
<td>1.2 g/cm³（57.4%水溶液、20°C）</td>
</tr>
<tr>
<td>加水分解性②</td>
<td>半減期 36.0時間（pH5、25°C） 54.6時間（pH7、25°C） 15.9時間（pH9、25°C）</td>
<td>水溶解度</td>
<td>任意の割合で混ざるため測定不能</td>
</tr>
<tr>
<td>水中光分解性③</td>
<td>マンゼブは水中で速やかに分解するため算出不能</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

① マンゼブの試験成績で代替

Ⅳ．試験結果概要
アンバムの農薬登録申請資料を用いて試験結果の概要を整理した。代謝物/分解物等の名称及び検査値等の略称は別紙1及び2に示した。

Ⅰ．動物体内運命試験
アンバムはマンゼブ等で知られているエチレンビスジオカルバミン酸（EBDC）の一種であり、マンゼブはEBDCの金属塩（マンガン及び亜鉛）であるのに対し、アンバムはEBDCのアンモニア塩である。動物体内運命に関する試験の目的は、動物体内における検体の主な代謝又は分解経路及び代謝又は分解により生成される物質の種類並びに検体の収支等に関する化学的知見又は情報を得ることであり、アンバム及びマンゼブの動物体内運命に関する試験で放射性同位元素を検体として試験する場合、標識位置としてEBDCのエチレン部位を選択することが適切であると考えられる。また、アンバムとマンゼブは動物体内で最初にEBDCに変化し、その後は同じに代謝と考えられる。アンバムの動物体内運命に関する情報はマンゼブの動物体内運命試験から類推することが十分可能であると考えることから、アンバムの運命試験成績をマンゼブの運命試験成績で代替する。

（1）ラット（アンバム）
ラットを用いて、アンバムを¹⁴Cで標識したもの（以下「¹⁴C標識体」という）を単回経口投与し、吸収、組織分布、代謝並びに尿、糞及び呼気中排泄に係る動物
平成 26 年 8 月 25 日中央環境審議会土壌農業部会農業小委員会（第 41 回） アンバム資料
体内運命数験が実施された。

吸収
a. 吸収率（推定）
Wistar ラット（1 群雌雄各 3 匹）に 100 mg/kg 体重を単回経口投与後のアンバムの吸収率は、尿中及び糞中排泄試験（a）の投与 24 時間後の尿中・呼気・組織と 48 時間後の尿中・呼気の排泄の数値から雌 74.5%、雌 81.4%と算出された。

体内分布
Wistar ラット（1 群雌雄各 3 匹）に14C 標識体を 100 mg/kg 体重で単回経口投与し、組織内分布試験が実施された。各投与群の主要組織における残留放射能濃度は、雌雄とも肝臓、腎臓の分布が最も多く、投与後 1 時間の値が高かった。他の臓器では、投与後 1 時間と 4 時間がほぼ同じかいずれか一方があやや高い傾向であった。投与後 8 時間以降は漸減して、蓄積傾向のある臓器は認められなかった。

表 2 主要臓器及び組織における残留放射能濃度（ラット、単回経口投与）
（単位：μEg/g（対投与量%））

<table>
<thead>
<tr>
<th>臓器・組織</th>
<th>雄</th>
<th>雌</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 時間</td>
<td>4 時間</td>
<td>8 時間</td>
</tr>
<tr>
<td>血液</td>
<td>37.6</td>
<td>33.7</td>
</tr>
<tr>
<td>血漿</td>
<td>37.6</td>
<td>40.2</td>
</tr>
<tr>
<td>大脳</td>
<td>(0.077)</td>
<td>25.2</td>
</tr>
<tr>
<td>小脳</td>
<td>15.3</td>
<td>(0.017)</td>
</tr>
<tr>
<td>下垂体</td>
<td>92.6</td>
<td>(0.001)</td>
</tr>
<tr>
<td>甲状腺</td>
<td>161</td>
<td>(0.013)</td>
</tr>
<tr>
<td>胸腺</td>
<td>33.8</td>
<td>(0.078)</td>
</tr>
<tr>
<td>肺</td>
<td>55.1</td>
<td>(0.253)</td>
</tr>
<tr>
<td>心臓</td>
<td>37.1</td>
<td>(0.121)</td>
</tr>
<tr>
<td>肝臓</td>
<td>270</td>
<td>(8.74)</td>
</tr>
<tr>
<td>腎臓</td>
<td>191</td>
<td>(1.46)</td>
</tr>
<tr>
<td>副腎</td>
<td>45.0</td>
<td>(0.008)</td>
</tr>
<tr>
<td>脾臓</td>
<td>40.4</td>
<td>(0.091)</td>
</tr>
<tr>
<td>小腸</td>
<td>75.3</td>
<td>(0.197)</td>
</tr>
<tr>
<td>胸肉①</td>
<td>23.1</td>
<td>(9.22)</td>
</tr>
<tr>
<td>脂肪①</td>
<td>8.2</td>
<td>(1.63)</td>
</tr>
<tr>
<td>精巣</td>
<td>17.4</td>
<td>(0.183)</td>
</tr>
</tbody>
</table>
卵巣 | - | - | - | - | - | 32.8 (0.017) | 37.7 (0.018) | 27.2 (0.014) | 21.5 (0.009) | 8.1 (0.004) | 3.84 (0.064) | 38.0 (0.070) | 28.5 (0.049) | 24.0 (0.043) | 9.4 (0.005)

子宮 | - | - | - | - | - | 34.0 (0.064) | 38.0 (0.070) | 28.5 (0.049) | 24.0 (0.043) | 9.4 (0.005) | 34.0 (0.064) | 38.0 (0.070) | 28.5 (0.049) | 24.0 (0.043) | 9.4 (0.005)

①筋肉の対投入量%は体重の 40%、脂肪の対投入量%は体重の 20%を占めると算出

② 代謝
アンバムとマンゼブは動物体内で最初に EBDC に変化し、その後は同じに代謝すると考えられ、アンバムの動物体内運命に関する情報はマンゼブの動物体内運命試験から類推することが十分可能であると考えられることから、マンゼブの運命試験成績について（2）及び（3）に記載する。

③ 排泄

a. 尿中、糞中及び呼気排泄
Wistar ラット（1 群雌雄各 3 匹）に 14C 標識体を 100 mg/kg 体重で単回経口投与し、投与 96 時間後までの排泄バランス試験が実施された。また、投与 48 時間後までの呼気中排泄率を測定した。各投与群における放射能の尿及び糞中累積排泄率、呼気中排泄率及び総回収率は表 3 のとおりである。

表 3 尿、糞中累積排泄率及び総排泄率（ラット、単回経口投与）（単位：対投入量 %）

<table>
<thead>
<tr>
<th>経過時間（時間）</th>
<th>尿</th>
<th>糞</th>
<th>呼気</th>
<th>組織合計</th>
<th>合計</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>雄</td>
<td>35.6</td>
<td>-</td>
<td>2.40</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>雌</td>
<td>13.5</td>
<td>-</td>
<td>1.57</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>雄</td>
<td>47.9</td>
<td>-</td>
<td>3.10</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>雌</td>
<td>35.7</td>
<td>-</td>
<td>2.68</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>雄</td>
<td>61.7</td>
<td>7.17</td>
<td>4.67</td>
<td>8.09</td>
</tr>
<tr>
<td></td>
<td>雌</td>
<td>66.6</td>
<td>7.48</td>
<td>4.55</td>
<td>7.26</td>
</tr>
<tr>
<td>48</td>
<td>雄</td>
<td>66.0</td>
<td>8.57</td>
<td>6.31</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>雌</td>
<td>75.1</td>
<td>9.74</td>
<td>6.34</td>
<td>-</td>
</tr>
<tr>
<td>72</td>
<td>雄</td>
<td>66.6</td>
<td>9.31</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>雌</td>
<td>75.9</td>
<td>10.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>96</td>
<td>雄</td>
<td>66.9</td>
<td>9.66</td>
<td>-</td>
<td>3.88</td>
</tr>
<tr>
<td></td>
<td>雌</td>
<td>76.3</td>
<td>10.8</td>
<td>-</td>
<td>3.20</td>
</tr>
</tbody>
</table>

（2）ラット（マンゼブ）
SD ラットに 14C 標識体を 1.5 mg/kg 体重（以下「低用量」という。）又は 100 mg/kg 体重（以下「高用量」という。）の用量で単回又は反復経口投与し、体内運命試験が実施された。

④ 吸収

a. 血中濃度推移
SD ラット（1 群雌雄各 3 匹）に 14C 標識体を低用量又は高用量で単回経口投
平成 26年 8月 25日 中央環境審議会 土壤農薬部会農薬小委員会（第 41 回） アンバム資料

