チョウ目害虫抵抗性並びに除草剤アリルオキシアルカノエート系、グルホシネート及びグリホサート耐性トウモロコシ（cry1A.105, 改変 cry2Ab2, 改変 cry1F, 改変 aad-1, pat, 改変 cp4 epsps, Zea mays subsp. mays (L.) Ilitis）（MON89034×B.t. Cry1F maize line 1507×NK603×DAS40278, OECD UI: MON-89034-3×DAS-01507-1×MON-00603-6×DAS-40278-9）（MON89034, B.t. Cry1F maize line 1507, NK603 及び DAS40278 それぞれへの導入遺伝子の組合せを有するものであって当該トウモロコシから分離した後代系統のもの（既に第一種使用規程の承認を受けたものを除く。）を含む。）申請書等の概要

第一種使用規程承認申請書 .. 1
生物多様性影響評価書の概要 .. 2
第一 生物多様性影響の評価に当たり収集した情報 ... 2
 1 宿主又は宿主の属する分類学上の種に関する情報 ... 2
 (1) 分類学上の位置付け及び自然環境における分布状況 ... 2
 (2) 使用等の歴史及び現状 ... 3
 (3) 生理的及び生態学的特性 ... 3
 2 遺伝子組換え生物等の調製等に関する情報 ... 5
 (1) 供与核酸に関する情報 ... 6
 (2) ベクターに関する情報 .. 17
 (3) 遺伝子組換え生物等の調製方法 ... 18
 (4) 細胞内に移入した核酸の存在状態及び当該核酸による形質発現の安定性 23
 (5) 遺伝子組換え生物等の検出及び識別の方法並びにそれらの感度及び信頼性 25
 (6) 宿主又は宿主の属する分類学上の種との相違 ... 25

3 遺伝子組換え生物等の使用等に関する情報 ... 27
 (1) 使用等の内容 .. 27
 (2) 使用等の方法 .. 27
 (3) 承認を受けようとする者による第一種使用等の開始後における情報収集の方法 27
 (4) 生物多様性影響が生ずるおそれのある場合における生物多様性影響を防止するための措置 ... 28
 (5) 実験室等での使用等又は第一種使用等が予定されている環境と類似の環境での使用等の結果 ... 28
 (6) 国外における使用等に関する情報 .. 28

第二 項目ごとの生物多様性影響の評価 .. 29
 1 競合における優位性... 29

資料6
第一種使用規程承認申請書

平成24年5月28日

農林水産大臣 鹿野 道彦 殿
環境大臣 細野 豪志 殿

氏名 ダウ・ケミカル日本株式会社
申請者 代表取締役 栗田 道郎 印
住所 東京都品川区東品川二丁目2番24号

第一種使用規程について承認を受けたいので、遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律第4条第2項の規定により、次のとおり申請します。

遺伝子組換え生物等の種類の名称	チョウ目害虫抵抗性並びに除草剤アリルオキシアルカノエート系、グルホシネート及びグリホサート耐性トウモロコシ (cry1A.105, 改変cry2Ab2, 改変cry1F, pat, 改変cp4epsps, 改変aad1, Zea mays subsp. mays (L.) Iltis) (MON89034×B.t. Cry1F maize line 1507×NK603×DAS40278, OECD UI: MON-89034-3×DAS-01507-1×MON-00603-6×DAS-40278-9) (MON89034、B.t. Cry1F maize line 1507、NK603及びDAS40278それぞれへの導入遺伝子の組合せを有するものであって当該トウモロコシから分離した後代系統のもの（既に第一種使用規程の承認を受けたものを除く。）を含む。)
遺伝子組換え生物等の第一種使用等の内容	食用又は飼料用に供するための使用、栽培、加工、保管、運搬及び廃棄並びにこれらに付随する行為
遺伝子組換え生物等の第一種使用等の方法	なし
生物多様性影響評価書の概要

第一 生物多様性影響の評価に当たり収集した情報

5 1 宿主又は宿主の属する分類学上の種に関する情報

(1) 分類学上の位置付け及び自然環境における分布状況

① 和名、英名及び学名

和名: トウモロコシ
英名: maize, corn
学名: Zea mays subsp. mays (L.) Iltis

② 宿主の品種名又は系統名

親系統の宿主はイネ科 (Gramineae) トウモロコシ属 (Zea) に属するトウモロコシ (Z. mays) のデント種である。親系統の作出に使った品種名は以下のとおりである。

MON89034 : LH172
B.t. Cry1F maize line 1507 : Hi-II
NK603 : AW×CW
DAS40278 : Hi-II

③ 国内及び国外の自然環境における自生地域

トウモロコシの祖先はメキシコ原産のイネ科植物テオシント (teosinte) であると言われている。幾千年にわたって種子の人為的選抜が行われ、テオシントは今日知られているトウモロコシとして作物化された (OECD, 2003)。

テオシントは、我が国においては自生していない。また、トウモロコシは、すでにテオシントとは違い、種子を自然に散布させる能力を失っており、我が国の自然環境における自生地域はない。
(2) 使用等の歴史及び現状

① 国内及び国外における第一種使用等の歴史

子実用トウモロコシは、1930年代以降、特に米国で交配により様々な品種が作り出されてきた。それらは、長い時間をかけてヒトの手により改良され、ヒトが手をかけなければ育たない。我が国には長年にわたり、食品加工用・飼料用として海外より輸入されている。

② 主たる栽培地域、栽培方法、流通実態及び用途

トウモロコシは、現在、南緯30度から北緯55度に至る範囲で栽培されているが、北緯47度以上の緯度で栽培されるものは比較的少ない。

2010年の全世界における生産量は8億4,436万トンで、主な栽培国は米国（3億1,617万トン）、中国（1億7,755万トン）、ブラジル（5,606万トン）、メキシコ（2,330万トン）、アルゼンチン（2,268万トン）である（FAOSTAT、2012）。我が国においては全国にわたって栽培可能である。飼料用としてデン種が、食用としてスウィート種が栽培されている。

主に子実が輸入されて飼料として利用されるが、食用油、澱粉などの加工用など、食品としての用途も多岐にわたる。

(3) 生理的及び生態学的特性

イ 基本的特性

ロ 生息又は生育可能な環境の条件

我が国の栽培品種の発芽温度は、おおむね最低7～8℃、最適25～30℃、最高40℃の範囲にある。播種から収穫までの全期間の温度は、日平均気温22～23℃程度が望ましいとされている。生育期別には、初期と後期が比較的低温で、中期が高温であることが望ましい。夜温はある程度低い方がよく、暖地では25℃以上、寒地では20℃以上にならない方がよく、いずれの地域でも15℃前後が望ましい。

トウモロコシの乾物1gを生産するための要水量は他の作物より少ないが、乾物生産が多いため多量の水を必要とし、全生育期間では350～500トン/10aの
水量を必要とする。
トウモロコシは土壌の酸性に対しても強く、正常に生育する pH の範囲は広い。
栽培可能な pH は 5.0〜8.0 の範囲にあるが、5.5〜6.5 の範囲が望ましい。
トウモロコシ品種の早晩性については、播種期から成熟期に至る日数が品種
間で差があり、我が国では 90〜170 日である（戸澤、2005）。

ハ 捕食性又は寄生性

ニ 繁殖又は増殖の様式

① 種子の脱粒性、散布様式、休眠性及び寿命

トウモロコシは種子で繁殖する。包葉に覆われた穂芯のついた雌花のある花
序がある。したがって、個々の粒の種子拡散は自然に行われない（OECD、
2003）。種子の休眠性は低い（CFIA、1994）。種子の寿命は主に温度と湿度に
よって左右され、低温乾燥下では長く、高温多湿下では短い（戸澤、2005）。

② 栄養繁殖の様式並びに自然条件において植物体を再生しうる組織又は器官
からの出芽特性

トウモロコシは種子繁殖であり、塊茎や地下茎などによる栄養繁殖はしない
（OECD、2003）。また、トウモロコシには、自然条件において植物体を再生
しうる組織等がある、あるいはそこから発芽するというような報告はこれまで
のところない。

③ 自殖性、他殖性的程度、自家不和合性の有無、近縁野生種との交雑性及び
アポミクシスを生じる特性を有する場合はその程度

トウモロコシは雄穂と雌穂が分かれており、他家受粉が一般的で、雄穂から
放出された花粉が同じ株か隣接しているトウモロコシの雌しべに運ばれ、受粉
する。近縁野生種との間では、交雑は容易には起こらないことが知られており
（Doebly、1984）、我が国においては交雑可能な近縁野生種（テオシント等）
は存在しない。種子は受精によって作られ、アポミクシスは生じない。

④ 花粉の生産量、稔性、形状、媒介方法、飛散距離及び寿命

トウモロコシの花粉の生産量は、一雄穂当たり約 1,800 万個とされている
花粉の形状は球形で、直径は約90〜100μmである（Pleasants et al., 2001）。授粉は主に風媒による他家受粉である（OECD, 2003）。花粉は風により飛散するが、野外においてトウモロコシ花粉の植物葉上における堆積密度を調べた研究では、我が国におけるヒマワリ及びイヌホオズキ花粉の最大堆積密度は、ほ場縁においては、ヒマワリ葉上で81.7個/cm²、イヌホオズキ葉上で71.1個/cm²であった。しかし、ほ場縁から5mの地点では、ヒマワリ葉上で19.6個/cm²、イヌホオズキ葉上で22.2個/cm²に減少し、さらに10mの地点では、ヒマワリ葉上では10個/cm²以下であった（Shirai and Takahashi, 2005）。飛散した花粉の寿命は、一夜または一昼夜であるが、5℃前後の低温下でシリカゲルを入れて封入すると、4〜5日間は受精能力を失わない（戸澤, 2005）。

