課題名 B-0904 アジアにおける多環芳香族炭化水素類(PAHs)の発生源特定とその広域輸送

### 課題代表者名 高田秀重 (国立大学法人東京農工大学農学研究院物質循環環境科学専攻教授)

- 研究実施期間 平成21~23年度
- 累計予算額 132,113千円(うち23年度 39,488千円) 予算額は、間接経費を含む。

#### 研究体制

- (1)バイオマス燃焼PAHsと化石燃料燃焼PAHsの識別(独立行政法人国立環境研究所)
- (2)アジア主要都市の大気水圏中PAHsの分布把握と起源特定(東京農工大学)
- (3)アジア地域のエアロゾルの起源解析(慶應義塾大学)
- (4)リモートサイトPAHsの起源解析および越境輸送の評価(東京薬科大学)
- (5)アジアの大気・水環境中のPAHsのリスク評価(東京大学)

# 研究協力機関

ハノイ科学大学、精華大学、インド環境科学環境毒性学研究所所、ジャダプ大学

#### 研究概要

## 1. はじめに(研究背景等)

多環芳香族炭化水素類(PAHs)は未規制の有害化学物質である。規制が行われない背景には、大気・水圏の汚染実態解明の不足と起源の多様性がある。PAHsは化石燃料やバイオマスなど有機物の燃焼に伴い生成する。また、PAHsは原油および石油製品中にも含まれる。大気・水圏へは燃焼起源・石油起源の多種の発生源からPAHsが供給されている。発生源が多様であることがPAHsの環境負荷低減策の提案を困難にしている。本研究では、アジア地域において徹底した調査を行い、アジア地域のPAHs汚染の実態を詳細に明らかにし、最新の化学的手法を総動員し、起源特定を行う。これらの知見はアジア地域の有害化学物質PAHsの負荷削減のための行政的対応への科学的根拠となる。また、燃焼起源のPAHsは大気へ放出されることから、大気を通した長距離・越境輸送が観測されている。しかし、PAHsは多様なローカルな発生源も広く存在することから、越境輸送とローカルな発生源の寄与の定量的な識別は極めて不十分である。本研究では越境輸送起源のPAHsとローカルな発生源からのPAHsの区別をすることにより、PAHsの負荷削減に向けたアジア諸国の国際協調への客観的なバックグランドを与えることとを目指した。

#### 2.研究開発目的

3年間での研究目的は、①アジア地域のPAHs汚染実態を明らかにすること、②それらの地域の大気・水圏中のPAHsの起源を定量的に明らかにすること、③越境輸送起源のPAHsとローカルな発生源からのPAHsを区別すること、を主要な目的としている。

### 3.研究開発の方法

#### (1) バイオマス燃焼PAHsと化石燃料燃焼PAHsの識別

複雑なマトリックスの中に微量成分として存在するPAH各成分を精製・単離する技術を開発し、環境試料中の PAHsの放射性炭素の存在量(化合物レベル放射性炭素同位体測定(CCSRA))を指標とした発生源特定のた めの解析法の開発を行った。開発した手法をインドコルカタ運河堆積物へ適用し、PAH化合物レベル放射性炭 素同位体測定(CCSRA)を行い、PAHの起源(バイオマス燃焼・化石燃料燃焼)解析を行った。

### (2)アジア主要都市の大気水圏中PAHsの分布把握と起源特定

アジア主要都市(東京、ハノイ、北京、コルカタ、クアラルンプール、ジャカルタ)で年間を通して採取したエアロゾ ル試料および熱帯アジア8ヵ国と東京の堆積物180試料中のPAHs36成分の分析を行い、アジア主要都市の大 気水圏中PAHsの分布を詳細に把握した。起源物質として、石炭燃焼生成物、木材燃焼生成物、路上粉塵、ア スファルト、自動車(ガソリンエンジン車、ディーゼルエンジン車)排気粒子、モーターバイク(2ストロークエンジン、 4ストロークエンジン)排気粒子、Rickshaw(三輪タクシー)排気粒子、市販エンジンオイル、使用済みエンジンオ イル、タイヤ摩耗粒子についてもPAHsの詳細な分析を行い、PAHsプロファイルの統計解析とマーカーの分析を 組み合わせて、PAHsの起源推定を行った。

# (3)アジア地域のエアロゾルの起源解析

北京、ハノイ、コルカタ、東京の各地点において石英繊維フィルター上に採取されたエアロゾル試料から、超純水により水溶性イオン成分を抽出し、抽出液中のイオン成分(F<sup>-</sup>, Cl<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, Na<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>)をイオンクロマトグラフィーにより分析した。また、三次元偏光光学系エネルギー分散型蛍光X線分析装置(リガク社製 EDXL300)を用いて、FP(ファンダメンタルパラメーター)法によりエアロゾル中元素の分析を行った。

#### (4)リモートサイトPAHsの起源解析および越境輸送の評価

都市域及びリモート地域(コルカタ(インド)市街地及び周辺地域、東京都心及び郊外、沖縄県辺戸岬)の大気 試料中のPAHsの分析を行い、PAHsの汚染に及ぼす越境汚染の影響を評価した。また、リモート地域でのサン プリングに用いるパッシブエアサンプラー(PAS<sub>Air</sub>)とパッシブバルクサンプラー(PAS<sub>fallout</sub>)を同地点で同時に設置 し、PAHsの分析結果を比較し、PAHs捕集特性・信頼性を評価した。

# (5)アジアの大気・水環境中のPAHsのリスク評価

他のサブテーマで得られたPAHsの実測値から、ヒト健康リスクと水生生物への影響を評価した。人への影響としては、大気の吸引による発ガンリスクを想定し、文献値として得られる異なる2つのユニットリスクを用いて発ガンリスクを計算した。水生生物への影響としては奇形リスクを想定し、さらにそれ以外の影響も含めて過去の知見 を精査し、検討した。過去の知見が不十分であることから、特にPAHsの生体移行性に着目し、イソゴカイを用いて汚染底質の室内曝露実験を行った。

# 4. 結果及び考察 ※4. のうち、結果についてはサブテーマごとに記載すること。

#### (1) バイオマス燃焼PAHsと化石燃料燃焼PAHsの識別

堆積物中のPAHsのCCSRAを行うための精製法を確立した。コルカタ運河堆積物(KKNC、KKSC)から精製した  $\Sigma$ 178、 $\Sigma$ 202、 $\Sigma$ HMW-PAHの放射性炭素同位体比(pMC±・)は、それぞれ10.6±0.1, 5.9±0.4, 7.6±0.5 (KKNC)、8.4±0.5, 8.3±0.4, 8.5±0.3(KKSC)であり、 $\Sigma$ 178、 $\Sigma$ 202、 $\Sigma$ HMW-PAHへのバイオマス燃焼の寄与 率はそれぞれ9.8, 5.5, 7.0%(KKNC)、7.8, 7.7, 7.9%(KKSC)と計算された。化石燃料燃焼に由来する残りの90 ~94%のPAHsを、石炭燃焼(レンガ製造)とディーゼル排ガスの2種類の混合によるものと仮定し、MPy/Py比を 用いて計算すると、石炭燃焼(レンガ製造)とディーゼル排ガスの寄与率はそれぞれ60~65%、29~33%と試算さ れた。以上の解析の結果、メチル化PAHs/PAHs比およびC30-hopane/ $\Sigma$ PAHs比を用いた分子組成解析と CCSRAを組み合わせることによって、コルカタ運河の堆積物で観測された高濃度PAHsの汚染源は主に石炭燃 焼生成物であることが明らかとなった。

### (2)アジア主要都市の大気水圏中PAHsの分布把握と起源特定

各都市の大気中平均PAHs濃度(36種のPAHsの合計)は北京(229ng/m<sup>3</sup>)>コルカタ(91.8ng/m<sup>3</sup>)≫ジャカルタ (11.3ng/m<sup>3</sup>)≒ハノイ(11.6ng/m<sup>3</sup>)≒東京(年平均:5.3ng/m<sup>3</sup>)≒クララルンプール(3.95ng/m<sup>3</sup>)の順となり、北京、 コルカタはアジアのその他の大都市よりも1桁~2桁PAHs濃度が高かった。いずれの都市においてもPAHs濃度 は夏季(6月~9月)に低濃度で冬季(12月~2月)に高濃度であった。PAHs濃度が高くなる冬季の北京について は暖房用石炭燃焼の寄与が大きいことを明らかにした。森林火災に伴う煙霧(Haze)は大気中PAHs濃度を上昇 させるが、激しい煙霧時でもPAHs濃度は北京やコルカタの冬季のPAHs濃度よりも一桁低く、人為活動起源 PAHsの寄与の大きさが確認された。熱帯アジア8ヵ国と東京の水域堆積物180試料中のPAHs濃度を明らかに し、起源推定を行った。濃度はインドの各都市とインドネシアのジャカルタで1000 ng/gを超え、先進工業化国の 水域と比べて高度に汚染されており、それ以外の熱帯アジア各国は低~中程度の濃度レベルを示した。インドと 東京の堆積物は燃焼起源の特徴が強く、インドの堆積物については主に石炭燃焼起源であることが示唆された。 それ以外の熱帯アジアの都市域では広く石油起源PAHsの負荷があることが明らかにされた。石油起源PAHsの 発生源としては、普遍的にタイヤ摩耗物由来のPAHsの寄与があることが明らかになった。さらに、マレーシア、カ ンボジアでは廃エンジンオイルの寄与が大きく、インドネシアでは2ストロークエンジンのモーターバイクの寄与が 大きいことが示された。

#### (3)アジア地域のエアロゾルの起源解析

主に土壌・地殻由来と考えられる元素(Ca, Ti, Mn, Fe)は北京、ハノイ、東京において、冬季(乾季)/夏季(雨季) の濃度比が2以下であり、これは季節間の気温の違いによる大気混合層高さの違いや、降雨による粒子の除去 で説明できた。コルカタでは、これらの元素の乾季/雨季の濃度比が4.0-5.2となり、この季節変動は気象条件だ けでは説明できず、何らかの人間活動に起因している可能性が示唆され、コルカタで冬季にPAHsの放出が増え ると示唆されたことと、整合性があった。北京では、人為起源のCuの影響が大きいこと、ハノイにおいては年間を 通じてタイヤ摩耗粉塵等の人為的なZnの発生源があることが、考えられた。コルコタにおいてはPb濃度が極めて 高く、人為起源粒子に汚染された土壌の巻き上がりが現在のコルコタにおける大気中Pbの主要な発生源ではな いかと考えられた。東京では冬季と比較して夏季にVが約4倍増加しており、他の都市と異なって極めて特徴的 であった。東京におけるVの起源としては重油燃焼が挙げられ、首都圏における夏季の電カ需要の増加に伴う 火力発電所での重油消費量の増加が原因の一つである可能性がある。

#### (4)リモートサイトPAHsの起源解析および越境輸送の評価

沖縄辺戸岬のPAH濃度は同時に観測された福岡、福江よりも低く、長距離輸送されていることが示唆された。季節別にみるとPAHs濃度は秋に春より約1.5倍高くなった。後方流跡線解析により気塊の発生源を推定すると、秋は主に北京を中心とした中国北部から、春は韓国・日本と中国北部から約半数ずつ輸送されていた。同様の長距離輸送はインドコルカタ周辺でも観測され、PAHsの降下フラックスおよびPAHs組成変動の比較と流跡線解析から、市街地の外では外来性の汚染大気の影響が重要であることが示された。また、東京では、PAS<sub>Air</sub>を用いた観測から、長距離輸送の影響が春先等に首都圏全体に及んでいること、夏季において広範囲にバイオマス燃焼の影響が強まること、石油燃料の揮発の影響が強まること等が組成解析から明らかになった。

#### (5)アジアの大気・水環境中のPAHsのリスク評価

大気の吸引による発ガンリスクは、東京では6.4×10<sup>-7</sup>~5.1×10<sup>-5</sup>、コルカタ1.3×10<sup>-5</sup>~1.0×10<sup>-3</sup>、北京2.3×10<sup>-5</sup>~1.8×10<sup>-3</sup>、ハノイ1.2×10<sup>-6</sup>~9.5×10<sup>-5</sup>となった。年間平均値において、北京やコルカタでは低い方のユニットリスクを仮定しても、リスクレベルが10<sup>-5</sup>を超えていた。水生生物への奇形リスクは、底層水での魚類奇形を引き起こす可能性のあるレベルを超える汚染地域が熱帯アジアおよび東京に広く存在していることが本研究課題の結果から示唆された。インド以外の熱帯アジアの都市水域の石油起源PAHsが生物へ移行しやすいことが、室内曝露実験の結果から示唆された。

# 5. 本研究により得られた主な成果

# (1)科学的意義

アジア各都市の大気・水圏のPAHs汚染レベルを詳細に明らかにした。同一測定法および同一採取法で広域 にPAHs汚染レベルを明らかにした点で科学的意義がある。大気中PAHsのリスクは北京とコルカタではリスク レベルが年間平均でも10-5を超えていることを明らかにした。水棲生物への奇形リスクでは、底生魚類に奇 形を引き起こす可能性のある汚染水域がアジア地域に広く存在していることが明らかになった。化合物レベル の放射性炭素測定、PAHs組成の詳細な解析、ホパンなどのマーカーの同時測定によるPAHsの起源特定手 法を開発できた。その手法を用いてPAHsの起源を明らかにできた。PAHsの発生強度の強い地域(北京、コ ルカタ)からのPAHsの長距離輸送の程度を明らかにすることができた。

#### (2)環境政策への貢献

大気および水圏でヒトや底生魚類への影響が懸念されるレベルであると示唆された地域においては、その起源を特定できたので、各国の共同研究者を通して、環境負荷の削減のための、施策に本研究結果が反映される見通しである。

6. 研究成果の主な発表状況(別添.作成要領参照)

# (1)主な誌上発表

<査読付き論文>

- Okuda, T., Matsuura, S., Yamaguchi, D., Umemura, T., Hanada, E., Orihara, H., Tanaka, S., He, K., Ma, Y., Cheng, Y., Liang, L. Atmospheric Environment, 45, 16, 2789-2794 (2011)
   "The impact of the pollution control measures for the 2008 Beijing Olympic Games on the chemical composition of aerosols"
- 2) 吉野彩子、中山寛康、小川佳美、佐藤圭、高見昭憲、畠山史郎:エアロゾル研究,26(4),307-314(2011). 「2010年沖縄県辺戸岬における東アジアに由来する多環芳香族炭化水素類の長距離輸送」
- 3) 小川佳美、兼保直樹、佐藤圭、高見昭憲、林政彦、原圭一郎、畠山史郎:大気環境学会誌, 47(1), 18-25 (2012).

