平成 24 年度
環境研究総合推進費補助金 研究事業
総合研究報告書

食用油製造工程で排出する遊離脂肪酸残渣油を原料とした
高品質バイオディーゼル燃料の連続製造技術の開発
に関する研究
（K2401, K2302, K22007）

平成 25 年 3 月

東北大学　米本　年邦
補助事業名　環境研究総合推進費補助金研究事業（平成22年度〜平成24年度）

所　管　環境省

国庫補助金　57,775,000 円（複数年度の総計）

研究課題名　食用油製造工程で排出する遊離脂肪酸残渣油を原料とした高品質バイオディーゼル燃料の連続製造技術の開発に関する研究

研究期間　平成22年4月1日〜平成25年3月31日

研究代表者名　米本年邦（東北大学）

研究分担者名　木村俊之（（独）農業・食品産業技術総合研究機構・東北農業研究センター）
　　北川尚美（東北大学）
<table>
<thead>
<tr>
<th>項目</th>
<th>頁數</th>
</tr>
</thead>
<tbody>
<tr>
<td>総合研究報告書概要</td>
<td>1</td>
</tr>
<tr>
<td>本文</td>
<td></td>
</tr>
<tr>
<td>1. 研究背景と目的</td>
<td>7</td>
</tr>
<tr>
<td>2. 研究方法</td>
<td></td>
</tr>
<tr>
<td>2.1 回分系での燃料合成実験</td>
<td>13</td>
</tr>
<tr>
<td>2.2 連続系での燃料合成実験</td>
<td>13</td>
</tr>
<tr>
<td>2.3 残渣油の高付加価値物質濃度の分析</td>
<td>15</td>
</tr>
<tr>
<td>2.4 流通系でのビタミン E 類回収実験</td>
<td>17</td>
</tr>
<tr>
<td>2.5 树脂再生条件の検討</td>
<td>17</td>
</tr>
<tr>
<td>2.6 燃料製造コストの試算</td>
<td>19</td>
</tr>
<tr>
<td>3. 結果と考察</td>
<td></td>
</tr>
<tr>
<td>3.1 回分系での燃料合成実験結果</td>
<td>20</td>
</tr>
<tr>
<td>3.2 バイオディーゼル連続合成実験結果</td>
<td>24</td>
</tr>
<tr>
<td>3.3 残渣油の高付加価値物質濃度の測定結果</td>
<td>30</td>
</tr>
<tr>
<td>3.4 ビタミン E 類の回収実験結果</td>
<td>31</td>
</tr>
<tr>
<td>3.5 树脂再生条件の検討結果</td>
<td>31</td>
</tr>
<tr>
<td>3.6 燃料製造コストの試算と経済性の評価</td>
<td>37</td>
</tr>
<tr>
<td>4. 結論</td>
<td>39</td>
</tr>
<tr>
<td>5. 参考文献</td>
<td>41</td>
</tr>
<tr>
<td>6. 研究発表</td>
<td></td>
</tr>
<tr>
<td>6.1 論文発表</td>
<td>44</td>
</tr>
<tr>
<td>6.2 邀請講演</td>
<td>44</td>
</tr>
<tr>
<td>6.3 学会等発表</td>
<td>44</td>
</tr>
<tr>
<td>7. 知的財産権の取得状況</td>
<td>47</td>
</tr>
<tr>
<td>研究概要図</td>
<td>48</td>
</tr>
<tr>
<td>英文概要</td>
<td>49</td>
</tr>
</tbody>
</table>
環境研究総合推進費補助金 研究事業 総合研究報告書概要

研究課題名：食用油製造工程で排出する遊離脂肪酸残渣油を原料とした高品質バイオディーゼル燃料の連続製造技術の開発に関する研究

研究番号：（K2401）K2302, K22007

国庫補助金精算所要額：57,775,000 円（複数年度の総計）

研究期間：平成22年4月1日～平成25年3月31日

研究代表者名：米本年邦（東北大学）

研究分担者名：木村俊之（(独)農業・食品産業技術総合研究機構・東北農業研究センター）、
北川尚美（東北大学）

研究目的
食用油の製造工程で排出される発生量が豊富な遊離脂肪酸残渣油を原料とし、陽イオン交換樹脂と陰イオン交換樹脂の触媒能と吸着能を適切に発現させることで、高品質のバイオディーゼル燃料を連続製造できる汎用性の高い技術を開発する。達成目標は、ベンチスケールの連続製造装置を作製し、1)遊離脂肪酸100%の原料油をも燃料に変換可能なエスチル化条件を明らかにすること、2)本装置からの流出溶液中の残存アルコール、未反応物、グリセリンが燃料品質基準値以下となる操作条件を明らかにすること、3)残渣油に含まれるビタミンE類などの高付加価値物質を探索し、その回収条件を確立すること、4)プロセスの簡略化や溶媒使用量削減を徹底し真の環境調和型製造技術を構築すること、5)上記のデータに基づき、バイオディーゼル燃料の製造コストとその際得られる高付加価値物質の利益コストを試算し、本プロセスの経済性を評価すること、である。

研究方法
遊離脂肪酸残渣油には、食用米油製造を行っている三和油脂（株）より提供された米ぬか由来のもの（遊離脂肪酸含有量95 wt%以上、残りはトリグリセリド）を用いた。アルコールには、バイオディー
ゼル燃料の品質規格が全てメチルエステルを対象としていることから、メタノールを用いた。主成分である遊離脂肪酸を燃料に変換する触媒には、多孔性の陽イオン交換（強酸性）樹脂 Diaion PK208LH を、また、微量成分であるトリグリセリッドを燃料に変換する触媒には、多孔性の陰イオン交換（強塩基性）樹脂 Diaion PA306S を用いた。どちらも三菱化学（株）より提供されたものであり、これまでの研究で最も高い触媒活性を示すことが分かっている。陽イオン交換樹脂 PK208LH は、触媒活性を持つ H 型で工場出荷されるものの、水膨潤状態であるため、反応物である遊離脂肪酸（油分）が樹脂内に侵入しにくい。そこで、副反応物であるメタノールで膨潤化処理を行った後、実験に用いた。一方、陰イオン交換樹脂 PA306S は触媒活性を持たない Cl 型の水膨潤状態で工場出荷されるため、吸着活性を持つ OH 基への置換とメタノール膨潤化処理を行った後、実験に用いた。

本研究で作製したベンチスケールの燃料連続合成装置は、陽イオン交換樹脂を充填したカラム（直径 10 cm×長さ 100 cm）と陰イオン交換樹脂を充填したカラム（直径 5 cm×長さ 50 cm）を直列に連結したものである。攪拌機を備えた原料タンクは 50 ℃の恒温槽中に設置され、各カラムと配管はヒーターで 50 ℃に保持される。原料タンク内の残渣油とメタノールの混合液は、ポンプで1塔目のカラム底部から上昇流で供給され、その流出溶液がそのまま2塔目カラム底部から上昇流で流れ、上部から流出する。その際、1塔目カラムでは、陽イオン交換樹脂のエステル化触媒能により残渣油の主成分遊離脂肪酸が燃料に変換、2塔目のカラムでは、陰イオン交換樹脂のエステル交換触媒能により微量成分トリグリセリッドが燃料に変換される。同時に、これらの反応で副生する水やグリセリンが後段の陰イオン交換樹脂に吸着保持され、溶液中から除去される。その結果、装置から流出する製品は不純物を含まない高品質品となることが期待され、煩雑な精製工程を省略できる可能性がある。ただし、後段の陰イオン交換樹脂は、脂肪酸基とのイオン交換や副生物の吸着によって触媒活性を失うため定期的な再生処理が必要となる。

まず、達成目標1)の前段の遊離脂肪酸のエステル化の適切な運転条件を探索するため、1塔目の陽イオン交換樹脂を充填したカラムのみを用いて連続エステル化実験を行った。ここでは、操作因子として、残渣油の脂肪酸基とメタノールのモル比や充填樹脂量、原料供給流量を変化させた。各実験では、1塔目のカラム上部からの流出溶液を所定時間毎に分取器で回収し、反応物である遊離脂肪酸やトリグリセリッドの濃度をUV検出器付高速液体クロマトグラフで、副反応物であるメタノールや生成物である脂肪酸エステル濃度を水素炎イオン検出器付ガスクロマトグラフで、それぞれ分析した。

次に、達成目標2)を実現するため、前述の適切化した条件で、1塔目と2塔目の両カラムを用いて連続燃料合成実験を行った。ここでは、2塔目のカラム上部からの流出溶液を所定時間毎に分取器で回収し、反応物や生成物濃度を同様に測定した。後段の陰イオン交換樹脂の活性は徐々に低下
するため、ある時点から流出溶液の未反応物濃度が増加し始めると予想される。この未反応物濃度が増加し始めるまでの操作時間、すなわち、樹脂活性の保持時間を探索した。また、2塔目のカラム上部からの流出溶液が、バイオディーゼル燃料の品質規格を満たしているかを検討するため、品質評価の専門機関である（社）日本油料検定協会に分析を依頼した。その際、必要に応じてメタノールの蒸留除去を行った。

また、達成目標3)の残渣油に含まれる高付加価値物質を把握するため、高い抗酸化活性を示すビタミンE類や、コレステロール吸収を阻害する植物ステロール、美容効果の高いスクアレンなどの定性分析を行った。そして、残渣油からビタミンE類を回収するための流通系の分離プロセスを構築するため、実験室規模の小型カラムを用いてモデルビタミンEの吸着・脱着実験を行い、各挙動に及ぼす樹脂量やビタミンE濃度の影響を詳細に検討した。

さらに、達成目標4)を実現するため、前段の陽イオン交換樹脂のメタノール膨潤化前処理でのメタノール使用量の削減や、後段の陰イオン交換樹脂の再生処理法でのプロセスの簡略化と溶液使用量の削減を行った。

最後に、達成目標5)の本製造法による燃料製造コストの試算を行い、その際、ビタミンE類が回収されるとした利益コストも計算した。そして、本プロセスの経済性を評価した。

結果と考察

まず、本研究で作製したベンチスケールの燃料連続合成装置の前段である陽イオン交換樹脂塔で残渣油の主成分遊離脂肪酸（FFA）の転化率 100 %を達成できる条件の探索を行った。原料溶液の脂肪酸基とメタノールのモル比を化学量論比（1:1）とした条件では、FFA 転化率は 41 %であったが、流出溶液中のメタノールは、その 92%が消失していた。このことから、メタノール不足によってエステル化が十分に進行していなかったと考えられる。陽イオン交換樹脂の骨格が水溶性物質を保持し易いことから、原料溶液中のメタノールが反応に関与しない形で樹脂に保持されたと推測される。次に、メタノールを量論比の2倍 1:2 と仮定した条件では、FFA の転化率が 58 %に上昇した。ここでは、残存する FFA が反応するのに十分なメタノールが残っていたことから、滞在時間が不十分であったと考えられる。そこで、このモル比で滞在時間を長くした条件では、流出する FFA 濃度は検出限界以下となり、転化率 100 %を達成した。また、この条件で 4 倍のスケールアップを行ったところ、同様に転化率 100 %を達成できた。

次に、適切化した条件で、前段の陽イオン交換樹脂塔からの流出溶液を、そのまま後段の陰イオン交換樹脂塔の塔頂から供給することで燃料連続合成実験を行った。後段カラムからの流出溶液では、生成物脂肪酸エステル（FAME）濃度が、原料供給開始と共に速やかに増加し、一定となる傾向を示す。
微量成分トリグリセリドは検出限界以下となっており、全て燃料に変換された。一方、FFA濃度は、原料溶液供給開始後110hまで検出限界以下であった。しかし、それ以降、未反応FFAが検出され、樹脂の活性が消失したと考えられる。よって、この時点で陰イオン交換樹脂の再生処理が必要となる。得られた流出溶液のうち製品燃料となるのは、未反応FFAが流出始めるまでの溶液であり、総生産量を算出したところ、12dm³となった。また、得られた燃料は、僅かに残留するメタノールを蒸留除去するだけで、JIS規格21項目を全て満たす高品質品となることを外部専門機関により証明された。

次に、本研究で原料とする米ぬか由来の遊離脂肪酸残渣油には、約0.1wt%のビタミンE類が含まれており、そのうち抗酸化活性の高いトコトリエノール類の含有量が61%程度であることが分かった。また、コレステロール吸収を阻害する植物ステロールも含まれるもの、現装置で使用している樹脂には吸着せず、製品燃料中にJIS規格値に影響を与えないレベルで混入していることが分かった。一方、美容効果の高いスクアレンは、残渣油には含まれていなかった。そこで、残渣油からのビタミンE類回収に着目し、小型カラムを用いた流通系での吸着・脱離挙動に及ぼす充填樹脂量や原料ビタミンE濃度の影響を検討した。その結果、本手法は、樹脂量を増大させることで、高い収回率を維持したまま、吸着量と脱離量を増大できること、つまり、高い収回率を保持したままスケールアップが可能であることが示された。また、原料溶液のビタミンE濃度が低いほど収回率が高く、効率的な収回を期待できることも分かった。