血中動態パラメータ、全血及び血漿中放射能濃度の推移は表 4 及び表 5 のとおりである。検体投与後の血漿中濃度は低用量群及び高用量群ともに雌雄で同様で、低用量群では急速に吸収され、投与 3 時間以内に最高濃度に達し、濃度は 0.32～0.33 μg/g であった。吸収された放射能の血漿中の排泄は 2 相性であり、AUC は雄及び雌でそれぞれ 6.03、及び 6.21 μg 時間/g であった。高用量群はやや緩やかに吸収され、投与 6 時間以内で最高濃度に達し、濃度は 18.1～18.7 μg/g であった。吸収された放射能の血漿中の排泄は 2 相性であり、AUC は雄及び雌でそれぞれ 513、594 μg 時間/g であった。

全血中の低用量群の吸収速度及び相排泄速度は血漿中と同様であり、投与 3 時間以内に最高濃度に達し、濃度は 0.45～0.46 μg/g であった。この相の排泄速度は血漿中より緩やかであった。これは、投与 96 時間後の全血中濃度が血漿中濃度よりもわずかに高いことに起因していた。AUC は雄及び雌でそれぞれ 34.0 及び 21.8 μg・時間/g であった。高用量群の濃度は血漿中濃度と同様であり、投与 6 時間以内で最高濃度に達し、その濃度は 17.9～18.0 μg/g であった。吸収された放射能の血漿中の排泄は 2 相性であり、相の半減期は 5.41～5.54 時間、相の半減期は 33.0～34.7 時間であった。AUC は雄及び雌でそれぞれ 591.6 及び 677.5 μg・時間/g であった。

<table>
<thead>
<tr>
<th>表 4 血液中放射能濃度推移（ラット、単回経口投与）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>適用群</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>性別</td>
</tr>
<tr>
<td>T1/2 max (hr)</td>
</tr>
<tr>
<td>Cmax (μg/g)</td>
</tr>
<tr>
<td>T1/2 (hr)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>AUC (μg・hr/g)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表 5 血中放射能濃度推移（ラット、単回及び反復経口投与）（単位：μg/g（対投与量%））</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>投与群</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>性別</td>
</tr>
<tr>
<td>経過 0.5時間</td>
</tr>
<tr>
<td>時 1時間</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>時間</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6時間</td>
</tr>
<tr>
<td>24時間</td>
</tr>
<tr>
<td>48時間</td>
</tr>
<tr>
<td>96時間</td>
</tr>
</tbody>
</table>

- 試料採取せず
b. 吸収率

単回経口投与後のマンゼブの吸収率は、96 時間の尿中累積排泄率(2) a 及び胆汁排泄率((2) b)から、低用量群雄及び雌でそれぞれ 57.7%及び 55.8%、高用量群雄及び雌でそれぞれ 54.8 及び 56.5%と算出された。

iv 体内分布

SD ラット（1群雌雄各 5 匹）に 14C 標識体を低用量及び高用量で単回経口投与 96 時間後及び、非標識体 15 ppm を含む飼料を 14 日間投与後、標識体低用量を単回経口投与 96 時間後の体内分布試験が実施された。各投与群の主要組織における残留放射能濃度は表 6 のとおりである。

甲状腺が最も高い濃度を示し、肝臓、腎臓及び脾臓の濃度の 9.8〜18.7 倍であったが、投与量に対して 0.03〜0.1%に過ぎなかった。対照は無であった。高濃度を示した甲状腺及び肝臓中の経時的放射能濃度は表 7 のとおりである。低用量群の雄ラット、高用量群の雌雄ラットの肝臓中濃度は投与後 6 時間で最高濃度に達し、低用量群雌ラットでは投与後 1 時間後に最高濃度に達した。低用量及び高用量群の肝臓中最高濃度は各群の血液中最高濃度のそれぞれ 1.6〜1.8 倍及び 5.6〜6.3 倍であった。

甲状腺中濃度は低用量群では投与後 6 時間で最高濃度に達し、高用量群では投与後 24 時間で最高濃度となった。その後甲状腺中濃度は 24 時間後及び 48 時間までに減衰したが、その後上昇あるいはそのままの濃度を維持した。低用量及び高用量群の甲状腺中最高濃度は各群の血液中最高濃度のそれぞれ 42.1〜45 倍及び 5.6〜15.7 倍であった。
表6 主要臓器及び組織における残留放射能濃度（ラット、単回及び反復投与）
（単位：μg/mL（対投与量％））

<table>
<thead>
<tr>
<th>投与群</th>
<th>性別</th>
<th>単回投与</th>
<th>反復投与</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>低用量</td>
<td>高用量</td>
<td>低用量</td>
</tr>
<tr>
<td></td>
<td>雄</td>
<td>雌</td>
<td>雄</td>
</tr>
<tr>
<td>全血</td>
<td>0.104 (0.42)</td>
<td>0.089 (0.36)</td>
<td>1.34 (0.10)</td>
</tr>
<tr>
<td>肝臓</td>
<td>0.035 (0.11)</td>
<td>0.034 (0.12)</td>
<td>4.19 (0.24)</td>
</tr>
<tr>
<td>甲状腺</td>
<td>4.42 (0.03)</td>
<td>6.52 (0.06)</td>
<td>79.0 (0.06)</td>
</tr>
<tr>
<td>脾臓</td>
<td>0.017 (0.003)</td>
<td>0.029 (0.007)</td>
<td>1.49 (0.08)</td>
</tr>
<tr>
<td>腎臓</td>
<td>0.346 (0.26)</td>
<td>0.433 (0.32)</td>
<td>4.87 (0.08)</td>
</tr>
<tr>
<td>心臓</td>
<td>0.016 (0.006)</td>
<td>0.027 (0.01)</td>
<td>1.30 (0.01)</td>
</tr>
<tr>
<td>肺</td>
<td>0.019 (0.009)</td>
<td>0.029 (0.02)</td>
<td>1.58 (0.02)</td>
</tr>
<tr>
<td>骨髄</td>
<td>0.375 (0.12)</td>
<td>0.421 (0.014)</td>
<td>1.84 (0.01)</td>
</tr>
<tr>
<td>脂肪</td>
<td>0.030 (0.174)</td>
<td>0.119 (0.70)</td>
<td>1.01 (0.10)</td>
</tr>
<tr>
<td>性腺</td>
<td>0.009 (0.01)</td>
<td>0.095 (0.005)</td>
<td>0.842 (0.01)</td>
</tr>
<tr>
<td>筋肉</td>
<td>0.011 (0.42)</td>
<td>0.017 (0.66)</td>
<td>1.45 (0.95)</td>
</tr>
</tbody>
</table>

表7 投与後の甲状腺及び肝臓における残留放射能濃度（ラット、単回経口投与）
（単位：μg/mL（対投与量％））

<table>
<thead>
<tr>
<th>臓器</th>
<th>甲状腺</th>
<th>肝臓</th>
</tr>
</thead>
<tbody>
<tr>
<td>投与群</td>
<td>低用量</td>
<td>高用量</td>
</tr>
<tr>
<td>性別</td>
<td>雄</td>
<td>雌</td>
</tr>
<tr>
<td>1時間</td>
<td>4.12 (0.020)</td>
<td>6.16 (0.069)</td>
</tr>
<tr>
<td>6時間</td>
<td>18.8 (0.127)</td>
<td>20.8 (0.175)</td>
</tr>
<tr>
<td>24時間</td>
<td>2.23 (0.035)</td>
<td>8.03 (0.063)</td>
</tr>
<tr>
<td>48時間</td>
<td>4.85 (0.078)</td>
<td>2.83 (0.057)</td>
</tr>
<tr>
<td>96時間</td>
<td>4.42 (0.032)</td>
<td>6.52 (0.057)</td>
</tr>
</tbody>
</table>

代謝

a・尿中及び糞中代謝物
SDラット（1群雌雄各3匹は5匹）に14C標識体を低用量及び高用量で単回経口投与及び、1群雌雄各3匹に非標識体1.5ppmを含む飼料を2週間投与後、標識体低用量を単回経口投与し、6、24、48、72及び96時間後に試料を採取し、排泄した放射能活性の90％以上を含むように適当量を集積した。各投与群における尿中及び糞中代謝物の定量分析結果は表8のとおりである。