「長距離輸送された多環芳香族炭化水素とn-アルカン-2009年春季および秋季の沖縄辺戸岬、福江島、福岡での測定から-」

4) M. Murakami, M. Abe, Y. Kakumoto, H. Kawano, H. Fukasawa, M. Sah, H. Takada : Atmospheric Environment, 54, 9–17 (2012)

"Evaluation of ginkgo as a biomonitor of airborne polycyclic aromatic hydrocarbons"

5) Rinawati, T. Koike, H. Koike, R. Kurumisawa, M. Ito, S. Sakurai, A. Togo, M. Saha, Z. Arifin, H. Takada : J. Hazardous Materials, 217-218, 208-216 (2012)

"Distribution, source identification, and historical trends of organic micropollutants in coastal sediment in Jakarta Bay, Indonesia"

# <査読付論文に準ずる成果発表> (「持続可能な社会・政策研究分野」の課題のみ記載可) 「特に記載すべき事項はない」

# (2)主な口頭発表(学会等)

1) M. Saha, H. Takada, B. Bhattacharya, 18th symposium on Environmental Chemistry, Tsukuba, Japan, June 10, 2009.

"Distribution of atmospheric polycyclic aromatic hydrocarbons (PAHs) in tropical Asian countries"

2) K. Shimada, S. Hatakeyama, A. Takami, S. Kato, Y. Kajii, 4th Japan-China-Korea Joint Conference on Meteorology, Tsukuba, Japan, Nov. 8, 2009.

"Variation of Carbonaceous Aerosols in Polluted Air Mass Transported from East Asia"

 3) S. Hatakeyama, The 1st International Symposium on Science and Impact of Atmospheric Brown Clouds (ABCs), (Incheon) (2009/11/23)

"Impacts of aerosols in East Asia on plants and human health - an introduction to a new project in Japan"

- 4) M. Saha, H. Takada, B. Bhattacharya, 2nd International conference on "Ecotoxicology & Environmental Sciences", Jadavpur University, Kolkata, India, December 15, 2009.
   "Distribution and source identification of polycyclic aromatic hydrocarbons (PAHs) in Kolkata, India"
- K. Shimada, A. Takami, S. Kato, Y. Kondo, and S. Hatakeyama, The International Workshop "Frontiers of Black Carbon Studies" (Tokyo) (2010/1/25)
- "Difference in Carbonaceous Aerosols Simultaneously Measured at Beijing and Cape Hedo, Okinawa"
  6) Rinawati, T. Koike, H. Koike, R. Kurumisawa, M. Ito, H. Takada, Conference on Natural Resources and Environmental Perspective to Solve Climate Change, Riau, Indonesia, 2010/5/15.
  "Distribution and Sources of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls
  - "Distribution and Sources of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls (PCBs), and Linear Alkybenzenes (LABs) in Coastal Sediment of Jakarta Bay, INDONESIA."
- Y. Ogawa, K. Sato, N. Kaneyasu, A. Takami, S. Hatakeyama: 8th International Aerosol Conference (Helsinki)(2010)

"PAHs and n-alkanes in the aerosol transported around the East China Sea"

# 7.研究者略歴

課題代表者:高田秀重

1959年生まれ、東京都立大学理学部卒業、理学博士、現在東京農工大学大学院農学研究院教授、

主要参画研究者

(1):高田秀重(同上)

(2)

1) 畠山史郎

1951生まれ、東京大学理学部卒業、理学博士、国立環境研究所アジア広域大気研究室長を経て、現在東京 農工大学大学院農学研究院教授

2)内田昌男

1967年生まれ、弘前大学卒業、博士(農学)、米国ウッズホール海洋研究所博士研究員を経て、現在(独)国立 環境研究所の化学環境研究領域主任研究員。

3) 熊田英峰

1971年生まれ、東京農工大学農学部卒業、農学博士、現在東京薬科大学生命科学部助教

4)奥田知明

1974年生まれ、東京都立大学理学部卒業、理学博士、現在慶應大学理工学部講師

5) 中島典之

1970年生まれ、東京大学工学部卒、博士(工学)、現在東京大学環境安全研究センター准教授

# B-0904 アジアにおける多環芳香族炭化水素類(PAHs)の発生源特定とその広域輸送 (1) バイオマス燃焼PAHsと化石燃料燃焼PAHsの識別

(独) 国立環境研究所

環境計測研究センター 同位体・無機計測研究室

内田昌男

平成21年度~23年度累計予算額:29,554千円

(うち、平成23年度予算額:10,224千円)

予算額は、間接経費を含む。

[要旨] 多環芳香族炭化水素 (PAHs) は、化石燃料やバイオマスなど有機物の燃焼に伴い生成し、 また原油および石油製品中にも含まれ、多様な発生源を持つ汚染物質である。PAHsは発が ん性、催奇形性、内分分泌攪乱作用を有する有害化学物質である。しかし、汚染実態に関 する情報の不足と発生源が特定されないため、PAHsに対する規制は行われていない。本研 究では、PAHs汚染の実態を詳細に明らかにするため、大気および水域堆積物中のPAHsに ついて放射性炭素の存在量(化合物レベル放射性炭素同位体測定(CCSRA))を指標とし た発生源特定のための解析法の開発を行った。開発した手法をインドコルカタ運河堆積物 へ適用し、PAH化合物レベル放射性炭素同位体測定(CCSRA)を行い、PAHの起源(バイ オマス燃焼・化石燃料燃焼)解析を行った。コルカタ運河堆積物から精製した5178、5202、 ∑HMW-PAHの放射性炭素同位体比(pMC±□)は、それぞれ10.6±0.1、5.9±0.4、7.6±0.5(KKNC)、 8.4±0.5, 8.3±0.4, 8.5±0.3 (KKSC) であり、大部分が化石燃料の燃焼由来であることが明ら かとなった。大気中CO2と化石炭素をエンドメンバーとした同位体マスバランス計算から、 ∑178、∑202、∑HMW-PAHへのバイオマス燃焼の寄与率はそれぞれ9.8, 5.5, 7.0%(KKNC)、 7.8, 7.7, 7.9%(KKSC)と試算された。化石燃料燃焼に由来する残りの90~94%のPAHsを、 石炭燃焼(レンガ製造)とディーゼル排ガスの2種類の混合によるものと仮定し、MPy/Py 比を用いて計算すると、石炭燃焼(レンガ製造)とディーゼル排ガスの寄与率はそれぞれ 60~65%、29~33%と試算された。以上の解析の結果、メチル化PAHs/PAHs比および C30-hopane/SPAHs比を用いた分子組成解析とCCSRAを組み合わせることによってコルカ タ運河の堆積物で観測された高濃度PAHsの汚染源は主に石炭燃焼生成物であることが明 らかとなった。化合物のコンポジットによるCCSRAを行う場合でも詳細な分子組成解析を 併用することがPAHsの起源識別に有効であることが分かった。

[キーワード] PAHs, 放射性炭素、化合物クラスレベル放射性炭素分析(CCSRA)、メチルピレン/ピレン比(MPy/Py比)

1. はじめに

近年、中国、インド、ベトナム等の東~東南アジア諸国では、著しい経済発展に伴い、有機物の不完全燃焼によって発生する多環芳香族炭化水素(PAHs)などの汚染物質の排出による環境汚

染が深刻化している。PAHsは、その強い発癌性と変異原性から、低濃度でも人体へ悪影響を及ぼ すとされ、その挙動の把握や燃焼起源の識別が必要とされる。

#### 2. 研究開発目的

東京湾堆積物、インドコルカタ大気エアロゾル試料中のPAHsの化合物レベル<sup>14</sup>C測定を行い、それぞれの環境に負荷されているPAHsの起源の識別を行う。本課題では、化合物レベル<sup>14</sup>C測定を行うため、試料前処理技術の検討を行った。

#### 3. 研究開発方法

化合物レベル<sup>14</sup>C測定(CSIA)のための周辺技術

(1) 大量抽出の検討

多摩川河口表層堆積物試料(2006年採取、凍結乾燥後-30℃で冷凍保存)を用いて抽出効率の検 討を行った。試料をソックスレー抽出器に入れ、ジクロロメタンで24時間×2回の連続抽出を行い、 抽出残渣を乾燥後、さらに高速溶媒抽出装置(ASE)を用いてジクロロメタンで加圧抽出した。

各抽出液は濃縮後、5%不活性化シリカゲルによる炭化水素類の粗精製を行い、活性銅を入れて 一晩静置して元素状硫黄を除去した。銅粒子を除去後、2%不活性化シリカゲルで精製してPAHs 画分を得た。これをn-ヘキサンで定容し、1 µLをGC/MS(スキャンモード(SCAN)および選択イ オンモニタリングモード(SIM))に注入してPAHsの同定・定量と精製度の確認を行った。

(2) 分取HPLCの最適化

HPLCによる分取条件の最適化:NH<sub>2</sub>/CN混合修飾カラムにn-ヘキサンとイソプロパノールの2液 グラジエントで(2)1)で得たPAHs画分を流して4分画した。それぞれをGC/MS(SCAN)で分析し、分 取前後のトータルイオンクロマトグラム(TIC)の比較から精製効果を確認した。

(3) PCGCシステムの注入、分取条件の最適化

本事業では環境試料中のPAHsのピーク分取を行うためにガスクロマトグラフ(GC)を導入し、 現有機器であったフラクションコレクタ(PFC)と組み合わせて分取キャピラリGC(PCGC)とし て運用した。導入したGCは最新のマルチモードインレット(MMI)を備えている。MMIは従来の スプリット/スプリットレス注入口に温度プログラムによる冷却、昇温機能を付加したもので、 コールドスプリットモードで注入をした溶媒を気化・排出してからホットスプリットレスモード に移行することで、大容量の試料を注入してもピーク形状を崩さずに高精度な分離分析が可能と なる。また、このような溶媒ピーク排除の機能はベースラインの安定化に寄与し、PFCによる分取 の重要な要件ともなる。

MMIでのPAHs試料の大容量注入時の最適条件が不明であったため、注入溶媒のベント(排出) 時間とベント圧および注入溶媒体積がピーク面積値に及ぼす影響を調べ、最大となる条件を探し た。また、PFCの分取条件も検討した。具体的にはPFCのトラップ温度とトラップの容積を変えて 回収率を比較した。

(4) 化合物レベル<sup>14</sup>C測定(CSIA)による環境試料中PAHsの起源識別

凍結乾燥試料から、ジクロロメタンで高速溶媒抽出装置により加圧抽出(150℃,2000 psi)した。抽出液を5%不活性化シリカゲルで炭化水素類を粗精製した後に、活性銅で元素状硫黄を除去し、活性シリカゲルカラムでアルカン画分、PAHs画分を得た。各画分をGC/MS(SIM)に注入し

てPAHs、ホパン類を同定・定量した。コルカタ市内の北部(KKNC)および南部(KKSC)の運河 各1地点の堆積物のPAHs画分については、さらに*n*-ヘキサン/*N*,*N*-ジメチルホルムアミド分配

(Mandalakis et al., 2004のペンタン/DMF分配の変法)によって精製した。一部をGC/MS (SCAN およびSIM) で分析して試料の精製度合いと濃度を確認した。残りの試料をPCGCに繰り返し注入 して分子量178 (phenanthrene + anthracene : ∑178)、202 (fluoranthene + pyrene : ∑202)、228以上 (benz[a]anthracene + chrysene + benzo[b+j+k]fluoranthenes + benzo[e+a]pyrenes +

indeno[123-cd]pyrene + benzo[ghi]perylene:∑HMW)を分取した。分取したPAHsをCuOとともに石 英管に真空封入(10<sup>-6</sup>Torr)し850℃で5時間燃焼させてCO<sub>2</sub>にした。CO<sub>2</sub>を超低バックグラウンド真 空ライン(Uchida et al., 2004<sup>1)</sup>)で還元してグラファイトとし、これを圧縮してペレット状に固め たターゲットをAMS(NIES-TERRA)で測定し、放射性炭素当遺体比を求めた。測定結果はNIST 標準物質(SRM4990B)の<sup>14</sup>C/<sup>12</sup>C比の0.749倍を基準として現代炭素パーセント(pMC)として表 現した。

