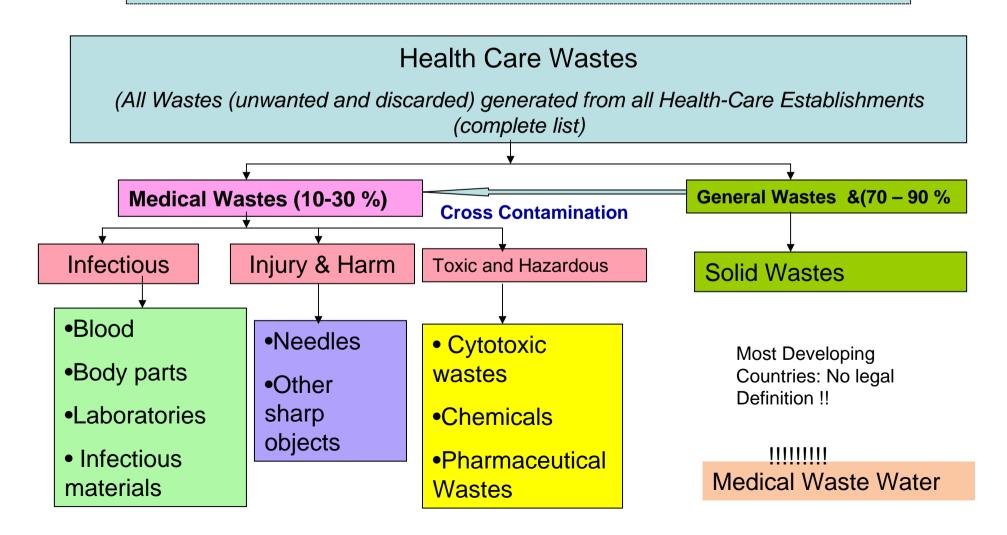
Treatment and Disposal Technologies for Medical Wastes in Developing Countries


Mohd Nasir Hassan, PhD

Environmental Engineer
WORLD HEALTH ORGANIZATION (WHO)
(Cambodia/Lao PDR)

Definition>>>>Legal Implications>>>What are medical wastes and what are not ???

Pathological Wastes: Body Parts

Medical wastes: How Much Produced?

•1.0-1.5 kg/bed/day in a large hospital,

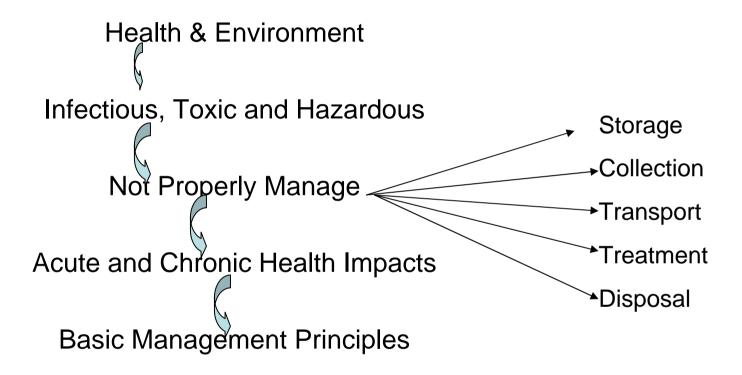
•0.3 kg/bed/day in a small hospital.