尿中の主要代謝物はETU(E)で、尿中の14C放射能活性の30.8〜42.7％になった。その他の代謝物としてはEBIS(D)0.8〜1.8％、EU(F)7.5〜13.4％、A-EDA(J)6.2〜15.0％及びEDA(H)4.9〜7.7％であった。その他に多数の代謝
平成26年8月25日中央環境審議会土壌農薬部会農薬小委員会（第41回） アンバム資料
物が認められたが、尿中の14C-放射能活性の10％以上のものはなかった。

糞中の主要代謝物も ETU(E)で2.4〜12.6%であった。ETU(E)の量は高用量
群で最高になり、11.2〜12.6%で尿中よりも少なかった。未変化体は7.3〜9.0％
で、すべての投与群でみられた。しかし、低用量及び高用量群において、CS2
分析法によって得られた EBDC の分析値が HPLC 分析法で得られた EBDC 量
より4倍大きかった(26.8〜47.5%)。

表8 糞、糞代謝物の定量分析結果（ラット、単回及び反復投与）（単位：対試料中％）

<table>
<thead>
<tr>
<th>試料</th>
<th>代謝物</th>
<th>単回投与</th>
<th>反復投与</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>低用量</td>
<td>高用量</td>
</tr>
<tr>
<td>糞</td>
<td>ETU (E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>36.9</td>
<td>35.5</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td>EBIS (D)</td>
<td>1.5</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>EU (F)</td>
<td>8.1</td>
<td>7.5</td>
</tr>
<tr>
<td></td>
<td>A-EDA (I)</td>
<td>7.7</td>
<td>6.2</td>
</tr>
<tr>
<td></td>
<td>EDA (H)</td>
<td>7.7</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>F-EDA (I)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Acグリシン (T)</td>
<td>9.8b</td>
<td>10.6b</td>
</tr>
<tr>
<td></td>
<td>グリシン (N)</td>
<td>4.6</td>
<td>6.3</td>
</tr>
<tr>
<td></td>
<td>ETU (E)</td>
<td>3.2c</td>
<td>2.4c</td>
</tr>
<tr>
<td></td>
<td>EBIS (D)</td>
<td>1.0c</td>
<td>1.2c</td>
</tr>
<tr>
<td></td>
<td>EU (F)</td>
<td>1.9c</td>
<td>2.0c</td>
</tr>
<tr>
<td></td>
<td>A-EDA (I)</td>
<td>4.2c</td>
<td>4.4c</td>
</tr>
<tr>
<td></td>
<td>EDA (H)</td>
<td>2.1c</td>
<td>2.4c</td>
</tr>
<tr>
<td></td>
<td>マンゼンHPLC分析d</td>
<td>7.5c</td>
<td>8.5c</td>
</tr>
<tr>
<td></td>
<td>マンゼンCS2分析d</td>
<td>45.3c</td>
<td>42.6c</td>
</tr>
<tr>
<td></td>
<td>F-EDA (I)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Acグリシン (T)</td>
<td>4.4bc</td>
<td>5.6bc</td>
</tr>
<tr>
<td></td>
<td>グリシン (N)</td>
<td>3.7c</td>
<td>4.7c</td>
</tr>
</tbody>
</table>

a: ()内は、暫定的に同定した化合物名
b: この群のほとんどは F-EDA(I)を含む
c: 低い値は二次抽出を分析していないため
d: 今回の代謝試験で用いた HPLC 分析では、糞中に存在したマンゼンが抽出工程で分解しかったため、マンゼンが糞で結合型残留物となり抽出できなかったことによるものと思われる。

b・膽汁中代謝物
SDラット（1群雌雄各2匹）に14C標識体を低用量及び高用量で単回経口投与6及び24時間後に胆汁を採取し、放射能活性の90%以上を含むように集積した。胆汁中代謝物の定量分析結果は表9のとおりである。
胆汁中ではETU (E)が存在し、低用量群の3.7〜4.1%に対し、高用量群では11.5〜14.5%と多かった。また、その他の代謝物としてEBIS (D) 2.1〜3.2%、EU (F) 5.1〜8.0%、A-EDA (J) 5.9〜6.4%及び、EDA (H) 11.4〜32.2%が認められた。
胆汁代謝物の定量分析結果（ラット、単回経口投与）（単位：対試料中%）

<table>
<thead>
<tr>
<th>代謝物</th>
<th>低用量 雄</th>
<th>低用量 雌</th>
<th>高用量 雄</th>
<th>高用量 雌</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETU (E)</td>
<td>3.7</td>
<td>4.1</td>
<td>11.5</td>
<td>14.5</td>
</tr>
<tr>
<td>EBIS (D)</td>
<td>2.6</td>
<td>2.1</td>
<td>3.2</td>
<td>2.5</td>
</tr>
<tr>
<td>EU (F)</td>
<td>6.3</td>
<td>8.0</td>
<td>5.1</td>
<td>6.5</td>
</tr>
<tr>
<td>A-EDA (J)</td>
<td>5.9</td>
<td>6.0</td>
<td>6.0</td>
<td>6.4</td>
</tr>
<tr>
<td>EDA (H)</td>
<td>28.2</td>
<td>32.2</td>
<td>12.1</td>
<td>11.4</td>
</tr>
<tr>
<td>Acグリシン (T)</td>
<td>8.9</td>
<td>9.9</td>
<td>11.2</td>
<td>11.4</td>
</tr>
<tr>
<td>グリシン (N)</td>
<td>-</td>
<td>-</td>
<td>6.7</td>
<td>6.8</td>
</tr>
</tbody>
</table>

d: 高い値はグリシンとして同定したものを含んでいるため

排泄

a. 尿中及び糞中排泄

SD ラット (1 群雌雄各 5 匹) に 14C 標識体を低用量及び高用量で単回経口投与 96 時間後及び、非標識体 15 ppm を含む飼料を 2 週間投与後、標識体低用量を単回経口投与 96 時間後までの排泄試験が実施された。各投与群における放射能の尿及び糞中累積排泄率は表 10 のとおりである。投与された放射能の 74〜94%は投与 24 時間以内に尿糞中から排泄され、87〜119%は投与 96 時間で排泄された。3 投与群での尿及び糞中への放射能分布はほぼ同等であり、低用量群で尿糞の分布率は 0.47/0.59、反復投与群で 0.41/0.54 であった。

表 10 尿、糞中累積排泄率及び総排泄率 (ラット、単回及び反復投与× 単位：対投与量％)

<table>
<thead>
<tr>
<th>試料</th>
<th>経過時間（時間）</th>
<th>単回投与</th>
<th>反復投与</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>低用量 雄</td>
<td>低用量 雌</td>
<td>高用量 雄</td>
</tr>
<tr>
<td>尿</td>
<td>0〜6</td>
<td>20.5</td>
<td>23.8</td>
</tr>
<tr>
<td></td>
<td>0〜24</td>
<td>43.9</td>
<td>43.9</td>
</tr>
<tr>
<td></td>
<td>0〜48</td>
<td>47.9</td>
<td>47.7</td>
</tr>
<tr>
<td></td>
<td>0〜72</td>
<td>48.6</td>
<td>48.8</td>
</tr>
<tr>
<td></td>
<td>0〜96</td>
<td>48.9</td>
<td>49.5</td>
</tr>
<tr>
<td>糞</td>
<td>0〜6</td>
<td>1.02</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>0〜24</td>
<td>50.2</td>
<td>42.5</td>
</tr>
<tr>
<td></td>
<td>0〜48</td>
<td>54.8</td>
<td>45.8</td>
</tr>
<tr>
<td></td>
<td>0〜72</td>
<td>55.2</td>
<td>46.4</td>
</tr>
<tr>
<td></td>
<td>0〜96</td>
<td>55.3</td>
<td>56.3</td>
</tr>
</tbody>
</table>
表11 尿、糞、組織中96時間累積排泄率（ラット、単回及び反復投与×単位：対投与量％）

<table>
<thead>
<tr>
<th>排泄経路</th>
<th>単回投与</th>
<th>反復投与</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>低用量</td>
<td>高用量</td>
</tr>
<tr>
<td></td>
<td>雄</td>
<td>雌</td>
</tr>
<tr>
<td>糞</td>
<td>55.3</td>
<td>46.6</td>
</tr>
<tr>
<td>尿*</td>
<td>48.9</td>
<td>49.5</td>
</tr>
<tr>
<td>最終ケージ洗浄</td>
<td>0.74</td>
<td>1.80</td>
</tr>
<tr>
<td>組織中残留</td>
<td>1.58</td>
<td>2.34</td>
</tr>
<tr>
<td>合計</td>
<td>107</td>
<td>100</td>
</tr>
</tbody>
</table>