ホ 病原性

へ 有害物質の産生性

他感作用物質のような野生動物植物等の生息又は生育に影響を及ぼす有害物質の産生性は知られていない。

ト その他の情報

2 遺伝子組換え生物等の調製等に関する情報

チョウ目害虫抵抗性並びに除草剤アミノキシアルカノエート系、グルホシネート及びグリホサート耐性トウモロコシ（cry1A.105, 改変cry2Ab2, 改変cry1F, 改変aad-1, pat, 改変cp4epsps, Zea mays subsp. mays (L.)Iltis）(MON89034×B.t. Cry1F maize line 1507×NK603×DAS40278, OECD UI: MON-89Ø34-3×DAS-Ø15Ø7-1×MON-ØO6Ø3-6×DAS-4Ø278-9)（以下「本スタック系統トウモロコシ」という。）は、以下の4つの遺伝子組換えトウモロコシを従来の交雑育種法を用いて交配させた交配後代品種である。

本スタック系統トウモロコシは一代雑種品種（F1）として商品化されることから、収穫される種子には遺伝的分離により本スタック系統トウモロコシの親
系統それぞれへの導入遺伝子の組合せからなるスタック系統トウモロコシが含まれる。

- チョウ目害虫抵抗性トウモロコシ（cry1A.105, 改変 cry2Ab2, Zea mays subsp. mays (L.) Iltis）（MON89034, OECD UI: MON-89034-3）（以下「MON89034」という。）
- チョウ目害虫抵抗性及び除草剤グルホシネート耐性トウモロコシ（改変 cry1F, pat, Zea mays subsp. mays (L.) Iltis）（B.t. Cry1F maize line 1507, OECD UI: DAS-Ø15Ø7-1）（以下「Cry1F line 1507」という。）

- 除草剤グリホサート耐性トウモロコシ（改変 cp4 epsps, Zea mays subsp. mays (L.) Iltis）（NK603, OECD UI: MON-ØØ6Ø3-6）（以下「NK603」という。）
- アリルオキシアルカノエート系除草剤耐性トウモロコシ（改変 aad-1, Zea mays subsp. mays (L.) Iltis）（DAS40278, OECD UI: DAS-4Ø278-9）（以下「DAS40278」という。）

以下では MON89034、Cry1F line 1507、NK603 及び DAS40278 の調製等に関する情報について概要等を記載した。

(1) 供与核酸に関する情報

イ 構成及び構成要素の由来

MON89034、Cry1F line 1507、NK603 及び DAS40278 のそれぞれの作出に用いられた供与核酸の構成と構成要素の由来は、表 1～表 4（p. 7～11）に示したとおりである。
表 1 MON89034 の作出に用いた PV-ZMIR245 の各構成要素の由来及び機能

<table>
<thead>
<tr>
<th>構成要素</th>
<th>由来及び機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-DNA I 領域</td>
<td></td>
</tr>
<tr>
<td>B 注1-Right Border</td>
<td>Agrobacterium tumefaciens に由来する、ノパリン型 T-DNA 領域の右側境界配列を含む DNA 断片。右側境界配列は、T-DNA が A. tumefaciens から植物ゲノムへの T-DNA の伝達の際、伝達の開始点として利用される（Depicker et al., 1982; Zambryski et al., 1982）。</td>
</tr>
<tr>
<td>P 注2-e35S</td>
<td>二重エンハンサー領域（Kay et al., 1987）を持つ、カリフラワーモザイクウイルス（CAVM）35SRNA（Odell et al., 1985）のプロモーターと 9bp リーダー配列。植物体の全組織で恒常的に目的遺伝子を発現させる。</td>
</tr>
<tr>
<td>L 注3-Cab</td>
<td>コムギ由来のコムギ葉緑素 a/b 結合蛋白質の 5'末端非翻訳リーダー領域。目的遺伝子の発現を活性化させる（Lamppa et al., 1985）。</td>
</tr>
<tr>
<td>T 注4-Ract1</td>
<td>イネ（Oryza sativa）由来的アクチン遺伝子のイントロン（McElroy et al., 1991）。目的遺伝子の発現の制御に関わる。</td>
</tr>
<tr>
<td>CS 注5-cry1A.105</td>
<td>Cry1A.105 蛋白質をコードする遺伝子。MON89034 の作出に用いた cry1A.105 遺伝子がコードする Cry1A.105 蛋白質は、Cry1Ab 蛋白質のドメイン I と II、Cry1F 蛋白質のドメイン III、Cry1Ac 蛋白質の C 末端ドメインにより構成される合成 Bt 蛋白質であり、異なる Bt 蛋白質のドメインを組み合わせることにより標的チョウ目害虫に対する殺虫活性を高める目的で開発された。</td>
</tr>
<tr>
<td>T 注6-Hsp17</td>
<td>コムギ熱ショック蛋白質 17.3 の 3'末端非翻訳領域。転写を終結させ、ポリアデニル化を誘導する（McElwain and Spiker, 1989）。</td>
</tr>
<tr>
<td>P-FMV</td>
<td>Figwort Mosaic Virus 由来の 35S プロモーター（Rogers, 2000）。植物体の全組織で恒常的に目的遺伝子を発現させる。</td>
</tr>
<tr>
<td>I-Hsp70</td>
<td>トウモロコシ熱ショック蛋白質 70 遺伝子の第1イントロン（Brown and Santino, 1995）。目的遺伝子の発現を活性化させる。</td>
</tr>
<tr>
<td>TS 注7-RbcS (Zm)</td>
<td>トウモロコシのリプロース 1.5-ニリニ酸カルボキシラーゼの小サブユニットの輸送ペプチドで、第1イントロン配列を含む（Matsuoka et al., 1987）。下流に連結した蛋白質を色素体へと輸送する。</td>
</tr>
<tr>
<td>CS-改変 cry2Ab2</td>
<td>Bacillus thuringiensis に由来する改変 Cry2Ab2 蛋白質をコードする遺伝子（Widner and Whiteley, 1989）。クローニングの際に用いる制限酵素切断部位を付加するため、野生型 Cry2Ab2 蛋白質と比較して N 末端のメチオニンの後にアスパラギン酸が 1 つ挿入されている。</td>
</tr>
<tr>
<td>T-nos</td>
<td>A. tumefaciens T-DNA 由来のノパリン合成酵素（nos）遺伝子の 3'末端非翻訳領域で、mRNA の転写を終結させ、ポリアデニル化を誘導する（Bevan et al., 1983）。</td>
</tr>
<tr>
<td>B-Left Border</td>
<td>A. tumefaciens に由来する左側境界配列（25bp）を含む DNA 断片。左側境界配列は、T-DNA が A. tumefaciens から植物ゲノムへ伝達される際の終結点である（Barker et al., 1983）。</td>
</tr>
</tbody>
</table>
表 1 MON89034 の作出に用いた PV-ZMIR245 の各構成要素の由来及び機能
（続き）

<table>
<thead>
<tr>
<th>構成要素</th>
<th>由来及び機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-DNA II 領域</td>
<td></td>
</tr>
<tr>
<td>B-Right Border</td>
<td>A. tumefaciens に由来する、ノパリン型 T-DNA の右側境界配列 (24bp) を含む DNA 断片。右側境界配列は、T-DNA が A. tumefaciens から植物ゲノムへの T-DNA の伝達の際、伝達の開始点として利用される（Depicker et al., 1982; Zambryski et al., 1982）。</td>
</tr>
<tr>
<td>T-nos</td>
<td>A. tumefaciens T-DNA 由来のノパリン合成酵素 (nos) 遺伝子の 3’末端非翻訳領域で、mRNA の転写を終結させ、ポリアデニル化を誘導する（Bevan et al., 1983）。</td>
</tr>
<tr>
<td>CS-nptII</td>
<td>Escherichia coli のトランスポゾン Tn5 に由来する遺伝子 (Beck et al., 1982)。ネオマイシンホスホトランスフェラーゼ II をコードし、植物にカナマイシン耐性を付与する。遺伝子導入の際、組換え体植物を選択するためのマーカーとして用いられる（Fraley et al., 1983）。</td>
</tr>
<tr>
<td>P-35S</td>
<td>カリフラワーモザイクウイルス (CaMV) の 35S プロモーター領域（Odell et al., 1985）。植物体の全組織で恒常的に目的遺伝子を発現させる。</td>
</tr>
<tr>
<td>B-Left Border</td>
<td>A. tumefaciens に由来する左側境界配列 (25bp) を含む DNA 断片。左側境界配列は、T-DNA が A. tumefaciens から植物ゲノムへ伝達される際の終結点である（Barker et al., 1983）。</td>
</tr>
<tr>
<td>外側骨格領域</td>
<td></td>
</tr>
<tr>
<td>OR^{注 8} ori V</td>
<td>広域宿主プラスミド RK2 から単離された複製開始領域であり、A. tumefaciens においてベクターに自律増殖能を付与する（Stalker et al., 1981）。</td>
</tr>
<tr>
<td>CS-rop</td>
<td>E. coli 中でのプラスミドのコピー数の維持のためにプライマー蛋白を抑制するコーディング配列（Giza and Huang, 1989）。</td>
</tr>
<tr>
<td>OR^{注 8} ori pBR322</td>
<td>pBR322 から単離された複製開始領域であり、E.coli においてベクターに自律増殖能を付与する（Sutcliffe, 1979）。</td>
</tr>
<tr>
<td>aadA</td>
<td>トランスポゾン Tn7 由来のアミノグリコシド変換酵素である 3”(9)-O-nucleotidyltransferase の細菌プロモーター、コード領域及びターミネーター。スペクチノマイシンあるいはストレプトマイシン耐性を付与する（Fling et al., 1985）。</td>
</tr>
</tbody>
</table>