Used Blood Samples

Blood

Laboratory Cultures

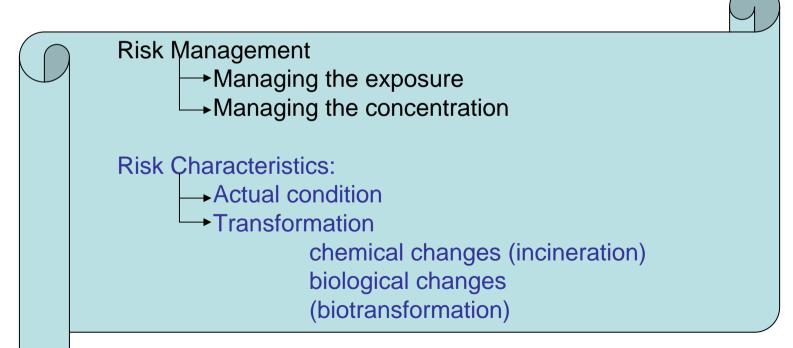
Sharps



Used Chemicals

Medical Wastes in Developing Countries

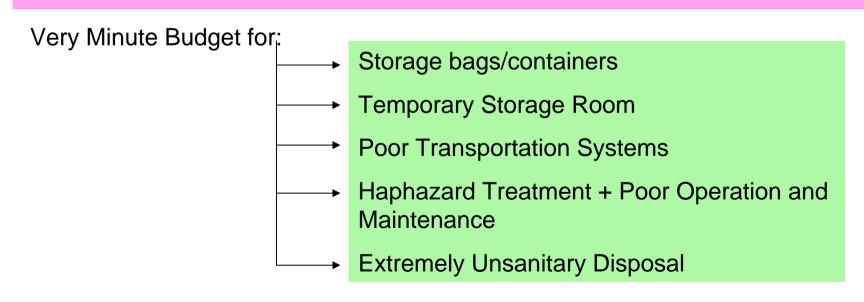
Challenge No 1: Failed to Understand the Risk (Health and Environment)



Challenge No 2: A Technology May Not Work Every Place

Appropriate Technology

Failed to understand the principles of medical waste management



Challenge No 3:

Economic Constraints
Poor

Less Important Sector (least priority until ???)>>>financial resources not properly allocated

Challenge No 4: Policies, Strategies and Plan of Action

No Policy, Guidelines on Medical Waste Management +

Cross-cutting responsibilities

Intermediate Systems:

- Regulations
- Guidelines
- Technology can be improved

Advanced Systems

- Regulations
- Technical Guidelines
- Adequate resources

Poor Systems:

- Regulations
- Guidelines
- Not implemented

Very Poor Systems:

- No Regulations
- No Guidelines
- Not implemented

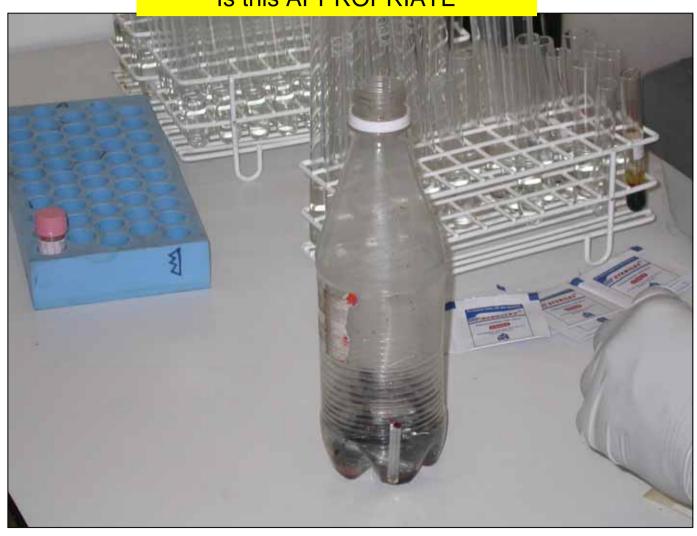
Developing Countries:

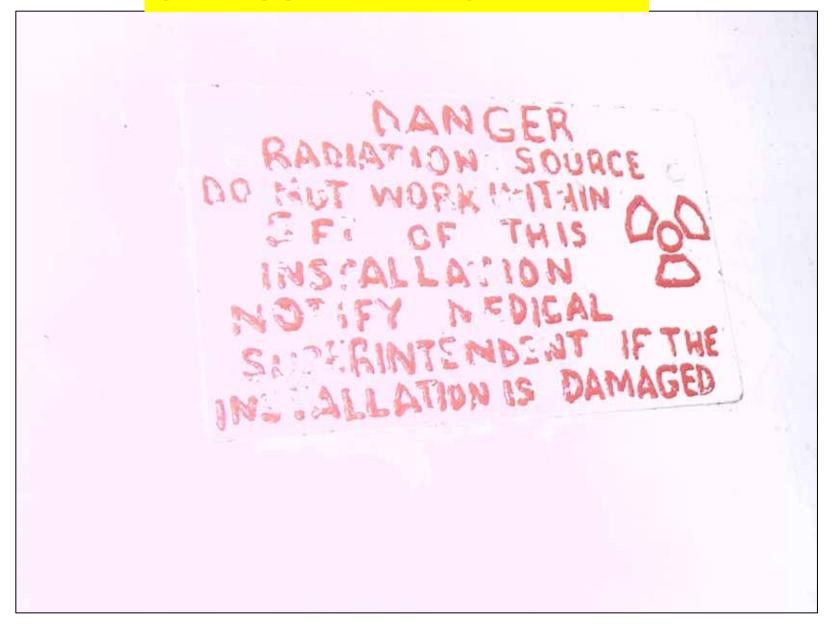
In 2002 of 22 developing countries:

18 to 64 % of health care facilities with poor health-care waste management

Pathological Wastes: Body Parts Or ??

Black Bags are Meant for General Wastes


Food Wastes + Sharps !!!!!


Over-used Sharp Containers

Is this APPROPRIATE

CAN YOU READ THIS ???

Medical Wastes are Stored in Open Containers

WILL YOU APPROVE THIS ???

OR THIS ??

OR THIS ??

The Way Forward

Definition

TECHNOLOGY

Technical Requirements
(Regulations/ Guidelines/ Standard
Operating Procedures)

Segregation

Bags and Containers Infectious materials Sharps

Chemicals
Pharmaceuticals

Collection

Storage Area

[Preliminary Treatment]

Transportation

Treatment and Disposal

Inertization

Encapsulation

Disinfection

Destruction

(Thermal Treatment)

Autoclave Incineration

Landfill

?????

Guiding Principles

Organizational Guidelines:

- a. Dedicated waste management team.
- b. Clear and practical organization.
- Underpinning legislation or guidelines or regulations.
- d. Affordable.
- e. Full participation

Guiding Principles

Technical Guidelines:

- a. Elimination or reduction of risk.
- b. Toxicity reduction.
- c. Volume reduction.
- d. Waste producers responsibilities.
- e. Cradle to grave management
- f. Training

Type of Wastes	Colour of Container and Markings	Strong, leak-proof plastic bag, or container capable of being autoclaved	
Infectious wastes, pathological wastes	Yellow, marked "INFECTIOUS"		
Sharps	Yellow, marked "SHARPS"	Puncture-proof container	
Chemical and pharmaceutical wastes	Brown, marked "HAZARDOUS"	Plastic bag or container	
Wastes with High Content of Heavy Metals	Brown, marked with the specific heavy metal content and "HAZARDOUS"	Puncture and corrosive proof container, separate containers for different heavy metal contents.	
Radioactive and Genotoxic wastes	Red, marked with "RADIOACTIVE SYMBOL"	Lead box, labelled with radioactive symbol	
Pressurised containers	Black	Plastic bag; could mix with the general wastes	
General Waste	Black	Plastic bag	

Incineration: Most Countries Resort to Burning of Wastes

Advantages:

Destruction (risk)

Volume reduction

Flexible

(can handle most types of medical wastes)

Disadvantages

Costly

Environmentally sensitive:

Emissions

Ashes

Maintenance – sophisticated

Limited effective life-time

- Score: Extremely Risky
- Verdict: Unless specifications/regulations are met (environment + health requirements)
 - NOT ENCOURAGED
- Strict requirements:
 - Temperature
 - Double combustion
 - Emission treatment
 - Auto-shut down
- So What is the Appropriate Technology
 - Simple high temperature systems
 - Sophisticated high tech system
 - Combination

Substance	Daily Average (mg/Nm3)	Hourly Average (mg/Nm3)	4 hours Average (mg/Nm3)
Total dust	5	10	-
Total organic carbon	5	10	-
Chlorine compounds	5	10	-
Fluorine compounds	1	2	-
Sulphur oxides as SO2	25	50	-
Nitrogen oxides as NO2	100	200	-
Carbon monoxide	50	100	-
Mercury	-	-	0.05
Cadmium and thallium	-	-	0.05
Lead, chromium, copper, and Manganese	-	-	0.5
Nickel and arsenic	-	-	0.5
Antimony, cobalt, vanadium and tin	-	-	0.5
Dioxins and furans	-	-	0.1
Oxygen content	At least 6 % at any moment		

DIOXINS, FURANS, CO-PLANNER PCBS

- Polychlorinated dibenzo-para-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychrolinated biphenyls (PCBs).
 - Persistence, bioaccumulate.
 - Related to combustion at low temperature, plastics (esp. PVC).
 - Lower than 800°c
 - Especially in the range of 250-450°C
 - Temperature not uniform.
- Presence in bottom ash, fly ash, emissions.