また、再生処理法に関する検討では、本研究を開始する時点で、各操作の目的を充分に達成するため過剰気味に再生溶液供給を行っており、溶媒として用いる総メタノール量が樹脂1g-wet当たり10.4cm³、総脱イオン水量が5.2cm³で、各溶液のリサイクル利用率は50%であった。本研究を進めると各溶液の供給量を徐々に削減したところ、メタノールが8.6cm³(17%減)、脱イオン水が3.0cm³(42%減)で充分であることが分かった。ただし、各溶液のリサイクル利用率は50%で変わらなかった。これに対し、新たに検討した改良法では、メタノールが9.5cm³と増加するものの、脱イオン水が0.3cm³とほとんど使用しないこととなり、その結果、メタノールの回収利用が容易となり、リサイクル利用率が少なくとも80%以上と増大することが期待される。

最後に、本研究成果に基づく燃料製造のランニングコストは約33円/L(薬剤11円、樹脂2円、樹脂再生(廃棄物処理)8円、光熱12円)と推算され、京都市の均相アルカリ触媒法によるコスト約55円/Lから40%削減、本研究開始前の本法コスト96円/Lから65%削減された。一方、残渣油が含む約0.1wt%ビタミンE類を本プロセスではほぼ100%回収でき、より活性の高いトコトリエノール含有量に応じて燃料1L当たり10~76円の利益を生じる可能性があること、も明らかとなった。
環境政策への貢献

食用油製造工程で排出される発生量が豊富な遊離脂肪酸残渣油を原料として、JIS 規格の全項目を満たす高品質バイオディーゼルを連続製造できる技術が確立した。これにより、バイオディーゼル普及の問題点である原料油不足と品質不安定さが一挙に解決される。しかし、現状では高品質品が製造できたとしても利用者がいない。B100 で使うと税制でのメリットはあるが、エンジンメンテナンスが困難であり、B5 では車メーカー保証はあるが、金銭的なメリットがない。JIS 規格を満たしているバイオディーゼルであれば、メーカー保証の範囲を B20-B50 程度まで高めること、B100 でなくても税制の優遇措置を図ることが燃料普及のためには重要である。

食用油製造工程で排出される遊離脂肪酸残渣油には、原油と同様に、高い抗酸化活性を示すビタミン E 類（2-30 万円/kg）や、コレステロール吸収を阻害する植物ステロール（2 万円/kg）、美容効果の高いスクアレン（5 万円/kg）など高付加価値物質が含まれる。そのため、まず高付加価値物質を回収し、残りをバイオディーゼル燃料（100 円/kg）に変換するという多段階（カスケード）利用プロセスの構築が有効である。その際、回収物質を食品用途で利用するには、溶媒にメタノールではなく、エタノールを使用しなければならず、バイオディーゼルは脂肪酸エチルエステルとなる。エチルエステルの燃料性状はメチルエステルよりも良いとの予想もあり、その燃料品質規格を早急に策定する必要がある。

本製造技術は、従来の可食成分トリグリセリドに加え、利用できなかった非可食成分遊離脂肪酸をいずれも転化率 100% でバイオディーゼル（FAME）に変換できる。ただし、製品燃料が自動車用の JIS 規格を満たすには、不純物混入の少ない原料使用か、合成後の FAME 蒸留回収が必要である。実際に廃食用油を原料とした場合、繰り返し加熱でトリグリセリド分解や脂肪酸重合が生じ、炭化水素系不純物が多く含まれるため、本法を用いても FAME 純度が规格値を満たせない。しかし、FAME 高純度化のための原料や製品の蒸留は、コストや環境負荷が大きく望ましくない。そこで、FAME 純度に応じて、≥96.5%は自動車用、≥80%, <96.5%は発電用、などと使い分けるべきである。そのためのデータ収集とバイオディーゼル発電の買取価格設定などの施策が必要である。

現在、油脂類バイオマスとして、動植物油、廃食用油、食用油製造工程での廃棄物油、藻類油、などがある。また、これらの利用技術として、脂肪酸エステルに変換するエステル化技術、バイオマス液体燃料（BTL: Biomass to Liquid）などに変換する熱分解液化技術があり、得られる製品として、軽油代替燃料やジェット燃料、化成品原料がある。そして、これらの技術は、同じバイオマス原料を取り合いつつ、研究や実用化が進められている。しかし、原料バイオマスの成分組成に応じて、例えば、トリグリセリドや遊離脂肪酸含有量がある値以上であれば脂肪酸エステルに変換、それ以下であれば BTL に変換など、適切に選択することが望ましい。そのためのデータ収集と施策が必要である。
研究成果の実現可能性

遊離脂肪酸残渣油からの高品質バイオディーゼル製造に関する成果はすぐにでも実用化できる。協力企業では年間 1,000 トンの残渣油が排出され、これを全て燃料化するには日生産量 2,000L 規模の製造装置が必要となる。本研究で作製した装置は日生産量 3L と小さいが、共同研究者が他の研究で日生産量 50L の全自動装置を開発しているため、スケールアップに関する問題はほとんどない。ただし、装置製造費用が 1 億程度と見積られており、この金額をどう調達するのか、また、製造された年間 1,000 トンの燃料をどのように利用するのか、などが課題である。一方、ビタミン E 類回収に関しては、基礎データが蓄積された段階であり、実用化のためには、残渣油を用いた実データの蓄積や吸着・脱離工程のプロセス化、など更なる研究が必要である。

結論

食用米油製造会社で排出される米ぬか由来の遊離脂肪酸残渣油を原料とし、代表者ら独自のイオン交換樹脂法を用いて JIS 規格を満たす高品質バイオディーゼルを連続製造できるベンチスケールの装置を作製、生産性が最大となる装置運転条件を明らかにした。得られた燃料は、僅かに残留するメタノールを蒸留除去するだけで、JIS 規格 21 項目を全て満たす高品質品となることが証明された。本成果に基づく燃料製造のランニングコストは約 33 円／L（薬剤 11 円、樹脂 2 円、樹脂再生（廃棄物処理）8 円、光熱 12 円）と推算され、京都市の均相アルカリ触媒法によるコスト約 55 円／L から 40%削減、研究開始前の本法コスト 96 円／L から 65%削減された。また、残渣油は約 0.1 wt%のビタミン E 類を含み、これを本プロセスでほぼ 100%回収できること、より活性の高いトコトリエノール含有量に応じて燃料 1L 当たり 10~76 円の利益を生じる可能性があること、も明らかとなった。この利益コストが燃料製造コストに反映されれば、更なる競争優位性が得られる。
本文

1. 研究背景と目的

油糧作物から搾油された粗油には、可食成分であるトリグリセリドの他に、トリグリセリドが酵素や熱分解（式(1)）されて生じた遊離脂肪酸（free fatty acid; FFA）が含まれる。

\[
\text{triglyceride} \rightarrow \text{RCOOH} + \text{H}_2\text{O} \rightarrow \text{FFA} + \text{glycerin}
\]

この遊離脂肪酸は非可食であるため、食用油を製造する際に脱酸工程で除去される。その発生量は大豆や菜種などでは食用油製造量の約6%、酵素分解活性が高いバームや米ぬかでは10-20%である。特に、発生量が多いバームや米ぬかの食用油製造工程では、図1に示すように、遊離脂肪酸残渣油として回収されている。この油は95wt%以上が遊離脂肪酸であり、僅かにトリグリセリドを含む。また、融点が40℃以上と高いため、図2(a)に示すように、常温（19℃）では固体で扱いにくく、図2(b)に示すように、50℃では液体となるが、廃食油のような濃い茶褐色を呈する。現在、ごく一部がインク原料などとして利用されているものの、大半が焼却廃棄されている。しかし、この油は、視点を変えれば、排出量が豊富で、食用油製造会社で集中的・安定的に排出する新規な廃棄物系バイオマス原料と捉えることができる。

図1 食用油製造工程のプロセスフロー

図2 米ぬか脂肪酸残渣油の写真
この廃棄油の有効利用法として、主成分である遊離脂肪酸（FFA）を、酸触媒を用いたアルコール（一般にメタノール）とのエステル化反応（式(2)）によって、軽油代替燃料バイオディーゼルとなる脂肪酸メチルエステル（fatty acid methyl ester; FAME）に変換する手法が期待されている。

\[
\text{RCOOH} + \text{CH}_3\text{OH} \rightleftharpoons \text{RCOOC}_2\text{H}_3 + \text{H}_2\text{O}
\]

バイオディーゼルは、バイオマス由来原料から合成されるため二酸化炭素排出量ゼロ（カーボンニュートラル）、燃焼時の排ガスが硫黄を含まず、一酸化炭素や不燃炭化水素、粒子状物質（PM2.5）の排出量も半分以下となるためクリーン、という特長を持つ環境調和型燃料\(^{2-5}\)である。そのため、持続可能な循環型社会の実現を支えるバイオ燃料の一つとして注目されており\(^{6-9}\)、2000年以降製造量は飛躍的に増大し、2010年の世界生産量は約1,800万トンに及ぶ。しかし、現行の製造法では、可食成分トリグリセリドを原料とし、均相アルカリ触媒を用いたメタノールとのエステル交換反応（式(3)）で合成している。

\[
\text{CH}_3\text{COOR} + 3\text{CH}_3\text{OH} \rightleftharpoons \text{RCOOC}_2\text{H}_3 + \text{CH}_2\text{OH} + 3\text{H}_2\text{O}
\]

そのため、海外では原料に未利用の大豆や菜種、バームなどの食用油を用いており、食との競合や原料不足が大きな問題となっている。一方、日本では、食との競合を避けて廃食用油を原料としているものの、2010年の生産量は約0.8万トンと世界の0.05%に過ぎない\(^{10}\)。これは、廃食用油の回収が困難であること、また、現行製造法では、燃料品質を低下させる石鹸生成を抑制するため、使用回数の少ない廃食用油（遊離脂肪酸含有量0.5wt%以下）しか原料利用できないこと、などが原因といわれている。

そうした中、前述の遊離脂肪酸残渣油は、食用油製造工程で排出する廃棄油であるため、食との競合がなく、工場で集約的に排出するため回収も不要といった利点を有する。また、その排出量を食用油製造量\(^{10}\)の10%と仮定すると、2011年の国内では約25万トン、世界では約1,600万トンと推算され、バイオディーゼル生産量の増大に極めて有効である。そこで、この油を原料とした採算性のある燃料合成法を新たに構築できれば、廃棄油をバイオマス資源として有効利用できると同時に、現在のバイオディーゼルが抱える問題の解決に繋がると考えられる。

しかし、遊離脂肪酸残渣油から合成したバイオディーゼルを実際に自動車の燃料として利用するには、日本ではJIS K 2390で規定されている品質規格\(^{11}\)を満たす必要がある。 表1に、日本の品質規格の主要な項目とその規格値を、ヨーロッパや北アメリカの規格値と比較して示す。目的生成物である脂肪酸メチルエステル（FAME）含有量が96.5wt%以上という純度規定に加え、遊離脂肪酸
(FFA)含有量の指標である酸価が0.50 mg-KOH/g以下（FFA含有量約0.25 wt%以下）、トリ、ジ、モノグリセリド含有量に関してもそれぞれ0.20 wt%、0.20 wt%、0.80 wt%以下と、未反応物量に関しても厳しく規定されている。また、前述のエステル化反応やエステル交換反応で副生する水やグリセリンに関しても、それぞれ500 mg/kg、0.02 wt%以下と規定されており、触媒由来の金属混入量も5.0 mg/kg以下とされている。つまり、遊離脂肪酸残渣油の主成分であるFFAと微量成分であるトリグリセリドをいずれも転化率ほぼ100%でFAMEに変換し、両反応で副生する水やグリセリン、使用した触媒などを完全に除去することが要求される。当然ながら、これらを経済的に実現可能な採算性のあるプロセスによって実現しなければならない。

これまで多くの研究者が、食用油製造工程で排出された遊離脂肪酸残渣油を原料としたバイオディーゼル合成に取り組んできた。リパーゼ酵素触媒は、FFAのエステル化とトリグリセリドのエステル交換の両活性を有するため、両反応を同時に進行させることが期待された12）。しかし、酵素反応の至適温度（30-40℃）では、遊離脂肪酸残渣油（FFA含有量>95 wt%）が固体であるため、溶媒による希釈なしにそのまま原料として利用できない。これに対し、超臨界メタノールを用いた無触媒法13）は、380℃、240 barといった高温高圧条件で行われるため、このような固体油も容易に溶解し均一相で反応を進行させることができる。また、気体状態で得られるFAMEを凝縮することで選択的に回収できるため、燃料品質規格も比較的容易に満足できる。しかし、反応量論比の6-42という大過剰のメタノールを添加すること14）、過酷な条件のため本来シス体であるFAMEがトランス体に異性化し

