表1 平成16年度POPsモニタリング調査結果

,		水質		底質		生物						大気			
物質調査番号	物質名	水質 42地点42検体		低質 63地点189検体		貝類 7地点31検体		魚類 14地点70検体		鳥類 2地点10検体		第1回(温暖期) 37地点37検体		第2回(寒冷期) 37地点37検体	
		範囲 (pg/L)	定量下限値* (pg/L)	範囲 (pg/g-dry)	定量下限値 (pg/g-dry)	範囲 (pg/g-wet)	定量下限値 (pg/g-wet)	範囲 (pg/g-wet)	定量下限値 (pg/g-wet)	東U田 (pg/g-	定量下限値 (pg/g-wet)	範囲 (pg/m³)	定量下限値 (pg/m³)	範囲 (pg/m³)	定量下限値 (pg/m³)
1	PCB類	39 - 4,400	0.4 ~ 5	38 - 1,300,000	0.2 ~ 2	1,500 - 150,000	5.3 ~ 18	990 - 540,000	5.3 ~ 18	5,900 - 13,000	5.3 ~ 18	25 - 3,300	0.024 ~ 0.99	20 - 1,500	0.024 ~ 0.99
2	НСВ	5.3 - 180	30	tr(6) - 25,000	7	14 - 80	14	26 - 1,800	14	410 - 2,200	14	47 - 430	1.1	51 - 390	1.1
3 3-1	ドリン類 アルドリン	nd - 13	2	nd - 390	2	nd - 46	4.0	nd - tr(2.4)	4.0	nd	4.0	nd - 14	0.15 ~ 11	nd - 13	0.15 ~ 7.8
3-2	ディルドリン	3.1 - 430	2	tr(1.9) - 3,700	3	42 - 69,000	31	tr(23) - 2,800	31	370 - 960	31	1.1 - 280	0.33	0.81 - 76	0.33
3-3	エンドリン	0.68 - 100	2	nd - 6,900	3	tr(5.7) - 4,600	12	nd - 220	12	nd - 62	12	tr(0.054) - 6.5	0.14	nd - 1.9	0.14
4	DDT類														
4-1	ρ,ρ ' - D D T	nd - 310	6	6.8 - 98,000	2	48 - 2,600	3.2	5.5 - 53,000	3.2	160 - 700	3.2	0.41 - 37	0.22	0.29 - 13	0.22
4-2	ρ,ρ ' - D D E	2.2 - 680	8	7.7 - 39,000	3	220 - 8,400	8.2	390 - 52,000	8.2	6,800 - 200,000	8.2	0.62 - 95	0.12	0.85 - 43	0.12
4-3	ρ,ρ ' - D D D	tr(2.4) - 740	3	4.2 - 75,000	2	7.8 - 8,900	2.2	56 - 9,700	2.2	52 - 1,400	2.2	tr(0.036) - 1.4	0.053	tr(0.025) - 0.91	0.053
4-4	<i>o,p '</i> - D D T	nd - 85	5	tr(1.1) - 17,000	2	20 - 910	1.8	3.7 - 1,800	1.8	tr(0.87) - 43	1.8	0.54 - 22	0.093	0.35 - 9.4	0.093
4-5	<i>o,p '</i> - D D E	0.21 - 170	2	nd - 28,000	3	19 - 360	2.1	tr(0.89) - 5,800	2.1	nd - 3.7	2.1	0.14 - 8.9	0.037	0.14 - 3.9	0.037
4-6	<i>o,p '</i> - D D D	tr(0.7) - 81	2	tr(0.7) - 16,000	2	6.0 - 2,800	5.7	nd - 1700	5.7	nd - 25	5.7	tr(0.052) - 2.6	0.14	nd - 0.86	0.14
5 5-1	クロルデン類 <i>trans</i> -クロルデン	2 - 1,200	5	3.1 - 26,000	3	53 - 2,800	48	tr(17) - 5,200	48	nd - tr(26)	48	2.2 - 1,300	0.69	1.5 - 360	0.69
5-2	cis - クロルデン	5.3 - 1,900	6	4 - 36,000	4	91 - 14,000	18	68 - 9,800	18	tr(5.8) - 240	18	2.3 - 1,000	0.57	1.2 - 290	0.57
5-3	trans - ノナクロル	1.6 - 1,100	4	3.3 - 23,000	2	110 - 3,400	13	140 - 21,000	13	390 - 1,200	13	1.9 - 870	0.48	0.95 - 240	0.48
5-4	cis - ノナクロル	0.62 - 340	0.6	tr(0.8) - 9,400	2	43 - 1,800	3.4	48 - 10,000	3.4	73 - 240	3.4	0.36 - 130	0.072	0.087 - 28	0.072
5-5	オキシクロルデン	0.17 - 47	2	nd - 140	3	14 - 1,700	9.2	25 - 1,500	9.2	320 - 730	9.2	0.41 - 7.8	0.13	0.27 - 3.9	0.13
6	ヘプタクロル類														
6-1	ヘプタクロル	nd - 29	5	nd - 170	3	nd - 16	4.1	nd - 460	4.1	nd - tr(1.5)	4.1	0.46 - 200	0.23	0.53 - 100	0.23
6-2	trans - ヘプタクロ ルエポキシド	nd	0.9	nd - tr(2)	4	nd - 55	12	nd - tr(10)	12	nd	12	nd - tr(0.38)	0.60	nd	0.60
6-3	cis-ヘプタクロル エポキシド	0.76 - 77	2	nd 230	6	tr(9.8) - 840	9.9	tr(3.3) - 620	9.9	190 - 350	9.9	0.65 - 9.7	0.052	0.44 - 7.0	0.053
7 7-1	トキサフェン類 Parlar-26	nd	9	nd	60	nd - tr(32)	42	nd - 1,000	42	nd - 810	42	tr(0.17) - 0.46	0.20	tr(0.094) - 0.50	0.20
7-2	Parlar-50	nd	20	nd	60	nd - tr(45)	46	nd - 1,300	46	nd - 1,000	46	nd	1.2	nd	1.2
7-3	Parlar-62	nd	90	nd	2000	nd	98	nd - 870	98	nd - 280	98	nd	2.4	nd	2.4
8	マイレックス	nd - 1.1	0.4	nd - 220	2	tr(1.1) - 12	2.5	3.8 - 180	2.5	33 - 110	2.5	tr(0.042) - 0.16	0.050	tr(0.019) - 0.23	0.050
9	HCH類														
9-1	- H C H	13 - 5,700	6	tr(1.5) - 5,700	2	tr(12) - 1,800	13	nd - 2,900	13	58 - 1,600	13	24 - 3,200	0.33	11 - 680	0.33
9-2	- H C H	31 - 3,400	4	4 - 53,000	3	22 - 1,800	6.1	tr(3.9) - 1,100	6.1	1,100 - 4,800	6.1	0.53 - 110	0.12	0.32 - 78	0.12
9-3	- H C H	21 - 8,200	20	tr(0.8) - 4,100	2	nd - 230	31	nd - 660	31	tr(11) - 1,200	31	4.5 - 860	0.23	2.6 - 230	0.23
9-4	- H C H	tr(1.4) - 670	2	tr(0.5) - 5,500	2	nd - 1,500	4.6	nd - 270	4.6	6.4 - 260	4.6	0.15 - 93	0.15	tr(0.070) - 18	0.15

^{*: 10}L採水時の定量下限(範囲は全測定結果のまとめ)