注 1 B – border（境界配列）
注 2 P – promoter（プロモーター）
注 3 L – leader（リーダー配列）
注 4 I – intron（イントロン）
注 5 CS – coding sequence（コーディング配列）
注 6 T – transcript termination sequence（転写終結配列）
注 7 TS – targeting sequence（ターゲティング配列）
注 8 OR – Origin of Replication（複製開始領域）

（本表に記載された情報に係る権利及び内容の責任はダウ・ケミカル日本株式会社にある）
表 2 クリフウモザイクウィルス1507の作出に用いた PHP8999の各構成要素の由来及び機能

<table>
<thead>
<tr>
<th>構成要素</th>
<th>由来及び機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>改変 cry1F遺伝子発現カセット</td>
<td></td>
</tr>
<tr>
<td>UBIZM1(2) Promoter</td>
<td>Z. mays 由来のユビキチン構成的プロモーター1)（イントロン及び5'末端非翻訳領域を含む）（Christensen et al., 1992）。</td>
</tr>
<tr>
<td>改変 cry1F</td>
<td>B. thuringiensis var. aizawai 由来の改変 Cry1F 蛋白質をコードする遺伝子。植物における発現を高めるため塩基配列が改変され、改変 Cry1F 蛋白質は、アミノ酸配列の604番目のフェニルアラニンがロイシンに置換されている。</td>
</tr>
<tr>
<td>ORF25PolyA Terminator</td>
<td>A. tumefaciens pTi15955 由来の転写を終結させるためのターミネーター（Barker et al., 1983）。</td>
</tr>
<tr>
<td>pat 遺伝子発現カセット</td>
<td></td>
</tr>
<tr>
<td>CAMV35S Promoter</td>
<td>カリフラワーモザイクウィルス由来の35S構成的プロモーター1)（Hohn et al., 1982）。</td>
</tr>
<tr>
<td>pat</td>
<td>Streptomyces viridochromogenes 由来のホスフィノスリン酸アセチルトランスフェラーゼ（PAT 蛋白質）をコードする遺伝子。植物における発現を高めるため、塩基配列が改変されているが、改変によるアミノ酸配列の変化はない（Eckes et al., 1989）。</td>
</tr>
<tr>
<td>CAMV35S Terminator</td>
<td>カリフラワーモザイクウィルス由来の転写を終結させるための35Sターミネーター（Hohn et al., 1982）。</td>
</tr>
</tbody>
</table>

1) 構成的プロモーター：植物体の全体において、目的遺伝子を発現させるプロモーター。

（本表に記載された情報に係る権利及び内容の責任はダウ・ケミカル日本株式会社にある）
表 3 NK603 の作出に用いた PV-ZMGT32 の各構成要素の由来及び機能

<table>
<thead>
<tr>
<th>構成要素</th>
<th>由来及び機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>改変 cp4 epsps 遺伝子カセット①</td>
<td></td>
</tr>
<tr>
<td>P 注1-Ract1</td>
<td>イネ（O. sativa）由来のアクチン 1 遺伝子のプロモーター領域（McElroy et al., 1990）。植物体の全組織で恒常的に目的遺伝子を発現させる。</td>
</tr>
<tr>
<td>I 注2-Ract1</td>
<td>イネ（O. sativa）由来のアクチン遺伝子のイントロン（McElroy et al., 1991）。目的遺伝子の発現の制御に関わる。</td>
</tr>
<tr>
<td>TS 注3-CTP2</td>
<td>シロイヌナズナ（Arabidopsis thaliana）の epsps 遺伝子の中で、EPSPS 蛋白質の N 末端側に存在する葉緑体輸送ペプチド部分をコードする塩基配列（Klee et al., 1987）。目的蛋白質を細胞質から葉緑体へと輸送する。</td>
</tr>
<tr>
<td>CS 注4-改変 cp4 epsps</td>
<td>Agrobacterium CP4 菌株由来の 5-エノールビルビルシキミ酸-3-リン酸合成酵素遺伝子（Barry et al., 1997; Padgette et al., 1996a）。改変 CP4 EPSPS 蛋白質は、植物中での発現量を高めるために野生型 CP4 EPSPS 蛋白質の N 末端から二番目のセリンがロイシンに変更されている。</td>
</tr>
<tr>
<td>T 注5-nos</td>
<td>A. tumefaciens T-DNA 由来のノパリン合成酵素（nos）遺伝子の 3'末端非翻訳領域で、mRNA の転写を終結させ、ポリアデニル化を誘導する（Bevan et al., 1983）。</td>
</tr>
<tr>
<td>改変 cp4 epsps 遺伝子カセット②</td>
<td></td>
</tr>
<tr>
<td>P-e35S</td>
<td>二重エンハンサー領域（Kay et al., 1987）を持つ、カリフラワー ーモザイクウイルス（CaMV）35SRNA（Odell et al., 1985）の プロモーターと 9bp リーダー配列。植物体の全組織で恒常的に目的遺伝子を発現させる。</td>
</tr>
<tr>
<td>I-Hsp70</td>
<td>トウモロコシの熱ショック蛋白質 70 遺伝子のイントロン。ZmHsp70 イントロンは植物における外来遺伝子の発現量を高めるために用いられる（Rochester et al., 1986）。</td>
</tr>
<tr>
<td>TS-CTP2</td>
<td>シロイヌナズナ（A. thaliana）の epsps 遺伝子の中で、EPSPS 蛋白質の N 末端側に存在する葉緑体輸送ペプチド部分をコードする塩基配列（Klee et al., 1987）。目的蛋白質を細胞質から葉緑体へと輸送する。</td>
</tr>
<tr>
<td>CS-改変 cp4 epsps</td>
<td>Agrobacterium CP4 菌株由来の 5-エノールビルビルシキミ酸-3-リン酸合成酵素遺伝子（Barry et al., 1997; Padgette et al., 1996a）。改変 CP4 EPSPS 蛋白質は、植物中での発現量を高めるために野生型 CP4 EPSPS 蛋白質の N 末端から二番目のセリンがロイシンに変更されている。</td>
</tr>
<tr>
<td>T-nos</td>
<td>A. tumefaciens T-DNA 由来のノパリン合成酵素（nos）遺伝子の 3'末端非翻訳領域で、mRNA の転写を終結させ、ポリアデニル化を誘導する（Bevan et al., 1983）。</td>
</tr>
</tbody>
</table>
表 3 NK603 の作出に用いた PV-ZMGT32 の各構成要素の由来及び機能（続き）

<table>
<thead>
<tr>
<th>構成要素</th>
<th>由来及び機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lac</td>
<td>laci コード領域の一部（Farabaugh, 1978）、lac プロモーター（Dickson et al., 1975）、lacZ コード領域の一部からなる配列で、ラクトースを加水分解し、選抜マーカーとして用いられるβ-ガラクトシダーゼを発現する（Shuman and Silhavy, 2000）。</td>
</tr>
<tr>
<td>OR 注6 ori pBR322</td>
<td>pBR322 から単離された複製開始領域であり、E.coli においてベクターに自律増殖能を付与する（Sutcliffe, 1979）。</td>
</tr>
<tr>
<td>nptII</td>
<td>E. coli のトランスゾン Tn5 に由来するホスホトランスフェラーゼ II（NPTII）をコードする配列（Beck et al., 1982）で、ネオマイシン耐性及びカナマイシン耐性を付与する。この領域は Tn5 由来の ble 遺伝子の一部を含み（Mazodier et al., 1985）、nptII プロモーター、ベータラクタマーゼ終結配列によって調節され、遺伝子導入の際、組換え体植物を選抜するためのマーカーとして用いられる（Fraley et al., 1983）。</td>
</tr>
</tbody>
</table>

注1 P – promoter (プロモーター)
注2 I – intron (イントロン)
注3 TS – targeting sequence (ターゲティング配列)
注4 CS – coding sequence (コーディング配列)
注5 T – transcript termination sequence (転写終結配列)
注6 OR – origin of replication （複製開始領域）