<table>
<thead>
<tr>
<th>項目</th>
<th>單位</th>
<th>日本 JIS K 2390</th>
<th>ヨーロッパ EN14214 (2008)</th>
<th>北アメリカ ASTM D6751</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAME含有量</td>
<td>[wt%]</td>
<td>≥96.5</td>
<td>≥96.5</td>
<td>-</td>
</tr>
<tr>
<td>酸価（FFA含有量）</td>
<td>[mg-KOH/g]</td>
<td>≤0.50</td>
<td>≤0.50</td>
<td>≤0.5</td>
</tr>
<tr>
<td>モノグリセリド含有量</td>
<td>[wt%]</td>
<td>≤0.80</td>
<td>≤0.80</td>
<td>-</td>
</tr>
<tr>
<td>ジグリセリド含有量</td>
<td>[wt%]</td>
<td>≤0.20</td>
<td>≤0.20</td>
<td>-</td>
</tr>
<tr>
<td>トリグリセリド含有量</td>
<td>[wt%]</td>
<td>≤0.20</td>
<td>≤0.20</td>
<td>-</td>
</tr>
<tr>
<td>水含有量</td>
<td>[mg/kg]</td>
<td>≤500</td>
<td>≤500</td>
<td>≤500</td>
</tr>
<tr>
<td>遊離グリセリン含有量</td>
<td>[wt%]</td>
<td>≤0.02</td>
<td>≤0.02</td>
<td>≤0.02</td>
</tr>
<tr>
<td>全グリセリン含有量</td>
<td>[wt%]</td>
<td>≤0.25</td>
<td>≤0.25</td>
<td>≤0.24</td>
</tr>
<tr>
<td>金属（Na+K）</td>
<td>[mg/kg]</td>
<td>≤5.0</td>
<td>≤5.0</td>
<td>≤5.0</td>
</tr>
<tr>
<td>金属（Ca+Mg）</td>
<td>[mg/kg]</td>
<td>≤5.0</td>
<td>≤5.0</td>
<td>≤5.0</td>
</tr>
</tbody>
</table>
低温流動性や酸化安定性が悪化すること、などが問題となっている。また、経済的に実現可能な採算性のあるプロセスとなるか、という点でも疑問視されている。

一方、酸触媒を用いたFFAのエステル化と、アルカリ触媒を用いたトリグリセリド（TG）のエステル交換を組み合わせた2段階法（図3）も、種々の触媒の組み合わせで検討されている。しかし、酸触媒によるエステル化で高転化率を達成するには、反応平衡を塩類、FAME側にシフトさせる目的で、原料油からの徹底的な水除去と大過剰のアルコール添加が必須である。また、均相触媒を組み合わせた場合、前段の酸触媒によって後段のアルカリ触媒が中和分解されるため、アルカリ触媒を過剰に添加する必要がある。さらに、後段のアルカリ触媒によるエステル交換においても、前段のエステル化で副生した水が反応阻害を生じるため、加えて、バイオディーゼルとして燃料利用するには、触媒除去や副生物除去などの煩雑な精製工程も必要となる。このように均相触媒の組み合わせでは、経済的に実現可能な採算性のあるプロセスを構築するのは困難であると認識されている。これに対し、見通が容易な固体触媒を組み合わせた2段階法が構築されれば、採算性が高まるという報告がある。しかし、現状で報告されている固体酸および固体アルカリ触媒に関しては、不可逆的な触媒活性の低下あるいは失活、転化率100%を実現できない、など多くの問題が未解決である。それ故、本研究で着目する遊離脂肪酸含有率95wt%以上の脂肪酸残渣油に関しては、実験室レベルの成功例ですら皆無である。

近年、遊離脂肪酸のエステル化触媒として、分離が容易な固体触媒である陽イオン交換樹脂が注目されている。これまでに、遊離脂肪酸を目的燃料に変換できるものの、副反応物メタノールを化学量論比の20倍程度添加する必要があること、反応速度が数十分と遅く、副生成物水によってエステル化の進行が抑制され転化率が高くならないことなどが報告されている。これに対し、研究代表者らは、架橋度の低い多孔性の陽イオン交換樹脂を用い、アルコールによる膨潤化という簡便な前処理を行うことで反応速度が飛躍的に増大し、水存在下でも90%以上の高い転化率を達成できることを見出している。また、架橋度の低い多孔性の陰イオン交換樹脂が、高いエステル交換触媒活性を持つと同時に、油中の遊離脂肪酸や副生物水、グリセリン、茶褐色色素の吸着除去能や、健康機能物質として注目されるビタミンE類の吸着回収能を併せ持つこと、を
見出している。

本研究では、これらの研究者ら独自の知見である陽イオン交換樹脂と陰イオン交換樹脂の触媒能と吸着能を適切に発現させることで、有効利用法がないため現在廃棄物となっている遊離脂肪酸残渣油を原料とし、JIS 規格を満たす高品質バイオディーゼルを製造できる汎用性の高い技術を開発することを目的とする（図4）。達成目標は、ベンチスケールの連続製造装置を作製し、1）遊離脂肪酸100％の原料油をバイオディーゼル燃料に変換可能な反応条件を明らかにすること、2）本装置で製造されるバイオディーゼル燃料中の残存アルコール、未反応物、グリセリンが品質規格値以下となる操作条件を明らかにすること、3）残渣油に含まれるビタミンE類などの高付加価値物質を探索し、その回収条件を確立させること、4）プロセスの簡略化や溶液使用量削減を徹底し真の環境調和型製造技術を構築すること、5）上記のデータに基づき、バイオディーゼル燃料の製造コストとその際得られる高付加価値物質の利益コストを試算し、本プロセスの経済性を評価すること、である。

図4 本研究での開発技術と目標の概要
まず、平成22年度は、目標1)と2)の達成を目指し、実際の食用油製造会社で発生する米ぬか由来の遊離脂肪酸残渣油を原料として回分系での燃料合成実験に取り組み、連続製造装置の設計に必要となる適切な操作条件の探索と、得られた生成物の燃料品質評価を行った。また、残渣油に含まれる可能性がある高付加価値物質として、トコフェロールやトコトリエノールなどのビタミンE類、植物ステロール、スクアレンなどの定性分析を行った。

次に、平成23年度は、引き続き目標1)と2)の達成を目指し、前年度得られたデータに基づきベンチスケールの連続製造装置を作製し、これを用いた連続系で、前述の遊離脂肪酸残渣油を原料としたバイオディーゼル燃料合成実験を行った。そして、前段の陽イオン交換樹脂塔で主成分遊離脂肪酸を100％燃料に変換できる条件、および後段の陰イオン交換樹脂塔の活性持続期間を探索した。得られた製品燃料の品質評価も行った。また、目標3)の残渣油に含まれるビタミンE類の回収条件の確立を目指し、モデルビタミンEを用いた流通系で吸着・脱着実験を行い、吸着および脱離挙動を詳細検討した。

最後に、平成24年度は、目標4)のプロセスの簡略化と溶液使用量削減を目指し、樹脂再生工程での流出溶液組成を把握することで、溶媒として用いるメタノールと脱イオン水の使用量を最小化した。また、現再生工程ではメタノール→水、水→メタノールという2度の溶媒置換が行われ、その際の流出溶液が効率的にリサイクル利用できないため、この負荷を軽減すべく再生工程の改良を行った。また、目標5)の達成を目指し、燃料の製造コストとビタミンE類の利益コストを試算し、本プロセスの経済性を評価した。

本総合研究報告書は、これらの成果を纏めたものである。
2. 研究方法

2.1 回分系での燃料合成実験

遊離脂肪酸残渣油には、食用米油の製造を行っている三和油脂（株）より提供された米ぬか由来のもの（遊離脂肪酸含有量 95 wt%以上、残留はトリグリセリド）を、アルコールにはバイオディーゼル燃料の品質規格が全てメチルエステルを対象としていることから、メタノールを用いた。

用いたイオン交換樹脂の性状と模式図を表2と図5に示す。遊離脂肪酸のエステル化触媒である陽イオン交換樹脂には、多孔性の強酸性樹脂であるDiaion PK208LH（三菱化学（株）より提供）を用いた。この樹脂は、触媒活性を持つ H 型で工場出荷されるものの、水膨潤状態であるため、反応物である遊離脂肪酸（油分）が樹脂内に侵入しにくい。そこで、樹脂をガラスカラムに充填して反応物であるメタノールを通液することでアルコール膨潤状態とした後、エステル化実験に用いた。この際、膨潤化処理に用いるメタノール量を最小化するため、カラム流出溶液の水濃度をカールフィッシャー水分計で測定した。また、種々のメタノール量で膨潤化処理した樹脂を用いて回分エステル化実験を行い、触媒活性に及ぼす影響を検討した。

一方、トリグリセリドのエステル交換触媒および吸着剤である陰イオン交換樹脂には、多孔性の強塩基性樹脂であるDiaion PA306S（三菱化学（株）より提供）を用いた。この樹脂は、触媒活性を持たない Cl 型の水膨潤状態で工場出荷されるため、活性を持つ OH 基への置換とメタノール膨潤化処理を行う必要がある。そこで、研究代表者らが既に構築した手法26,27に従い、樹脂をガラスカラムに充填し、①樹脂に付着した油分除去のために 0.43 mol/dm³酢酸-メタノール溶液を通液、②官能基を OH 基に置換するために 1.0 mol/dm³ NaOH 水溶液を通液、③遊離の OH 基を除去するために脱

<table>
<thead>
<tr>
<th>表2 使用したイオン交換樹脂の性状</th>
</tr>
</thead>
<tbody>
<tr>
<td>樹脂性状</td>
</tr>
<tr>
<td>型</td>
</tr>
<tr>
<td>構造</td>
</tr>
<tr>
<td>架橋度 [%]</td>
</tr>
<tr>
<td>粒子径 [mm]</td>
</tr>
<tr>
<td>イオン交換容量 [mol/m³-resin]</td>
</tr>
</tbody>
</table>

(a)強酸性陽イオン交換樹脂 (b)強塩基性陰イオン交換樹脂

図5 イオン交換樹脂の模式図
イオン水を通液、膨潤化のためにメタノールを通液、という4段階で行った。

回分系での燃料合成実験の手順と用いた装置概略を図6、図7に示す。まず、脂肪酸残渣油に化学量論比のメタノールと33 wt%の陽イオン交換樹脂PK208LHを加え、50 ℃の恒温槽で充分に振盪することで遊離脂肪酸のエステル化実験を行った。その後、PK208LH樹脂をろ過除去した反応溶液に33 wt%の陰イオン交換樹脂PA306Sを加え、50 ℃の恒温槽で振盪することで微量成分トリグリセリドのエステル交換と不純物の吸着実験を行った。その後、PA306S樹脂をろ過除去して生成物を得た。各実験では、所定時間毎にサンプルを採取し、脂肪酸濃度はUV検出器を備えた高速液体クロマトグラフ（HPLC-UV）で、メタノールと脂肪酸メチルエステル濃度は水素炎イオン検出器を備えたガスクロマトグラフ（GC-FID）で、各々分析した。
2. 2 連続系での燃料合成実験

図8に、本研究で作製した連続合成装置の写真(a)と模式図(b)を示す。本装置は、陽イオン交換樹脂を充填したカラムと陰イオン交換樹脂を充填したカラムを直列に連結したものである。原料油とアルコールの混合液をポンプによって1塔目のカラム底部から上昇流で連続的に供給すると、その流出溶液がそのまま2塔目のカラム底部から上昇流で流れ、カラム上部から流出する。カラム内では、陽イオン交換樹脂のエステル化触媒作用により原料油の主成分遊離脂肪酸がバイオディーゼルに変換、陰イオン交換樹脂のエステル交換触媒作用により微量成分トリグリセリドがバイオディーゼルに変換される。同時に、エステル化やエステル交換で副生する水やグリセリン、油の色素が後段の陰イオン交換樹脂に除去される。
交換樹脂に吸着保持され、溶液中から除去される。その結果、装置から流出する製品が不純物を含まない高品質品となることが期待され、煩雑な精製工程を省略できる可能性がある。ただし、後段の陰イオン交換樹脂は、トリグリセリドや遊離脂肪酸（FFA）の脂肪酸基とのイオン交換（式（4））で触媒活性部位 OH 基が消失するため、定期的な再生処理が必要となる。

\[
\text{resin backbone} + \text{RCOOH} \rightarrow \text{CH}_2\text{N}^+\text{OOOCR} + \text{H}_2\text{O}
\]

後段の陰イオン交換樹脂カラムは、以前の報告と同様に、樹脂を約0.6 kg-wet充填可能な内径5 cm、長さ50 cmとし、負荷の大きな前段の陽イオン交換樹脂カラムは、内径とカラム長をそれぞれ2倍（内径10 cm、長さ100 cm）とすることで、充填可能樹脂量を8倍に増大させた。実際に、水膨潤状態の樹脂を各カラムの約95%の高さまで充填したところ、陰イオン交換樹脂PA306Sは0.63 kg、陽イオン交換樹脂PK208LHは5.2 kgとなった。各カラムはマンタルヒーターで50 ℃に保持した。原料タンクは、攪拌翼を備えた密封系（ただし、エア逆止弁付）であり、50 ℃の恒温槽中に設置した。溶液供給用ポンプは2つ備えており、1つは原料タンクの反応溶液をカラム底部から上昇流で供給、もう1つは、各カラムの樹脂の前処理や再生処理用の溶液をカラム上部から下降流で供給する。また、配管内での反応物や生成物の固化を防ぐため、全ての配管をトレースヒータで50 ℃に保持した。