*採尿漏斗洗浄液を含む

b. 胆汁排泄
SDラット（1群雌雄各1〜3匹）に14C標識体を低用量及び高用量で単回経口投与24時間後の胆汁中排泄バランス試験が実施された。投与された放射能は投与24時間以内に低用量群で6.3〜8.8％、高用量群で2〜3.8％が胆汁に排泄された。

表12 胆汁中24時間累積排泄率（ラット、単回経口投与）（単位：対投与量％）

<table>
<thead>
<tr>
<th>投与量</th>
<th>低用量</th>
<th>高用量</th>
</tr>
</thead>
<tbody>
<tr>
<td>性別</td>
<td>雄</td>
<td>雌</td>
</tr>
<tr>
<td>動物数</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>肝汁中放射能</td>
<td>8.75</td>
<td>6.32</td>
</tr>
</tbody>
</table>

（3）ラット口（マンセプ）
アルビノラット（雄6匹）に14C標識体を1日1回、7日間連続経口投与し、動物体内運命試験が実施された。

Ⅷ 吸収
a. 吸収率
アルビノラット（雄6匹）に14C標識体を20 mg/kg体重の用量で1日1回、7日間反復経口投与後の検体の吸収率は、8日間の尿中累積排泄率（（3）口）から15.5％と算出された。

Ⅸ 体内分布
アルビノラット（雄6匹）に14C標識体を20 mg/kg体重の用量で1日1回、7日間連続経口投与し、最終投与24時間後に動物を屠殺して体内分布試験が実施された。各投与群の主要組織における残留放射能濃度は表13のとおりである。
摘出した臓器及び組織内への総分布率は全投与量の0.311％であった。これらの中で肝臓への分布が最も高く、全投与量の0.19％、次いで腎臓への0.08％であり、甲状腺への分布は0.003％であった。濃度で各臓器への分布をみると、甲状腺への分布が0.865 ppmであり、他臓器に比べて高い濃度を示した。
表 13 主要組織における残留放射能濃度（ラット反復投与）

<table>
<thead>
<tr>
<th>臓器・組織</th>
<th>mg/g（対投与量%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>肝臓</td>
<td>0.025 （0.193）</td>
</tr>
<tr>
<td>腎臓</td>
<td>0.051 （0.076）</td>
</tr>
<tr>
<td>脾臓</td>
<td>0.011 （0.007）</td>
</tr>
<tr>
<td>心臓</td>
<td>0.008 （0.005）</td>
</tr>
<tr>
<td>脳</td>
<td>0.002 （0.003）</td>
</tr>
<tr>
<td>甲状腺</td>
<td>0.865 （0.003）</td>
</tr>
<tr>
<td>脂肪</td>
<td>0.007 （0.010）</td>
</tr>
<tr>
<td>筋肉</td>
<td>0.007 （0.014）</td>
</tr>
</tbody>
</table>

□ 代謝
アルピノラット（雄 6 匹）に 14C 標識体を 20 mg/kg 体重の用量で 1 日 1 回、7 日間連続経口投与し、(3) で採取した尿及び糞中の代謝物の定量分析が実施された。各投与群における尿及び糞中代謝物の定量分析結果は表 14 のとおりである。
尿中の主代謝物は ETU(E)、A-EDA(J) 及び EU(F) であり、それぞれ尿中放射能の 28.0%、19.0%及び 12.0%を占め、他に EBIS(D)、F-EDA(I)及び EDA(H) が同定された。糞中の放射能の 47%は未変化体に由来し、代謝物としては ETU(E)、EU(F)及び EBIS(D)がそれぞれ 6.0%、2.0%及び 7.5%認められた。

表 14 尿、糞代謝物の定量分析結果（ラット反復投与）（単位：対試料中%）

<table>
<thead>
<tr>
<th>代謝物</th>
<th>尿</th>
<th>糞</th>
<th>回収率*</th>
</tr>
</thead>
<tbody>
<tr>
<td>マンゼブ</td>
<td>−</td>
<td>47.0</td>
<td>36.8</td>
</tr>
<tr>
<td>EBIS(D)</td>
<td>5.6</td>
<td>7.5</td>
<td>7.1</td>
</tr>
<tr>
<td>ETU(E)</td>
<td>28.0</td>
<td>6.0</td>
<td>10.8</td>
</tr>
<tr>
<td>EU(F)</td>
<td>12.0</td>
<td>2.0</td>
<td>4.1</td>
</tr>
<tr>
<td>A-EDA(J)</td>
<td>19.0</td>
<td>−</td>
<td>4.1</td>
</tr>
<tr>
<td>F-EDA(I)</td>
<td>1.0</td>
<td>−</td>
<td>0.1</td>
</tr>
<tr>
<td>EDA(H)</td>
<td>3.5</td>
<td>−</td>
<td>0.7</td>
</tr>
<tr>
<td>合計</td>
<td>69.1</td>
<td>62.5</td>
<td>63.7</td>
</tr>
</tbody>
</table>

□ 排泄
a. 尿中及び糞中排泄
アルピノラット（雄 6 匹）に 14C 標識体を 20 mg/kg 体重の用量で 1 日 1 回、7 日間連続経口投与し、各投与後 24 時間ごとに尿及び糞を個別に採取して排泄パルジン試験が実施された。
各投与後 24 時間毎の尿中の排泄率は 12〜18%であり、糞中の排泄率は 56〜79%であった。7 日間の全投与量の 86.4%は 8 日間で尿及び糞中排泄され尿中の排泄率は 15.5%、糞中の排泄率は 70.9%であった。
<table>
<thead>
<tr>
<th>試料</th>
<th>投与回数</th>
<th>mg/g 又は mg/mL（対投与量％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>尿</td>
<td>1</td>
<td>0.36（14.5）</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.30（12.1）</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.39（17.4）</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.44（14.8）</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.31（15.7）</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.47（18.1）</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.45（15.4）</td>
</tr>
<tr>
<td></td>
<td>総排泄率</td>
<td>0.39（15.5）</td>
</tr>
<tr>
<td>糞</td>
<td>1</td>
<td>1.54（65.6）</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.01（55.5）</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.47（72.0）</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.48（70.1）</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.28（75.6）</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1.72（79.0）</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1.74（78.2）</td>
</tr>
<tr>
<td></td>
<td>総排泄率</td>
<td>1.46（70.9）</td>
</tr>
</tbody>
</table>
2．環境中運命試験
アンパム及びマンゼブの土壌中及び水中における動態試験の対象物質はいずれもEBDCである。アンパムの土壌中及び水中における動態はマンゼブの試験成績から類推することが可能であると考えられることから、アンパムの動態試験成績をマンゼブの動態試験成績で代替する。マンゼブの本試験結果は表16のとおりである。
マンゼブ及び代謝物は土壌中及び水中で速やかに分解された。