（本表に記載された情報に係る権利及び内容の責任はダウ・ケミカル日本株式会社にある）

10

表 4 DAS40278 の作出に用いた pDAS1740 の各構成要素の由来及び機能

<table>
<thead>
<tr>
<th>構成要素</th>
<th>由来及び機能</th>
</tr>
</thead>
<tbody>
<tr>
<td>改変 aad-1カセット</td>
<td></td>
</tr>
<tr>
<td>RB7 MAR</td>
<td>タバコ由来の核マトリックス結合領域（Allen et al., 1996）。改変 AAD-1 蛋白質の発現を安定させる。</td>
</tr>
<tr>
<td>ZmUbi1</td>
<td>トウモロコシ由来のユビキチンプロモーターで、エクソン及びイントロン領域を含む（Christensen et al., 1992）。植物体の全体において遺伝子の転写を開始させる。</td>
</tr>
<tr>
<td>改変 aad-1</td>
<td>グラム陰性桿菌である Sphingobium herbicidovorans 由来のアリオキシアルカノエート・ディオキシゲナーゼ遺伝子を植物における発現に適したコドンに改変した遺伝子で、改変 AAD-1 蛋白質を発現させる。改変 AAD-1 蛋白質のアミノ酸配列に関してはクローニングサイト導入のため、2 番目にアラニンが追加されている（Dow AgroSciences LLC, 2004）。</td>
</tr>
<tr>
<td>ZmPer5 3′UTR</td>
<td>トウモロコシ由来のターミネーター（Dow AgroSciences LLC, 1997）。遺伝子の転写を終結させる。</td>
</tr>
<tr>
<td>RB7 MAR</td>
<td>タバコ由来の核マトリックス結合領域（Allen et al., 1996）。改変 AAD-1 蛋白質の発現を安定させる。</td>
</tr>
</tbody>
</table>

（本表に記載された情報に係る権利及び内容の責任はダウ・ケミカル日本株式会社にある）
構成要素の機能

① 目的遺伝子、発現調節領域、局在化シグナル、選抜マーカーその他の供与核酸の構成要素それぞれの機能

MON89034、Cry1F line 1507、NK603 及び DAS40278 のそれぞれの作出に用いられた供与核酸の構成要素の機能は、それぞれ表 1～表 4（p. 7～11）に示したとおりである。

DAS40278 に導入した変異 aad-1 カセットには、核マトリックス結合領域である RB7 MAR 遺伝子が含まれる。核マトリックス結合領域はゲノム DNA 配列に頻繁に見られる領域で、DNA のループ構造形成のために、核マトリックスに DNA を固定する役割をしていると考えられている。核マトリックス結合領域が導入遺伝子のいずれかの側に隣接していると、導入遺伝子の発現を高めることや、遺伝子の発現を抑制するジーンサイレンシングを減少させることが報告されている（Allen et al., 2000；Halweg et al., 2005）。

② 目的遺伝子及び選抜マーカーの発現により産生される蛋白質の機能及び当該蛋白質がアレルギー性を有することが明らかとなっている蛋白質と相同性を有する場合はその旨

a. 目的遺伝子の発現により産生される蛋白質の機能

一害虫抵抗性蛋白質一

土壌中に一般的に存在するグラム陽性菌である B. thuringiensis の産生する結晶体の殺虫性蛋白質（Bt 蛋白質）は、標的昆虫の中腸上皮の特異的受容体と結合して陽イオン選択的小孔を形成し、その結果、消化プロセスを阻害して殺虫活性を示すことが知られている（Hofmann et al., 1988；Slaney et al., 1992；VanRie et al., 1990）。また、これまでの研究から Bt 蛋白質は複数のドメインから構成され、各ドメインが持つ機能も明らかにされている。例えば、Bt 蛋白質は、ドメイン I、II、III と C 末端ドメインにより構成されており、ドメイン I は消化プロセスを阻害する陽イオン選択的子小孔の形成、ドメイン II は特異的な受容体の認識、ドメイン III は受容体との結合性、そして C 末端ドメインは Bt 蛋白質の結晶構造に関与していることが明らかにされている（de Maagd et al., 2001；Masson et al., 2002）。
＜チョウ目害虫抵抗性蛋白質＞

【Cry1A.105 蛋白質】

MON89034 で発現する Cry1A.105 蛋白質は、Cry1Ab 蛋白質のドメイン I と II、Cry1F 蛋白質のドメイン III、Cry1Ac 蛋白質の C 末端ドメインにより構成される合成 Bt 蛋白質であり、異なる Bt 蛋白質のドメインを組み合わせることにより標的チョウ目害虫に対する殺虫活性を高める目的で開発された。

Cry1A.105 蛋白質の殺虫スペクトラムについては、人工飼料に混合した Cry1A.105 蛋白質を 5 種類のチョウ目昆虫を含む 15 種類の昆虫種に混餌投与することにより調査を行った。その結果、Cry1A.105 蛋白質は、トウモロコシの主要チョウ目害虫であるコーヌイヤーワーム（Helicoverpa zea）（MacRae et al., 2005）、ブラックカットワーム（ダマヤナガ）（Agrotis ipsilon）（MacRae, 2005）、フォールアーミーワーム（ツマジロクサヨトウ）（Spodoptera frugiperda）（MacRae, 2005）、サウスウエスタンコーンボーラー（Diatraea grandiosella）（MacRae, 2005）、ヨーロピアンコーンボーラー（ヨーロッパアワノメイガ）（Ostrinia nubilalis）（MacRae et al., 2006a）の幼虫に対して殺虫活性を示したが、チョウ目昆虫以外のミツバチ（Richards, 2006a；Richards, 2006b）やテントウムシ（Paradise, 2006a）などの益虫に対しては殺虫活性を示さなかった。

以上のことから、Cry1A.105 蛋白質は構成要素であるチョウ目害虫に殺虫活性を示す Cry1Ab 蛋白質、Cry1F 蛋白質及び Cry1Ac 蛋白質と同様にチョウ目害虫のみに選択的に殺虫活性を示し、それ以外の昆虫種に対しては殺虫活性を持たないことが確認された。

【改変 Cry2Ab2 蛋白質】

MON89034 で発現する改変 Cry2Ab2 蛋白質の殺虫スペクトラムについては、人工飼料に混合した改変 Cry2Ab2 蛋白質を、4 種類のチョウ目昆虫を含む 15 種類の昆虫種に混餌投与することにより調査を行った。その結果、改変 Cry2Ab2 蛋白質は、試験に用いた 4 種類の主要チョウ目害虫の中でコーヌイヤーワーム（MacRae et al., 2006a）、フォールアーミーワーム（MacRae et al., 2006b）及びヨーロピアンコーンボーラー（MacRae et al., 2006a）の幼虫に対して殺虫活性を示したが、ブラックカットワーム（MacRae et al., 2006b）に対しては殺虫活性を示さなかった。また、チョウ目害虫以外のミツバチ（Maggi, 2000a；Maggi, 2000b）やテントウムシ（Paradise, 2006b）などの益虫に対しても、殺虫活性を示さなかったことから、改変 Cry2Ab2 蛋白質は特定のチョウ目害虫のみに選択的に殺虫活性を示し、それ以外の昆虫種に対しては殺虫活性を持たないことが確認された。
なお、改変 cry2Ab2 遺伝子がコードする改変 Cry2Ab2 蛋白質は、クローニングの際に用いる制限酵素切断部位を付加するため、野生型 Cry2Ab2 蛋白質と比較して N 末端のメチオニンの後にアスパラギン酸が 1 つ挿入されている。

【改変 Cry1F 蛋白質】

Cry1F line 1507 で発現する改変 Cry1F 蛋白質は、チョウ目害虫であるヨーロピアンコーンボーラー、フォールアーミーワーム及びビートアーミーワーム（スピオントラジェラ）（*Spodoptera exigua*）の幼虫等に高い殺虫活性を示し、チョウ目昆虫以外のウッソウ目、ハチ目、アミメカゲロウ目及びトビムシ目等の昆虫、並びに哺乳類、鳥類、魚類等の非標的生物に対する毒性は認められていない（EPA, 2005）。

なお、改変 Cry1F 蛋白質は、アミノ酸配列の 604 番目のフェニルアラニンがロイシンに置換されている。

一除草剤耐性蛋白質一

【PAT 蛋白質】

Cry1F line 1507 で発現する PAT 蛋白質（ホスフィノスリン酸セチルトランスフェラーゼ）は、除草剤グルホシネートに対する耐性を付与する。除草剤グルホシネートは、グルタミン酸とアンモニアからグルタミンを合成するグルタミン合成酵素を阻害し、その結果、植物体内にアンモニアが蓄積して植物を枯死させる。PAT 蛋白質は、除草剤グルホシネートをアセチル化し、無毒なアセチルグルホシネートに変えることで、植物体にグルホシネートに対する耐性を付与する。

【改変 CP4 EPSPS 蛋白質】

NK603 で発現する改変 CP4 EPSPS 蛋白質は、除草剤グリホサートに耐性を持つ。植物は除草剤グリホサートを処理すると 5-エノールビルビルシキミ酸-3-リン酸合成酵素（酵素番号：E.C.2.5.1.19、以下「EPSPS 蛋白質」という。）が阻害されることにより蛋白質合成に必須の芳香族アミノ酸を合成できなくなり枯れてしまう。改変 CP4 EPSPS 蛋白質は、除草剤グリホサート存在下でも活性阻害を受けないため、結果として本蛋白質を発現する組換え植物ではシキミ酸合成が正常に機能して生育することができる。

なお、改変 *cp4 epsps* 遺伝子は、植物中での発現量を高めるために野生型 CP4 EPSPS 蛋白質の機能活性を変更することのないように野生型 *cp4 epsps* 遺伝子
の塩基配列に変改を加えたものであり、変改 CP4 EPSPS 蛋白質のアミノ酸配列に関しては N 末端から二番目のセリンがロイシンに変改されているのみである。なお、NK603 には、除草剤グリホサートに対する耐性を増強するため、変改 cp4 epsps 遺伝子カセットが 2 つ導入されている。