連続合成実験では、まず、前段のエステル化の適切な運転条件を探索するため、原料タンクに残渣油とメタノールを入れて攪拌することで均相化させた後、1塔目のカラムから上昇流で供給した。そして、1塔目カラム上部からの流出溶液を所定時間間隔で分取し、回分系と同様の手法で反応物や生成物濃度を測定した。ここでは、操作因子として、原料溶液の脂肪酸基とメタノールのモル比、カラムに充填する樹脂量、溶液供給流量を変化させた。その際、樹脂量の少ない条件では、内径5 cmの小型カラム（長さ50 or 100 cm）を用いた。

次に、前述のエステル化で適切化した条件で、1塔目の流出溶液をそのまま2塔目の底部から上昇流で供給して連続的に燃料合成反応を行った。ここでは、2塔目カラム上部からの流出溶液を分取し、反応物や生成物濃度の分析用サンプルをして、同時に、1塔目カラム上部からの流出溶液の一部を少量採取し、これも分析用サンプルとした。2塔目の陰イオン交換樹脂カラムでは、前述したように、樹脂活性が徐々に低下し、ある時点で流出溶液の未反応物濃度が増加し始めると予想される。この未反応物濃度が増加し始めるまでの操作時間、すなわち、樹脂活性の保持時間を探索した。

連続合成実験終了後、各カラム樹脂層の底部、中部、上部からそれぞれ樹脂を回収し、樹脂内に残存する活性基濃度（陽イオン交換樹脂：H基、陰イオン交換樹脂：OH基）を中和滴定により測定した。また、得られた製品燃料の品質を評価するため、前述の（社）日本油料検定協会にJIS规格の全項目に関する分析を依頼した。その際、必要に応じてメタノールの蒸留を行った。
2.3 残渣油の高付加価値物質濃度の分析

前述の燃料合成実験の原料とした脂肪酸残渣油に含まれる高付加価値物質を把握するため、高い抗酸化活性を示すビタミンE類や、コレステロール吸収を阻害する植物ステロール、美容効果の高いスクアレンなどの定量分析を行った。特に、米ぬかやパーム由来の残渣油には、トコフェロールやトコトリエノールなどのビタミンE類が多く含まれる。図9にトコトリエノールの構造式を示す。トコフェロールも基本的に同じ構造であるが、側鎖の3つの二重結合を持たない。この違いによってトコトリエノールは、トコフェロールの約70倍もの抗酸化活性を示し、最近では、強い血管新生阻害作用が報告されるなど、人の血管新生病（糖尿病性網膜症、動脈硬化など）の予防に利用できることも明らかになっている30）ここでは、米ぬかから搾油後に固形物のろ過処理のみを行った原油、パーム由来の脂肪酸残渣油に関しても同様の分析を行った。前者は三和油脂（株）より、後者は日立造船（株）より提供されたものである。

2.4 流通系でのビタミンE類回収実験

脂肪酸残渣油からビタミンE類を回収するための流通系分離プロセスの構築を目的とし、実験室規模の小型カラムを用いてビタミンE類の吸着・脱離実験を行い、各挙動に及ぼす樹脂量やビタミンE類濃度の影響を検討した。ここでは、残渣油に最大8種類のビタミンE類が含まれること、トコトリエノールの市販品が存在せず定量が困難であることから、モデルビタミンEとして、市販で入手可能なトコフェロールのうち最も生理活性が高いδ体30）を用いた。また、溶媒には、回収したビタミンEの食品利用を可能にするため、燃料製造実験で用いたメタノールではなく、エタノールを用いることとした。吸着剤となる陰イオン交換樹脂には、前述のトリグリセリドのエステル交換触媒であるDiaion PA306S（OH型）を用いた。

各実験は一連の吸着実験と脱離実験からなる。まず、吸着実験として、①OH型樹脂を充填したカラムに、所定濃度のビタミンE-エタノール原料溶液を1.0 cm³/minでカラム上部から下降流で供給した。この際、樹脂のOH基とビタミンE（V₆H）とのイオン交換（式（5））が生じ、図10(a)から(b)の状態に変化することで、樹脂にビタミンEが保持されると考えられる。
図中の背景の色は、溶媒の種類を表し、水色はエタノール、黄色はビタミンE-エタノール原料溶液である。その後、脱離実験として、②カラム内に残存する原料溶液を除去するためのエタノールを、吸着実験と同様に、下降流、同じ流量で供給した。この際、図10(c)に模式的に示すように、樹脂の外
部に存在する遊離のビタミンEがカラム外に押し出されると考えられる。続いて、③0.43 mol/cm^3の酢酸-エタノール脱離溶液を、同様に供給した。この際、樹脂のビタミンE基と酢酸のイオン交換（式(6)）
が生じて樹脂に保持されたビタミンEが溶出し、樹脂が図10(d)の状態に変化すると考えられる。

\[
\text{resin backbone} \quad (\text{CH}_3)_3 \quad \text{vitamin E} \quad (\text{CH}_3)_3 \quad \text{water}
\]

ここで、背景の緑色は酢酸-エタノール脱離溶液を表す。各実験では、カラムからの流出溶液を所定の時間間隔で分取し、ビタミンE類濃度を蛍光検出器付HPLCで、検出励起波長298 nm、検出蛍光波長325 nmとして分析した。また、吸着・脱離実験の操作因子として、カラムに充填する樹脂量、原料溶液のビタミンE濃度を変化させた。

2.5 樹脂再生条件の検討
燃料製造プロセスの前段で用いる陽イオン交換樹脂は活性低下が生じないが、後段で用いる陰イオン交換樹脂は、前述の式(4)や(5)で樹脂の活性基(OH基)が失われるため定期的な再生処理が必要となる。既に構築した再生処理法26,27)では、①0.43 mol/dm^3酢酸-メタノール溶液、②1.0 mol/dm^3NaOH水溶液、③脱イオン水、④メタノールの4種の溶液を所定量ずつ通液した。溶媒に着目すると、①アルコール→②水→③水→④アルコールと2度入れ替わり、その際の流出溶液が水-アルコール混合液となり、アルコール分離回収が難しいことが問題視されていた。そこで、NaOH水溶液の代わりに、NaOH-アルコール溶液を用い、樹脂のOH基置換が可能であるかを検討した。改良法では、樹脂をガラスカラムに充填し、①0.43 mol/dm^3酢酸-メタノール溶液、②1.0 mol/dm^3NaOH-メ
タノール溶液、メタノール、という3段階で通液を行う。そして、樹脂の置換基量を測定すると共に、モデル基質を用いたエステル交換実験を行い、反応挙動を比較した。

２．６ 燃料製造コストの試算
以上のような検討で得られたデータに基づき、ベンチスケール連続製造装置によるバイオディーゼル1Lあたりの製造コストを試算した。その際、ビタミンE類が回収されるとした利益コストも試算した。
3．結果と考察

3.1 回分系での燃料合成実験結果

まず、前段の陽イオン交換樹脂の膨潤化前処理に用いるメタノール量を最小化するため、適切な前処理条件を探索した。図 11 に、陽イオン交換樹脂の膨潤化前処理を行った際のカラム流出溶液の水濃度変化を示す。縦軸は流出溶液の水濃度、横軸は累積流出溶液体積である。ここでは、供給するメタノール量を樹脂 1 g 当たり 1.25 cm3から 5 cm3、すなわち、75 - 300 cm3と変化させた 4 つの実験 (run 1-4)を行った。各条件でのプロットは良好に重なっており、膨潤化操作の再現性が高いことが分かる。いずれも流出溶液の水濃度は、100 wt%からはじまり、累積流出溶液体積 70-90 cm3の間に急激に減少し、その後、低い值で一定となる傾向を示した。これは、メタノール供給によって、カラムおよび樹脂内の水が押し出され、メタノールに置き換わる挙動を表している。比較のため、各条件で得られた最終的な水濃度（青矢印）を図中の表に示す。総流出溶液体積 303 cm3と充分にメタノールを供給した run 1 では、水濃度が 0.305 wt%と非常に低い値となった。流出溶液の水濃度は、樹脂内のメタノール膨潤化率の指標になると考えられ、水濃度が低いほどメタノール膨潤化率が高いと考えられる。

<table>
<thead>
<tr>
<th>exp.</th>
<th>総流出溶液体積 [cm3]</th>
<th>最終水濃度 [wt%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>run1</td>
<td>303</td>
<td>0.305</td>
</tr>
<tr>
<td>run2</td>
<td>153</td>
<td>1.45</td>
</tr>
<tr>
<td>run3</td>
<td>80</td>
<td>18.5</td>
</tr>
<tr>
<td>run4</td>
<td>75</td>
<td>35.1</td>
</tr>
</tbody>
</table>

図 11 陽イオン交換樹脂のメタノール膨潤化前処理時のカラム流出溶液の水濃度変化
そこで、run 1-4 の 4 つの条件で膨潤化前処理した樹脂を用いて回分エステル化実験を行い、反応挙動を比較した。その結果を図 12 に示す。原料の残渣油には、オレイン酸やリノール酸、リノレン酸、パルミチン酸など 4 種類の脂肪酸（FFA）が含まれるため、各々に対応した脂肪酸エステル（FAME）が生成する。そこで、各グラフの縦軸は FFA(a)あるいは FAME(b)の総濃度とした。ただし、二重結合を持たないパルミチン酸はモル吸光係数が小さく HPLC-UV では検出できないが、そのエステルは GC-FID で検出できるため、反応物と生成物の総濃度にずれが生じている。膨潤化での最終的な流出溶液水濃度が 35.1 wt%と高い場合（●）、FFA 消費速度と FAME 生成速度が共に他の条件よりも緩やかとなったと考えられる。これ以外の条件では、エステル化挙動はほとんど変わらなかった。この条件では、樹脂内に残存する水が少ないと考えられる。これ以外の条件では、エステル化挙動はほとんど変わらなかった。その理由として、陽イオン交換樹脂のメタノール膨潤化は、流出溶液の水濃度をおよそ 20 wt%以下とすれば充分と考えられる。以降の実験では、安全を考えて急激に水濃度が変化し終えた累積流出溶液体積約 95 cm³（樹脂 1 g-wet 当たり約 1.6 cm³）の時点まで膨潤化を行うこととした。樹脂の溶媒置換は 1 g-wet 当たり約 3-5 cm³で行われるのが一般的であったが、本検討によって、メタノール使用量を通常の半分から 3 分の 1 に削減できた。

次に、陽イオン交換樹脂と陰イオン交換樹脂を触媒・吸着剤とする本手法で、実際に、遊離脂肪酸残渣油から高品質バイオディーゼルを製造可能であることを確認するため、回分系での燃料合成
挙動を検討した。表3に、回分燃料合成実験の各段階での反応物および生成物の総濃度を、JIS規格に基づく換算値と比較して示す。残渣油の主成分遊離脂肪酸は、エステル化実験後に97.6%と高い転化率で脂肪酸エステルに変換されたものの、その残余濃度0.0478 mol/dm³はJIS规格が定める厳しい値（≤0.0031 mol/dm³）を満足するには至っていない。また、残渣油の微量成分トリグリセリード濃度は、エステル化後も初期値（0.058 mol/dm³）で変わらず、厳しい規格値（≤0.0020 mol/dm³）を満たさなかった。生成エステル濃度2.71 mol/dm³も規格値（≥2.89 mol/dm³）には達しなかった。以上より、遊離脂肪酸のエステル化工程だけではJIS規格を満たす高品質燃料を得ることができないことが分かる。一方、エステル化実験後に僅かに残存していた遊離脂肪酸は、エステル交換・吸着実験後に検出限界以下（n.d.）となった。これは、前述の式(4)のイオン交換で残存遊離脂肪酸が陰イオン交換樹脂に吸着し、溶液中から除去されたためである。同時に、微量のトリグリセリードが96.9%という高い転化率で脂肪酸エステルに変換され、残余トリグリセリード濃度も生成エステル濃度も、いずれも規格値に達した。

図13に、回分燃料合成実験の各段階で得られた反応溶液の室温（19℃）での写真を示す。図13に、回分燃料合成実験の各段階で得られた反応溶液の室温（19℃）での写真を示す。 固体状態であった原料油(a)は、エステル化で遊離脂肪酸がより融点の低い脂肪酸エステルに変換されたため、常温でも液体状態(b)となった。しかし、反応溶液は依然として茶褐色を呈したままであり、油の色素が残存していることが分かる。この溶液は、エステル交換・吸着実験後に透明な黄色の溶液(c)となった。これは、陰イオン交換樹脂に茶褐色色素が吸着し、溶液中から除去されたためと考えられる。