# 4. 結果及び考察

化合物レベル<sup>14</sup>C測定(CCSRA)のための周辺技術

(1) 大量抽出の検討

図1-4-1に示す通り、最初の24時間でソックスレー抽出可能なPAHsの大部分が抽出されるが、その抽出量は、ASEで加圧抽出した場合の抽出可能量の70%程度だった。この抽出量は、抽出時間48時間まで長くしてもあまり変化しなかった。ソックスレー抽出残渣をASE抽出するとさらにPAHsが抽出された。その追加抽出量を当初のソックスレー抽出量と合わせるとASEで抽出した場合とほぼ同等の量であった。また、ソックスレー抽出24時間とASE抽出で得られたPAHsの異性体比を比較したところ、Ant/(Ant+Phe)で0.15、0.12、Flu/(Flu+Pyr)で0.48、0.49、BaA/(BaA+Chr)で0.38、0.36、InP/(InP+BgP)で0.48、0.49と得られる起源情報に差は認められなかった。以上より、ASE抽出可能量の約70%を抽出できること、ASEよりも一度に大量の試料を抽出できるなどを考慮に入れると、CSRAのための抽出法として十分に有用であると確認できた。



図(1)-1.抽出方法の違いによるPAHs濃度の比較

# (2) 分取HPLCの最適化

種々の検討の結果、NH2/CN混合修飾カラムにn-ヘキサンとイソプロパノールの2液グラジエント

でPAHs画分を流して分取し、PAHsを環数によって分離する方法を確立した。環境試料から抽出精製して得たPAHs画分の精製効果の一例を図に示す。当初図(1)-2左のようなTICを示すPAHs画分を この方法で分取したところ、分取前のPAHs画分に存在したUCMの大部分が、2環PAH画分に溶出 した(図(1)-3)。3環以降の画分のGC/MSクロマトグラム上では、クロマトグラム上のハンプが減 少し、3-6環いずれのPAHsにおいてもピーク純度を大幅に改善できた(図(1)-4)。



図(1)-2 堆積物試料から分画精製した PAHs 画分を HPLC 精製前に GC/MS(SCAN)分析した時の TIC(左)と同試料の HPLC クロマトグラムと分取時間の対比(右)







図(1)-4.HPLC 分取前後での PAHs ピーク純度の変化

(3) PCGC システムの注入、分取条件の最適化

環境試料から抽出・精製して得たPAHs画分に含まれるPAH化合物を単離するためのPCGCシステム における、試料の注入条件とフラクションコレクターの捕集条件を最適化した

1) MMI-ベント時間

ベント時間が短いと溶媒の排出が不十分で大きな溶媒ピークが出てしまう。ベント時間を長くす ると、2環式の化合物ではピーク面積値が0.5分以内に50%未満まで低下したが、3環以上の化合物 ではベント時間の影響はほとんどなかった。また、注入体積の増大とともに溶媒ピークの除去に 必要な時間は長くなった。GCクロマトグラム上で観察される溶媒ピークの大きさから、10µL注入 時に必要充分なベント時間は約0.34分であると判断した(データ非表示)。

2) MMI-ベント圧

MMIのベント圧を高くすると、分析対象物質のピーク面積を増大させることができる。検討の結果、ベント圧が高くなりすぎると溶媒蒸気が圧によってカラムへ押し込まれるようになり、溶媒の排出が不完全となる一方、ベント圧の増大はPAHsのピーク面積値に影響を与えないことが分かった(データ非表示)。

3) MMI-注入体積

注入時の濃度一定で注入体積のみ変化させて、ピーク面積値の変化を調べた。注入体積を増やす と注入量1µLあたりのピーク面積値(レスポンスファクター:Rf)が減少した。10µL注入時のArea/µL を基準にすると、50µL注入時で10~20%程度減少が観測され、その傾向は高分子量化合物ほど顕 著であった(図(1)-5左)。この傾向は、同一のPAHs化合物量が注入されるように注入時の溶液濃 度と体積を変化させた場合でも同様であった(図(1)-5右)。

以上を踏まえ、決定したMMIの条件を表(1)-1に示した。



変化

| 注入速度       | 25µL/分                                            |
|------------|---------------------------------------------------|
| 注入モード      | PTV solvent vent                                  |
| 注入温度       | 30°C                                              |
| 注入口圧力      | 62.05kPa                                          |
| セプタムパージ流量  | 3mL/分                                             |
| 注入口温度プログラム | 30℃ 0.34分保持後、600℃/分で280℃まで昇温                      |
| ベントプログラム   | 0.34分まで100mL/分、27.579kPaでベント、2.84分か<br>ら60mL分でベント |

表 (1)-1 10µL注入時のMMIの最適条件

# 4) PFC

上記3)までで最適化した注入条件でPAHs標準溶液をPCGCに注入、トラップに捕集された化合物をGC/MSで測定して回収率を求めた。トラップ容積を変化させた場合、大容量(100µL)の方が小容量(1µL)のトラップに比べ、低分子化合物の回収率が高かった(図(1)-6左)。また、トラップ温度が低いと回収率が低下し、その傾向は高分子量の化合物で特に顕著であった(図(1)-6右)。これらを踏まえ、100µLトラップを室温で分取した時の回収率は、GC保持時間がphenanthrene

(MW=178)からbenzo[k]fluoranthene(MW=252)の範囲内の化合物で100%、benzopyrene(MW=252) 以降の化合物で約90%だった。PhenanthreneよりもGC保持時間が短い(=高揮発性)化合物では回 収率が低く、PFCでの分取は困難であることが分かった(図(1)-7)。



図(1)-4-6 PFCトラップ温度(左)またはPFCトラップ容積(右)とPFC回収率の関係



図(1)-7 最適注入条件および最適分取条件時のPAHs標準物質の回収率

(4) 化合物群レベル<sup>14</sup>C測定(CCSRA)によるコルカタ運河堆積物中PAHsの起源識別

インド第3の都市コルカタ(人口約1500万人)では、自動車排ガスのほか家庭用調理ストーブでの薪や石炭燃焼、レンガ製造のための石炭燃焼によると見られる高濃度のPAHs汚染が問題となっており、その起源識別は急務の課題である。コルカタはモンスーン影響下にあり、雨季の洪水によって市内を流れる運河の堆積物の滞留時間が数年程度と見積もられている。したがってコルカ タ運河の堆積物は過去数年間の大気降下物の積分として捉えることができ、大気汚染の解析に適した試料となる。本研究では、コルカタ市内の運河から高濃度のPAHsで汚染された堆積物を採取し、ホパンおよびPAHs分子組成解析およびPAHsのCSRAを併用した複合的なアプローチによって、 PAHsの汚染源の解析を行った。 1) コルカタ運河堆積物からのPAHs単離精製

コルカタ周辺の沿岸2地点の堆積物に含まれるPAHsをPCGCシステムで単離した。堆積物試料中 PAHs画分にはPAH以外の様々な成分が共存し、複雑な組成を持つが、PCGCシステムによってこれ らの中から目的成分のみを単離することができた(図(1)-8および図(1)-9)。

GC/MS (SCAN) 分析での全検出ピーク面積に対する目的成分のピーク面積比を用いた評価では、 単離化合物(群)の純度は92%以上であった(表 2)。これは既報において化合物(群)レベル<sup>14</sup>C 測定を環境試料中PAHsに対して実施した際の純度と同等以上である。回収化合物量は3環式(分子 量178) および4環式(分子量202) PAHsでそれぞれ約20 µg、それ以上の高分子量PAHsで約16 µg であり、放射性炭素同位体比測定に供するに十分量の化合物を得ることができた。PCGCでの単離 の際に、GCカラム液相が混入する可能性があるので、これを除去するためにシリカゲルカラムで さらに精製を行い、放射性炭素同位体比測定のための試料とした。



図(1)-9 図(1)-8の PAHs 画分から PCGC で分取した PAHsの GC/MS(SCAN)の TIC

| KKNC |        |                   |        |                    |                   |        |                    |
|------|--------|-------------------|--------|--------------------|-------------------|--------|--------------------|
| 化合物名 | 分子式    | 化合物別<br>炭素量(µg-C) | Purity | サンプル別<br>炭素量(µg-C) | 化合物別<br>炭素量(µg−C) | Purity | サンプル別<br>炭素量(µg-C) |
| Phe  | C14H10 | 13.3              | 98%    | 15.3               | 14.9              | 98.5%  | 19.0               |
| Ant  | C14H10 | 2.1               |        |                    | 4.1               |        |                    |
| Flu  | C16H10 | 9.0               | 94%    | 16.8               | 12.4              | 93.0%  | 23.0               |
| Pyr  | C16H10 | 7.8               |        |                    | 10.7              |        |                    |
| BaA  | C18H12 | 2.2               | 98%    | 18.5               | 4.5               | 91.0%  | 25.3               |
| Chr  | C18H12 | 3.1               |        |                    | 4.8               |        |                    |
| BbF  | C20H12 | 4.5               | 95%    |                    | 5.9               | 96.0%  |                    |
| BjkF | C20H12 | 1.8               |        |                    | 2.1               |        |                    |
| BeP  | C20H12 | 2.0               |        |                    | 2.3               | 95.1%  |                    |
| BaP  | C20H12 | 2.5               |        |                    | 3.4               |        |                    |
| InP  | C22H12 | 1.0               |        |                    | 2.3               | 91.7%  |                    |
| BgP  | C22H12 | 1.0               |        |                    | 2.0               |        |                    |

表 (1)-2 コルカタ運河堆積物から単離したPAHsの炭素量および純度

Purity(ピーク純度):GC-FID クロマトグラム上で、溶媒ピークを除いたピーク面積の総和に対する当該化合物のピーク面積の割合

2) コルカタ運河堆積物中PAHsの起源識別

Sahaら(2009)は、これまでに熱帯アジア地域8カ国で沿岸表層堆積物174試料のPAHs汚染を調査してきた。その結果、全調査地域の中でコルカタの運河の∑14-parental-PAHs濃度は15.9±11.6 µg/g(n=12)と、他の都市域の濃度範囲(0.21±0.17 µg/g(マレーシア n=17)~1.76±1.53 µg/g(カンボジア n=4))と比べ、極端に高濃度であることが判明している。コルカタ運河堆積物のメチル化PAHs/PAHs比が0.47±0.24と低いことから、燃焼由来のPAHsの影響が強いと考えられている。コルカタでの燃焼起源は、自動車排ガス、レンガ製造での石炭燃焼、家庭用調理ストーブでの薪、石炭燃焼があげられる。C<sub>30</sub>-hopane/∑PAHs比(0.09±0.05)も含めた分子組成解析から、このうちガソリン車排ガスと家庭用調理ストーブでの石炭燃焼については、影響は限定的と判断できた。

コルカタ運河堆積物から精製した∑178、∑202、∑HMW-PAHの放射性炭素同位体比(pMC±σ) は、それぞれ10.6±0.1, 5.9±0.4, 7.6±0.5(KKNC)、8.4±0.5, 8.3±0.4, 8.5±0.3(KKSC)であり、大部 分が化石燃料の燃焼由来であることが明らかとなった。2000年(試料採取から6年前)の大気中CO<sub>2</sub> と化石炭素をエンドメンバーとした同位体マスバランス計算から、∑178、∑202、∑HMW-PAHへの バイオマス燃焼の寄与率はそれぞれ9.8, 5.5, 7.0%(KKNC)、7.8, 7.7, 7.9%(KKSC)と試算され た(図(1)-10)。化石燃料燃焼に由来する残りの90~94%のPAHsを、石炭燃焼(レンガ製造)とデ ィーゼル排ガスの2種類の混合によるものと仮定し、MPy/Py比を用いて計算すると、石炭燃焼(レ ンガ製造)とディーゼル排ガスの寄与率はそれぞれ60~65%、29~33%と試算された。



**Fig(1)-10.** コルカタ運河堆積物中PAHsへの化石燃料燃焼とバイオマス燃焼の寄与率 Δ<sup>14</sup>Cのエンドメンバーをバイオマス燃焼=+87‰、化石燃料燃焼=-1000‰と仮定し、同 位体マスバランス計算 (Kumata et al., 2006) によって算出

まとめ

メチル化PAHs/PAHs比およびC<sub>30</sub>-hopane/∑PAHs比を用いた分子組成解析とCCSRAを組み合わせることによってコルカタ運河の堆積物で観測された高濃度PAHsの汚染源は主に石炭燃焼生成物であることが明らかとなった。化合物のコンポジットによるCCSRAを行う場合でも詳細な分子組成解析を併用することがPAHsの起源識別に有効であることが分かった。

# 5. 本研究により得られた成果

(1)科学的意義

本研究では、各種環境試料から抽出、分離・精製されたPAHsの分子レベル放射性炭素分析から は、各試料中のPAH分子を構成する炭素に含まれる現代炭素(modern-C)と化石炭素(fossil-C) の寄与の割合を明らかする事が可能である。都市域および遠隔地域の大気試料の測定結果からは、 東~東南アジア諸国の都市域および遠隔地域における"バイオマス燃焼由来"PAHと"化石燃料 燃焼由来"PAHの相対比率を求めることが可能であり、国際的にも先進的な研究課題であり、こ れまでに実施例はない。

(2)環境政策への貢献

分子レベルAMS-14C測定により、東アジア都市域および遠隔地域におけるPAHの燃焼起源の識別を行い、バイオマス燃焼起源PAHsと化石燃料起源PAHsの識別には分子レベルAMS-14Cを行うことにより、PAHsによる汚染マップを作成し、燃料の種類別に削減目標を提示することを目指す。 また、これらの情報は、近年の経済成長や使用燃料の種類、消費量の変化等がPAHの汚染源の変化に及ぼした影響等を明らかにすることが可能なことから政策への貢献は高いといえるだろう。

# 6. 国際共同研究等の状況

特に記載すべき事項はない

# 7. 研究成果の発表状況

(1)誌上発表

<論文(査読あり)> 特に記載すべき事項はない <その他誌上発表(査読なし)> 特に記載すべき事項はない

# (2) 口頭発表(学会等)

1) Kaneyasu N., Igarashi Y., Uchida M., Kondo M. (2010) Carbonaceous aerosols at the summit of Mt. Fuji, Japan. Symp.Atmos.Chem.Phys.Mt.Sites, Abstracts, 10-11.