【変改 AAD-1 蛋白質】

DAS40278 で発現する変改 AAD-1 蛋白質は、アリルオキシアルカノエート系除草剤に酸素を導入する反応を触媒することにより、除草活性のない化合物に変換する酵素である。例えば、変改 AAD-1 蛋白質は除草剤 2,4-ジクロロフェノキシ酢酸（2,4-D）に酸素を導入する反応を触媒し、除草活性のない 2,4-ジクロロフェノール（2,4-DCP）とグリオキシル酸に変換する（Dow AgroSciences LLC, 2004）。

なお、変改 aad-1 遺伝子は、植物における発現に適したコードに変改した遺伝子で、アミノ酸配列に関してはクローニングサイト導入のため、2 番目にアラニンが追加されている。

b. アレルギー性を有することが明らかとなっている蛋白質との相同性

Cry1A.105 蛋白質、変改 Cry2Ab2 蛋白質、変改 Cry1F 蛋白質、PAT 蛋白質、変改 CP4 EPSPS 蛋白質及び変改 AAD-1 蛋白質が既知のアレルゲンと機能上重要なアミノ酸配列を共有するかどうかを以下のデータベースを用いて比較したところ、既知アレルゲンと構造的に類似性のある配列は共有していなかった。

③ 宿主の持つ代謝系を変化させる場合はその内容

Cry1A.105 蛋白質、変改 Cry2Ab2 蛋白質及び変改 Cry1F 蛋白質は、いずれも Bt 蛋白質である。これらの Bt 蛋白質が殺虫活性を発揮するメカニズムについては数多くの研究がなされており（OECD, 2007）、これまでのところ Bt 蛋白質が他の機能を有するとの報告はない。よって、これらの Bt 蛋白質が酵素活性を持つとは考えられず、宿主の代謝系を変化させることはないと考えられる。

PAT 蛋白質は、除草剤グルホシネートの有効成分である L 型ホスフィノスリン（L 型アミノ酸に分類）をアセチル化するが、他の L 型アミノ酸をアセチル化
化することはなく、特に構造の類似しているグルタミン酸にも親和性はほとんどない（Thompson et al., 1987）。また、各種アミノ酸が過剰に存在する条件下においても PAT 蛋白質によるグルホシネートのアセチル基転移反応は阻害されないことから、グルホシネートに対して極めて高い基質特異性を有することが報告されている（OECD, 1999）。よって、その基質特異性の高さから、PAT 蛋白質が宿主の代謝系を変化させることはないと考えられる。

改変 CP4 EPSPS 蛋白質と機能的に同一である EPSPS 蛋白質は、芳香族アミノ酸を生合成するためのシキミ酸経路を触媒する酵素蛋白質であるが、本経路における律速酵素ではなく、EPSPS 蛋白質の活性が増大しても、本経路の最終産物である芳香族アミノ酸の濃度が高まることはないと考えられている（Padgette et al., 1996b; Ridley et al., 2002)。また、EPSPS 蛋白質は基質であるホスホエノールピリビン酸塩（以下「PEP」という。）とシキミ酸-3-リン酸塩（以下「S3P」という。）と特異的に反応することが知られており（Gruys et al., 1992）、これら以外に唯一 EPSPS 蛋白質と反応することが知られているのは S3P の類似体であるシキミ酸である。しかし、EPSPS 蛋白質のシキミ酸及び S3P との反応について、反応の起こり易さを示す特異性定数（Specificity constant）kcat/Km の値で比較すると、EPSPS 蛋白質のシキミ酸との反応特異性は、EPSPS 蛋白質の S3P との反応特異性の約 200 万分の 1 に過ぎず（Gruys et al., 1992）、シキミ酸が EPSPS 蛋白質の基質として反応する可能性は極めて低い。よって、改変 CP4 EPSPS 蛋白質が宿主の代謝系を変化させることはないと考えられる。

改変 AAD-1 蛋白質は、アリルオキシアルカノエート基をもつ化合物のうち光学異性体のないもの及び光学異性体である R 体に特異的に酸素を導入する反応を触媒する酵素である。アリルオキシアルカノエート基をもつ化合物と構造的、生理機能的に似通った植物体中に存在する化合物について、改変 AAD-1 蛋白質の作用を実験室レベルで検討し、代謝経路への影響を考察した。基質として、植物ホルモンであるインドール-3-酢酸、アブシジン酸、ジベレリン酸、アミノシクロブレン・1-カルボン酸を、フェニルプロパノイド中間体であるトランス桂皮酸、クマル酸、シナビン酸を検討した。また、20 種類の L-アミノ酸についても検討した。

20 種類の L-アミノ酸については、1μM の改変 AAD-1 蛋白質の濃度において反応は認められなかった。一方、1μM の改変 AAD-1 蛋白質を植物ホルモン及びフェニルプロパノイド中間体に作用させた結果、アブシジン酸、ジベレリン酸、トランス桂皮酸、クマル酸にわずかながら反応が認められた。さらに、5μM 及び 10μM の改変 AAD-1 蛋白質を作用させた結果、5μM ではアミノシクロブレン・1-カルボン酸のみに、10μM ではインドール-3-酢酸のみにわずかながら反応が認められた。このように、改変 AAD-1 蛋白質の濃度と酵素活性に相関関
係が見られなかったことから、フーリエ変換質量分析（FT/MS）による酸化物の測定を行った。その結果、10μMの改変AAD-1蛋白質を作用させた場合に、インドール-3-酢酸とトランス桂皮酸の酸化物が検出された。しかしながら、その反応速度は非常に遅く、ミカエリス・メンデン式のパラメータであるKmとVmaxを求めることができなかった。このように、高濃度の改変AAD-1蛋白質を作用させ、高感度のフーリエ変換質量分析を行った場合のみに酸化物が検出され、その反応速度が非常に遅いことから、認められた酸化反応が植物の代謝経路に影響を与える可能性は低いと考えられる（Cicchillo et al., 2010）。
また、植物体中にはアルカロイドをもつ化合物の存在は知られていないことから、改変AAD-1蛋白質は、植物体の他の代謝系を変化させることはないと考えられる。

（2）ベクターに関する情報

イ 名称及び由来

親系統の作出に用いられたプラスミド・ベクターは以下のとおりである。
MON89034: E. coli由来のベクターpBR322をもとに構築されたPV-ZMIR245
Cry1F line 1507: E. coli由来のベクターpUC19をもとに構築されたPHP8999
NK603: E. coli由来のベクターpUC119をもとに構築されたPV-ZMGT32
DAS40278: E. coli由来のプラスミドpUC19をもとに構築されたpDAS1740

ロ 特性

① ベクターの塩基数及び塩基配列

親系統の作出に用いられたプラスミド・ベクターの塩基数は以下のとおりである。
MON89034: PV-ZMIR245: 17,600 bp
Cry1F line 1507: PHP8999: 9,504 bp
NK603: PV-ZMGT32: 9,308 bp
DAS40278: pDAS1740: 8,512bp、導入に用いた直鎖状DNA: 6,236bp

② 特定の機能を有する塩基配列がある場合は、その機能

選抜マーカーとして利用された抗生物質耐性遺伝子は以下のとおりである。
なお、いずれの抗生物質耐性遺伝子も宿主には導入されていない。
MON89034：スペクチノマイシンやストレストマイシン耐性を付与する
aadA 遺伝子及びカナマイシン耐性を付与する nptII 遺伝子
Cry1F line 1507：カナマイシン耐性を付与する nptII 遺伝子
NK603：カナマイシン耐性を付与する nptII 遗伝子
DAS40278：アンピシリン耐性を付与する apr 遺伝子

③ ベクターの感染性の有無及び感染性を有する場合にはその宿主域に関する情報
PV-ZMIR245、PHP8999、PV-ZMG132 及び pDAS1740 の感染性はいずれも知られていない。

(3) 遺伝子組換え生物等の調製方法

イ 宿主内に移入された核酸全体の構成

MON89034、Cry1F line 1507、NK603 及び DAS40278 のそれぞれに移入された核酸全体の構成図をそれぞれ図 1～図 4（p.18～19）に示した。

図 1 MON89034 に移入された核酸全体の構成図

構成図中の直角に曲がった矢印は導入遺伝子の 5'及び 3'末端とそれに続く近傍のトウモロコシ内在性配列を示している。構成図中の構成要素及び制限酵素切断部位の位置は推定されたおおおよその位置で示している。

（本図に記載された情報に係る権利及び内容の責任はダウ・ケミカル日本株式会社にある）
図 2 Cry1F line 1507 に移入された核酸全体の構成図
（本図に記載された情報に係る権利及び内容の責任はダウ・ケミカル日本株式会社にある）

図 3 NK603 に移入された核酸全体の構成図
構成図中の直角に曲がった矢印は導入遺伝子の 5'及び 3'末端とそれに続く近傍のトウモロコシ内在性配列を示している。構成図中の構成要素及び制限酵素切断部位の位置は推定されたおおよその位置で示している。
（本図に記載された情報に係る権利及び内容の責任はダウ・ケミカル日本株式会社にある）

図 4 DAS40278 に移入された核酸全体の構成図
（本図に記載された情報に係る権利及び内容の責任はダウ・ケミカル日本株式会社にある）
宿主内に移入された核酸の移入方法