表3 回分燃料合成実験の各段階での反応物および生成物の総濃度とJIS規格値

<table>
<thead>
<tr>
<th>溶液</th>
<th>遊離脂肪酸総濃度 [mol/dm³]</th>
<th>トリグリセリード総濃度 [mol/dm³]</th>
<th>脂肪酸エステル総濃度 [mol/dm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>原料</td>
<td>1.96</td>
<td>0.058</td>
<td>n.d.</td>
</tr>
<tr>
<td>エステル化実験後</td>
<td>0.0478</td>
<td>0.058</td>
<td>2.71</td>
</tr>
<tr>
<td>エステル交換・吸着実験後</td>
<td>n.d.</td>
<td>0.0018</td>
<td>2.89</td>
</tr>
<tr>
<td>JIS規格換算値</td>
<td>≤0.0031</td>
<td>≤0.0020</td>
<td>≥2.89</td>
</tr>
</tbody>
</table>

図13 回分燃料合成実験の各段階で得られた反応溶液の写真(室温)
(a)原料残渣油, (b)エステル化後, (c)エステル交換・吸着後
前述の回分燃料合成実験で最終的に得られた生成物のバイオディーゼル燃料としての品質を評価するため、専門機関である(社)日本油料検定協会にJIS K 2390の規格分析を依頼した。この際、依頼前に生成物のメタノール濃度を測定したところ、反応量論比でメタノールを添加しているに拘わらず2.75 wt%とJIS規定値(≤0.2 wt%)より高い値であった。これは、メタノール膨潤化樹脂によつて余分なメタノールが反応系に持ち込まれたためと考えられる。そこで、生成物を30℃で30分、60℃で90分減圧蒸留することでメタノールを除去した後、専門機関による分析試料とした。ここで、JIS规格の全22項目の分析を行うためには6kg程度のサンプルが必要である。しかし、前述の回分実験は、反応溶液総量が100g程度の小さなスケールで行っており、最終的に得られた生成物量は50g程度と非常に少ない。そこで、エステル化やエステル交換の反応進行度が関与する重要な項目のみの分析とした。

専門機関による6項目の分析結果を表4に、JIS規格値と比較して示す。*を付けた2項目(酸価、水濃度)は、自研究室での分析結果である。燃料となる脂肪酸メチルエステル(FAME)含有量は規格値を満たした。これより、米ぬか由来の遊離脂肪酸残留油に反応物以外の不純物が含まれておらず、各反応物を高転化率でエステルに変換すれば規格値を満足することが分かった。また、未反応物であるモノグリセリド、ジグリセリド、トリグリセリド含有量や遊離脂肪酸濃度の指標である酸価も、全て規格を満たした。副生物である遊離グリセリンや全グリセリン、水の含有量も共に規格値を満たす値となった。これは、エステル化やエステル交換で副生した水やグリセリンが陰イオン交換樹脂への吸着で溶液中から除去されたためである。さらに、燃料の酸化安定性に影響を与えるため規定されているリノレン酸メチル含有量も規格値を満たした。この項目は原料油自体の脂肪酸組成に依存するものであり、容易に改善できない。つまり、満たさない場合は原料として利用できないことを

<table>
<thead>
<tr>
<th>項目</th>
<th>単位</th>
<th>規格値 JIS K 2390</th>
<th>生産物分析値</th>
</tr>
</thead>
<tbody>
<tr>
<td>生成物</td>
<td>FAME(バイオディーゼル) [wt%]</td>
<td>≥96.5</td>
<td>97.0</td>
</tr>
<tr>
<td>反応物</td>
<td>モノグリセリド [wt%]</td>
<td>≤0.80</td>
<td>0.17</td>
</tr>
<tr>
<td></td>
<td>ジグリセリド [wt%]</td>
<td>≤0.20</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>トリグリセリド [wt%]</td>
<td>≤0.20</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>酸価(FFA)* [mg-KOH/g]</td>
<td>≤0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>副生物</td>
<td>遊離グリセリン [wt%]</td>
<td>≤0.02</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>全グリセリン [wt%]</td>
<td>≤0.25</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>水* [mg/kg]</td>
<td>≤500</td>
<td>219</td>
</tr>
<tr>
<td>酸化安定性</td>
<td>リノレン酸メチル [wt%]</td>
<td>≤12.0</td>
<td>1.3</td>
</tr>
</tbody>
</table>

*自研究室における分析測定値
意味するが、この点もクリアした。以上より、本手法を用いることによって、廃棄油である脂肪酸残渣油からJIS規格を満たす高品質バイオディーゼルを合成できることとなる。

3.2 バイオディーゼル連続合成実験結果

図14に、1塔目のみを用いた連続エステル化実験の結果を示す。縦軸は流出溶液中の各成分濃度であり、横軸は原料溶液の供給開始を零とした操作時間である。実験条件は、脂肪酸基とメタンールのモル比1:1、充填樹脂量0.63 kg（カラムサイズC1: φ5 cm×50 cm）、原料供給流量69.7 cm³/h（run C1-1）である。原料溶液供給を開始すると、まず、カラムを満たしていたメタンールが流出する。そのため、メタンール濃度（▲）は100 wt%から速やかに減少し、10 h以降、零に近い値で一定となった。一方、生成物であるバイオディーゼル濃度（FAME, ●）と、未反応物である遊離脂肪酸濃度（FFA, ◆）は徐々に増加し、ばらつきがあるものの、概ね一定となる傾向を示した。ここで、流出溶液中にFFAが存在することから、この操作条件では、FFAの転化率が100%に達していないことが分かる。また、原料溶液にはFFAが100%反応するために必要な化学量論比のメタンールを添加したが、流出溶液ではFFAが残存しているにも拘わらず、メタンールがほとんど消失していた。これより、樹脂がエステル化に関与できない形で原料溶液中のメタンールを保持したため、メタンールが足りず、エステル化が充分に進行しなかったと推測される。

そこで、原料溶液中のメタンール添加量を化学量論比よりも増大させた条件で連続エステル化実験を行った。図15は、前述のrun C1-1の条件から脂肪酸基とメタンールのモル比のみを1:2と増大させた結果（run C1-2）である。実験開始後、メタンール濃度（▲）が減少し、10 wt%程度でほぼ一定となった。一方、生成物であるFAME濃度（●）と、未反応物であるFFA濃度（◆）は徐々に増加し、一定となる傾向を示した。この際、残存FFA濃度は、前述のモル比1:1の場合よりも小さな値となった。
れより、メタノールのモル比を 1:1 から 1:2 と増大させることで、FFA のエステル化がより進行したと考えられる。ただし、流出溶液中にメタノールが残存していることから、FFA の反応が 100% 進行するにはカラム内の滞在時間が不十分であったと考えられる。

図 16 は、充填樹脂量 1.3 kg（カラムサイズ C2: φ 5 cm × 100 cm）、原料供給流量 24.1 cm³/h することで、滞在時間を前述の run C1-2 の 4 倍とした結果（run C2-1）である。メタノール濃度（▲）が徐々に低下し、80 h 以降零に近い値で一定となった。また、生成物である FAME 濃度（●）は徐々に増加し、ほぼ一定となる傾向を示し、FFA 濃度（◆）は、全ての時間で検出限界以下となった。これにより、カラム内の滞在時間を増大させることで、原料溶液中の FFA が 100% バイオディーゼル燃料に変換されたと考えられる。

そこで、同じ条件で充填樹脂量を 5.2 kg（カラムサイズ C3: φ 10 cm × 100 cm）、流量 117.2 cm³/h として 4 倍にスケールアップした条件でも実験（run C3-1）を行った。その結果を図 17 に示す。各成分濃度の変化挙動は前述の run C2-1 と同様で、流出溶液中の FFA 濃度（◆）が検出限界以下となり、
図 17 脂肪酸油の連続エステル化実験結果（run C3-1）

表 5 種々の条件での連続エステル化実験結果の比較

<table>
<thead>
<tr>
<th>実験条件・結果</th>
<th>単位</th>
<th>run</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C1-1</td>
</tr>
<tr>
<td>モル比</td>
<td>[-]</td>
<td>1:1</td>
</tr>
<tr>
<td>樹脂量</td>
<td>[kg]</td>
<td>0.63</td>
</tr>
<tr>
<td>原料供給流量</td>
<td>[cm³/h]</td>
<td>69.7</td>
</tr>
<tr>
<td>FFA 流入量</td>
<td>[mol/h]</td>
<td>0.233</td>
</tr>
<tr>
<td>MeOH 流入量</td>
<td>[mol/h]</td>
<td>0.233</td>
</tr>
<tr>
<td>FFA 流出量</td>
<td>[mol/h]</td>
<td>0.137</td>
</tr>
<tr>
<td>MeOH 流出量</td>
<td>[mol/h]</td>
<td>0.018</td>
</tr>
<tr>
<td>FFA 転化率</td>
<td>[-]</td>
<td>41</td>
</tr>
</tbody>
</table>

*カラムサイズ C1: φ 5cm × 50cm, C2: φ 5cm × 100cm, C3: φ 10cm × 100cm

FFAを100%燃料に変換することができた。

これらの結果を比較するため、流出溶液の各成分濃度がほぼ一定となった期間での平均値を表 5 にまとめて示す。脂肪酸基とメタノールのモル比を化学量論比 1:1 とした実験（run C1-1）では、FFA 転化率は 41% であったが、流出溶液中のメタノールは、その 92% が消失していた。前述したように、メタノール不足によって FFA のエステル化が充分に進行しなかったと考えられる。次に、メタノールを量論比の 2 倍 1:2 とした実験（run C1-2）では、FFA の転化率が 58% に上昇した。しかし、残存する FFA が全て反応するのに充分なメタノールが残っていたことから、滞在時間が不十分であったと考えられる。モル比 1:2 でさらに滞在時間を長くした実験（run C2-1）では、流出する FFA 濃度は検出限界以下となり、転化率 100% を達成した。また、run C2-1 と同じ条件で 4 倍のスケールアップを行った実
験（run C3-1）でも同様に転化率 100 %を達成できた。

次に、適切化した C3-1 の条件で、2 つの樹脂塔を用いた燃料連続合成実験を行った。図 18(a)に 1 塔目からの流出溶液成分の濃度変化を示す。生成物 FAME 濃度は、原料供給開始と共に速やかに増加し、40 h 以降一定となる傾向を示した。反応物 FFA 濃度はほぼ零を維持し、高転化率で FAME に変換されたことが分かる。図 18(b)に 2 塔目からの流出溶液成分の濃度变化を示す。微量成分トリグリセリドは全期間で検出限界以下であったため、プロットを示していない。生成物 FAME 濃度は 1 塔目と同様の傾向を示し、110 h (図中赤矢印) まで検出限界以下であった。しかし、これ以降、未反応 FFA が検出され、樹脂の活性が消失したと考えられる。製品燃料となる部分は、未反応 FFA が流出し始めるまでであり、図の斜線部を積分することで製品燃料の総生産量を算出したところ、12 dm³ となった。この製品燃料に関して、メタノールを蒸留除去した後、外部機関による JIS 規格分析を依頼した。
図19 燃料連続合成実験終了後の各カラム樹脂層から回収した樹脂の活性残存率
(a) 第1塔（陽イオン交換樹脂）、(b)第2塔（陰イオン交換樹脂）

また、図19(a)に、実験後の1塔目のカラムから採取した陽イオン交換樹脂の活性基（H⁺基）濃度を示す。縦軸は未利用樹脂に対する実験後樹脂の値の比であり、活性基の残存率を表す。カラム内の上部、中部、底部のいずれの位置から採取した樹脂も、ほぼ100％活性基が残存していることが分かる。一方、図19(b)に、2塔目のカラムから採取した陰イオン交換樹脂の活性基（OH⁻基）濃度を示す。前述の陽イオン交換樹脂の結果とは異なり、カラムの上部、中部、底部のいずれの位置から採取した樹脂も、活性基がほとんど消失していることが分かる。ただし、この活性消失は可逆的であるため、既に構築した再生処理法26,27によって活性基が容易に100％復元され、かつ、2年以上（50回以上）継続的に繰り返し利用しても問題ないことが既に確認されている。

表6に、連続合成実験で得られた製品燃料の（社）日本油料検定協会によるJIS規格分析結果を示す。ここでは、日本の輸送用バイオディーゼルに関する規格JIS K2390の値と比較した。ただし、分析に用いた製品燃料は、メタノール含有量を規格値0.2wt%以下に低減させるための減圧蒸留処理のみ行った。生成物、反応物、副生物の含有量に関しては、前述の回分系で得られた燃料でも分析しており（表4）、本連続系でも同様に規格値を全て満足した。これら以外の項目は、スケールアップした本連続製造によって分析可能となったものである。まず、アルカリや酸などの触媒由来の不純物である金属類や硫酸灰分の値は検出限界以下、鋼板腐食も問題のない1以下であった。また、原料由来の不純物である硫黄やリンに関しては、検出限界以下でほとんど含まれておらず、固形不純物や残留炭素も少量であるため、全て規格値を満たした。一般に、家庭から排出される使用回数の多い廃食用油を原料とした場合、繰り返し加熱などで油分の過分解や重合が生じて残留炭素が多く含まれるため、品質規格値（0.30以下）を満たすことが難しい。そこで、これらの規格値を満たす目的で生成物からバイオディーゼル（FAME）成分のみを減圧蒸留して回収する操作が当然のように行われ
れ、更なる環境負荷を招くなど、本末転倒の事態が散見される。本研究で着目した遊離脂肪酸残渣油には、廃食用油とは異なり、製品燃料品質に悪影響を与えるような不純物が一切含まれていないことが明らかとなった。

