Table 1 Monitoring Result of the Substances for Which Environmental Quality Standards (EQSs) Are Established

Substance	Number of	Ratio of monitoring	Average	Range of
	monitoring	points exceeding EQS	concentration	concentration
	points	(%)		
Benzene	458	3.9 (5.5)	$1.7 \mu g/m^3$	$0.47 \sim 3.7 \ \mu g/m^3$
Trichloroethylene	406	0 (0)	$0.75 \mu g/m^3$	$0.0045 \sim 15 \mu \text{g/m}^3$
Tetrachloroethylene	405	0 (0)	$0.28 \mu g/m^3$	$0.0040 \sim 2.5 \ \mu \text{g/m}^3$
Dichloromethane	406	0 (0)	$2.1 \mu \text{g/m}^3$	$0.11 \sim 22 \ \mu g/m^3$

Note: Figures in parentheses are those of FY 2004.

Table 2 Monitoring Result of the Substances for Which Guideline Values as Hazardous Air Pollutants Are Established

Substance	Number of	Ratio of	Average	Range of
	monitoring	monitoring points	concentration	concentration
	points	exceeding guideline		
		value (%)		
Acrylic nitrile	386	0 (0)	$0.10 \ \mu g/m^3$	$0.0075 \sim 2.0 \mu \text{g/m}^3$
Vinyl chrolide	378	0 (0)	$0.069 \mu g/m^3$	$0.0017 \sim 2.4 \mu \text{g/m}^3$
monomer				
Mercury and its	320	0 (0)	2.3 ngHg/m^3	$0.69 \sim 5.0 \text{ ngHg/m}^3$
compounds				
Nickel and its	318	0.9 (1.8)	5.3 ngNi/m ³	$0.90 \sim 38 \text{ngNi/m}^3$
compounds				

Note: Figures in parentheses are those of FY 2004.