宿主内への核酸の移入については以下の方法を用いて行った。

MON89034：アグロバクテリウム法
Cry1F line 1507：パーティクルガン法
NK603：パーティクルガン法
DAS40278：ウィスカー法

遺伝子組換え生物等の育成の経過

① 核酸が移入された細胞の選抜の方法

形質転換細胞の選抜は、以下を添加した培地を用いて行った。

MON89034：パロモマイシン
Cry1F line 1507：グルホシネート
NK603：グリホサート
DAS40278：ハロキシホップ

② 核酸の移入方法がアグロバクテリウム法の場合はアグロバクテリウムの菌体の残存の有無

MON89034において、培地へカルペニシリンを添加することによりアグロバクテリウムの除去を行った。なお、親系統の評価において、MON89034にアグロバクテリウム菌体が残存していないことは、カルペニシリン無添加の培地にMON89034を移した後に、その培地でアグロバクテリウムのコロニーが形成されていないことを観察することで確認されている。なお、Cry1F line 1507及びNK603の宿主への核酸の導入はパーティクルガン法により、DAS40278の宿主への核酸の導入はウィスカー法により行い、アグロバクテリウム法は用いていない。

③ 核酸が移入された細胞から、移入された核酸の複製物の存在状態を確認した系統、隔離試験により供した系統その他の生物多様性影響評価に必要な情報を収集するために用いられた系統までの育成の経過

1宿主トウモロコシであるHi-IIの未成熟胚をカルス化させ、液体培養することにより、胚懸濁液を得た。次に、胚懸濁液にpDAS1740から制限酵素Fsp Iにより切り出した直鎖状DNAと針状のシリコンカーバイトウィスカー繊維を加えて攪拌することにより、シリコンカーバイトウィスカー繊維が細胞に穴を開け、直鎖状DNAを宿主へ移入した(Thompson et al., 1995)。
MON89034 は、再分化個体である R0 世代を他の従来トウモロコシ品種 LH172 と交配させた LH172BC0F1 世代の中から、T-DNAII 領域が分離し、T-DNAI 領域のみを持つ個体を PCR 法により選抜した。その後、T-DNAII 領域を持つ個体は廃棄した。

その後、導入遺伝子や Cry1A.105 蛋白質及び改変 Cry2Ab2 蛋白質の発現量の解析によりさらに選抜を進める。人工気象室、温室試験を経て、野外実験での実際の害虫抵抗性及び農業形質（形態・生育に関する特性、収量に関わる特性、病害虫感受性など）などから総合的に判断して MON89034 が選抜された。

Cry1F line 1507 は、再生させた植物体の葉の一部を採取し、PCR 法で導入遺伝子の有無及び、ELISA 法で改変 Cry1F 蛋白質が産生されていることの確認を行った。さらに、ヨーロピアンコーンボーラーの幼虫に対する抵抗性の有無を検査し、抵抗性が認められた植物とそれと同系の繁殖系統を交配し、組換え体当代（T0）の種子を得た。野外実験におけるヨーロピアンコーンボーラー抵抗性及び農業形質から総合的に判断して Cry1F line 1507 が選抜された。

NK603 は、黄色デントコーン系の商用品種及び種々の品種を交配し、1997年より系統選抜の評価を開始し、1997～1999年にかけて延べ103ヵ所のほ場にて形態及び生育特性などについて調査を行った。また、改変 CP4 EPSPS 蛋白質の発現及び導入遺伝子の分析等を行い、最終的に優良系統を選抜した。

DAS40278 は、再生させた植物体（T0 世代）に、アリルオキシアルカノエート系除草剤であるキザロホップを散布することで改変 AAD-1 蛋白質が産生されていることを確認した。さらに、米国及びカナダの野外実験における導入遺伝子解析、蛋白質発現の確認、除草剤耐性及び農業形質等から総合的に判断して DAS40278 が選抜された。

以下に MON89034、Cry1F line 1507、NK603、DAS40278 及び本スタック系統トウモロコシの我が国における申請・認可状況を記載した（表 5, p. 22)。
表 5 MON89034、Cry1F line 1507、NK603、DAS40278 及び本スタック系統トウモロコシの我が国における申請・認可状況

<table>
<thead>
<tr>
<th></th>
<th>食品 1)</th>
<th>飼料 2)</th>
<th>環境 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON89034</td>
<td>2007年11月安全性確認</td>
<td>2007年10月安全性確認</td>
<td>2008年1月第一種使用規程承認</td>
</tr>
<tr>
<td>Cry1F line 1507</td>
<td>2002年7月安全性確認</td>
<td>2003年3月安全性確認</td>
<td>2005年3月第一種使用規程承認</td>
</tr>
<tr>
<td>NK603</td>
<td>2001年3月安全性確認</td>
<td>2003年3月安全性確認</td>
<td>2004年11月第一種使用規程承認</td>
</tr>
</tbody>
</table>
| DAS40278 | 2012年5月安全性確認 | 2010年6月安全性確認申请 | 2011年8月第一種使用規程
 パブコメ結果公表 |
| 本スタック系統トウモロコシ | 2012年申請予定 | 2012年届出予定 | 2012年5月申請 |

1) 食品衛生法
2) 飼料の安全性の確保及び品質の改善に関する法律
3) 遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律

【本スタック系統トウモロコシの育成の経過】

本スタック系統トウモロコシは、MON89034、Cry1F line 1507、NK603及びDAS40278から、交雑育種法により作出した（図5、p.22）。
(4) 細胞内に移入した核酸の存在状態及び当該核酸による形質発現の安定性

① 移入された核酸の複製物が存在する場所

MON89034、Cry1F line 1507、NK603 及び DAS40278 の導入遺伝子は染色体上に存在することが確認されている。

② 移入された核酸の複製物のコピー数及び移入された核酸の複製物の複数世代における伝達の安定性

サザンブロット分析による導入遺伝子の解析の結果、MON89034（Rice et al., 2006）、Cry1F line 1507（社内報告書 1）、NK603（Deng et al., 1999）及び DAS40278（社内報告書 2）の染色体上の 1 ヶ所にそれぞれの目的遺伝子がコピー存在することが親系統の評価で確認されている。また、親系統の評価において、導入遺伝子は安定して後代に遺伝していることが複数世代におけるサザンブロット分析によって示されている。

なお、MON89034 の導入遺伝子の塩基配列を解析した結果、cry1A.105 遺伝子の発現を制御する P-e35S の 5'末端領域とそれに隣接する右側境界領域が、相同組換えにより T-DNA II 領域内の左側境界領域と nptII 遺伝子の発現を制御する P-35S の 5'末端領域と置き換わっていることが明らかとなった。しかしながら、この相同組換えは蛋白質をコードする領域中では起こっておらず、最も近いオープンリーディングフレームである Cry1A.105 蛋白質のコード領域についても、Cry1A.105 蛋白質が各組織で正常に発現していることが確認されていることから、この相同組換えにより新たなオープンリーディングフレームは形成されていないと考えられた。

また、Cry1F line 1507 へ導入された核酸の塩基配列解析を行った結果、導入された核酸の 5'末端領域に変更 cry1F 遺伝子配列の一部が、5'末端及び 3'末端領域に pat 遗伝子配列の一部が、3'末端領域に ORF25PolyA Terminator 配列の一部が含まれていることが確認されたが、ノーザンブロット解析により mRNA への転写は行われておらず、これらの遺伝子断片は機能していないことが確認されている（社内報告書 3）。

また、NK603 においては、導入遺伝子の 3'末端近傍に P-Ract1 の 217bp の断片が逆方向で存在していることがサザンブロット分析及び 3'末端の塩基配列を分析することにより明らかになった。なお、NK603 における導入遺伝子の 3'末端近傍の P-Ract1 の 217bp の断片に関連して、strand-specific RT-PCR を行ったところ、導入遺伝子の P-Ract1 又は P-e35S のいずれかから始まって NOS 3'ターミネーターをリードスルーしていると考えられる転写産物が見つかった。しかし、NK603 においては改変 CP4 EPSPS 蛋白質のみが認められたことから、リードスルーする転写産物においても、ターミネーターの上流にある停止コドンは保存されていると考えられた（このリードスルーは安全性評価に影響を与え
えないと結論され、2004年11月、農林水産省及び環境省より遺伝子組換え生物等の使用等の規制による生物の多様性の確保に関する法律に基づく第一種使用規程（食用または飼料用に供するための使用、栽培、加工、保管、運搬及び廃棄並びにこれらに付随する行為）の承認を受けた。また、NK603の導入遺伝子においてP-e35Sで誘導される改変cp4epsps遺伝子中のコード領域の5’末端から456番目及び641番目の塩基がそれぞれ、植物発現用プラスミド中の塩基と比較してチミン(T)からシトシン(C)に変化していた。このうち、456番目の塩基の変化はアミノ酸の変化には結びつかないが、641番目の塩基の変化によりP-e35Sによって発現する改変CP4EPSPS蛋白質においてN末端から214番目のアミノ酸が元のCP4EPSPS蛋白質ではロイシンだったのが、プロリンに変わることが判明した（この蛋白質を以下「L214P蛋白質」という）。L214P蛋白質に関して、N末端から214番目のプロリンはEPSPS蛋白質ファミリーの活性に必須の7つのアミノ酸には含まれていないこと、このアミノ酸の変化はEPSPS蛋白質の活性部位及び三次元構造に影響を及ぼさないこと、L214P蛋白質と改変CP4EPSPS蛋白質の酵素活性及び免疫反応性が等同であることより、L214P蛋白質と改変CP4EPSPS蛋白質の構造と機能は等同であると考えられた(Astwood et al., 2001)。L214P蛋白質が既知の接触アレルゲンと機能上重要なアミノ酸配列を共有するかどうか、データベースを用いて比較したところ、既知アレルゲンと構造的に類似性のある配列を共有していなかった。この塩基の変化は複数の世代で確認されており、安定して後代に遺伝していることが認められた。