一方、燃料性状に関する密度、動粘度、引火点、セタン価に関しても、それぞれ規格値を満たした。特に、菜種や大豆由来の食用油から合成されたバイオディーゼルでは、セタン価が50前後と規格値よりも低くなる傾向がある。これに対し、米ぬか由来の遊離脂肪酸残渣油を用いた本製品燃料

<table>
<thead>
<tr>
<th>項目</th>
<th>単位</th>
<th>規格値</th>
<th>分析値</th>
</tr>
</thead>
<tbody>
<tr>
<td>生物</td>
<td>FAME（バイオディーゼル）</td>
<td>[wt%]</td>
<td>≥96.5</td>
</tr>
<tr>
<td>反応物</td>
<td>モノグリセリド</td>
<td>[wt%]</td>
<td>≤0.80</td>
</tr>
<tr>
<td></td>
<td>ジグリセリド</td>
<td>[wt%]</td>
<td>≤0.20</td>
</tr>
<tr>
<td></td>
<td>ジグリセリド</td>
<td>[wt%]</td>
<td>≤0.20</td>
</tr>
<tr>
<td>酸価（FFA）</td>
<td>[mg-KOH/g]</td>
<td>≤0.50</td>
<td>0.04</td>
</tr>
<tr>
<td>メタノール</td>
<td>[wt%]</td>
<td>≤0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>副生物</td>
<td>遊離グリセリン</td>
<td>[wt%]</td>
<td>≤0.02</td>
</tr>
<tr>
<td></td>
<td>全グリセリン</td>
<td>[wt%]</td>
<td>≤0.25</td>
</tr>
<tr>
<td>水分</td>
<td>[mg/kg]</td>
<td>≤500</td>
<td>291</td>
</tr>
<tr>
<td>不純物</td>
<td>金属（Na+K）</td>
<td>[mg/kg]</td>
<td>≤5.0</td>
</tr>
<tr>
<td></td>
<td>金属（Ca+Mg）</td>
<td>[mg/kg]</td>
<td>≤5.0</td>
</tr>
<tr>
<td>硫酸灰分</td>
<td>[wt%]</td>
<td>≤0.02</td>
<td><0.005</td>
</tr>
<tr>
<td>鉄板腐食（50℃3h）</td>
<td>[-]</td>
<td><1</td>
<td>1</td>
</tr>
<tr>
<td>硫黄分</td>
<td>[mg/kg]</td>
<td>≤10</td>
<td><0.0005</td>
</tr>
<tr>
<td>リン</td>
<td>[mg/kg]</td>
<td>≤10</td>
<td><1</td>
</tr>
<tr>
<td>固形不純物</td>
<td>[mg/kg]</td>
<td>≤24</td>
<td>2</td>
</tr>
<tr>
<td>10％残油の残留炭素</td>
<td>[wt%]</td>
<td>≤0.30</td>
<td>0.11</td>
</tr>
<tr>
<td>燃料性状</td>
<td>密度（15℃）</td>
<td>[g/cm³]</td>
<td>0.86-0.90</td>
</tr>
<tr>
<td></td>
<td>動粘度（40℃）</td>
<td>[mm²/s]</td>
<td>3.5-5.0</td>
</tr>
<tr>
<td></td>
<td>引火点</td>
<td>[℃]</td>
<td>≥120</td>
</tr>
<tr>
<td></td>
<td>セタン価</td>
<td></td>
<td>≥51</td>
</tr>
<tr>
<td>酸化安定性</td>
<td>リノレ酸メチル</td>
<td>[wt%]</td>
<td>≤12.0</td>
</tr>
<tr>
<td></td>
<td>ヨウ素価</td>
<td>[g/L/100g]</td>
<td>≤120</td>
</tr>
</tbody>
</table>
では、セタン価が 53 と比較的高い値を得ることができた。また、燃料の酸化安定性に関与するリン酸メチルエステルやヨウ素価の分析値も、規格値を満足した。このことは、原料残渣油が酸化安定性を低くする不飽和脂肪酸を少量しか含んでいないことを意味する。以上より、これまで廃棄されていた米ぬか遊離脂肪酸残渣油を原料として、JIS 規格の全ての項目を満足するバイオディーゼル燃料が合成可能であることが明らかとなった。

3.3 残渣油の高付加価値物質濃度の測定結果

図 20 に、米ぬか由来の原油および遊離脂肪酸残渣油のビタミン E 類濃度の測定結果を示す。参考のため、米ぬか残渣油と同様に多量の廃棄物として処理されているパーム油由来の遊離脂肪酸蒸留物（PFAD）に関する測定結果も示す。トコトリエノールの標準品がないため、縦軸は HPLC のクロマトグラムピーク面積とした。また、本分析では、γ 体と β 体の分離が不完全であったため、両者を合わせた面積とした。

米ぬか原油には、トコトリエノール（T3）およびトコフェロール（T1）の各異性体が含まれており、特に、γ、β トコトリエノールの含有量が高い。また、全ビタミン E に対する T3 の割合は 69 %であった。この原油の脱酸工程で排出する脂肪酸残渣油にも、ピーク面積が小さくなるものので、T3 と T1 の各異性体が含まれていた。原油を基準として残渣油の含有量を求めると、δ -T3 が 33 %、γ, β -T3 が 27 %、α -T3 が 24 %、δ -T1 が 67 %、γ, β -T1 が 72 %、α -T1 が 23 %となった。側鎖の二重結合を多く持ち抗酸化活性の高い T3 の方が、逆に安定性が低いため、含有量が小さくなる傾向を示したと考えられる。その結果、T3 の割合は 61 %となった。米ぬか原油のビタミン類含有量は約 0.3 wt%であるため、脂肪酸残渣油にはその 41 %（前述の値の平均値）、つまり、約 0.1 wt%のビタミン E 類が
含まれていると概算される。一方、パーム油由来の脂肪酸残渣物に関しても、米ぬか由来のものと同様に、T3とT1の各異性体が含まれていた。この油の全ビタミンに対するT3の割合は94%と非常に高く、抗酸化活性の高いT3を選択的に含んでいることが分かる。

以上より、現在焼却廃棄されている米ぬか由来の脂肪酸残渣油には、原油の半分弱のビタミンE類が含まれていることが分かった。また、このビタミンE類の回収を目指す本研究の開発技術は、さらに発生量が豊富なパーム油由来の残渣油にも適用できる汎用性の高いものとなると考えられる。

また、図21に、米ぬか由来の遊離脂肪酸残渣油からの燃料連続合成実験で得られた流出溶液のHPLCクロマトグラムを示す。4種類のFAMEのピーク以外に植物ステロールのピークが観察された。これより、残渣油には植物ステロールが含まれているものの、製造装置で用いた陽イオンおよび陰イオン交換樹脂には吸着せず、製品バイオディーゼル中に品質規格に影響を与えないレベルで混入していることが分かった。従って、この植物ステロールを回収するには、新たな吸着剤を探索する必要があると考えられる。

さらに、スクアレンに関する分析も行ったが、米ぬか由来の遊離脂肪酸残渣油には含まれておらず、食用油製造の別工程（脱臭）で発生するスカム油に含まれていることが分かった。

3.4 ビタミンE類の回収実験結果

図22に、陰イオン交換樹脂塔を用いたビタミンE類の吸着・脱離実験結果の一例を示す。ここでは、ビタミンE類の吸着・脱離挙動を詳細に把握するため、モデルビタミンE溶液を用いた。一連の実験では、①ビタミンE-エタノール原料溶液、②エタノール溶液、③酢酸-エタノール脱離溶液、の
図22 陰イオン交換樹脂塔を用いたビタミンE類の吸着・脱離実験結果（run 1）
(a)原料溶液通液時, (b)エタノール通液時, (c)脱離溶液通液時

順で通液を行った。そのため、3種類の溶液をそれぞれ通液した際の流出溶液のビタミンE濃度の変化を(a), (b), (c)として個別に示す。各グラフの横軸は、流出溶液の積算量 V_{total} [cm3]を充填樹脂量 W_{resin} [g-wet]で割って規格化した値であり、縦軸は、流出溶液のビタミンE濃度 $C_{\text{VEH, out}}$ [mmol/cm3]である。点線は、参考のために示した原料溶液中のビタミンE濃度である。

(a)より、流出溶液のビタミンE濃度は、原料溶液の供給開始後、累積流出体積8 cm3/g-wetまでほぼ零となった。これより、原料中のビタミンEが全て樹脂に吸着し、溶液中から除去されたと考えられる。また、8 cm3/g-wet以下に流し込むと、流出溶液のビタミンE濃度は急激に増加し、原料溶液の数値に漸近する傾向を示した。これより、樹脂の置換基がビタミンEで飽和したため、供給した原料中のビタミンEが樹脂に吸着せずにそのまま流出したと考えられる。また、図中の斜線部を積分することで、カラム内残存するビタミンE量を求めることができる。ただし、これは、図23に模式的に示すように、樹脂の置換基に保持されたビタミンE量と、樹脂内および樹脂外の溶液中に存在する遊離のビタミンE量の和となる。次に、(b)より、流出溶液のビタミンE濃度は、エタノール供給開始後、カラム内に残存する
図23 原料溶液通液後の樹脂の概念図

原料溶液が流出するため、原料中の値と同程度であり、徐々に減少してほぼ零となった。また、図中の斜線部を積分することで、カラム内から流出したビタミンE量を求めることができる。そして、(c)より、流出溶液のビタミンE濃度は、2 cm³/g 以降速やかに増加して極大値をとった後、急激に減少してほぼ零となった。これより、樹脂に保持されたビタミンEが溶離して流出したと考えられる。また、図中の斜線部を積分することで、ビタミンEの脱離量を求めることができる。

これらのグラフから積分で求めたビタミンEの残存量、流出量、脱離量を表7のrun 1 に示す。他の条件については後述する。これらの値に基づき、回収率と物質収支を式(7), (8)により計算した。

\[
回収率 \% = \frac{\text{脱離量}}{\text{残存量}} \times 100
\]

\[
\text{物質収支} \% = \frac{(\text{ビタミンE供給量}-\text{残存量})+\text{流出量}+\text{脱離量}}{\text{ビタミンE総供給量}} \times 100
\]

ここで、ビタミンE総供給量[mol]は、原料溶液の総供給量[cm³]と原料のビタミンE濃度[mmol/cm³]との積である。run 1 での回収率は64 %、物質収支は103 %となった。物質収支がほぼ100 %であることから、実験中にビタミンEの分解が生じていないこと、また、脱離溶液供給時に回収されなかった残りのビタミンEが、その前段のエタノール供給時に流出していることが分かった。実験では、この残存溶液量をカラム体積V-column、樹脂量W_resin、樹脂密度ρ_resinから概算し、原料ビタミンE濃度C_{VE,in}を乗ずることで、残存原料溶液に含まれる遊離ビタミンE量を式(9)で求めた。

\[
\text{遊離ビタミンE量} [\text{mmol}] = C_{VE,in} \left(V_{\text{column}} - \frac{W_{\text{resin}}}{\rho_{\text{resin}}} \right)
\]

この値は0.34 mmolとなり、前述の表7に示したエタノール通液時の流出量2.76 mmolの12 %程度と非常に小さい。つまり、エタノール通液によって、樹脂内部の液相に存在する遊離のビタミンEも流出したと考えられる。この樹脂内液相のビタミンEは、樹脂に保持されたものと考えられるため、この流出を防ぐ必要がある。そこで、以降の実験では、カラム内に残存する原料溶液を押し出す最低量のエタノールを通液することとした。
表7 流通系での吸着・脱離実験における各ビタミンE量と回収率

<table>
<thead>
<tr>
<th></th>
<th>run 1</th>
<th>run 2</th>
<th>run 3</th>
<th>run 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{VEH,in}$ [mmol/cm3]</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.05</td>
</tr>
<tr>
<td>W_{resin} [g-wet]</td>
<td>6.7</td>
<td>6.7</td>
<td>10.0</td>
<td>6.7</td>
</tr>
<tr>
<td>残存量 [mmol]</td>
<td>6.72</td>
<td>6.65</td>
<td>11.05</td>
<td>5.91</td>
</tr>
<tr>
<td>流出量 [mmol]</td>
<td>2.76</td>
<td>1.46</td>
<td>2.35</td>
<td>1.01</td>
</tr>
<tr>
<td>脱離量 [mmol]</td>
<td>4.28</td>
<td>5.18</td>
<td>8.94</td>
<td>5.10</td>
</tr>
<tr>
<td>回収率 [%]</td>
<td>63.5</td>
<td>77.9</td>
<td>80.9</td>
<td>86.3</td>
</tr>
<tr>
<td>物質収支 [%]</td>
<td>103.3</td>
<td>99.9</td>
<td>102.0</td>
<td>102.0</td>
</tr>
</tbody>
</table>