2) 兼保直樹, 松本篤, 内田昌男, 近藤美由紀 (2010) わが国のリモート地域に置ける black carbon 濃度変動の比較. 第 51 回大気環境学会年会, 同講演要旨集, 25.

3) 伏見暁洋, 和穎朗太, 内田昌男, 加藤和浩, 近藤美由紀, 長谷川就一, 森野悠, 小林伸治, 柴田康行, 田邊潔 他 (2009) 2007 年夏季関東における微小粒子広域観測とモデリング(9) 全炭素 中(14)C の経時変化と由来解析. 第 50 回大気環境学会年会, 同講演要旨集, 459

4) 熊田英峰,小池康代,都築幹夫,内田達也,藤原祺多夫,内田昌男,柴田康行 (2009) バイ オマス燃焼指標としてのレボグルコサンの有用性の評価:放射性炭素による起源識別との相互比較. 第18回環境化学討論会,同講演要旨集,204-205.

5) Uchida M., Kondo M., Iida N., Shinozaki T., Matsuda A., Minoura Y., Shibata Y. (2011) Recent advances of radiocarbon measurements at NIES TERRA. Accelerator Mass Spectrometry Conference 2011, Abstracts of Accelerator Mass Spectrometry Conference 2011,110-120.

6) Fushimi A., Uchida M., Hasegawa S., Takahashi K., Kondo M., Morino Y., Shibata Y., Ohara T., Kobayashi S., Tanabe K. et al. (2011) Radiocarbon Diurnal Variations in Fine Particles at Sites Downwind from Tokyo, Japan in Summer. The 4th East Asia AMS Symposium, Abstracts of The 4th East Asia AMS Symposium, 188-189

7) Kawamura K., Pavuluri C.M., Uchida M., Fu P. (2011) Enhanced biogenic organic aerosols in spring and summer over Northeast Asia: Evidence from radiocarbon and organic tracer analyses. The 4th East Asia AMS Symposium, Abstracts, 173-175

8) Kumata H., Uchida M., Saha M., Kondo M., Shibata Y., Takada H. (2011) Source diagnosis of PAHs from Kolkata canal sediments by using compound class specific radiocarbon analysis (CCSRA). The 4th East Asia AMS Symposium, Abstracts, 192-193

9) Saha M., Kumata H., Uchida M., Takada H. (2011) Compound Class Specific Radiocarbon Analysis (CCRSA) of PAHs from Highly Contaminated Kolkata Canal Sediments. Accelerator Mass Spectrometry 2011, Abstracts of Accelerator Mass Spectrometry 2011, 63.

# (3) 出願特許

特に記載すべき事項はない

(4) シンポジウム、セミナーの開催(主催のもの) 特に記載すべき事項はない

(5) マスコミ等への公表・報道等

特に記載すべき事項はない

# (6) その他

特に記載すべき事項はない

# 8. 引用文献

1) Uchida M., Y. Shibata, M. Yoneda, Toshiyuki Kobayashi and Masatoshi Morita (2004) Technical progress of microscale radiocarbon analysis, Nuclear Instruments and Material Methods in Physical Research-B 223-224, 313-317.

# (2) アジア主要都市の大気水圏中PAHsの分布把握と起源特定

#### 東京農工大学

農学研究院 環境資源科学科

高田秀重・畠山史郎

平成21~23年度累計予算額:51,685千円

(うち、平成23年度予算額:16,744千円)

予算額は、間接経費を含む。

[要旨] アジア主要都市で通年を通して採取したエアロゾル試料中のPAHsの分析を行い、PAHs濃 度の把握と起源推定を行った。各都市の平均PAHs濃度(36種のPAHsの合計)は北京(年 平均:229ng/m<sup>3</sup>) >コルカタ(91.8ng/m<sup>3</sup>) ≫ ジャカルタ(11.3ng/m<sup>3</sup>) ≒ハノイ(11.6ng/m<sup>3</sup>) ≒東京 (5.3ng/m<sup>3</sup>) ≒クララルンプール (3.95ng/m<sup>3</sup>) の順となり、北京、コルカタはア ジアのその他の大都市よりも1桁~2桁PAHs濃度が高かった。いずれの都市においても PAHs濃度は夏季(6月~9月)に低濃度で冬季(12月~2月)に高濃度であった。PAHs組成、 炭化水素マーカーのホパン濃度・組成を詳細に解析し、PAHs濃度が高くなる冬季の北京 については暖房用石炭燃焼の寄与が大きいことを明らかにした。森林火災に伴う煙霧 (Haze)は大気中PAHs濃度を上昇させることを確認した。しかし、激しい煙霧時でもPAHs 濃度は北京やコルカタの冬季のPAHs濃度よりも一桁低く、人為活動起源PAHsの寄与の大 きさが確認された。熱帯アジア8ヵ国と東京の堆積物180試料中のPAHs濃度を明らかにし、 起源推定を行った。濃度はインドの各都市とインドネシアのジャカルタで1000 ng/gを超 え、先進工業化国の水域と比べて高度に汚染されており、それ以外の熱帯アジア各国は 低~中程度の濃度レベルを示した。PAHsの組成の統計解析やマーカーの分析から、起源 解析を行った。インドと東京の堆積物は燃焼起源の特徴が強く、インドの堆積物につい ては主に石炭燃焼起源であることが示唆された。それ以外の熱帯アジアの都市域では広 く石油起源PAHsの負荷があることが明らかにされた。石油起源PAHsの発生源としては、 普遍的にタイヤ摩耗物由来のPAHsの寄与があることが明らかになった。さらに、マレー シア、カンボジアでは廃エンジンオイルの寄与が大きく、インドネシアでは2ストロー クエンジンのモーターバイクの寄与が大きいことが示された。

[キーワード] 多環芳香族炭化水素類、ホパン、石炭燃焼、石油汚染、排気ガス

1. はじめに

多環芳香族炭化水素類(PAHs)は化石燃料やバイオマスなど有機物の燃焼に伴い生成する汚染物 質である。PAHsは原油および石油製品中にも含まれる。PAHsにはベンゾピレン等の発ガン物質や ガン促進物質が含まれる有害化学物質である。燃焼起源のPAHsは大気へ放出され、汚染大気を媒 介としてヒトはPAHsに曝露されるため、PAHsはヒトの発がんリスク上昇の一要因となっている。 大気からの沈着と降雨による洗い流し等さまざまな経路で、PAHsは水圏へもたらされる。生態系 低次の生物は水圏に流入したPAHsに曝露され、低次の水棲生物の奇形等の異常のリスクを上昇さ せる。アジア地域での経済成長に伴い化石燃料の使用量は増加し、アジアのヒトおよび水棲生物 のPAHs曝露量および発がん・奇形リスクは上昇していると予想される。しかし、アジア地域にお けるPAHsの正確なリスク評価のための大気・水圏のPAHsの汚染実態の解明は不十分である。そこ で、本サブチームでは、アジア各国の大気および水域の堆積物中のPAHsの詳細な汚染実態を明ら かにすることを目指した。

汚染実態・リスク評価の先の課題は、発生源対策である。しかし、PAHsの具体的な発生源特定 は極めて限定的にしか行われておらず、発生源対策を困難にしている。燃焼によって生成される PAHsの発生源は自動車排ガス、工場煤煙、火力発電所煤煙、森林火災、薪炭材の燃焼、廃棄物の 焼却、等多岐に渡り、各発生源からの発生量も燃焼条件により大きく変動することが発生源特定 を困難にしている。さらに、燃焼起源に加えて、自動車のオイルや石油流出等の石油起源PAHsの 寄与もあり、水域のPAH汚染の発生源特定をさらに困難なものとしている。本サブチームではまず、 燃焼起源PAHsと石油起源PAHsの寄与を識別することを行った。燃焼起源PAHsと石油起源PAHsの識 別にはこれまでphenanthreneとそのメチル同族体の比、methylphenanthrene/phenanthrene ratio (MP/P)が用いられてきたが、このアプローチはphenanthreneのシリーズのみを対象としたもので あり、同族体ごとに発生源の割合が異なる可能性もあり、他の同族体 (pyrene/fluorantheneシリ ーズとchrysene/benz[a] anthraceneシリーズ)も含めた包括的なアプローチが必要である。そこ で、本研究ではMP/P ratioに加えて、(methylpyrene + methylfluoranthene)/(pyrene + fluoranthene)(MPy/Py ratio)と(methylchrysene + methylbenz[a]anthracene)/(chrysene + benz[a]anthracene)(MC/C)およびそれらを総合したmethyl PAHs/parent PAHs ratio (MPAHs/PAHs ratio)を導入し、石油起源及び燃焼起源物質の分析を行い、それぞれの比について閾値の設定を 行った。

大気中のPAHs濃度は地域での人間活動の強度を反映して空間的な変動が大きいと予想される。 本研究では、日本(東京)、中国(北京)、ベトナム(ハノイ)、マレーシア(クアラルンプー ル)、インドネシア(ジャカルタ、リアウ)、インド(コルカタ)において大気試料の採取を行 い、大気中PAHs濃度の測定と大気中のPAHsの起源推定を行った。大気中の汚染物質濃度は空間変 動と共に時間的にも大きな変動が予想される。特に、燃焼活動は季節的な変動が大きい。そこで、 本研究の調査対象地点のうち、日本(東京)、中国(北京)、ベトナム(ハノイ)、マレーシア (クアラルンプール)、インド(コルカタ)については週1回24時間の採取を1年以上行い、季節 変動を把握した。また、森林火災に伴い発生する煙霧(Haze)によりPAHs汚染が懸念されるが、そ の実態は十分に明らかにされていない。そこで煙霧が深刻なインドネシアのリアウにおいて大気 試料を採取し、煙霧由来のPAHs汚染の実態を詳細に調べた。

大気に放出されたPAHsは陸上に沈着し、降雨により洗い流され水域へ流入する。水域へは石油 由来のPAHsの直接の流入もある。PAHsは疎水性の大きな化合物であり、水域では粒子に吸着し挙 動し、水底の堆積物中に蓄積されている。本研究ではアジア8ヵ国の堆積物中のPAHsと起源推定 マーカーの分析を行い、水域のPAHs汚染の実態と汚染源の推定を行った。

# 2. 研究開発目的

(1)様々な石油起源及び燃焼起源物質のPAHsとマーカー物質の分析を行い、methylphenanthrene/phenanthrene ratio (MP/P)、(methylpyrene + methylfluoranthene)/(pyrene

+ fluoranthene)(MPy/Py ratio)、(methylchrysene + methylbenz[a]anthracene)/(chrysene + benz[a]anthracene)(MC/C)およびそれらを総合したmethyl PAHs/parent PAHs ratio (MPAHs/PAHs ratio)について閾値の設定を行う。

(2)日本(東京)、中国(北京)、ベトナム(ハノイ)、マレーシア(クアラルンプール)、 インドネシア(ジャカルタ、リアウ)、インド(コルカタ)における大気中PAHs濃度とその時間 変動を把握し、その起源を推定する。

(3)日本(東京)、ベトナム、ラオス、カンボジア、マレーシア、インドネシア、フィリピン、 インドの水域堆積物中のPAHs濃度を把握し、その起源を推定する。

### 3. 研究開発方法

(1) 試料

起源識別指標の閾値決定用の起源物質試料として、石炭燃焼生成物(調理用石炭燃焼生成物8 試料、レンガ工場石炭燃焼生成物6試料)、木材燃焼生成物(調理用薪燃焼生成物4試料)、自動 車排ガス(ガソリン自動車排気管内のスス2試料、ディーゼルエンジン自動車排気管内のスス6 試料)、原油(5試料)の計31試料を用いた。