③ 染色体上に複数コピーが存在している場合は、それらが隣接しているか離れているかの別

MON89034、Cry1F line 1507、NK603及びDAS40278は全て1コピーなので該当しない。

④ (6)の①において具体的に示される特性について、自然条件の下での個体間及び世代間での発現の安定性

親系統の発現の安定性については以下のように親系統の評価で確認されている。

MON89034：ウエスタンブロット分析による蛋白質の発現確認(Hartmann et al., 2006)

Cry1F line 1507：ELISA法による蛋白質の発現確認(社内報告書4)及びチョウ目害虫を用いた生物検定と除草剤グルホシネート散布試験(隔離は場試験報告書1)

NK603：育成の過程で除草剤グリホサート散布を行い、改変CP4EPSPS蛋白質が複数世代で発現していることを確認した。
DAS40278：ELISA法による蛋白質の発現確認

⑤ ウイルスの感染その他の経路を経由して移入された核酸が野生動植物等に伝達されるおそれのある場合は、当該伝達性の有無及び程度

MON89034、Cry1F line 1507、NK603及びDAS40278に移入された核酸の配列には、伝達を可能とする配列を含まないため、ウイルスの感染その他の経路を経由して野生動植物等に伝達されるおそれはない。

(5) 遺伝子組換え生物等の検出及び識別の方法並びにそれらの感度及び信頼性

MON89034を検出及び識別するための方法としては、導入遺伝子及びその周辺の植物ゲノムのDNA配列をプライマーとして用いることにより、MON89034を特異的に検出可能である（Rice et al., 2006）。

Cry1F line 1507を検出及び識別するための方法として、導入遺伝子及びその周辺の植物ゲノムのDNA配列をプライマーとして用いたリアルタイム定量PCR法が開発されている（JRC, 2005）。

NK603を検出及び識別するための方法としては、導入遺伝子及びその周辺の植物ゲノムのDNA配列をプライマーとして用いることにより、NK603を特異的に検出可能である（Cavato et al., 2001）。

DAS40278を検出及び識別するための方法として、導入遺伝子及びその周辺の植物ゲノムのDNA配列をプライマーとして用いたPCR法が開発されている（Dow AgroSciences LLC, 2009）。

本スタック系統トウモロコシを検出及び識別するためには、上記の方法をトウモロコシの種子一粒ごとに行う必要がある。

(6) 宿主又は宿主の属する分類学上の種との相違

① 移入された核酸の複製物の発現により付与された生理学的又は生態学的特性の具体的な内容

本スタック系統トウモロコシには各親系統に由来する以下の特性が付与されている。

MON89034：導入遺伝子に由来するCry1A.105蛋白質及び改変Cry2Ab2蛋白質によるチョウ目害虫抵抗性

Cry1F line 1507：導入遺伝子に由来する改変Cry1F蛋白質によるチョウ目害虫抵抗性及びPAT蛋白質による除草剤グルホシネート耐性
NK603 : 導入遺伝子に由来する改変 CP4 EPSPS 蛋白質による除草剤グリホサート耐性
DAS40278 : 導入遺伝子に由来する改変 AAD-1 蛋白質によるアルルオキシアルカノエート系除草剤耐性

これらの蛋白質の機能的な相互作用の可能性について、害虫抵抗性蛋白質及び除草剤耐性蛋白質間の各観点から検討した。

害虫抵抗性蛋白質間での機能的な相互作用について

Cry1A.105 蛋白質、改変 Cry2Ab2 蛋白質及び改変 Cry1F 蛋白質はチョウ目害虫に殺虫活性を示す。これらの導入した遺伝子により発現する蛋白質は殺虫効果の特異性に関与する領域の構造に変化が生じていないため、殺虫効果に対する影響を及ぼすことはないと考えられる。また、本スタック系統トウモロコシにおいて各親系統が有する殺虫効果が相加的に高まることはあり得るが、お互いの作用に影響を及ぼし合うことによる相乘効果や拮抗作用が生じることは考え難しい。

除草剤耐性蛋白質間での機能的な相互作用について

PAT 蛋白質、改変 CP4 EPSPS 蛋白質及び改変 AAD-1 蛋白質は基質特異性が高く、宿主の代謝系を変化させることはないと考えられる。また、各蛋白質の基質は異なり、関与する代謝経路も互いに独立している。したがって、これらの蛋白質が相互に作用して予想しない代謝物が生じることは考え難しい。

害虫抵抗性蛋白質と除草剤耐性蛋白質間での機能的な相互作用について

害虫抵抗性蛋白質と除草剤耐性蛋白質は、それぞれの有する機能が異なるため、相互に影響を及ぼす可能性は考え難しい。

以上のことから、本スタック系統トウモロコシにおいて、それぞれの親系統由来の発現蛋白質が相互作用を示す可能性は低いと考えられた。

したがって、本スタック系統トウモロコシと宿主の属する分類学上の種であるトウモロコシとの生理学的又は生態学的特性の相違については、親系統である MON89034、Cry1F line 1507、NK603 及び DAS40278 を個別に調査した結果に基づき評価した。

② 以下に掲げる生理学的又は生態学的特性について、遺伝子組換え農作物と宿主の属する分類学上の種との間の相違の有無及び相違がある場合はその程度
各親系統の生物多様性影響評価は終了しており、以下の生理学的又は生態学的特性について、各親系統とそれぞれの対照の非組換えトウモロコシとの間に相違がないことが確認されている。なお、生理学的又は生態学的特性に関する情報は日本版バイオセーフティクリアリングハウスホームページから参照できる。

a 形態及び生育の特性
b 生育初期における低温又は高温耐性
c 成体の越冬性又は越夏性
d 花粉の稔性及びサイズ
e 種子の生産量、脱粒性、休眠性及び発芽率
f 交雑率
g 有害物質の産生性

3 遺伝子組換え生物等の使用等に関する情報

(1) 使用等の内容

食用又は飼料用に供するための使用、栽培、加工、保管、運搬及び廃棄並びにこれらに付随する行為。

(2) 使用等の方法

(3) 承認を受けようとする者による第一種使用等の開始後における情報収集の方法

[MON89034、Cry1F line 1507、NK603]
1. https://ch.biodic.go.jp/bch/OpenSearch.do で「生物名」に「トウモロコシ」を入力し、「検索・閲覧」を選択。
2. 該当する系統の「生物名 - トウモロコシ」を選択。
3. 「添付資料」を選択。
4. 「資料1」を選択。

[DAS40278]
2. 第47回の当該系統の「申請書等の概要 - PDF」を選択。
(4) 生物多様性影響が生ずるおそれのある場合における生物多様性影響を防止するための措置

緊急措置計画書を参照。

(5) 実験室等での使用等又は第一種使用等が予定されている環境と類似の環境での使用等の結果

(6) 国外における使用等に関する情報

MON89034、Cry1F line 1507、NK603、DAS40278 及び本スタック系統トウモロコシの諸外国における申請・認可状況は以下の表 6 (p. 28) に示したとおりである。

表 6 MON89034、Cry1F line 1507、NK603、DAS40278 及び本スタック系統トウモロコシの諸外国における申請・認可状況

<table>
<thead>
<tr>
<th></th>
<th>FDA</th>
<th>USDA</th>
<th>Health Canada</th>
<th>CFIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MON89034</td>
<td>2007年8月安全性確認</td>
<td>2008年7月安全性確認</td>
<td>2008年5月安全性確認</td>
<td>2008年6月安全性確認</td>
</tr>
<tr>
<td>Cry1F line 1507</td>
<td>2001年5月安全性確認</td>
<td>2001年6月安全性確認</td>
<td>2002年10月安全性確認</td>
<td>2002年10月安全性確認</td>
</tr>
<tr>
<td>NK603</td>
<td>2000年10月安全性確認</td>
<td>2000年9月安全性確認</td>
<td>2001年2月安全性確認</td>
<td>2001年3月安全性確認</td>
</tr>
<tr>
<td>DAS40278</td>
<td>2011年4月安全性確認</td>
<td>2009年8月安全性確認申請</td>
<td>2012年10月安全性確認</td>
<td>2012年10月安全性確認</td>
</tr>
<tr>
<td>本スタック系統トウモロコシ</td>
<td>待機中</td>
<td>待機中</td>
<td>待機中</td>
<td>2012年通知予定</td>
</tr>
</tbody>
</table>

FDA：米国食品医薬品庁
USDA：米国農務省
Health Canada：カナダ保健省
CFIA：カナダ食品検査庁

また、MON89034、Cry1F line 1507、NK603、DAS40278 及び本スタック系統トウモロコシの我が国における申請・認可状況は表 5 (p. 22) に記載した。
第二 項目ごとの生物多様性影響の評価