図24に、充填樹脂量あるいは原料ビタミンE濃度を変化させた吸着・脱離実験結果を示す。(a)の原料供給時の流出溶液ビタミンE濃度は、樹脂量を増大させた場合（run 3, ▽）でもrun 2（○）と同様の挙動を示した。これより、充填樹脂量は吸着挙動に影響を与えないと考えられる。また、原料濃度を半分としたrun 4（△）では、流出溶液ビタミンE濃度が増加し始める（破過する）までに約2倍の

図24 ビタミンE類の吸着・脱離挙動に及ぼす充填樹脂量と原料ビタミンE濃度の影響
(a)原料溶液通液時, (b)エタノール通液時, (c)脱離溶液通液時
流出体積を要したことが分かる。これは、樹脂置換基量が等しい場合、原料濃度を半分にすると置換基を全て埋めるのに必要なビタミンEを得るのに2倍の原料供給量が必要となることと一致している。また、(b)のエタノール通液時の流出溶液ビタミンE濃度は、樹脂量を増大させた場合（run 3, ▽）、run 2（○）と同様の挙動を示した。一方、原料濃度を半分としたrun 4（△）の流出溶液ビタミンE濃度は、青線で示す原料濃度よりも高い値から減少する傾向を示した。(c)の脱離溶液通液時の流出溶液ビタミンE濃度は、どの条件でも流出溶液量4 cm³/g付近で極大値をとった。そして、樹脂量を増大させた場合（run 3, ▽）に極大値が大きくなり、原料濃度を半分とした場合（run 4, △）、run 2（○）と同様の挙動を示した。従って、原料濃度はビタミンEの脱離挙動に影響を与えないと考えられる。

これらのグラフから求めたビタミンEの残存量、流出量、脱離量を、前述の表7に、run 1の結果と比較して示す。run 1の条件からエタノール通液量のみを減らしたrun 2では、残存量は同程度であるものの、エタノール通液時の流出量が減少し、脱離量が増加した。その結果、回収率は78%まで増大した。これより、吸着実験でのエタノール通液量を減らすことは、回収率の増大に有効であると考えられる。次に、樹脂量を増大させた場合（run 3）、run 2と比べ、残存量、脱離量が共に増大したため、回収率は同程度であった。これより、樹脂量を増大させることで、回収率を維持したまま、吸着量と脱離量を増大させることができると考えられる。このことは、本手法が高い回収率を保持したままスケールアップできることを意味する。一方、原料ビタミンE濃度を低くした場合（run 4）、カラム内のビタミンE残存量が少なくなったものの、流出量が少なく、脱離量が同程度であったことから、回収率が86%まで向上した。これは、原料ビタミンE濃度が低くなると、カラムに残存する原料溶液中と樹脂内液相中の遊離ビタミンE量が小さくなるものの、樹脂にイオン交換で保持されるビタミンE量が変わらないためと考えられる。これより、本手法は、原料溶液のビタミンE濃度が低いほど回収率が高く、効率的な回収を期待できると考えられる。

また、ここで定義した回収率は、脱離液通液時に回収されるビタミンE量に着目したものであり、残りは前段のエタノール供給時に流出している。当然、この流出溶液は全て原料溶液に加える形でリサイクル利用される。つまり、原料溶液として樹脂塔に再供給されるため、次の段で吸着・回収されることとなり、システム全体からみると、分解が生じない限りビタミンEの回収率は100%となる。

3.5 樹脂再生条件の検討結果

後段の陰イオン交換樹脂の再生条件の改良を目的とし、NaOH水溶液の代わりに、NaOHメタノール溶液を用い、樹脂のOH基置換が可能であるかを検討した。その結果を図25に示す。縦軸は、再生後の樹脂のOH基濃度である。1番左の棒グラフは、水を全く添加せずメタノールにNaOHを溶解させた溶液を用いた結果である。1番右の100%水とした現行のNaOH水溶液を用いた結果と比
図25 樹脂のOH基置換率に及ぼすNaOHメタノール溶液への水添加の影響

表8 陰イオン交換樹脂の再生処理工程で用いる溶液種とその使用量

<table>
<thead>
<tr>
<th>再生溶液</th>
<th>改良法 [cm³/g-wet resin]</th>
<th>現行法 [cm³/g-wet resin]</th>
</tr>
</thead>
<tbody>
<tr>
<td>メタノール</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>0.43 mol/dm³酢酸-メタノール</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>1.0 mol/dm³NaOH溶液</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>脱イオン水</td>
<td>-</td>
<td>1.5</td>
</tr>
<tr>
<td>メタノール</td>
<td>1.5</td>
<td>1.8</td>
</tr>
<tr>
<td>総メタノール量(リサイクル率)</td>
<td>9.5(>80%)</td>
<td>8.6(50%)</td>
</tr>
<tr>
<td>総脱イオン水量(リサイクル率)</td>
<td>0.3</td>
<td>3.0(50%)</td>
</tr>
</tbody>
</table>

OH基濃度 [mmol/g-wet resin]

0% H2O in MeOH
5% H2O in MeOH
10% H2O in MeOH
20% H2O in MeOH
100% H2O

表8に、陰イオン交換樹脂の再生処理で使用される溶液種とその樹脂あたりの使用量を纏めて示す。現行の再生法では、本研究を開始する時点で、各操作の目的を充分に達成するため過剰気味に溶液供給を行っており、溶媒として用いる総メタノール量が樹脂1 g-wet当た10.4 cm³、総脱イオン水量が5.2 cm³で、各溶液のリサイクル利用率は50%であった。そこで、本研究を進める際に各溶
液の供給量を徐々に削減したところ、メタノールが 8.6 cm3 (17 %減)、脱イオン水が 3.0 cm3 (42 %減) で充分であることが分かった。ただし、各溶液のリサイクル利用率は 50 %で変わらなかった。これに対し、改良法では、メタノールが 9.5 cm3 と増加するものの、脱イオン水が 0.3 cm3 とほとんど使用しないこととなり、その結果、メタノールの回収利用が容易となり、リサイクル利用率が少なくとも 80 %以上と増大することが期待される。ただし、改良法に関しては基礎データを取得した段階であり、さらなる検討が必要である。

3.6 燃料製造コストの試算と経済性の評価

以上の検討に基づき、本研究で作製した陽イオンおよび陰イオン交換樹脂触媒を用いたベンチスケールの連続製造装置によるバイオディーゼル 1L あたりの製造コストを算出した。その値を、現行の均相塩基触媒法による製造コストの値と比較して表 9 に示す。均相塩基触媒を用いた手法としては、京都市で行われているバイオディーゼル製造事業での報告値 31)と、ある企業が試算した市販の製造装置 A-C を用いた場合の提供値を示した。装置 A, B は活性白土処理で製品バイオディーゼルの乾式精製を行うもの、装置 C は温水洗浄で湿式精製を行うものである。

<table>
<thead>
<tr>
<th>項目</th>
<th>樹脂触媒法</th>
<th>均相塩基触媒法</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>東北大</td>
<td>京都市 装置 A</td>
</tr>
<tr>
<td>1. 原料油費</td>
<td>37.0</td>
<td>43.0</td>
</tr>
<tr>
<td>2. ランニングコスト</td>
<td>32.9</td>
<td>55.0</td>
</tr>
<tr>
<td>1) 使用薬剤費</td>
<td></td>
<td></td>
</tr>
<tr>
<td>メタノール</td>
<td>9.0</td>
<td>7.0</td>
</tr>
<tr>
<td>樹脂触媒</td>
<td>2.4</td>
<td>-</td>
</tr>
<tr>
<td>アルカリ触媒</td>
<td>-</td>
<td>6.3</td>
</tr>
<tr>
<td>石鹸析出剤</td>
<td>-</td>
<td>3.3</td>
</tr>
<tr>
<td>酸化防止剤</td>
<td>1.4</td>
<td>-</td>
</tr>
<tr>
<td>水</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>その他</td>
<td>-</td>
<td>9.0</td>
</tr>
<tr>
<td>2) 廃棄物処理費</td>
<td>7.7</td>
<td>37.0</td>
</tr>
<tr>
<td>グリセリン</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>水処理</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>その他(再生)</td>
<td>7.7</td>
<td>37.0</td>
</tr>
<tr>
<td>3) 光熱費</td>
<td>12.4</td>
<td>2.0</td>
</tr>
<tr>
<td>1+2(合計)</td>
<td>69.9</td>
<td>98.0</td>
</tr>
</tbody>
</table>
原料油として、本樹脂触媒法では食用油製造工程から排出される遊離脂肪酸残渣油を、現行の\均相塩基触媒法では廃食用油を用いるとする。前者の残渣油費は、提供元の食用米油製造会社が\1 L当たり37円と試算した。これは、残渣油が現在焼却処理されていることを踏まえ、安価なバイオ燃料の代替品相当としたコストである。後者の廃食用油の費用は、京都市の事業で43円とされてい\るため、この値を装置A-Cでも採用した。また、通常の製造時にかかるランニングコストを、メタノール\や触媒、酸化防止剤などの使用薬剤費、グリセリンや水などの廃棄物処理費、光熱費の項目に分け\て示した。本樹脂触媒法では、樹脂費を5,000\Lの燃料製造毎に新品と入れ替えると仮定し、1\L当たり2.4円と見積もり。実際の樹脂寿命はもっと長いため、この費用以下となることは確実である。\また、廃棄物処理費として、樹脂法では、後段の陰イオン交換樹脂の再生費を、前述の図18の燃\料連続製造挙動と表8の本研究で削減した溶液使用量に基づき7.7円/Lと推算了。京都市では、\資料に掲載された報告値を、装置A-Cでは、グリセリン処理費100円/L、強塩基性の廃棄水処理費65\円/Lとして企業が推算した値を示した。光熱費として、本樹脂法では、ベンチスケール製造装置の\運転時に実測した所消費電力量に基づき16円/kWhと仮定して推算了。現行法に関する値は、全\て提供されたものである。\推算されたランニングコストは、現行の均相触媒法では京都市の報告値が55円/Lと最も低いが、\本樹脂法は33円/Lと、京都市よりもさらに22円安くなった。現行法では、石鹸が副生するため製品\燃料からこれを除去する精製操作やその際の廃液処理に費用（37円/L）がかかる。これに対し、樹\脂法では、石鹸が副生せず、かつ、副生物が樹脂に吸着して製品から除去されるため精製工程が\不要となり、新たな負荷となる再生費も溶液使用量削減やリサイクル利用によって7.7円/Lまで低減\できた。このことが、より安価なランニングコストに繋がったと考えられる。\次に、前述の各手法に関する装置の減価償却費を、各装置コストと製造量に基づき推算了。こ\の際、一般的な推算法に基づき、連続製造装置の場合は年間運転時間を8,000時間、回分製造装\置の場合は、1日1回の運転で年間稼働日を300日（25日/月）とし、どちらも8年間で均等に償却さ\れたとした。\連続装置の減価償却費（円/L）= \frac{装置コスト}{製造量×年間稼働時間（8,000時間）×8年} (10)\回分装置の減価償却費（円/L）= \frac{装置コスト}{製造量×年間稼働日（25日×12ヶ月）×8年} (11)\その結果を表10に比較して示す。本樹脂法の装置コストは、本事業で作製したベンチスケールの\連続製造装置の組み立てに要した費用の総額から求めた。そのため、製造量が日生産量3\Lと非\常に小さいにも拘わらず高価であり、減価償却費は654円/Lと非常に大きくなった。この値は、装置
表10 本製造法と現行法によるバイオディーゼル1L当たりの減価償却費の比較

<table>
<thead>
<tr>
<th>樹脂触媒法</th>
<th>均相塩基触媒法</th>
</tr>
</thead>
<tbody>
<tr>
<td>本製造法</td>
<td>現行法</td>
</tr>
<tr>
<td>東北大</td>
<td>654円/L</td>
</tr>
<tr>
<td>装置コスト</td>
<td>5,230,000円</td>
</tr>
<tr>
<td>製造量</td>
<td>3L</td>
</tr>
<tr>
<td>運転時間</td>
<td>24h</td>
</tr>
</tbody>
</table>

のスケールアップを行うことで大きく改善される。共同研究者が行っている他の研究で日生産量50Lの全自動の連続製造装置を開発しており、この知見に基づくと、日生産量2,000Lの本連続製造装置が1億円で製作可能といわれている。この条件で減価償却費を再計算すると、18.8円となり、均相塩基触媒法での値と同程度となる。また、現行の均相塩基触媒法の京都市の場合、前述の式(11)で算出すると62.5円/Lとなったが、資料での報告値は21円/Lであり、試算方法の違いによるものと考えられる。