表16 マンゼブの環境中運命試験概要

<table>
<thead>
<tr>
<th>試験項目</th>
<th>試験条件</th>
<th>DT_{50}</th>
<th>主な代謝分解物と最大検出量①</th>
</tr>
</thead>
<tbody>
<tr>
<td>好気的及び嫌気的</td>
<td>标識体（シルトローム（米国ペンシルバニア州））</td>
<td>20 ppm: 90日</td>
<td>EU(F): 68.5% (23日後)</td>
</tr>
<tr>
<td>土壌中動態試験</td>
<td>好気的</td>
<td>20 ppm: 105日</td>
<td>EBIS(D): 32.0% (0日後)</td>
</tr>
<tr>
<td>滅菌約23日間</td>
<td></td>
<td>10 ppm: 90日</td>
<td>EU(F): 61.6% (13日後)</td>
</tr>
<tr>
<td></td>
<td>滅菌31日間</td>
<td>好気的条件後</td>
<td>EBIS(D): 21.5% (0日後)</td>
</tr>
<tr>
<td>嫌気的</td>
<td>61日間（31日間好気的条件後嫌気条件）</td>
<td>-</td>
<td>EU(F): 40.3% (31日後)</td>
</tr>
<tr>
<td>加水分解 運命試験</td>
<td>標識体</td>
<td>20 ppm: 105日</td>
<td>EU(F): 39.5% (31日後)</td>
</tr>
<tr>
<td>25℃14日間暗条件</td>
<td>pH5（酸和・酸和ナトリウム溶液）</td>
<td>36.0時間</td>
<td>ETU(E): 94.5% (14日後)</td>
</tr>
<tr>
<td></td>
<td>pH7（トリス・塩酸緩溶液）</td>
<td>54.6時間</td>
<td>ETU(E): 67.8% (7日後)</td>
</tr>
<tr>
<td></td>
<td>pH9（酸和カリウム・ホウ酸・水酸化ナトリウム緩溶液）</td>
<td>15.9時間</td>
<td>ETU(E): 62.1% (7日後)</td>
</tr>
<tr>
<td>水中光分解 運命試験</td>
<td>標識体</td>
<td>ETU(E): 25.6% (7日後)</td>
<td>EU(F): 65.6% (61日後)</td>
</tr>
<tr>
<td>(滅菌緩衝液）</td>
<td>波長(測定範囲): 220〜380 nm</td>
<td>ETU(E): 56.5% (24時間後)</td>
<td>EU(F): 61.6% (61日後)</td>
</tr>
<tr>
<td></td>
<td>光強度: 1700〜3900 µW/m²</td>
<td>-</td>
<td>EU(F): 65.6% (61日後)</td>
</tr>
<tr>
<td></td>
<td>光源: 450 W UV水銀蒸気immersionランプ</td>
<td>-</td>
<td>EU(F): 65.6% (61日後)</td>
</tr>
<tr>
<td></td>
<td>ステップ: pH8.5</td>
<td>-</td>
<td>EU(F): 65.6% (61日後)</td>
</tr>
<tr>
<td></td>
<td>非光環境緩衝液</td>
<td>76.2日</td>
<td>EU(F): 65.6% (61日後)</td>
</tr>
<tr>
<td></td>
<td>光源: キセノンランプ</td>
<td>2.23日</td>
<td>EU(F): 31% (29.8日後)</td>
</tr>
<tr>
<td></td>
<td>光強度: 0.466E-02〜0.123E+01 W/m²</td>
<td>IMID(M): 17% (20.7日後)</td>
<td>EU(F): 65.6% (61日後)</td>
</tr>
<tr>
<td></td>
<td>波長(測定範囲): 300〜750 nm</td>
<td>-</td>
<td>EU(F): 65.6% (61日後)</td>
</tr>
<tr>
<td></td>
<td>ステップ: pH7.0</td>
<td>-</td>
<td>EU(F): 65.6% (61日後)</td>
</tr>
<tr>
<td></td>
<td>非光環境緩衝液</td>
<td>76.2日</td>
<td>EU(F): 65.6% (61日後)</td>
</tr>
</tbody>
</table>

①炭酸ガス (CO2) を除く。
代謝分解物の検出量: 土壌中動態試験は抽出画分放射能％、他は対処理量％
3. 土壤残留性試験
アンバムについて、容器内（火山灰壠土、沖積砂土）、及び圃場（沖積砂土、火山灰壠土、沖積土）について、土壤残留試験が実施された。
推定半減期は表 17 のとおりである。

<table>
<thead>
<tr>
<th>表 17 アンバムの土壤残留性試験概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>土壤条件と分析対象物</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>容器内試験</td>
</tr>
<tr>
<td>5.0 ppm</td>
</tr>
<tr>
<td>50%液剤</td>
</tr>
<tr>
<td>1000倍</td>
</tr>
<tr>
<td>50%液剤</td>
</tr>
<tr>
<td>1000倍</td>
</tr>
<tr>
<td>50%液剤</td>
</tr>
<tr>
<td>1000倍</td>
</tr>
<tr>
<td>* 試料を塩化第一錫と 1.6 規定熱塩酸で加熱分解して発生する二硫化炭素を吸光度測定したため、親化合物換算値である。</td>
</tr>
</tbody>
</table>

4. 毒性試験
II-1 一般薬理試験
アンバム原体について、ラット、マウス、ウサギ及び、モルモット及びラットにおいて、麻酔動物並びに摘出器官標本を用いた一般薬理試験が実施されている。
本試験の結果の概要は表 18 のとおりである。
<table>
<thead>
<tr>
<th>試験の種類</th>
<th>動物種</th>
<th>投与量（mg/kg体重, 投与経路）</th>
<th>無作用量（作用量）（mg/kg体重）</th>
<th>観察された作用</th>
</tr>
</thead>
<tbody>
<tr>
<td>中枢神経系</td>
<td>一般状態 (Irwin の多元観察法)</td>
<td>ICR マウス (雌雄各 5 匹)</td>
<td>0, 10, 30, 100, 300, 1000 (腹腔内)</td>
<td>10 (30)</td>
</tr>
<tr>
<td>脳波</td>
<td>日本白色種ウサギ (雄 3 匹)</td>
<td>50, 100 (耳静脈)</td>
<td>50 (100)</td>
<td>軽度かつ一時的な低振幅化</td>
</tr>
<tr>
<td>体温</td>
<td>日本白色種ウサギ (雄 3 匹)</td>
<td>10, 30, 100 (静脈内)</td>
<td>100 (-)</td>
<td>検体投与による影響なし</td>
</tr>
<tr>
<td>呼吸器・循環器系</td>
<td>呼吸、血圧、血流量、心拍数、心電図</td>
<td>日本白色種ウサギ (雄 3 匹)</td>
<td>0.1, 1, 10, 100 (静脈内)</td>
<td><01 (0.1)</td>
</tr>
<tr>
<td>自律神経系</td>
<td>瞳孔径</td>
<td>日本白色種ウサギ (雄各 3 匹)</td>
<td>10, 30, 100 (静脈内)</td>
<td>30 (100)</td>
</tr>
<tr>
<td>子宮運動</td>
<td>日本白色種ウサギ (雄 3 匹)</td>
<td>25, 50, 100, 200 (静脈内)</td>
<td>25 (50)</td>
<td>自然律動の収縮力の低下及び周期の延長</td>
</tr>
<tr>
<td>摘出回腸</td>
<td>Hartley モルモット雄</td>
<td>1.5 10^{-5} ～ 10^{-3} g/mL (In vitro)</td>
<td>6 10^{-5} g/mL (1.25 10^{-4} g/mL)</td>
<td>ムスカリン性アセチルコリン 受容体刺激を介する収縮作用</td>
</tr>
<tr>
<td>摘出輸精管</td>
<td>Wistar ラット雄</td>
<td>6 10^{-3} ～ 10^{-3} g/mL (In vitro)</td>
<td>6 10^{-3} g/mL (2.5 10^{-4} g/mL)</td>
<td>機序不明の収縮作用</td>
</tr>
<tr>
<td>小腸炭末輸送</td>
<td>SD ラット (雄各 5 匹)</td>
<td>3.1, 12.5, 50, 200 (経口)</td>
<td>200 (-)</td>
<td>検体投与による影響なし</td>
</tr>
<tr>
<td>骨格筋</td>
<td>骨格筋</td>
<td>日本白色種ウサギ (雄 3 匹)</td>
<td>25, 50, 100 (静脈内)</td>
<td>25 (50)</td>
</tr>
<tr>
<td>試験の種類</td>
<td>動物種</td>
<td>投与量（mg/kg体重）（投与経路）</td>
<td>無作用量（作用量）（mg/kg体重）</td>
<td>観察された作用</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>血液</td>
<td>溶血作用</td>
<td>日本白色種ウサギ雄</td>
<td>0~1,000ppm In vitro</td>
<td>1,000 ppm（－）</td>
</tr>
<tr>
<td></td>
<td>血液凝固</td>
<td>日本白色種ウサギ（雄各3匹）</td>
<td>10、30、100静脈内</td>
<td>100（－）</td>
</tr>
</tbody>
</table>

（2）急性毒性試験

急性毒性試験
アンバム原体及び製剤（53.5%液剤）について、ラット及びマウスを用いた急性毒性試験（経口、経皮、皮下、腹腔内及び吸入）が実施された。
本試験の結果の概要は表19のとおりである。
表 19 アンバムの急性毒性試験概要

