補助金、価格付け、直接規制、排出量取引、税、 R&D補助はどのような効果があるのか?

馬奈木俊介

Shunsuke Managi

東北大学

環境省税制全体のグリーン化推進検討会発表資料 07/03/2012

補助金

思うような効果は出ていない.

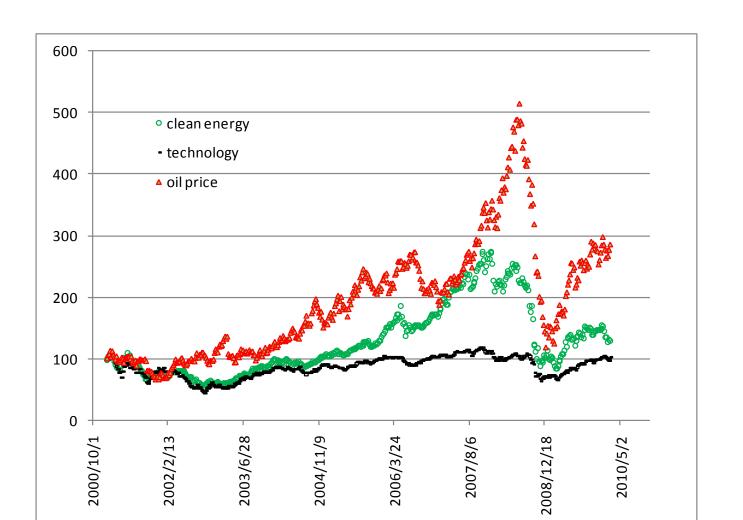
森林 (Managi, 2010, Apr.Econ.)

漁業 (Yagi and Managi, 2010 Ag. Econ.)

廃棄物 (Managi, Hibiki, and

Shimane, 2011)

EV、FCV支援の可能性(Ito and Managi エコカー支援(今回の発表)



ミネルヴァ書房

価格付け

• エネルギー市場と炭素市場はリンク(Kumar, Managi, Matsuda, 2011. Ene. Econ.)

価格変化が技術進歩を促す.

- 世界における石油価格(Kumar and Managi, 2009, En.&Res. Econ.)
- 米国SO2 排出権市場(Kumar and Managi, 2009, Ecol. Econ.)

直接規制

自動車 (Managi, Hibiki, and Arimura (2010)) 規制→R&D 規制→技術進歩(間接影響>直接影響)

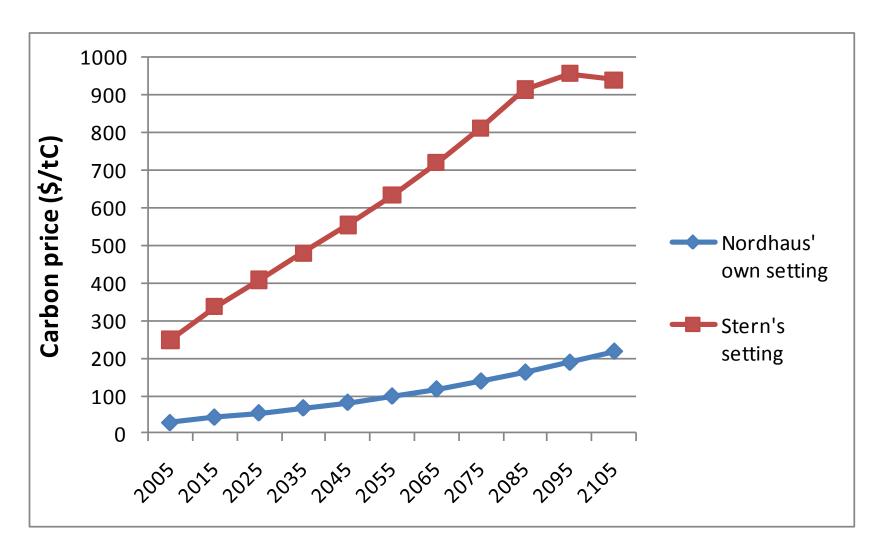
石油ガス(Managi, Opaluch, Jin, and Grigalunas, 2005 Land Economics; 2004 J. of Env. Econ. Manag).

規制は(環境を考慮した総合的な)技術進歩を促す

都市の低炭素化

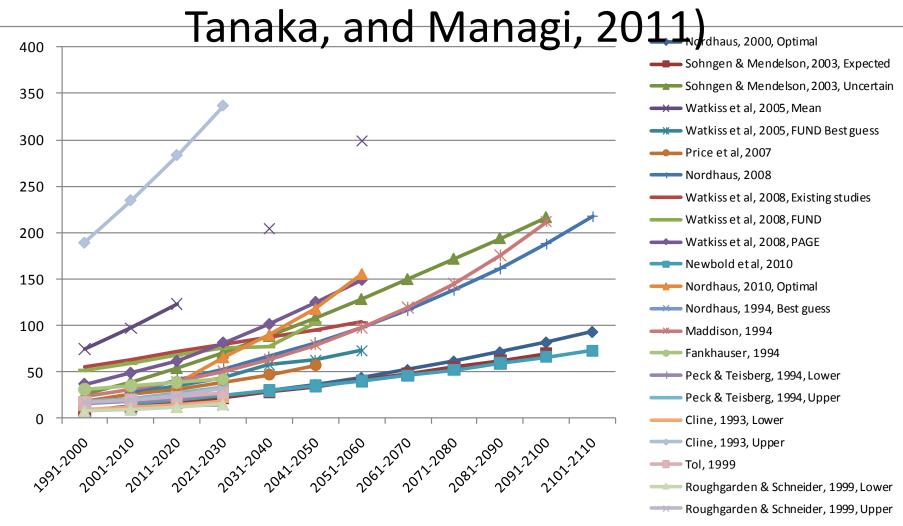
都市の高密度化(コンパクト化)でCO2削減が可能

(岩田和之・馬奈木俊介(2012)「都市計画:社会システムの変更による環境配慮型都市への移行」、『環境と資源の経済学』第13章、馬奈木俊介(編)、昭和堂、近刊予定.)