最後に、ビタミンE類の回収による利益コストを試算する。本製造装置による遊離脂肪酸からバイオディーゼルへの転化率は100％であるため、1Lのバイオディーゼルを製造するために必要な遊離脂肪酸残渣油量は、密度の違いに基づき0.83kgとなる。前述の図20に基づき、この残渣油には0.1wt％のビタミンE類が含まれ、そのうちトコトリエノール類の割合は61％であることから、ビタミンE類量は8.3×10^{-4}kg、トコトリエノール類量は5.1×10^{-4}kgとなる。また、トコトリエノールの価格は、食用米油製造会社からの情報では、10％品で2万円/kg、60％品で15万円/kg、95％品で30万円/kgといわれている。本回収法では、樹脂に吸着したビタミンE類がエタノール溶液の形で脱離され、ほぼ100％回収される。そのため、残渣油のビタミンE組成を維持したまま回収されるとすれば、エタノール除去後にトコトリエノール60％品が得られると考えられる。この場合、1Lのバイオディーゼルを製造する際に、副生されるビタミンE類の利益コストは76円、10％品が得られとしても利益コストは10円となる。現在、ビタミンE類の回収に関する基礎データを取得した段階であるため、この利益コストは目安に過ぎないが、バイオディーゼル製造の経済性を大きく向上させることは間違いいない。

4．結論
実際に食用米油製造会社で発生した米ぬか由来の遊離脂肪酸残渣油を原料とし、研究代表者ら独自のイオン交換樹脂法を用いてJIS規格を満たす高品質バイオディーゼル燃料を連続製造できるベンチスケールの装置を作製、その生産性が最大となる装置運転条件を明らかにした。得られた燃料は、僅かに残留するメタノールを蒸留除去するだけで、JIS規格21項目を全て満たす高品質品
となることを外部専門機関により証明された。また、本研究の結果に基づく燃料のランニングコストは約33円/L（薬剤11円、樹脂2円、樹脂再生（廃棄物処理）8円、光熱12円）と推算され、京都市の均相アルカリ触媒法によるコスト約55円/Lから40%削減、本研究開始前の本法コスト96円/Lから65%削減された。また、原料残渣油は約0.1wt%のビタミンE類を含み、このような低濃度のビタミンE類も陰イオン交換樹脂の吸着能により選択的に回収できること、より高い抗酸化活性を持つトリエノール含有量に応じてバイオディーゼル1L当たり10〜76円の利益を生じる可能性があることとも明らかになった。この利益コストが燃料製造プロセスコストに反映されれば、更なる競争単位性が得られると確信される。
5. 参考文献

9) http://www.oil.or.jp/kiso/seisan03 01.html

10) http://www.oil.or.jp/kiso/seisan02 01.html

27) 米本, 北川, 戸田, 「脂肪酸エステルの製造方法」，特許第 4198663 号 (2008.10.10)

28) 北川, 米本, 千田, 宮沢, 仲川, 木村, 「油脂からのトコトリエノールとバイオディーゼル燃料の同時生産方法」，特開2009-190989 (2009.8.27公開)

31) 京都市南部クリーンセンター管理課燃料化施設係 「京都市における廃食用油燃料化事業の概要と施設紹介」配布資料 (2012)
6．研究発表

6.1 論文発表
1) 北川尚美，米本年邦，イオン交換樹脂触媒を用いた新規なバイオディーゼル燃料製造技術の開発，化学工学，Vol.74, No.4, 2010, 164-167
4) N.Shibasaki-Kitakawa, T.Tsuji, M.Kubo, T.Yonemoto, Biodiesel Production from Waste Cooking Oil Using Anion-exchange Resin as Both Catalyst and Adsorbent, Bioenergy Research, Vol.4, No.4, 2011, 287-293
5) 北川尚美，高品質バイオ燃料と高機能生理活性物質を同時製造可能な環境配慮型反応分離技術の開発，化学工学，Vol.76, No.4, 2012, 207-208
7) 北川尚美，イオン交換樹脂触媒を用いた高品質バイオディーゼル燃料製造技術，(財)京都高度技術研究所産学連携事業部バイオマス利用研究会平成 23 年度活動報告「バイオマス利用研究 No.13」, 2012, 52-58

6.2 招待講演
1) N.Shibasaki-Kitakawa, T.Yonemoto, Continuous Production of High Quality Biodiesel from Vegetable Oils with High Fatty Acid Content Using Ion-exchange Resin Catalysts, The 12th International Conference on QiR, 2011 年 7 月 6 日, Sanur Paradise Hotel（Bali, Indonesia）
2) 北川尚美，イオン交換樹脂触媒を用いた高品質バイオディーゼル燃料製造技術，NPO 法人近畿バイオインダストリ振興会議第 18 回バイオマス研究会, 2011 年 7 月 15 日, 大阪科学技術センター（大阪）
3) 北川尚美, イオン交換樹脂触媒を用いた高品質バイオディーゼル燃料製造技術, (財) 京都高度技術研究所産学連携事業部第 64 回バイオマス利用研究会, 2011 年 9 月 29 日, 京都高度技術研究所 (京都)

6. 3 学会等発表

1) N. Shibasaki-Kitakawa, T. Tsuji, M. Kubo, T. Yonemoto, Production of High Quality Biodiesel Fuel From Waste Cooking Oil Using Anion-exchange Resin Catalyst, 2010 AIChE Annual Meeting, 2010 年 11 月 9 日, Salt Palace Convention Center (Salt Lake City, UT, USA)

2) 金川恵一, 久保正樹, 北川尚美, 米本年邦, 副生物の除去工程を必要としない高品質バイオディーゼル燃料合成法, 化学工学会第 76 年会, 2011 年 3 月 24 日, 東京農工大学 (東京)

3) N. Shibasaki-Kitakawa, Y. Kimura, M. Murakami, M. Kubo, T. Yonemoto, Kinetic Analysis for Water-soluble Free Radical Induced Oxidation of Liposomal Cholesterol with/without Lipid-soluble Antioxidants, Asian Congress on Biotechnology, 2011 年 5 月 12 日, Shanghai Everbright Convention & Exhibition Center（上海, 中国）

5) 井原亨, 北川尚美, 中島一紀, 米本年邦, 遊離脂肪酸残渣油を原料としたバイオディーゼル燃料合成, 化学工学会第 43 回秋季大会, 2011 年 9 月 16 日, 名古屋工業大学 (名古屋)

6) 鮫川祐子, 中島一紀, 北川尚美, 米本年邦, リポソーム内包コレステロールの酸化反応速度に及ぼす構成リン脂質の影響, 化学工学会第 43 回秋季大会, 2011 年 9 月 15 日, 名古屋工業大学 (名古屋)

7) N. Shibasaki-Kitakawa, K. Kanagawa, K. Nakashima, T. Yonemoto, High Quality Biodiesel Fuel Production from Crude Jatropha Oil without Upstream and Downstream Processing, 2011 AIChE Annual Meeting, 2011 年 10 月 18 日, Minneapolis Convention Center（Minneapolis, MN, USA）

8) 北川尚美, 米本年邦, 廃棄バイオマスを原料とした高品質バイオディーゼル燃料製造技術の開発, INCHEM TOKYO 産学官マッチングフォーラム, 2011 年 11 月 16 日, 東京ビッグサイト（東京）

9) 北川尚美, 米本年邦, 廃棄脂肪酸油を原料とした高品質バイオディーゼル燃料製造法, 東北大学イノベーションフェア, 2012 年 3 月 15 日, 東京国際フォーラム（東京）

10) 金川恵一, 中島一紀, 北川尚美, 米本年邦, イオン交換樹脂を触媒・吸着剤とした高品質バイ
11) Y.Sukegawa, Y.Kimura, K.Nakashima, N.Shibasaki-Kitakawa, T.Yonemoto, Kinetic Analysis for Water-soluble Free Radical Induced Oxidation of Biomembrane Lipids, 103rd AOCS Annual Meeting & Expo, 2012 年 4 月 30 日, Long Beach Convention Center (Long Beach, CA, USA)
12) N. Shibasaki-Kitakawa, T.Ihara, K. Nakashima, T. Yonemoto, High Quality Biodiesel Production from Waste Acid Oil Using Ion-exchange Resins as Catalysts and Adsorbents, 103rd AOCS Annual Meeting & Expo, 2012 年 4 月 30 日, Long Beach Convention Center (Long Beach, CA, USA)
13) N. Shibasaki-Kitakawa, T. Yonemoto, A New Biodiesel Production Process Using Ion-exchange Resins as Catalysts and Adsorbents, ACHEMA (International Powder and Nanotechnology Forum 2012), 2012 年 9 月 19 日, Exhibition grounds of Messe Frankfurt GmbH (Frankfurt, Germany)
15) 中島一紀, 佐藤拓海, 北川尚美, 米本年邦, セルロースの酵素分解における超音波前処理の効果, 第 64 回日本生物工学会大会, 2012 年 10 月 26 日, 神戸国際会議場（神戸）
16) 北川尚美, 米本年邦, イオン交換樹脂を触媒としたバイオディーゼル燃料の連続製造技術, 東北大学イノベーションフェア, 2013 年 1 月 17 日, 仙台国際センター（仙台）
17) 井原亨, 北川尚美, 中島一紀, 米本年邦, 廃棄脂肪酸油からの高品質バイオディーゼル連続合成プロセスの開発, 化学工学会第 78 年会, 2013 年 3 月 18 日, 大阪大学（大阪）
18) 鮫川祐子, 北川尚美, 中島一紀, 米本年邦, 生体膜系におけるリン脂質とコレステロールの共酸化速度論, 化学工学会第 78 年会, 2013 年 3 月 18 日, 大阪大学（大阪）
7. 知的財産権の取得状況

1) 名称：脂肪酸エステルの製造方法およびバイオディーゼル燃料
発明者：（東北大）北川尚美・米本年邦・井原亨・（三菱化学）高柳弘昭
権利者：（株）東北テクノアーチ、三菱化学（株）
種類：特願
番号：特願 2012-021989
出願年月日：平成 24 年 2 月 3 日
K2401 食用油製造工程で排出する遊離脂肪酸残渣油を原料とした
高品質バイオディーゼル燃料の連続製造技術の開発

概要：食用油製造工程で排出し大半が焼却処理されている遊離脂肪酸残渣油を新規バイオマス資源として捉え、独自のイオン交換樹脂法により高品質バイオ燃料に連続変換すると共に、油中の高付加価値物質を回収することで経済性向上を図る。

イオン交換樹脂法の特長
1) 遊離脂肪酸をも燃料化可能
2) 树脂が製品中の不純物成分をも除去可能
3) 精製操作なしで高品質燃料を合成可能
4) ビタミンE類を熱分解なしに回収可能

本研究での開発技術と目標

食用油製造工程

米ぬか・パーム → 原油 → 酸化 → 脱酸 → 食用油

本研究開発技術

新規な商業地系バイオマス原料
発酵産物をエネルギー供給に排出
原油同様に高付加価値物質を含有

目標①：遊離脂肪酸を高効率で燃料化に変換可能なエレクトロ法の確立
目標②：精製なしで高品質燃料を合成可能な操作条件確立
目標③：高付加価値物質採取と回収条件の確立
目標④：プロセスの簡略化と溶媒使用量の削減
目標⑤：コスト算定と経済性の評価

【本成果の波及効果】
・バイオ燃料と機能性物質を同時製造可能な技術は他にない
・食糧生産に伴う廃棄物を利用するため真に食との競合なし
・環境配慮型で採算性のある革新的な燃料製造プロセスが確立
・本プロセスをパーム残渣油（1200万トン）にも適用可能
英文概要

研究課題名
Development of Continuous Production Technology of High-quality Biodiesel Fuel using by-produced Acid Oil in Edible Oil Processing

研究代表者名及び所属
Toshikuni Yonemoto, Tohoku University
Naomi Shibasaki-Kitakawa, Tohoku University
Toshiyuki Kimura, National Agriculture and Food Research Organization, Tohoku Agricultural Research Center

要旨

Acid oil dumped during the edible oil processing and consisting of about 95wt% of free fatty acids and 5wt% of triglycerides, is used as a cheaper feedstock for biodiesel production. Vitamin E is expected to be recovered from the feedstock, which is helpful for decreasing the production cost of biodiesel. The novel bench-scale apparatus, in which expanded-bed reactors packed with cation- and anion-exchange resins were connected in series, was constructed. The continuous biodiesel production from rice bran acid oil was performed. The results led to the following conclusions:

(1) The rice bran acid oil contained vitamin E, tocotrienol and tocopherol, at about 1 wt% and the above anion-exchange resin selectivity adsorbed vitamin E from the oils.

(2) The effluent from the apparatus fully met the biodiesel standards of Japan (JIS K2390) without any downstream purification processes except for removing methanol.

(3) The running cost for biodiesel production by this system was estimated to be 33 yen/L-biodiesel compared with 55 yen/L-biodiesel reported by Kyoto City using conventional homogeneous alkali catalyst. The profit for recovery of Vitamin E was estimated to be 10-70 yen/L-biodiesel.

キーワード
Acid oil, Continuous production, High quality biodiesel, Ion-exchange resin, Vitamin E