本スタック系統トウモロコシは MON89034, Cry1F line 1507, NK603 及び DAS40278 から、交雑育種法により作出した。

本スタック系統トウモロコシにおいて発現する Bt 蛋白質（Cry1A.105 蛋白質、改変 Cry2Ab2 蛋白質及び改変 Cry1F 蛋白質）は殺虫効果の特異性に関与する領域の構造に変化が生じていないため、殺虫効果に対する影響を及ぼすことはないと考えられ、害虫抵抗性蛋白質間で相互作用が生じることは考え難い。また、Bt 蛋白質は酵素活性を持たないため、植物代謝経路に影響を及ぼすことはないと考えられた。

次に、本スタック系統トウモロコシにおいて発現する PAT 蛋白質、改変 CP4 EPSPS 蛋白質及び改変 AAD-1 蛋白質の基質は異なる、関与する代謝経路も互いに独立している。また、PAT 蛋白質、改変 CP4 EPSPS 蛋白質及び改変 AAD-1 蛋白質はそれぞれ高い基質特異性を有することから植物代謝経路に影響を及ぼすことはないと考えられ、除草剤耐性蛋白質が相互に作用して予期しない代謝物が生じることは考え難い。

さらに、害虫抵抗性蛋白質と除草剤耐性蛋白質は、それぞれの有する機能が異なるため、相互に関与影響を及ぼす可能性は考え難い。

このように、各親系統由来の発現蛋白質が本スタック系統トウモロコシの植物体内において相互に影響する可能性は低く、各親系統が有する形質を併せ持つ以外に評価すべき形質の変化はないと考えられる。

したがって、本スタック系統トウモロコシの生物多様性影響の評価は、各親系統の諸形質を個別に調査した結果に基づいて実施した。以下の「1 競合における優位性」、「2 有害物質の産生性」、「3 交雑性」の各項目について、資料 1～4 のとおり、各親系統において生物多様性影響が生ずるおそれはないと結論されている。このため、本スタック系統トウモロコシは、競合における優位性、有害物質の産生性及び交雑性に起因する生物多様性影響が生ずるおそれはないと判断された。

1 競合における優位性

(1) 影響を受ける可能性のある野生動植物等の特定

(2) 影響の具体的内容の評価

(3) 影響の生じやすさの評価
(4) 生物多様性影響が生ずるおそれの有無等の判断

2 有害物質の産生性
5
(1) 影響を受ける可能性のある野生動植物等の特定
(2) 影響の具体的内容の評価
10 (3) 影響の生じやすさの評価
(4) 生物多様性影響が生ずるおそれの有無等の判断
15 3 交雑性
(1) 影響を受ける可能性のある野生動植物等の特定
(2) 影響の具体的内容の評価
20 (3) 影響の生じやすさの評価
(4) 生物多様性影響が生ずるおそれの有無等の判断
25 4 その他
第三 生物多様性影響の総合的評価

本スタック系統トウモロコシにおいて発現する Bt 蛋白質 (Cry1A.105 蛋白質、
改変 Cry2Ab2 蛋白質及び改変 Cry1F 蛋白質) は殺虫効果の特異性に関与する
領域の構造に変化が生じていないため、殺虫効果に対する影響を及ぼすことは
ないと考えられ、害虫抵抗性蛋白質間で相互作用が生じることは考え難い。ま
た、Bt 蛋白質は酵素活性を持たないため、植物代謝経路に影響を及ぼすことは
ないと考えられた。

次に、本スタック系統トウモロコシにおいて発現する PAT 蛋白質、改変 CP4
EPSPS 蛋白質及び改変 AAD-1 蛋白質の基質は異なり、関与する代謝経路も互
いに独立している。また、PAT 蛋白質、改変 CP4 EPSPS 蛋白質及び改変 AAD-1
蛋白質はそれぞれ高い基質特異性を有することから植物代謝経路に影響を及ぼ
すことはないと考えられ、除草剤耐性蛋白質が相互に作用して予期しない代謝
物が生じることは考え難い。

さらに、害虫抵抗性蛋白質と除草剤耐性蛋白質は、それぞれの有する機能が
異なるため、相互に影響を及ぼす可能性は考え難い。

このように、各親系統由来の発現蛋白質が本スタック系統トウモロコシの植
物体内において相互に影響する可能性は低く、各親系統が有する形質を併せ持
つ以外に評価すべき形質の変化はないと考えられる。

本スタック系統トウモロコシの生物多様性影響の評価を、各親系統の諸形質
を個別に調査した結果に基づいて実施した結果、本スタック系統トウモロコシ
及び本スタック系統トウモロコシの親系統それぞれへの導入遺伝子の組合せを
有するものであって当該トウモロコシから分離した後代系統のスタック系統ト
ウモロコシを第一種使用規程に従って使用した場合に、我が国の生物多様性に
影響が生ずるおそれはないと総合的に判断した。

JRC (2005) Event-specific method for the quantitation of maize line TC1507 using real-time PCR.

MacRae, T. (2005) Insecticidal activity of the Cry1A.105 *Bacillus thuringiensis* protein against five lepidopteran pests of corn. Monsanto Technical Report MSL 20056. (社内報告書)

OECD (1999) Series on Harmonization of Regulatory Oversight in Biotechnology, No. 11: Consensus document on general information concerning the genes and their enzymes that confer tolerance to phosphinothricin herbicide.

戸澤英男 (2005)「トウモロコシー歴史・文化、特性・栽培、加工・利用」, (社)農山漁村文化協会

社内報告書 1：Cry1F line 1507、移入された核酸の複製物のコピー数及び移入された核酸の複製物の複数世代における伝達の安定性の確認（社内報告書）

社内報告書 2：DAS40278、導入遺伝子のコピー数並びに世代間及び同一世代における安定性（社内報告書）

社内報告書 3: MOLECULAR CHARACTERIZATION OF B.T. CRY1F MAIZE LINE 1507（社内報告書）

社内報告書 4：Cry1F 蛋白質及 PAT 蛋白質が後代品種中でも安定して産生されることの確認（社内報告書）
隔離圃場試験報告書 1：Bt Cry1F 害虫抵抗性及びグルホシネート耐性トウモロコシ 1507 系統の隔離圃場における環境に対する安全性評価（社内報告書）
緊急措置計画書

平成24年5月28日

氏名 ダウ・ケミカル日本株式会社
代表取締役 栗田 道郎
住所 東京都品川区東品川二丁目2番24号

第一種使用規程の承認を申請しているチョウ目害虫抵抗性並びに除草剤アリルオキシアルカノエート系、グルホシネート及びグリホサート耐性トウモロコシ（cry1A.105、変改cry2Ab2、変改cry1F、変改aad-1、pat、変改cp4 epsps、Zea mays subsp. mays (L.) Itits）(MON89034 × B.t. Cry1F maize line 1507 × NK603 × DAS40278、OECD UI: MON-89034-3 × DAS-Ø15Ø7-1 × MON-ØØ6Ø3-6 × DAS-4Ø278-9)（以下「本スタック系統トウモロコシ」という。）並びにMON89034、B.t. Cry1F maize line 1507、NK603及びDAS40278のうち2系統や3系統の組合せからなるスタック系統トウモロコシの第一種使用等において、生物多様性影響が生ずるおそれがあると、科学的根拠に基づき立証された場合、以下の措置を執ることとする。

第一種使用等における緊急措置を講ずるための実施体制及び責任者
（個人名・所属・電話番号は個人情報のため非開示）　平成24年5月現在

<table>
<thead>
<tr>
<th>社内委員</th>
<th>ダウ・ケミカル日本株式会社 代表取締役 東京都品川区東品川二丁目2番24号（電話番号）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ダウ・ケミカル日本株式会社</td>
</tr>
<tr>
<td></td>
<td>ダウ・ケミカル日本株式会社</td>
</tr>
<tr>
<td></td>
<td>ダウ・ケミカル日本株式会社</td>
</tr>
</tbody>
</table>

＊：管理責任者
2 第一種使用等の状況の把握の方法

弊社は、米国ダウ・アグロサイエンス社と連絡をとり、種子、穀物生産、収穫物の状況に関し、種子製造、種子供給、販売、穀物取扱業者など使用の可能性がある関係者から可能な限り情報収集を行う。

3 第一種使用等をしている者に緊急措置を講ずる必要があること及び緊急措置の内容を周知するための方法

弊社は、米国ダウ・アグロサイエンス社と連絡をとり、生産農家や穀物取扱業者などの取引ルートへ本スタック系統トウモロコシ及び本スタック系統トウモロコシの親系統のうち2系統や3系統の組合せからなるスタック系統トウモロコシの適切な管理、取扱いなどの生物多様性影響のリスクとその危機管理計画について情報提供を行う。

4 遺伝子組換え生物等を不活化し又は拡散防止措置を取り、その使用等を継続するための具体的な措置の内容

生物多様性影響を生ずるおそれがあると認められた場合、弊社は米国ダウ・アグロサイエンス社の協力のもと、本スタック系統トウモロコシ及び本スタック系統トウモロコシの親系統のうち2系統や3系統の組合せからなるスタック系統トウモロコシが環境中に放出されないように必要かつ適切な措置をとるとともに、環境中に放出された本組換えトウモロコシは、環境中で生存しないように不活化する。

5 農林水産大臣及び環境大臣への連絡体制

弊社は信頼性のある証拠及びデータにより生物多様性影響が生ずるおそれがある場合、直ちに農林水産省消費安全部農産安全管理課及び環境省自然環境局野生生物課に報告する。以上