コンパクト化の施策として 市街化区域、市街化調整区域の設定 都市計画税、固定資産税の見直し 空中権取引要件の緩和 集合住宅での建て替え要件緩和

環境技術進歩のためのR&D補助

学習効果は大きい フラットな支援が望ましい (Oikawa and Managi, 2012)


重みをつけた支援→当初は効果があるが、学習効果が少ない→フラットな支援以下の効果

炭素価格

Source: Calculated carbon prices in Nordhaus (2008)

炭素の社会的費用(US 2005 \$/tC, Hatase and Managi, 2012) ある程度の不確実性は協力へ(Kotani,

エコカー支援制度の分析

分析対象:2009年から2010年に行われたエコカー補助金、 及び減税の費用対効果を分析

・エコカー減税(低排出ガス車認定制度):

期間:2009年4月~2010年3月

自動車取得税、重量税の減免

(認定区分により100%、75%、50%の減免を行う)

・エコカー補助金(環境対応車 普及促進対策費補助金)

期間:2009年4月~2010年9月

対象普通自動車:25万円 対象軽自動車:12.5万円

※廃車に伴う新規購入の場合

分析モデル

ダイナミックパネル分析(ランダム効果分析法及びSystem GMM)

```
\begin{aligned} Carsell_{i,t} &= Carsell_{i,t-1} + Carsell_{i,t-2} + subsidy_{i,t} + cartax_{i,t} + price_{i,t} + volume_{i,t} \\ &+ displacement_{i,t} + milage_{i,t} + horse_{i,t} + gasprice_{t-1} + gasprice_{t-2} \\ &+ gastax_{t} + Maker_{i} + Green_{t} + year + month + c + \mu_{i} + v \end{aligned}
```

Carsell:新車登録台数(台) subsidy:補助金額(円) cartax:減稅比率(%)

price: 車体価格(円)Displacement: 排気量 milage: 燃費(km/l) horse: 馬力(最高出力時)

gasprice:ガソリン価格(円/ℓ) Gastax:揮発油税(円/kℓ) Maker:メーカーダミー

Green: グリーン税制期間ダミー year:年ダミー month: 月ダミー

i:車種(車名) t:月(月次データ)

データ出典(分析対象期間 2005年1月~2010年12月)

新車登録台数:新車登録台数年報(日本自動車販売連合協会,各年)

車体価格:国産車価格一覧表(自動車市場情報社、各年)

車種別仕様データ: 自動車諸元表(自動車技術会、各年)

推計結果

$Carsell_{t-1}$	0.677***	Green	184.858***
	(87.20)		(10.04)
Carsell _{t-2}	0.235***	gastax	-0.003
	(30.10)		(-1.07)
subsidy	0.0004***	ダイハツ	-80.174**
	(3.62)		(-2.17)
cartax	351.027***	富士重工	35.407
	(6.34)		(-0.94)
price	-0.0001**	ホンダ	15.335
	(-2.59)		(0.67)
volume	-0.103**	いすゞ	29.103
	(-2.19)		(0.28)
displacement	30.512	マツダ	-49.307*
	(1.20)		(-1.92)
milage	5.175**	三菱	-75.305**
	(2.18)		(-2.57)
horse	0.234	日産	26.583
	(0.81)		(1.30)
$gasprice_{t-1}$	1.180	スズキ	-90.458***
	(0.92)		(-2.64)
gasprice _{t-2}	1.499	c	-105.134
	(1.04)		(-0.45)

※*は10%水準で統計的に有意、**は5%、***は1%水準で有意であることを示す。

費用対効果分析

普及台数推定(推計パラメータより)

- ・エコカー減税による普及効果
- ⇒約11万台
- ・エコカー補助金による普及効果
- ⇒約17万台

代替分の既存自動車からの排出量

10万km÷燃費(13.23km/e)

- ×ガソリン排出係数(0.0023t/ℓ)
- ×各施策普及台数合計

<仮定設定>

- ・既存自動車の燃費設定
- エコカー減税、補助金対象外車平均
- ・自動車の使用年数、走行距離
- 10年間、10万kmを仮定
- •乗り換え、廃車

普及台数=乗り換え台数=廃車台数

エコカ一乗り換え分の排出量

∑{10万km÷燃費(各車種: km/ℓ)

- ×ガソリン排出係数(0.0023t/e)
- ×各車種普及台数]

	ガソリン消費量削減量 (万kl)	CO₂削減量 (万t−CO₂)	ガソリン消費削減費用 (円/0)	CO ₂ 削減費用 (円/t-CO ₂)
減税	44.71	103.74	1,264.79	54,516
補助金	24.40	56.61	2,581.84	111,285
合計	69.11	160.35		

分析結果総括

· 考察

①補助金政策の非効率性

補助金:約111,285円/CO₂-t 減税;約54,516円/CO₂-t

- ⇒減税政策の優位性
- ②エネルギー関連税制、ガソリン価格

揮発油税、ガソリン価格も有意な関係性を示さない

- ⇒月次データの影響(いつの時期のエネルギー価格を参照して新車を 購入するか関係性が不明瞭)
- ・今後の分析課題
- ①乗り換え動向の考慮

保有数の増減、廃車の動向、乗り換えた自動車の経年など

②中古車市場への影響も重要

既存自動車が中古市場へ⇒中古車の価格低下

⇒中古車の販売台数増加(エコカー普及効果の低下)