<table>
<thead>
<tr>
<th>検体種別</th>
<th>投与経路/観察期間/投与量 (mg/kg 体重)</th>
<th>動物種</th>
<th>LD₅₀(mg/kg 体重)</th>
<th>LC₅₀ (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>雄</td>
<td>雌</td>
</tr>
<tr>
<td>経口/3週間</td>
<td>/雄: 207, 270, 350, 455, 592</td>
<td>Fischerラット (一群雌雄各 10匹)</td>
<td>320</td>
<td>(290 - 350)</td>
</tr>
<tr>
<td></td>
<td>/雌: 270, 350, 455, 592, 769</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>皮下/3週間</td>
<td>/雄: 100, 141, 200, 283, 400</td>
<td>Fischerラット (一群雌雄各 10匹)</td>
<td>190</td>
<td>(160 - 220)</td>
</tr>
<tr>
<td></td>
<td>/雌: 71, 100, 142, 200, 283, 400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>腹腔内/3週間</td>
<td>/雄: 119, 142, 168, 200, 238</td>
<td>Fischerラット (一群雌雄各 10匹)</td>
<td>170</td>
<td>(150 - 190)</td>
</tr>
<tr>
<td></td>
<td>/雌: 106, 126, 150, 178, 212, 252</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>経皮/3週間</td>
<td>/雄: 350, 455, 590, 770, 1,000</td>
<td>ICRマウス (一群雌雄各 10匹)</td>
<td>540</td>
<td>(480 - 600)</td>
</tr>
<tr>
<td></td>
<td>/雌: 455, 519, 590, 673, 770</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>皮下/3週間</td>
<td>/雄: 125, 177, 250, 354, 500</td>
<td>ICRマウス (一群雌雄各 10匹)</td>
<td>230</td>
<td>(200 - 260)</td>
</tr>
<tr>
<td></td>
<td>/雌: 89, 125, 177, 250, 354</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>腹腔内/3週間</td>
<td>/雄: 100, 142, 200, 283, 400, 566</td>
<td>ICRマウス (一群雌雄各 10匹)</td>
<td>260</td>
<td>(220 - 300)</td>
</tr>
<tr>
<td>経皮/14日間/1,000, 2,000</td>
<td>Wistarラット (一群雌雄各 10匹)</td>
<td>>2,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>吸入 (エアロゾル)/14 日間</td>
<td>/2.40, 3.00, 4.20, 5.28, 5.88 mg/L</td>
<td>SDラット (一群雌雄各 5匹)</td>
<td>4.20 - 5.28</td>
<td></td>
</tr>
</tbody>
</table>

(3) 皮膚・眼に対する刺激性及び皮膚感作性試験
アンバム原体のモルモットを用いた皮膚感作性試験並びに製剤（53.5％液剤）のウサギを用いた眼刺激性試験及び皮膚刺激性試験並びにモルモットを用いた皮膚感作性試験が実施された。
本試験の結果の概要は表 20 のとおりである。
皮膚刺激性については、製剤の原液で腐食性が認められたが、1,000 倍希釈液では刺激性は認められなかった。
眼刺激性については、製剤の原液、1,000 倍希釈液でわずかな刺激性が認められた。
皮膚感作性については、モルモットを用いた Maximization 法では原体は陽性、製剤は陰性であった。
表 20 アンバムの皮膚・眼に対する刺激性及び皮膚感作性試験概要

<table>
<thead>
<tr>
<th>検体種別</th>
<th>試験の種類/観察期間</th>
<th>動物種</th>
<th>投与方法/投与量</th>
<th>試験の結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>原体</td>
<td>皮膚感作性/惹起後48時間</td>
<td>Hartleyモルモット (検体群：雌10匹、対照群：雌各5匹)</td>
<td>Maximization法/感受作：0.5%液、0.1mL、皮内注射 10%液、8日後48時間経皮閉塞貼付 惹起：1%液、24時間経皮閉塞貼付</td>
<td>感作性あり</td>
</tr>
<tr>
<td></td>
<td>眼刺激性/7日間</td>
<td>日本白色種ウサギ (非洗眼群雄6匹、洗眼群雄3匹)</td>
<td>点眼/0.1mL（原液）</td>
<td>刺激性あり</td>
</tr>
<tr>
<td></td>
<td>眼刺激性/7日間</td>
<td>日本白色種ウサギ (非洗眼群雄6匹、洗眼群雄3匹)</td>
<td>点眼/0.1mL（1,000倍希釈液）</td>
<td>刺激性あり（洗眼により軽減）</td>
</tr>
<tr>
<td>製剤（53.5%液剤）</td>
<td>皮膚刺激性/7日間</td>
<td>日本白色種ウサギ (擦過群、非擦過群雄各6匹)</td>
<td>貼付/0.5mL（原液）</td>
<td>重度の刺激性</td>
</tr>
<tr>
<td></td>
<td>皮膚刺激性/7日間</td>
<td>日本白色種ウサギ (擦過群、非擦過群雄各6匹)</td>
<td>貼付/0.5mL（1,000倍希釈液）</td>
<td>刺激性なし</td>
</tr>
<tr>
<td></td>
<td>皮膚感作性/惹起後72時間</td>
<td>Hartleyモルモット（一群雄各10匹）</td>
<td>Maximization法/感作：1、5、10%液、0.05mL、皮内注射 1週間後48時間経皮貼付 惹起：1、5、10%液、24時間経皮貼付</td>
<td>感作性なし</td>
</tr>
</tbody>
</table>

（4）亜急性毒性試験
アンバム原体について、ラットを用いた90日間亜急性毒性試験及び28日間亜急性神経毒性試験が実施された。
90日間亜急性毒性試験（ラット）
Wistar ラット（一群雌雄各 10 匹）を用い、強制経口（原体：3、10、30 及び 100 mg/kg 体重/日）投与による 90日間亜急性毒性試験が実施された。
各投与群において認められた毒性所見は表 21 のとおりである。

（毒性所見以外の所見）
臓器重量検査において、100 mg/kg 体重/日投与群雄の前立腺の絶対重量のみに有意な低下がみられ、30 mg/kg 体重/日以上の投与群の雄で心臓の相対重量に有意な増加が見られ、10mg/kg 体重/日投与群の雌で胸腺の絶対重量に有意な減少が見られたが、病理組織学的検査において対応する所見が認められないことから、毒性学的意義は低いものと考えられた。

（まとめ）
本試験において、30 mg/kg 体重/日以上の投与群の雄で肺及び膀胱重量が有意に増加、30 mg/kg 体重/日以上の投与群の雌雄で胸腺重量が有意に減少したことから、無毒性量は雌雄とも 10 mg/kg 体重/日であると考えられた。

表 21 90日間亜急性毒性試験（ラット）で認められた毒性所見

<table>
<thead>
<tr>
<th>投与群</th>
<th>雄</th>
<th>雌</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 mg/kg体重/日</td>
<td>- 体重增加抑制</td>
<td>- WBC の減少</td>
</tr>
<tr>
<td></td>
<td>- 血圧 TP の減少</td>
<td>- 血圧 TP の減少</td>
</tr>
<tr>
<td></td>
<td>- 血中 Na の増加</td>
<td>- 尿中 Na の減少</td>
</tr>
<tr>
<td></td>
<td>- 尿中 Na の減少</td>
<td>- 肝臓重量の増加（絶対・相対）</td>
</tr>
<tr>
<td></td>
<td>- 肺の出血点の増加</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 甲状腺重量の増加（相対）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 肝臓重量の増加（相対）</td>
<td></td>
</tr>
<tr>
<td>30 mg/kg体重/日以上</td>
<td>- 肺、膀胱重量の増加（絶対・相対）</td>
<td>- 胸腺重量の減少（絶対・相対）</td>
</tr>
<tr>
<td></td>
<td>- 肺、膀胱重量の増加（絶対・相対）</td>
<td></td>
</tr>
<tr>
<td>10 mg/kg体重/日以下</td>
<td>毒性所見なし</td>
<td>毒性所見なし</td>
</tr>
</tbody>
</table>

28日間亜急性神経毒性試験（ラット）
SD ラット（一群雌雄各 10 匹）を用いた強制経口（原体：0、10、40 及び 160 mg/kg 体重/日）投与による 28日間亜急性神経毒性試験が実施された。
（毒性所見以外の所見）
160 mg/kg 体重/日投与群の雌で投与 10 日に摂餌量減少が認められたが、一過
平成 26 年 8 月 25 日中央環境審議会土壌農薬部会農薬小委員会（第 41 回） アンバム資料
性であったことから、毒性影響ではないと考えられた。

（まとめ）
本試験における一般毒性学的な無毒性量は雄雌とも 160 mg/kg 体重/日であると考えられた。神経毒性は認められなかった。

（5）慢性毒性及び発がん性試験
アンバム原体について、ラット及びマウスを用いた 2 年間慢性毒性/発がん性併合試験が実施された。

両年間慢性毒性/発がん性併合試験（ラット）

Donryu ラット（一雌一雄各 46 匹）を用いた飲水混入投与（原体：0、5、25 及び 125 ppm；平均検体摂取量は表 22 参照）による 2 年間慢性毒性/発がん性併合試験が実施された。

表 22 両年間慢性毒性/発がん性併合試験（ラット）の平均検体摂取量

<table>
<thead>
<tr>
<th>投与量（ppm）</th>
<th>5</th>
<th>25</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均検体摂取量</td>
<td>雄</td>
<td>0.36</td>
<td>1.88</td>
</tr>
<tr>
<td>(mg/kg 体重/日)</td>
<td>雌</td>
<td>0.52</td>
<td>2.69</td>
</tr>
</tbody>
</table>