大気試料は東京、北京、ハノイ、コルカタ、クアラルンプール、ジャカルタ、リアウで採取さ れた。サンプリングはハイボリュームエアサンプラーを用いた。東京、北京、ハノイ、コルカタ については、各都市週1回連続24時間、1年間通して行われた。クアラルンプールとリアウについ ては毎月1回のサンプリングが行われた。PAHsは粒子相と気相に存在する。粒子相に存在する PAHsは石英フィルターで、ガス相に存在するPAHsはポリウレタンフォームに吸着させて捕集した。 石英フィルターは予め500度のオーブンに4時間以上入れて、有機物を除去し、放冷後重量を測定 した。ポリウレタンフォームは加圧流体抽出器を使って、ジクロロメタンとアセトンの混合液で 洗浄し、50度の乾燥器で乾燥させた。これらのフィルターとポリウレタンフォームの準備は本学 で行い、東京大学および各国の協力者に送付した。各都市で採取されたフィルターとポリウレタ ンフォームは数ヶ月分まとめて本学に送付されてきた。毒性の高いPAHsは高分子の成分で蒸気圧 が低く粒子相に多く存在するため、フィルター上に捕集された粒子相の分析を行った。各地点で 毎週採取されたフィルターを基本的に4週間分まとめて一月分のコンポジット試料にした。

水域堆積物として、タイ (都市の試料はバンコクで採取)、インド (都市の試料はコルカタ、チ エンナイ、ムンバイで採取)、カンボジア (都市の試料はプノンペンで採取)、ラオス (都市の試 料はヴィエンチャンで採取)、マレーシア (都市の試料はクアラルンプールで採取)、フィリピ ン(都市の試料はマニラで採取)、ベトナム(都市の試料はホーチミン、カントーで採取)、インドネ シア(都市の試料はジャカルタで採取)の8ヶ国で採取したもの、計180試料を用いた。起源物質とし て路上粉塵、アスファルト、自動車 (ガソリンエンジン車、ディーゼルエンジン車) 排気粒子、 モーターバイク (2ストロークエンジン、4ストロークエンジン) 排気粒子、Rickshaw (三輪タ クシー) 排気粒子、市販エンジンオイル、使用済みエンジンオイル、タイヤ摩耗粒子も用いた。 (2) 分析法

起源物質および堆積物は凍結乾燥後、加圧流体抽出器(ダイオネックス社製ASE300)を使って、 ジクロロメタンとアセトンの混合液で抽出した。大気フィルターも加圧流体抽出器(ダイオネック ス社製ASE300)を使って、ジクロロメタンとアセトンの混合液で抽出した。抽出液へsurrogate (Naphthalene-d<sub>8</sub>、Anthracene-d<sub>10</sub>、p-terphenyl-d<sub>14</sub>、Benzo [a] anthracene-d<sub>12</sub>)を添加後、ロー タリーエバポレータで減圧濃縮し、5%水不活性化シリカゲルカラム(10nm I. D. ×90nm)に添加し、 DCM/Hex(1:3, v/v) 20mLを流出させて炭化水素画分を得た。堆積物試料についてはこの炭化水素画 分にジクロロメタンに懸濁させた活性銅を加え、一晩静置し、炭化水素画分中に含まれる元素状 イオウを硫化銅に変換した。硫化銅と余剰の銅を石英ウールでろ過し、炭化水素画分を得た。炭 化水素画分は濃縮し溶媒をジクロロメタン/ヘキサン(1:3, v/v)からヘキサンに置き換えた後、活 性化シリカゲルカラム(4.5mm I. D. ×180mm)に添加し、第一画分としてヘキサン5mL、次に第二画 分としてヘキサン55mL、最後にジクロロメタン/ヘキサン(1:3, v/v)11mLを流し第三画分として分 画した。第一画分をHopanes 画分、第三画分をPAHs画分とした。

PAHs画分は濃縮後、少量のジクロロメタン/ヘキサン(1:3, v/v)用いて1mL容褐色バイアルに移した。バイアル内の溶媒を窒素吹き付けによって乾固直前まで揮発させた。PAHs画分へは、 acenaphthene-d8, chrysene-d12のイソオクタン溶液をGC注入用内部標準物質 (Injection Internal Standard;IIS)として加え、そこから1  $\mu$ Lをガスクロマトグラフ-質量分析計(GC-MS)へ注入し、PAHs36種の同定、定量を行った。Hopanes画分は濃縮後、少量のヘキサンを用いて1mL容透明アンプルに移した。アンプル内の溶媒を窒素吹き付けによって乾固直前まで揮発させた。 Hopanes画分へはIISとして17  $\beta$  (H),21  $\beta$  (H)-hopaneのイソオクタン溶液を加え、そこから1  $\mu$ Lを GC-MSへ注入し、Hopanes18種の同定・定量を行った。ピークの同定は標準物質との保持時間の比較により行った。定量はそれぞれの化合物に特異的なイオンで抽出したマスクロマトグラム上で対象化合物のピーク面積のIISのピーク面積に対する比率に基づきおこなった。ベンゾチアゾール 類はASE抽出後に酸による液液抽出を行ってから精製・分画しGC-MSで分析した。

# 4. 結果及び考察

#### (1) 起源識別指標(MP/P, MPy/Py, MC/C, MPAH/PAH ratio)の閾値の設定

MP/P, MPy/Py, MC/C, MPAH/PAH ratioは燃焼起源物質と石油起源物質では各指標は大きく異な る値を示した(図(2)-1)。石油に豊富に含まれ、木材燃焼によっては生成しないhopane類とPAHs の比率も使って、起源識別指標の燃焼生成物由来の閾値を求めた。その結果、MP/P=0.5, MPy/Py=0.15, MC/C=0.2, MPAHs/PAHs=0.3が燃焼起源の閾値と決定された。各指標値がこの閾値以 下の場合は、100%燃焼起源PAHsであることを意味する。一方、石油起源の閾値は、MP/P=3.5, MPy/Py=1.5, MC/C=2.0, MPAHs/PAHs=2.2と決定された。各指標値がこの閾値以上の場合は、100% 石油起源PAHsであることを意味する。それぞれの指標が燃焼起源、石油起源の閾値の間の値をと る場合、すなわちMP/P=0.5~3.5, MPy/Py=0.15~1.5, MC/C=0.2~2.0, MPAHs/PAHs=0.3~2.2は、燃 焼起源と石油起源の混合であると考えられる。

閾値設定のための起源物質の分析の過程で、石炭燃焼生成物の中に石油起源的特徴を示すもの があることが明らかになった。これは石炭の熟成が進み石油的な成分が石炭に含まれるようにな ったことによると解釈された。そのような試料ではアルキルPAHsの割合が高く、同時にホパン類 も有意に検出された(図(2)-2)。一方、木材燃焼生成物ではそのような石油起源的特徴を示すも のはほとんど含まれなかった。アルキルPAHs比を平均すると石炭燃焼生成物(n=14)ではMP/P=0.56 ± 0.53, MPy/Py=0.23 ± 0.20, MC/C=0.41 ± 0.39, MPAHs/PAHs=0.36 ± 0.34, hopane/PAHs raio = 0.003



図(2)-1. 各種起源物質中のmathylphenanthrene/phenanthrene ratio (MP/P)、(methylpyrene + methylfluoranthene)/(pyrene + fluoranthene)(MPy/Py ratio)、(methylchrysene + methylbenz[a]anthracene)/(chrysene + benz[a]anthracene)(MC/C)およびそれらを総合したmethyl PAHs/parent PAHs ratio (MPAHs/PAHs ratio)。WC:木材燃焼生成物、BS:石炭燃焼生成物(レンガ 工場)、CC:石炭燃焼生成物(調理)、GC:ガソリン自動車排気粒子、DC:ディーゼル自動車排気粒 子、CO:原油



図(2)-2. 石炭燃焼生成物中のホパンのガスクロマトグラム

±0.004であったのに対して、木材燃焼(n=4)起源ではMP/P=0.12±0.03, MPy/Py=0.05±0.02, MC/C=0.07±0.02, MPAHs/PAHs=0.08±0.02, hopane/PAHs raio = 0.00004±0.00006であった。この違いを木材燃焼と石炭燃焼の識別に応用できる可能性が示唆された。ただし、石油起源の寄与は十分に考慮する必要がある。

(2) アジア各都市の大気中PAHsの汚染実態と起源

各都市のPAHs濃度を図(2)-3に示す。図には今回測定した36種のPAHsの合計濃度を示している。 PAHs濃度は東京2.37~9.34ng/m<sup>3</sup>、ハノイ4.06~28.7ng/m<sup>3</sup>、北京22.7~774ng/m<sup>3</sup>、コルカタ17.5~ 327ng/m<sup>3</sup>、クアラルンプール2.67~6.36ng/m<sup>3</sup>、ジャカルタ1.08~29.83ng/m<sup>3</sup>となった。それぞれ 平均濃度は5.28ng/m<sup>3</sup>、11.6ng/m<sup>3</sup>、229ng/m<sup>3</sup>、91.8ng/m<sup>3</sup>、3.95ng/m<sup>3</sup>、11.31ng/m<sup>3</sup>となり、大気中PAHs 濃度は北京>コルカタ≫ハノイ≒東京≒ジャカルタ≒クアラルンプールとなった。北京、コルカ タはアジアのその他の大都市よりも1桁~2桁PAHs濃度が高かった。



図(2)-3. アジアの都市大気エアロゾル中のPAHs濃度

各都市でPAHs濃度に季節変化が認められた(図(2)-4)。いずれの都市においても夏季(7月~9 月)に低濃度で冬季(12月~2月)に高濃度であった。季節変化の大きさを、冬季の濃度の夏季の 濃度に対する倍率で表すと、東京とハノイでは2倍程度の変化であったのに対して、コルカタで は10倍、北京では20倍程度であり、コルカタと北京での季節変動が大きかった。大気中のPAHsの 季節変動には、大気へのPAHsの負荷量の季節変動のほかに、大気混合層の高さ、降雨、気温の季 節変化も寄与すると考えられる。例えば、気温が低下する冬季には大気混合層の高さは低くなり、 大気中の汚染物質濃度は高くなる。これらの効果を考慮するために、PAHsと類似した起源を持ち、 エアロゾルに吸着され大気中に存在するホパンの季節変化を検討した(図(2)-5)。ホパンは主に 自動車の潤滑油に含まれ排ガス粒子として大気へ放出される。各都市の大気中ホパン濃度は冬季 に高く、夏季に低い傾向が認められた。4都市の大気中のホパン濃度も冬季に高く夏季に低い傾 向が認められた。自動車の走行は年間ほぼ一定と考えられるので、大気中ホパン濃度の季節変化 は大気混合層が冬に薄いことや冬季に雨が少なく、レインアウトの機会が少ないためと考えられ た。4都市の大気混合層の厚さ等の気象的な影響を除いて考察するために、PAHs濃度をホパン濃 度で割り算したPAHs/ホパン比を算出し、季節変動を検討した(図(2)-6)。PAHs/ホパン比は東京、 ハノイでは季節変化はほとんど認められなかったが、PAHs/ホパン比は北京とコルカタでは冬に夏 に比べて数倍高かった。このことは北京とコルカタでは夏季に比べて冬季にPAHsの大気への排出 が増加することを示している。ただし、ホパンの季節変動の程度も東京、ハノイで小さく、北京、 コルカタで高く、これら2都市に冬季にホパンの排出が増加する可能性も示唆された。ホパンが 重油にも含まれ、また後述するように石炭燃焼や木材燃焼によってもホパンが生成するためと考 えられた。しかし、いずれが寄与しても冬季のホパン濃度が増加するわけなので、冬季に北京と コルカタのPAHs/ホパン比が大きくなったことは、冬季にはホパンの濃度増加率を上回るPAHsの負 荷の増加があったということを意味している。



図(2)-6. アジア4都市大気エアロゾル中PAHs/ホパン比の季節変化

北京では11月15日~3月15日まで法的に暖房の使用が許可されており、PAHsの急激な濃度上昇と 期間が一致することから暖房の燃料燃焼由来のPAHsが発生源と考えられた。中国のエネルギー源 が石炭に大きく依存することから冬季の北京におけるPAHsの濃度増加には暖房用の石炭燃焼が寄 与していると推察された。コルカタは年間を通して気温が高く、11月~2月の間も暖房がほと んど行われないため、PAHs発生源は暖房ではないと考えられた。コルカタでは10月~3月は乾季と

Kolkata

なりレンガ生産を始めとした工業が盛んになる時期であるため、工業活動による石炭燃焼の寄与 が大きいものと考えられた。

これらのPAHsの起源の推定、特に北京とコルカタの冬季のPAHsが石炭燃焼起源であるという仮 説について、PAHsとホパンの組成を詳細に検討することから考察する。各都市の夏と冬のエアロ ゾル中PAHs組成を図(2)-7に示す。全般にfluoranthene, pyrene, chrysene, benzofluoranthenes, benzo[a]pyrene, benzo[e]pyrene, benzo[ghi]perylene, coronene等が豊富な組成を示し、冬季 の方が夏季に比べて低分子PAHsの割合が相対的に高くなる傾向が認められた。冬季に低分子PAHs にシフトする傾向は、冬季に気温が低下し、粒子-ガスの分配が粒子側に偏るためと考えられた。 北京の冬季のPAHsではreteneが相対的に高くなる傾向が認められた。Retene/Chrysene比は、3月 ~10月は0.3以下の値であったが、11月~2月の冬季に0.8~1.0程度と高い値を示した(図(2)-8)。 Reteneは針葉樹の燃焼に伴い生成するので、冬季の北京では薪炭材の燃焼が活発化したと示唆さ れるが、針葉樹が起源となる石炭の燃焼に伴いreteneの生成の可能性も考慮する必要がある。