Safe Levels of Dioxins

- WHO:
 - Provisional Tolerable Monthly Intake (PTMI)
 - 70 picograms/kg body-weight (10⁻¹²g).
 - Emission Limits:
 - Europe 0.1 ngTEQ/m³ (Toxicity Equivalent)

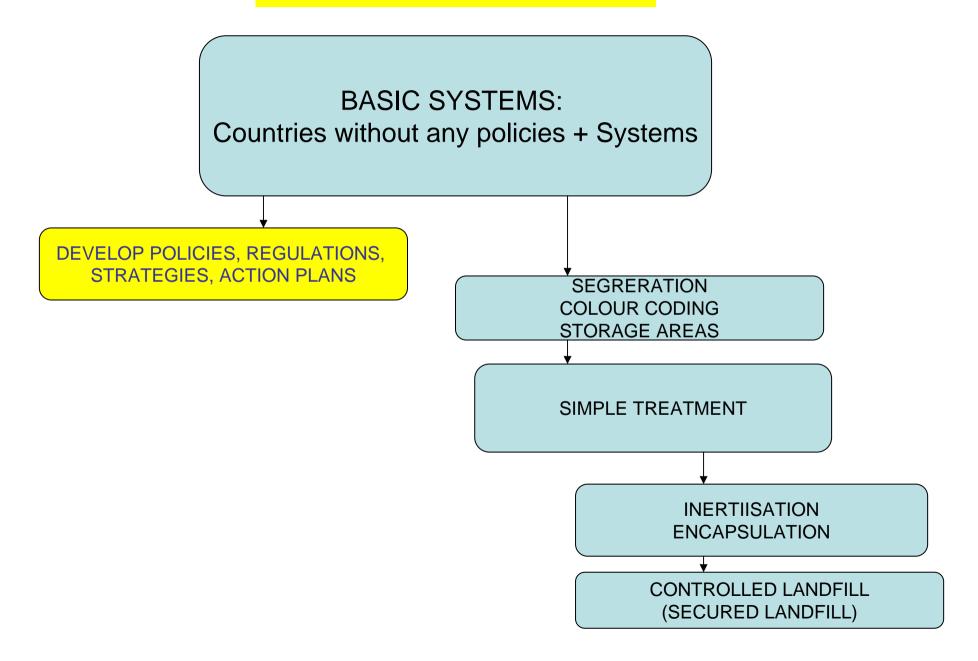
Criteria for Selection:

- Environment:
 - Emissions.
 - Residues.
- Technical:
 - Efficiency
 - Parts, components and maintenance.
 - Technological: proven (commercialised);
 experimental (pilot).
- Costs:
 - Capital
 - Operating

Incinerators

Technology Management

- Waste Reduction and Waste Segregation.
- Site of incinerators.
- Detailed Engineering Design :
 - Residence Time, Temperature, treatment of emissions.
- Operation & Maintenance.
- Disposal of Ash.
- Training


(Problems due inadequate training, waste segregation and poor maintenance)

Before YES

- Good Practices in Incineration Design, Construction and Operation (eg. pre-heating, not overloading, temperature above 800oC), maintenance, lowest emissions.
- Waste segregation and waste minimisation.
- Good practice tools (dimensional construction plans, operational guidelines).
- Operator Training and Management Support.
- Avoid materials containing Chlorine (some blood bags, IV Bags, IV tubes), heavy metals (mercury).

Intervention

Medium (COUNTRIES HAVE REGULATIONS BUT TECHNICALLY AND FINANCIALLY INCAPABLE

FINANCIAL ASSISTANCE

DEVELOP PILOT HOSPITALS, HEALTH CENTRES

NATION-WIDE SYSTEM

High (COUNTRIES WITH REGULATION + SYSTEMS)

Research and Development:

Technology

Systems: Public Vs Private

3 Rs

Systems to reduce the amount of waste produced

Systems to reduce toxic contents so that we can promote reuse

Systems that eliminate risks to allow recycling