各投与群において認められた毒性所見は表 23 のとおりである。また、良性腫瘍、悪性腫瘍のいずれも対照群と各投与群の動物で有意な差はなかった。

（毒性所見以外の所見）

臓器重量検査において、□ □□□投与群雌で脳の相対重量の有意な増加、□ □□□投与群雌で肺の相対重量の有意な増加、□ □□□投与群雌雄で腎臓の相対重量の有意な増加が認められたが、相対重量のみの変化であることから、検体投与は関連の無い体重変化を伴うものであると考えられる。

（まとめ）
本試験において、125 ppm 投与群の雌雄で体重増加抑制、甲状腺重量の増加及び甲状腺大型滤胞等が見られたことから、本試験における無毒性量は雌雄共に 25 ppm（雄：1.88 mg/kg 体重/日、雌：2.69 mg/kg 体重/日）であると考えられた。発がん性は認められなかった。

表 23 両年間慢性毒性/発がん性併合試験（ラット）で認められた毒性所見

<table>
<thead>
<tr>
<th>投与群</th>
<th>雄</th>
<th>雌</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 ppm</td>
<td>□□□□体重増加抑制</td>
<td>□□□□体重増加抑制</td>
</tr>
<tr>
<td></td>
<td>□□□□肝臓・甲状腺重量の増加（絶対・相対）</td>
<td>□□□□肝臓・甲状腺重量の増加（絶対・相対）</td>
</tr>
<tr>
<td>相対</td>
<td>対</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>甲状腺肥大</td>
<td>甲状腺肥大</td>
<td></td>
</tr>
<tr>
<td>甲状腺大型濁胞</td>
<td>甲状腺大型濁胞</td>
<td></td>
</tr>
<tr>
<td>25 ppm以下</td>
<td>毒性所見なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>毒性所見なし</td>
</tr>
</tbody>
</table>

2年間慢性毒性発がん性併合試験（マウス）

ICR マウス（一群雌雄各 45 匹）を用いた飲水投与（原体: 0、5、25 及び 125 ppm; 平均検体摂取量は表 24 参照）による2年間慢性毒性発がん性併合試験が実施された。

表 24 2年間慢性毒性発がん性併合試験（マウス）の平均検体摂取量

<table>
<thead>
<tr>
<th>投与量 (ppm)</th>
<th>5</th>
<th>25</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均検体摂取量 (mg/kg 体重/日)</td>
<td>雄</td>
<td>0.62</td>
<td>2.98</td>
</tr>
<tr>
<td></td>
<td>雌</td>
<td>0.71</td>
<td>3.04</td>
</tr>
</tbody>
</table>

各投与群において認められた毒性所見は表 25 のとおりである。また、良性腫瘍、悪性腫瘍のいずれも対照群と各投与群の動物で有意な差はなかった。

（毒性所見以外の所見）

臓器重量検査において、125 ppm 投与群の雌の下垂体重量の増加及び、肝臓及び心臓の絶対重量の減少が認められたが、病理組織学的検査で対応する所見が認められなかったことから、毒性学的意義は低いものと考えられた。

（まとめ）

本実験において、125 ppm 投与群の雌雄で体重増加抑制、甲状腺重量の増加、甲状腺の肥大及び大型濁胞が見られたことから、本試験における無毒性量は雌雄共に 25 ppm（雄：2.98 mg/kg 体重/日、雌：3.04 mg/kg 体重/日）であると考えられた。発がん性は認められなかった。

表 25 2年間慢性毒性発がん性併合試験（マウス）で認められた毒性所見

<table>
<thead>
<tr>
<th>投与群</th>
<th>雄</th>
<th>雌</th>
</tr>
</thead>
<tbody>
<tr>
<td>125 ppm</td>
<td>体重増加抑制</td>
<td>体重増加抑制</td>
</tr>
<tr>
<td></td>
<td>甲状腺重量の増加（絶対/相対）</td>
<td>甲状腺重量の増加（絶対/相対）</td>
</tr>
<tr>
<td></td>
<td>甲状腺の肥大</td>
<td>甲状腺の肥大</td>
</tr>
<tr>
<td></td>
<td>甲状腺大型濁胞</td>
<td>甲状腺大型濁胞</td>
</tr>
<tr>
<td>25 ppm以下</td>
<td>毒性所見なし</td>
<td>毒性所見なし</td>
</tr>
</tbody>
</table>
(6) 生殖発生毒性試験【参考資料】
アンバムについて、マウス及びウサギを用いた発生毒性試験が実施された。

発生毒性試験【マウス】【参考資料】
ICR マウス（一群雌 25 匹；帝王切開群 20 匹、自然分娩群 5 匹）の妊娠 7 〜 13 日に強制経口（原体：0、25、150 及び 600 mg/kg 体重/日）投与による発生毒性試験が実施された。

各投与群において認められた毒性所見は表 26 のとおりである。

本試験の投与期間終了後の妊娠 14 日は感受期が継続している。したがって、本試験では主要器官形成期を網羅して投与されているとは言えないことから、本検討会は得られた結果から発生毒性を評価することは困難と判断したため、参考資料とした。

いずれの投与群とも母動物に毒性所見は認められなかった。600 mg/kg 体重/日投与群の胎児の骨化仙・尾椎数が減少し、同群の胎児体重に低値の傾向がみられたことから、検体投与の影響と考えられた。出生児の生存率及び体重推移にも対照群との差は認められなかった。

本試験において、いずれの投与群の母動物及び離乳までの出生児には検体投与による影響は認められなかったことから、母動物及び出生児に対する無毒性量は共に 600 mg/kg 体重/日であると考えられた。胎児には発育抑制の傾向がみられたことから無毒性量は 150mg/kg 体重/日であると考えられた。

表 26 発生毒性試験（マウス）で認められた毒性所見

<table>
<thead>
<tr>
<th>投与群</th>
<th>母動物</th>
<th>胎児</th>
</tr>
</thead>
<tbody>
<tr>
<td>600 mg/kg 体重/日</td>
<td>・600 mg/kg 体重/日以下毒性所見なし</td>
<td>・骨化仙・尾椎数の低値</td>
</tr>
<tr>
<td>150 mg/kg 体重/日以下</td>
<td></td>
<td>・体重の低値傾向</td>
</tr>
</tbody>
</table>

発生毒性試験【ウサギ】【参考資料】
NZW ウサギ（一群雌 17 匹）の妊娠 6 〜 18 日に強制経口（原体：0、6、20 及び 60 mg/kg 体重/日）投与による発生毒性試験が実施された。

各投与群で認められた毒性所見は表 27 の通りである。

本試験は、不妊などにより必要母動物数が減少し、その結果、観察胎児数が少ないことから、本検討会は得られた結果から発生毒性を評価することは困難と判断したため、参考資料とした。

本試験において、母動物では 20 mg/kg 体重/日以上の投与群で体重増加抑制等が認められ、胎児では 60 mg/kg 体重/日で骨格変異数の増加、化骨進行度の一部低下が認められたことから、母動物に対する無毒性量は 6 mg/kg 体重/日、胎児に対する無毒性量は 20 mg/kg 体重/日であると考えられた。

26
<table>
<thead>
<tr>
<th>投与群</th>
<th>母動物</th>
<th>胎児</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 mg/kg 体重/日</td>
<td>死亡（1例）</td>
<td>骨格変異児数の増加</td>
</tr>
<tr>
<td></td>
<td>早産（1例）</td>
<td>化骨進行度の一部低下</td>
</tr>
<tr>
<td></td>
<td>流産（1例）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>体重増加抑制</td>
<td></td>
</tr>
<tr>
<td></td>
<td>摂餌量の減少</td>
<td>20 mg/kg 体重/日以下</td>
</tr>
<tr>
<td></td>
<td>飲水量の減少</td>
<td>毒性所見なし</td>
</tr>
<tr>
<td></td>
<td>肝臓重量の増加（絶対・相対）</td>
<td></td>
</tr>
<tr>
<td>20 mg/kg 体重/日以上</td>
<td>体重増加抑制</td>
<td></td>
</tr>
<tr>
<td></td>
<td>早産（1例）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>流産（1例）</td>
<td></td>
</tr>
<tr>
<td>6 mg/kg 体重/日</td>
<td>毒性所見なし</td>
<td></td>
</tr>
</tbody>
</table>
アンバム原体について、細菌を用いる DNA 修復試験、復帰突然変異試験、チャイニーズハムスターの肺線維芽細胞（CHL）を用いた in vitro 染色体異常試験及びマウス用いた小核試験が実施された。
本試験の結果の概要は表 28 のとおりである。
いずれの試験においても陰性の結果であったことから、アンバム原体に遺伝毒性はないものと考えられた。