図(2)-8. アジア4都市大気エアロゾル中のretene/chrysene比の季節変化

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.6 0.5 0.4-0.3-0.2-0.1-0.0MPAHs/PAHsは北京のエアロゾル中は0.48~0.56の範囲であったが、木材燃焼生成物中で報告されているMPAHs/PAHsの0.05~0.11と範囲は一致せず、石炭燃焼生成物と範囲が一致した(図(2)-9)。 さらに、クラスター分析を行ったところ大気サンプルと石炭煤のPAHs組成は近いクラスターを形成した。以上より、北京の冬季PAHs濃度の上昇は、暖房の燃料としての石炭燃焼が起源であると推定された。図(2)-10に各都市の夏季(8月)と冬季(1月)のホパン組成を示す。北京の冬季を除いて、いずれの都市でのC29 17αとC30 17 αが卓越する典型的な自動車潤滑油(排ガス)に由来するホパンの組成を示した。冬季の北京はC29 17βとC30 17 βが相対的に多くなる特徴的な組成を示した。C29 17α に対するC29 17βの比(C29 17β Norhopane/C29 17α Norhopane ratio)は3月~10 月は0.4以下の値であったが、11月~2月の冬季に0.8程度の高い値を示した(図(2)-11)。起源物質のC29 17β Norhopane/C29 17α Norhopane ratioを図(2)-12に示す。C29 17β Norhopane/C29 17α Norhopane ratioを回転して、北京の冬季の高いC29 17β Norhopane/C29 17α Norhopane ratioを図(2)-12に示す。C29 17β Norhopane/C29 17α Norhopane ratioを図(2)-12に示す。C29 17β Norhopane/C29 17α Norhopane ratioを回転した。北京の冬季の高いC29 17β Norhopane/C29 17α Norhopane ratioは石油および石油燃焼生成物で0.2以下の低い値を示し、木材燃焼生成物と石炭燃焼 生成物で最大0.6程度の高い値を示した。北京の冬季の高いC29 17β Norhopane/C29 17α Norhopane ratioは石油および石油燃焼生成物でした。以上のPAHsとホパン組成を併せて考えると、冬季の北京のPAHsの濃度上昇は主に暖房に使われている石炭燃焼によるものと結論づけられ



た。

図(2)-9. アジア4都市大気エアロゾルおよび起源物質中のPAHsのMPAHs/PAHs比



図(2)-10. アジア4都市大気エアロゾル中ホパンプロファイル(上:冬季、下:夏季)



図(2)-11. アジア5都市大気エアロゾル中のC29 17β Norhopane/C29 17α Norhopane ratioの季節変化



図(2)-12. 石油および燃焼生成物中のC29 17β Norhopane/C29 17α Norhopane ratio

一方、コルカタでもMPAHs/PAHsとクラスター解析からは木材燃焼よりも石炭燃焼の寄与が大きと 示唆されたが、冬季にC29 17β Norhopane/C29 17α Norhopane ratioの増加が認められなかったこと から、冬季のコルカタのPAHs濃度の増加が石炭燃焼の活発化によるものとは結論づけられなかっ た。

インドネシアのジャカルタとスマトラ島のリアウのエアロゾル組成を比べることから、熱帯地域の木材燃焼の熱帯アジアの大気エアロゾル中PAHsへの寄与と熱帯植物の燃焼に特異的なマーカーの検索を行った。



図(2)-13.インドネシアリアウにおける森林火災由来煙霧(Haze)が激しい時期(RIAU 3, RIAU4)と軽微な 時期の(RIAU1, RIAU2, RIAU5, RIAU6)の大気エアロゾル中PAHs濃度

スマトラ島リアウでは森林火災に伴う煙霧が激しい時期(RIAU3, RIAU4)と軽度な時期(RIAU1, RIAU2, RIAU5, RIAU6)にエアロゾルを採取し、PAHsとホパンの分析をおこなった。リアウで採取 したエアロゾル中のPAHs濃度はジャカルタで採取したエアロゾル中のPAHsとおおよそ同じオーダ ーであった(図(2)-3)が、煙霧が激しい時期(RIAU3, RIAU4)には軽度な時期(RIAU1, RIAU2, RIAU5, RIAU6)に比べてPAHs濃度は数倍高く(図(2)-13)、森林火災由来のPAHsの寄与が示唆された。し かし、その濃度はコルカタの冬季のPAHs濃度に比べて、1桁以上低いことから、コルカタの冬季 のPAHs濃度の上昇は木材燃焼によっては説明できないことが示唆された。

リアウのエアロゾルのPAHs組成は同じ気候帯に位置するジャカルタで採取したエアロゾルに比 べて、高分子に大きくシフトしていた(図(2)-14)。高分子が極端に優位な組成は森林火災に特異 的な組成である可能性が示唆された。しかし、高分子へのシフトは高い気温による粒子相-ガス 相の分配によっても支配されていることから、断定的な指標とはなりえないと考えられた。また、 木材燃焼のマーカーとして使われているreteneは煙霧が激しい時期も含めてリアウのエアロゾル からは微量にしか検出されなかった。Retene/Chrysene比は0.02以下であった。Reteneは針葉樹の 樹脂に含まれる樹脂酸が燃焼時の高温により酸化(脱水素化)することにより生成するが、熱帯 地域には針葉樹が生育していないため、熱帯地方の森林火災によってはreteneは生成しないこと が確認された。



図(2)-14.インドネシアジャカルタおよびリアウにおける森林火災由来煙霧(Haze)が激しい時期(RIAU 3, RIAU4)と軽微な時期の(RIAU1, RIAU2, RIAU5, RIAU6)の大気エアロゾル中PAHsプロファイル

リアウのエアロゾル中のホパン組成を図(2)-15に示す。C29 17β、C30 17β、C31Rが卓越し、石 油起源のホパンとは異なる特異的な組成を示した。リアウのエアロゾル中で卓越していた成分の うちで、C30 17βとC31Rは煙霧の激しい時期も含めてリアウのエアロゾルで一貫して高い割合で検 出され、これらが熱帯地域の森林火災由来の有機成分のマーカーとなりうる可能性が示唆された。 ただし、リアウのエアロゾル中のホパン濃度はジャカルタのエアロゾル中のホパン濃度に比べて 1桁~2桁低いことから、自動車排ガスの影響も共存する地域では森林火災の寄与が検知しにく い可能性がある。



図(2)-15.インドネシアジャカルタおよびリアウにおける森林火災由来煙霧(Haze)が激しい時期(RIAU3, RIAU4)と軽微な時期の(RIAU1, RIAU2, RIAU5, RIAU6)の大気エアロゾル中ホパンプロファイル

(3) アジア水域の堆積物中のPAHsの分布と起源推定

熱帯アジア各国および東京の堆積物中PAHs濃度は6 ~ 38,000ng/g (n=180)の濃度範囲であった(図(2)-16)。インドの都市水域の堆積物中のPAHs濃度(total parent PAHs の平均値 9,382 ng/g, n=25) は世界の報告値(図(2)-17、表(2)-1)<sup>1)-68)</sup>と比べ、高度に汚染されていることが明らかになった。またインドネシアのジャカルタの堆積物中PAHs濃度(total parent PAHs の平均値 3,545 ng/g, n=18)も先進工業化国の水域と比べて高度に汚染されている分類に入った。それ以外の熱帯アジア各国は低~中程度の濃度レベルを示した。



図(2)-16. アジア各国の水域堆積物中のPAHs濃度

図(2)-17. 世界各国の水域堆積物中で 報告されているPAHs濃度

表(2)-1. 世界の河口沿岸域堆積物中のPAHs濃度の報告値

|           |                                      | <b>Total PAHs</b>     |        |          |        |               |                         |    |
|-----------|--------------------------------------|-----------------------|--------|----------|--------|---------------|-------------------------|----|
| Country   | Location                             | min max average speci |        | specific | n      | Major Source  | Ref.                    |    |
|           |                                      | (ng/g)                | (ng/g) | (ng/g)   | (ng/g) |               |                         |    |
| Developin | Developing country                   |                       |        |          |        |               |                         |    |
| Argentina | Rio de la Plata Estuary              | 3                     | 2100   | 357      |        | 13            | petroleum+combustion    | 1  |
| Bahrain   | Persian Gulf                         | 13                    | 6600   | 1277     |        | 4             | petroleum               | 2  |
| Egypt     | Abu Qir Bay                          |                       | 2660   | 478      |        | 20            | combustion              | 3  |
| Egypt     | Mediterranean Sea                    | 88                    | 6338   | 154      |        | 16            | petroleum+combustion    | 4  |
| Jamaica   | Montego Bay                          | 1                     | 358    |          |        |               | not specified           | 5  |
| Kuwait    | Kuwait Coast                         | 4                     | 209    | 61       |        | 19            | petroleum               | 6  |
| Malaysia  | West Coast of Peninsular<br>Malavsia | 4                     | 431    |          |        | 17            | petroleum+combustion    | 7  |
| Mexico    | Todos Santo Bay                      | 8                     | 813    | 96       |        | 32            | combustion              | 8  |
| Namibia   | Walvis Bay                           |                       |        |          | 68     | 1             | combustion              | 9  |
| Oman      | Persian Gulf                         | 2                     | 30     | 11       |        | 6             | petroleum               | 2  |
| Oatar     | Persian Gulf                         | 1                     | 92     | 25       |        | 5             | petroleum               | 2  |
| Thailand  | Thailand Coast                       | 6                     | 228    | 50       |        | 14            | 14 petroleum+combustion |    |
| UAE       | Persian Gulf                         | 0                     | 9      | 3        |        | 6 petroleum   |                         | 2  |
| Yemen     | Hadhramout coast                     | 2                     | 604    | 82       |        | 17            | petroleum               | 11 |
| Developed | l countrv                            |                       |        |          |        |               |                         |    |
| Australia | Sydney Coast                         | 19                    | 174    | 97       |        | 2             | petroleum               | 12 |
| France    | Arcachon Bay                         | 32                    | 4120   | 1918     |        | 7             | not specified           | 13 |
| France    | Corsica                              | 1                     | 20446  | 2065     |        | 10            | petroleum+combustion    | 14 |
| France    | French Riviera                       | 45                    | 13010  | 3130     |        | 10            | combustion + petroleum  | 14 |
| France    | Gulf of Lions                        | 182                   | 763    | 456      |        | 4             | combustion + petroleum  | 15 |
| France    | Gulf of Lions                        | 461                   | 947    |          |        | 6             | petroleum+combustion    | 16 |
| France    | Gulf of Lions                        | 36                    | 6940   | 1259     |        | 6             | not specified           | 13 |
| France    | Marseille Bay                        | 34                    | 1984   | 1207     |        | 16            | combustion              | 17 |
| France    | Sadinia                              | 1                     | 919    | 311      |        | 3             | petroleum+combustion    | 14 |
| Ireland   | Larne Lough                          | 83                    | 22960  | 3296     |        | 14            | combustion              | 18 |
| Ireland   | Strangford Lough                     | 261                   | 1263   | 734      |        | 16            | combustion              | 18 |
| Italy     | Gela coast                           | 201                   | 434    | 68       |        | 24            | combustion              | 19 |
| Italy     | Gulf of Naples                       | 92                    | 12561  | 3115     |        | 15            | not specified           | 20 |
| Italy     | Ligurian Sea                         | <1                    | 26247  | 5115     |        | 25            | combustion              | 21 |
| Italy     | Mar Piccolo, Ionian Sea              | 380                   | 12750  |          |        | 20            | nyrogenic               | 22 |
| Portugal  | Douro River estuary                  | 59                    | 12/50  |          |        |               | not specified           | 23 |
| Slovenia  | Northern Adriatic Sea                | 35                    | 682    | 316      |        | 17            | combustion              | 23 |
| Snain     | Catalan Coast                        | 378                   | 529    | 510      |        | 2             | netroleum+combustion    | 16 |
| Spain     | Spanish northern coast               | 1                     | 8420   | 1836     |        | 6             | not specified           | 13 |
| U K       | Brighton Marina                      | 24.0                  | 4710   | 631      |        | 16            | 6 not specified         |    |
| UK.       | Inner Clyde Estuary                  | 630                   | 23711  | 051      |        | 10 combustion |                         | 25 |
| UK        | II K Coastal locations               | 10                    | 3054   | 787      |        | 31            | combustion              | 20 |
| 0.1.      | Alaska- Prince William               | 10                    | 5054   | 707      |        | 51            | combustion              | 9  |
| USA       | Sound                                |                       |        |          | 113    |               | combustion              |    |
| USA       | Bay of Isles Alaska                  | 9                     | 828    | 393      | 115    | 40            | petroleum               | 28 |
| US A      | Buzzerd Bay                          |                       | 020    | 575      | 800    | 1             | combustion              | 20 |
|           | Buzzard Bay                          |                       |        | 12500    | 000    | 6             | pot specified           | 30 |
|           | Cape Ann                             |                       |        | 5500     |        | 6             | not specified           | 30 |
| U.S.A.    | Casco Bay                            | 16                    | 20748  | 2854     |        | 65            | combustion              | 36 |
| U.S.A.    | Caseo Bay                            | 21                    | 10663  | 1064     |        | 76            | combustion              | 31 |
| U.S.A.    | Chasapaaka Bay                       | 21                    | 10005  | 6200     |        | 6             | pot specified           | 30 |
| U.S.A.    | Chestewatehaa Bay                    |                       |        | 0200     |        | 6             | not specified           | 20 |
| U.S.A.    | Dahah Bay                            |                       |        | 9600     | 270    | 0             | not specified           | 20 |
| U.S.A.    | Daboo Day                            | 4.2                   | 1407   | 20.0     | 270    | 1             | compustion              | 32 |
| U.S.A.    | Drier Bay                            | 43                    | 1497   | 398      |        | 42            | petroleum               | 33 |
| U.S.A.    | Elliot Bay                           |                       | 000    | 10900    |        | 6             | not specified           | 30 |
| U.S.A.    | Georges Bank                         | 1                     | 298    |          |        | 48            | combustion              | 28 |
| U.S.A.    | Gulf of Maine                        | 200                   | 870    | 530      |        | 4             | combustion              | 34 |
|           |                                      |                       |        |          |        |               | pyrogenic and           | 35 |
| U.S.A.    | Jobos Bay and La Parguera            | 40                    | 1912   |          |        |               | petrogenic mixed        |    |
| U.S.A.    | Mississippi Sound                    |                       |        | 7000     |        | 6             | not specified           | 30 |
|           | Mississippi-Alabama                  |                       |        |          |        |               |                         | 36 |
| U.S.A.    | Shelf                                | 18                    | 567    | 162      |        | 10            | petroleum               |    |

| U.S.A.                | Narragansett Bay               |         |        | 7300      |      | 6   | not specified              | 30 |
|-----------------------|--------------------------------|---------|--------|-----------|------|-----|----------------------------|----|
| U.S.A.                | Narragansett Bay               | 569     | 216000 | 21100     |      | 41  | combustion                 | 37 |
| U.S.A.                | Narragansett                   |         |        |           | 2500 | 1   | combustion                 | 38 |
|                       | Bay-Conimicut Point            |         |        |           |      |     |                            |    |
| U.S.A.                | Narragansett Bay-Rhode         |         |        |           | 125  | 1   | combustion                 | 38 |
|                       | Island Sound                   |         |        |           |      |     |                            |    |
| USA                   | New York Bight                 |         |        | 8700      |      | 6   | not specified              | 30 |
| USA                   | San Diego                      | 7       | 257    | 85        |      | 5   | combustion                 | 39 |
| USA                   | Orange County Sanitation       | 64      | 1569   | 223       |      | 9   | combustion                 | 40 |
| 0.5.71.               | District                       | 04      | 1507   | 223       |      |     | combustion                 | 40 |
| USA                   | Palos Verdes Shelf             |         |        |           | 7037 | 1   | netroleum                  | 41 |
| U.S.A.                | Panobscott Bay                 |         |        | 6700      | 1031 | 6   | petroleum<br>not aposified | 30 |
| U.S.A.                | Point Loma                     |         |        | 26        |      | 6   | not specified              | 30 |
| 0.5.A.                | Prince William Sound           |         |        | 20        |      | 0   | not specificu              | 50 |
| ILS A                 | Alaska                         | 175     | 16475  | 2016      |      | 7   | a a m h w a t i a n        | 12 |
| U.S.A.                | Alaska<br>Prince William Sound | 175     | 10475  | 3910      |      | /   | combustion                 | 42 |
| TT C A                | Alaska                         |         |        | 1006      |      | 10  |                            | 12 |
| U.S.A.                | Alaska<br>Dugat Sound          | 20      | 2250   | 500       |      | 10  |                            | 43 |
| U.S.A.                | Puget Sound<br>Desites Dev     | 28      | 2558   | 7400      |      | 23  | combustion                 | 44 |
| 50.S.A.               | Raman Bay                      |         |        | /400      |      | 0   | not specified              | 20 |
| U.S.A.                | San Antonio Bay                |         |        | 48        |      | 6   | not specified              | 30 |
| U.S.A.                | San Diego Bay                  |         |        | 9500      | 2004 | 6   | not specified              | 30 |
| U.S.A.                | San Francisco Bay-             |         |        |           | 3884 | 1   | combustion                 | 45 |
|                       | Richardson Bay                 |         |        |           |      |     |                            |    |
| U.S.A.                | San Francisco Bay- San         |         |        |           | 955  | 1   | combustion                 | 45 |
|                       | Pablo Bay                      |         |        |           |      |     |                            |    |
| U.S.A.                | San Pedro Shelf and slope      | 53      | 1590   | 515       |      | 27  | combustion+petroleum       | 46 |
| U.S.A.                | San Diego Bay                  | 898     | 983    | 941       |      | 2   | combustion                 | 47 |
|                       | Santa Monica Bay,              |         |        |           |      |     |                            |    |
| U.S.A.                | California                     | 200     | 11000  |           |      | 43  | not specified              | 48 |
| U.S.A.                | St. Andrew Bay                 |         |        | 17800     |      | 6   | not specified              | 30 |
| U.S.A.                | Sarasota Bay                   | 16      | 26771  | 1615      |      | 62  | combustion+petroleum       | 49 |
|                       | U.S Naval Station, San         |         |        |           |      |     |                            |    |
| U.S.A.                | Diego                          | 280     | 20190  | 3574      |      | 25  | combustion                 | 42 |
| U.S.A.                | Washington Coast               | 29      | 460    | 200       |      | 13  | combustion                 | 50 |
|                       |                                |         |        |           |      |     |                            |    |
| BRICS*                |                                |         |        |           |      |     |                            |    |
| Brazil                | Santos Bay                     | 80      | 42390  |           |      | 5   | petroleum+combustion       | 51 |
| Brazil                | Santos Bay                     | 8       | 4163   | 714       |      | 28  | petroleum+combustion       | 52 |
| China                 | Bohai Bay and Yellow Sea       | 20      | 5734   | 877       |      | 20  | not specified              | 53 |
| China                 | Daya Bay                       | 115     | 1134   | 481       |      | 14  | pyrogenic+petrogenic       | 54 |
| China                 | East China Sea                 | 22      | 182    | 105       |      | 11  | combustion + petroleum     | 55 |
| China                 | Bohai Sea                      | 28      | 1082   | 1384      |      | 66  | petroleum+combustion       | 56 |
| China                 | Laizhou Bay                    | 23      | 293    | 134       |      | 17  | petroleum                  | 57 |
| China                 | Macao coast                    | 80      | 8415   | 911       |      | 45  | petroleum+combustion       | 58 |
| China                 | Pearl River Estuary            | 189     | 637    | 362       |      | 10  | petroleum+combustion       | 59 |
| Taiwan                | Hshin-ta coast                 | 98      | 2048   | 001       |      | 30  | netroleum                  | 60 |
| Taiwan                | Kaohsiung Harbour              | 9       | 1750   | 590       |      | 50  | pyrogenic+petrogenic       | 61 |
| India                 | Northeastern coast of Bay      | 132     | 2938   | 634       |      |     | combustion                 | 62 |
| mura                  | of Bengal                      | 152     | 2750   | 054       |      |     | combustion                 | 02 |
|                       | Northeastern coast of          |         |        |           |      |     |                            |    |
| India                 | India                          | 2       | 1091   | 271       |      | 10  | combustion                 | 62 |
| Puccio                | Mula<br>White See              | 3<br>16 | 200    | 2/1<br>61 |      | 10  | combustion                 | 64 |
| Russia<br>South Vora- | Wille Sea                      | 10      | 200    | 01        |      | 117 | combustion                 | 65 |
| South Korea           | Korean coast                   | 9       | 10000  | 820       |      | 11/ | combustion                 | 05 |
| South Vara-           | Kuaanggi Bay                   | 0       | 1400   | 120       |      | 24  | a mbustion                 | 66 |
| South Korea           | Kyeoliggi Day                  | 207     | 1400   | 120       |      | 24  | combustion                 | 00 |
| South Korea           | Wasan Bay                      | 207     | 20/0   | 680       |      | 10  | combustion                 | 0/ |
| South Korea           | reongii Bay                    | <10     | 1870   | 309       |      | 26  | not specified              | 68 |

\*BRICS : Brazil, Russia, India, China and South Korea

この地域特有の頻繁な豪雨により供給される大量の土砂により希釈されていることや生物分解が おこりやすい環境であることを考えると、この熱帯アジア水域へのPAHsの負荷は先進工業化国と 比べても大きなものであると考えられる。

熱帯アジア全域と東京湾堆積物中のPAHsのMPAHs/PAHsを図(2)-18に示す。インド以外の熱帯 アジアの堆積物試料の多くはMPAHs/PAHs比が0.3以上の大きな値を示し、石油起源PAHsの流入が 明らかとなった。都市部では高MPAHs/PAHs比、遠隔地で低MPAHs/PAHs比の傾向となった。特に、 インドネシア(ジャカルタ)、マレーシアではMPAHs/PAHs比は石油起源閾値(2.2)に近いあるいは 閾値を超えている地点が存在し、石油起源PAHsの寄与を強く受けていることが明らかとなった。 逆に、インドでは、MPAHs/PAHs比が0.15~0.7と著しく低く、強い燃焼起源であることが示された。 PAHs濃度が都市域で高く、遠隔地で低いことも併せて考えると以下のようなPAHs汚染のメカニズ ムが考えられた。すなわち、主に都市から放出される燃焼起源PAHsは大気輸送により広域に運ば れ、アジア地域のPAHsのバックグランド汚染を形成し、この燃焼起源PAHsのバックグランドの上 に、都市(インド以外)では石油起源のPAHsの大きな負荷があり、都市水域堆積物中PAHsが強い 石油起源の特徴を示す、すなわち都市部に石油起源PAH汚染源が存在することが示唆された。以 下のセクションでは、より詳細な起源推定について記載する。



図(2)-18. アジア各国の水域堆積物中のPAHsのMPAHs/PAHs比

ジャカルタの堆積物中のPAHsの負荷源と起源を推定するために、起源物質の分析を行った。道路粉塵中のPAHsの組成は堆積物中のPAHsの組成と極めて類似していることが明らかになり(図(2)-19)、交通系のPAHsが道路粉塵とその表面流出を通して負荷されるものが、ジャカルタ堆積物中のPAHsの主な起源と考えられた。交通系のPAHs起源として、想定される負荷源として道路粉塵が起源物質として自動車(ガソリンエンジン車、ディーゼルエンジン車)排気粒子、モーターバイク(2ストロークエンジン、4ストロークエンジン)排気粒子、Rickshaw(三輪タクシー)排気粒子、市販エンジンオイル、使用済みエンジンオイル、タイヤ摩耗粒子をジャカルタ市内で採取し、PAHsの分析を行った。それらの起源物質のPAHs組成を図(2)-19に示す。なお、ジャカルタ

の道路は主にコンクリート舗装されており、アスファルトは想定される起源物質から除外した。 ディーゼル排ガスは低分子にシフトし、ガソリン排ガス粒子は高分子にシフトしていた。タイヤ 摩耗粒子は極端にpyreneが卓越した組成を示した。これらの組成はバンコクの起源物質で観測され たもの(ref#)と類似していた。本研究では、モーターバイク(4ストロークエンジン)、Rickshaw (三輪タクシー)排気粒子が高分子にシフトしていることもはじめて明らかにした。これらの起 源物質の中ではモーターバイク(2ストロークエンジン)と使用済みエンジンオイルのPAHs組成 が、堆積物と道路粉塵のPAHs組成と類似度が高かった。



図(2)-19. ジャカルタ堆積物、道路粉塵、および各種起源物質中のPAHsプロファイル

複数の起源物質の混合が想定されるので、PAHs組成の重回帰分析を行った。その結果を、表(2)-2 に示す。ジャカルタ市内堆積物の13地点中10地点で、モーターバイク(2ストロークエンジン)排気粒子の寄与が一番大きくなった。



# 表(2)-2. ジャカルタ堆積物のPAHsプロファイルと起源物質のPAHsプロファイルの重回帰分析結果(相関係数)

図(2)-20. 重回帰分析の結果により推定されたPAHs組成(積み上げグラフ)と実測PAHs組成(折れ線)

モーターバイク(2ストロークエンジン)排気粒子の寄与が一番大きくなった地点ではそれに加 えて、タイヤ摩耗粒子、ディーゼル排ガス粒子の寄与がある地点があった。また、モーターバイ ク(2ストロークエンジン)排気粒子の寄与が推定されなかった3地点のうち2地点の堆積物中 PAHsでは使用済みエンジンオイルが主要な負荷源と推定された。このうち、JKSE14は使用済みエ ンジンオイルの一時貯留所に近接しており、そこからの漏出が示唆された。モーターバイク(2) ストロークエンジン)排気粒子の寄与が推定されなかったその他の1地点ではタイヤ摩耗粒子と ディーゼル排ガス粒子の寄与が推定された。重回帰分析の結果から推定された各負荷源からの寄 与率を各負荷源のPAHs組成をかけ算し、各負荷源からの各PAHs成分の寄与を推定し、それを積み 上げた推定PAHs組成を図(2)-20に示す。図(2)-20では、推定PAHs組成と共に実測PAHs組成も示す。 ジャカルタ市内のPAHsへは複数の起源が寄与しており、その寄与度は地点により変動するが、全 般にモーターバイク(2ストロークエンジン)排出粒子が大きく寄与していると推定された。ホ パンの組成についても検討を行ったが、ホパン全体のプロファイルは堆積物、道路粉塵、各種起 源の間で類似しており(図(2)-21)、特定の起源からの寄与を特定できなかった。同様にホパンの 微細な組成(C29/C30比とΣC31-C35/C30比のダイアグラム;図(2)-22)も類似しており、特定の起 源の寄与を特定できなかった。ジャカルタ市内ではモーターバイク(2ストロークエンジン)の 走行台数も多く、かつモーターバイク(2ストロークエンジン)排気粒子は走行距離当たりのPAHs の排出量もモーターバイク(4ストロークエンジン)に比べて高いことが報告されており、ジャ カルタ水域へのPAHsの主要な負荷源であると結論づけられた。