表 28 遺伝毒性試験の概要

<table>
<thead>
<tr>
<th>試験</th>
<th>対象</th>
<th>処理濃度・投与量</th>
<th>結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA 修復試験</td>
<td>Bacillus subtilis (H-17 株、M-45 株)</td>
<td>0.2〜50 μg/disc</td>
<td>陰性</td>
</tr>
<tr>
<td>復帰突然変異試験</td>
<td>Salmonella typhimurium (TA98, TA100, TA1535, TA1537, TA1538 株)</td>
<td>0.1〜500 μg/plate (+/−S9)</td>
<td>陰性</td>
</tr>
<tr>
<td>染色体異常試験</td>
<td>チャイニーズハムスター肺線維芽細胞（CHL）</td>
<td>チャイニーズハムスター肺線維芽細胞（CHL）</td>
<td>陰性</td>
</tr>
<tr>
<td>小核試験</td>
<td>ICR マウス(骨髄細胞) (一雄 5 匹)</td>
<td>500、1,000、2,000 mg/kg 体重 (24 時間隔で 2 回強制経口投与)</td>
<td>陰性</td>
</tr>
</tbody>
</table>

注）+/−S9：代謝活性化存在下及び非存在下
総合評価

14C で標識したアンバムのラットを用いた動物体内運命試験の結果、単回強制経口投与後 96 時間までの尿、糞中累積排泄率は雄では 76.5%、雌では 87.1%であった。呼気中累積排泄率については、48 時間まで放射能を測定した結果、雌雄とも 6.3%であった。組織内濃度については、雌雄とも肝臓、腎臓の分布が最も多く、投与後 1 時間の値が高かった。他の臓器では投与後 1 時間と 4 時間はほぼ同じか 4 時間がやや高い傾向があったが、投与後 8、24、96 時間は漸減して、蓄積傾向のある臓器は認められなかった。

各種毒性試験の結果から、アンバムの反復投与による影響は、ラット及びマウスでは主に肝臓及び甲状腺に認められた。

発がん性、神経毒性及び遺伝毒性は認められなかった。

各毒性試験における無毒性量及び最小毒性量並びに最小毒性量で認められた所見を表 29 に示す。

表 29 各試験における無毒性量及び最小毒性量

<table>
<thead>
<tr>
<th>動物種</th>
<th>試験</th>
<th>無毒性量 (最小毒性量) (mg/kg 体重/日) 及び最小毒性量で認められた所見</th>
</tr>
</thead>
</table>
| ラット | 90 日間急性毒性試験 | 雄：10（30）
雌：10（30）
雄：肺・膀胱重量の増加（絶対・相対）胸腺重量の減少（絶対・相対）
雌：胸腺重量の減少（絶対・相対） |
| | 28 日間急性神経毒性試験 | 雄：160（-）
雌：160（-）
雌雄：- |
| | 2 年間慢性毒性/発がん性併合試験 | 雄：1.88（9.70）
雌：2.69（13.45）
雌雄：体重増加抑制、肝臓・甲状腺重量の増加（絶対・相対）甲状腺肥大、甲状腺大型濁胞 |
| マウス | 2 年間慢性毒性/発がん性併合試験 | 雄：2.98（11.79）
雌：3.04（10.90）
雌雄：体重増加抑制、甲状腺重量の増加（絶対・相対）甲状腺肥大、甲状腺大型濁胞 |

- : 所見がないため最小毒性量を設定できなかった。
各試験で得られた無毒性量の最小値はラットを用いた2年間慢性毒性/発がん性併合試験の1.88 mg/kg体重/日であったことから、当該試験を非食用農薬一日摂取許容量（非食用農薬ADI）の根拠とすることが適切であると考えられる。

以上の結果を踏まえ、アンバムに対する非食用農薬ADI（案）を次のように評価する。

<table>
<thead>
<tr>
<th>非食用農薬ADI（案）</th>
<th>0.0018 mg/kg体重/日</th>
</tr>
</thead>
<tbody>
<tr>
<td>設定根拠試験</td>
<td>慢性毒性/発がん性併合試験</td>
</tr>
<tr>
<td>動物種</td>
<td>ラット</td>
</tr>
<tr>
<td>期間</td>
<td>2年間</td>
</tr>
<tr>
<td>投与方法</td>
<td>飲水投与</td>
</tr>
<tr>
<td>無毒性量</td>
<td>1.88 mg/kg体重/日</td>
</tr>
<tr>
<td>安全係数</td>
<td>1000</td>
</tr>
</tbody>
</table>

種間差10、個体差10、データ不足10（非げっ歯類における試験がない、生殖発生毒性試験を十分評価できるデータがない、ガイドラインに準拠した試験が少ない）
<table>
<thead>
<tr>
<th>名称（記号）</th>
<th>由来</th>
<th>名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBDC酸(B)</td>
<td>水中</td>
<td>エチレンビスジチオカルバミン酸</td>
</tr>
<tr>
<td>ETD(C)</td>
<td></td>
<td>エチレンチウラムジスルフイド</td>
</tr>
<tr>
<td>EBIS(D)</td>
<td>動物、土壌水中、光</td>
<td>エチレンビスイソチオシアネートスルフィド</td>
</tr>
<tr>
<td>ETU(E)</td>
<td>動物、土壌水中、光</td>
<td>エチレンチオ尿素</td>
</tr>
<tr>
<td>EU(F)</td>
<td>動物、土壌水中、光</td>
<td>エチレン尿素</td>
</tr>
<tr>
<td>HYD(G)</td>
<td>水中</td>
<td>ヒダントイン</td>
</tr>
<tr>
<td>EDA(H)</td>
<td>動物、水中光</td>
<td>エチレンジアミン</td>
</tr>
<tr>
<td>F-EDA(I)</td>
<td>動物</td>
<td>N-ホルミルエチレンジアミン</td>
</tr>
<tr>
<td>A-EDA(J)</td>
<td>動物</td>
<td>N-アセチルエチレンジアミン</td>
</tr>
<tr>
<td>(K)</td>
<td></td>
<td>2-イミダゾリン-2-イルスルフェネート</td>
</tr>
<tr>
<td>JB(L)</td>
<td>土壌、水中光</td>
<td>Jaffe's塩基</td>
</tr>
<tr>
<td>IMID(M)</td>
<td>土壌、水中</td>
<td>2-イミダゾリン</td>
</tr>
<tr>
<td>グリシン(N)</td>
<td>動物</td>
<td>アミノ酢酸</td>
</tr>
<tr>
<td>Acグリシン(T)</td>
<td>動物</td>
<td>アセチルグリシン</td>
</tr>
<tr>
<td>略称</td>
<td>名 称</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>ADI</td>
<td>一日摂取許容量</td>
<td></td>
</tr>
<tr>
<td>AUC</td>
<td>血中薬物濃度曲線下面積</td>
<td></td>
</tr>
<tr>
<td>14C</td>
<td>放射性同位体である炭素 14</td>
<td></td>
</tr>
<tr>
<td>Cmax</td>
<td>最高血中濃度</td>
<td></td>
</tr>
<tr>
<td>DT50</td>
<td>土壌中半減期</td>
<td></td>
</tr>
<tr>
<td>GLP</td>
<td>Good Laboratory Practice</td>
<td></td>
</tr>
<tr>
<td>GOT</td>
<td>グルタミン酸オキサロ酢酸トランスアミナーゼ</td>
<td></td>
</tr>
<tr>
<td>In vitro</td>
<td>生体外</td>
<td></td>
</tr>
<tr>
<td>In vivo</td>
<td>生体内</td>
<td></td>
</tr>
<tr>
<td>LC50</td>
<td>50%致死濃度</td>
<td></td>
</tr>
<tr>
<td>LD50</td>
<td>50%致死量</td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>ナトリウム</td>
<td></td>
</tr>
<tr>
<td>NZW</td>
<td>New Zealand White</td>
<td></td>
</tr>
<tr>
<td>ppm</td>
<td>Parts per million</td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>Sprague-Dawley</td>
<td></td>
</tr>
<tr>
<td>T1/2</td>
<td>半減期</td>
<td></td>
</tr>
<tr>
<td>Tmax</td>
<td>最高血中濃度到達時間</td>
<td></td>
</tr>
<tr>
<td>TP</td>
<td>総タンパク質</td>
<td></td>
</tr>
<tr>
<td>WBC</td>
<td>白血球</td>
<td></td>
</tr>
</tbody>
</table>