図(2)-21. ジャカルタ堆積物および起源物質中のホパンのプロファイル



図(2)-22. ジャカルタ堆積物および起源物質のホパンダイアグラム

石油起源PAHsの寄与が大きいと推定されたその他の熱帯アジアの都市についても、同様の手法 で発生源推定を行った。マレーシアとカンボジアでは、使用済みエンジンオイルが、主要なPAHs の発生源であると推定された。タイではタイヤ摩耗粒子が主要で使用済みエンジンオイルも一部 寄与しており、ベトナムでもタイヤ摩耗粒子が主要であり使用済みエンジンオイルが寄与してい るが、それに加えてディーゼル排ガス粒子も寄与していると推定された。ラオスでもタイヤ摩耗 粒子が主要であったが、アスファルトの寄与も推定された。熱帯アジア全体としては使用済みエ ンジンオイルとタイヤ摩耗粒子の寄与が広く存在していると推定された。

一方、インドの堆積物は他の熱帯アジア諸国と対照的に、アルキルPAHの割合が低く、燃焼起 源PAHsの寄与が大きいと示された。インドではコルカタ、ムンバイ、チェンナイの3都市の堆積 物について測定を行ったが、中でもコルカタでアルキルPAHsの比率が低かった(図(2)-23)。コル カタのMPAHs/PAHsの範囲は石炭燃焼生成物の範囲と類似しており、コルカタでは石炭燃焼生成物 の寄与が大きいことが示唆された。コルカタのMPAHs/PAHsの値は木材燃焼生成物に石油起源 PAHsが少量混入することによっても説明が可能であるが、課題1で用いた14Cの測定結果からは 木材燃焼の寄与は小さいと考えられたので、木材燃焼生成物への石油起源PAHsの少量混入の可能 性は低いと考えられる。コルカタでは石炭燃焼生成物の寄与が大きいことが示唆された。



図(2)-23. インド3都市の堆積物中PAHs濃度およびMPAHs/PAHs比

#### 5. 本研究により得られた成果

# (1)科学的意義

PAHs組成と関連マーカーの同時測定による大気および水域のPAHsの起源解析手法を作成した。 アジア諸都市の大気および水域のPAHs汚染の実態を明らかにし、起源の推定を行った。

#### (2) 環境政策への貢献

北京において大気中PAHs濃度が冬季の石炭燃焼により高濃度になることとその程度を明らか にした。冬季偏西風により日本列島に運ばれる中国からの大気汚染物質の影響評価のための基 礎的な知見を提供した。熱帯アジア水域のPAHsについては、各国の発生源の推定を行った。環 境対策の中で活用されるように、各国の共同研究者を通して働きかけていくように努める。

### 6. 国際共同研究等の状況

本課題に関係する国際共同研究としてInternational Pellet Watchを行っている。International Pellet Watchは海岸漂着プラスチック小粒を使った全球規模での環境汚染モニタリングプログラムである。モニタリング項目の一つに本課題の対象物質のPAHsも含まれており、本課題に関連する国際共同研究であり、熱帯アジア水域への石油起源PAHsの広がりはInternational Pellet Watchからも確認されている。本課題の代表者の高田がInternational Pellet Watchの代表も務めている。現在世界40 カ国50名程度の研究者・NGOが参加している。International Pellet Watchは国連環境計画(UNEP)等の国際機関からも注目され、UNEP Year Book 2011の中でも紹介されている。

本サブテーマの成果に鑑み、中国の研究者との協力が重要なことから、科学技術振興機構が募 集した戦略的国際科学技術協力推進事業に応募したところ、採択となり平成24年4月より共同研究 を開始することができた。

- 科学技術振興機構、戦略的国際科学技術協力推進事業 研究題目:「吸収性エアロゾル(EC) と散乱性エアロゾル(OC、金属成分、イオン成分)の分布と化学成分の変化による影響 の解明」
- カウンターパート: 孟 凡・中国環境科学研究院・中国
- 参加・連携:日本側・畠山史郎、中国側・孟凡をそれぞれの代表として連携して研究を進 める。

国際的な位置づけ:日中間の公式のプロジェクトである。

#### 7. 研究成果の発表状況

### (1) 誌上発表

※雑誌名は正確に、欧文誌の場合は雑誌の正式な略称で記載すること(IF等の検索の際、支障をきたすため)。 <論文(査読あり)>

 吉野彩子、中山寛康、小川佳美、佐藤圭、高見昭憲、畠山史郎:エアロゾル研究, 26 (4), 307-314 (2011).

「2010年沖縄県辺戸岬における東アジアに由来する多環芳香族炭化水素類の長距離輸送」

2) 小川佳美、兼保直樹、佐藤圭、高見昭憲、林政彦、原圭一郎、畠山史郎:大気環境学会誌,47(1),
18-25 (2012).

「長距離輸送された多環芳香族炭化水素とn-アルカン-2009年春季および秋季の沖縄辺戸 岬、福江島、福岡での測定から-」

3) M. Murakami, M. Abe, Y. Kakumoto, H. Kawano, H. Fukasawa, M. Sah, H. Takada : Atmospheric Environment, 54, 9-17 (2012)

"Evaluation of ginkgo as a biomonitor of airborne polycyclic aromatic hydrocarbons"

4) Rinawati, T. Koike, H. Koike, R. Kurumisawa, M. Ito, S. Sakurai, A. Togo, M. Saha, Z. Arifin, H. Takada : J. Hazardous Materials, 217-218, 208-216 (2012)
"Distribution, source identification, and historical trends of organic micropollutants in coastal sediment in Jakarta Bay, Indonesia"

<査読付論文に準ずる成果発表>(「持続可能な社会・政策研究分野」の課題のみ記載可。) 「特に記載すべき事項はない」

<その他誌上発表(査読なし)> 「特に記載すべき事項はない」

(2) 口頭発表(学会等)

1) M. Saha, H. Takada, B. Bhattacharya, 18th symposium on Environmental Chemistry, Tsukuba, Japan, June 10, 2009.

"Distribution of atmospheric polycyclic aromatic hydrocarbons (PAHs) in tropical Asian countries"

- 2) K. Shimada, S. Hatakeyama, A. Takami, S. Kato, Y. Kajii, 4<sup>th</sup> Japan-China-Korea Joint Conference on Meteorology, Tsukuba, Japan, Nov. 8, 2009.
  "Variation of Carbonaceous Aerosols in Polluted Air Mass Transported from East Asia"
- 3) S. Hatakeyama, The 1<sup>st</sup> International Symposium on Science and Impact of Atmospheric Brown Clouds (ABCs), (Incheon) (2009/11/23)
  "Impacts of aerosols in East Asia on plants and human health an introduction to a new project in Japan"
- 4) M. Saha, H. Takada, B. Bhattacharya, 2nd International conference on "Ecotoxicology & Environmental Sciences", Jadavpur University, Kolkata, India, December 15, 2009.
  "Distribution and source identification of polycyclic aromatic hydrocarbons (PAHs) in Kolkata, India"
- 5) K. Shimada, A. Takami, S. Kato, Y. Kondo, and S. Hatakeyama, The International Workshop "Frontiers of Black Carbon Studies" (Tokyo) (2010/1/25)
  "Difference in Carbonaceous Aerosols Simultaneously Measured at Beijing and Cape Hedo, Okinawa"
- Rinawati, T. Koike, H. Koike, R. Kurumisawa, M. Ito, H. Takada, Conference on Natural Resources and Environmental Perspective to Solve Climate Change, Riau, Indonesia, 2010/5/15.
   "Distribution and Sources of Polycyclic Aromatic Hydrocarbons (PAHs), Polychlorinated Biphenyls

(PCBs), and Linear Alkybenzenes (LABs) in Coastal Sediment of Jakarta Bay, INDONESIA."

7)小川佳美・畠山史郎・兼保直樹・佐藤圭・高見昭憲:第27回エアロゾル科学・技術研究討論会 (2010)

「2009年春季および秋季に辺戸岬、福江島、福岡で測定したPAHsとn-アルカン類」

8) Y. Ogawa, K. Sato, N. Kaneyasu, A. Takami, S. Hatakeyama: 8th International Aerosol Conference (Helsinki)(2010)

"PAHs and n-alkanes in the aerosol transported around the East China Sea"

- 10)小川佳美、兼保直樹、佐藤圭、高見昭憲、畠山史郎:第51回大気環境学会年会 (2010)
   「2009年-2010年に辺戸岬、福江島、福岡で測定したPAHsとn-アルカン」
- 11) 山田尚人、小川佳美、兼安直樹、佐藤圭、高見昭憲、畠山史郎: 第16回大気化学討論会 (2010) 「東シナ海周辺に輸送されるキノン類と多環芳香族化合物」
- 12) 吉野彩子、中山寛康、小川佳美、高見昭憲、佐藤圭、畠山史郎:第28回エアロゾル科学・技術 研究討論会(2011)

「沖縄県辺戸岬における東アジアに由来する多環芳香族炭化水素類の長距離輸送」

- 13)石田貴嗣、吉野彩子、佐藤 圭、高見昭憲、畠山史郎:東アジアにおけるエアロゾルの植物・ 人間系へのインパクトシンポジウム (2012) 「福江・辺戸岬への置換PAH、キノン類の輸送」
- 14)前田 恵、吉野彩子、小川佳美、佐藤 圭、畠山史郎:東アジアにおけるエアロゾルの植物・ 人間系へのインパクトシンポジウム (2012/1/25)
   「辺戸岬における有機エアロゾルの季節変化」

## (3) 出願特許

「特に記載すべき事項はない」

(4) シンポジウム、セミナーの開催(主催のもの)

「特に記載すべき事項はない」

#### (5) マスコミ等への公表・報道等

「特に記載すべき事項はない」

# (6) その他

「特に記載すべき事項はない」

# 8. 引用文献

- 1) J.C. COLOMBO, N. CAPPELLETTI, J. LASCI, M.C. MIGOYA, E. SPERANZA, C.N. SKORUPKA : Argentina, Environ. Sci. Technol. 40, 734–740 (2005).
- "Sources, vertical fluxes, and equivalent toxicity of aromatic hydrocarbons in coastal sediments of the Rio de la Plata Estuary"
- 2) I. TOLOSA, S.J. DE MORA, S.W. FOWLER, J.-P. VILLENEUVE, J. BARTOCCI, C. CATTINI :

Mar. Pollut. Bull. 50, 1619-1633 (2005).

- "Aliphatic and aromatic hydrocarbons in marine biota and coastal sediments from the Gulf and the Gulf of Oman"
- 3) M.A. KHAIRY, M. KOLB, A.R. MOSTAFA, A. EL-FIKY, M. BAHADIR : J. Hazard. Mater. 170, 389–397 (2009).
- "Risk assessment of polycyclic aromatic hydrocarbons in a Mediterranean semi-enclosed basin affected by human activities (Abu Qir Bay, Egypt)"
- 4) A. NEMR, T. SAID, A. KHALED, A. EL-SIKAILY, A. ABD-ALLAH : Monit. Assess. 124, 343–359 (2007).
- "The Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments along the Egyptian Mediterranean Coast, Environ."
- 5) R. JAFFE, P.R. GARDINALI, Y. CAI, A. SUDBURRY, A. FERNANDEZ, B.J. HAY : Environ. Pollut.123, 291–299 (2003).
- "Organic compounds and trace metals of anthropogenic origin in sediments from Montego Bay, Jamaica: Assessment of sources and distribution pathways"
- T. SAEED, A.N. ALGHADBAN, H. ALSHEMMARI, M. ALMUTAIRI, H. ALHASHASH: Water Sci. & Technol. 40, 89–98 (1999).
- "Preliminary assessment of the impact of draining of Iraqi Marshes on Kuwait's Northern Marine environment. Part II. Sediment associated pollutants"
- 7) M.P. ZAKARIA, H. TAKADA, S. TSUTSUMI, K. OHNO, J. YAMADA, E. KOUNO, H. KUMATA : Environ. Sci. Technol. 36, 1907–1918 (2002).
- "Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in rivers and estuaries in Malaysia: A widespread input of petrogenic PAHs"
- 8) J.V. MACÍAS-ZAMORA, E. MENDOZA-VEGA, J.A. VILLAESCUSA-CELAYA : Chemosphere 46, 459–468 (2002).
- "PAHs composition of surface marine sediments: A comparison to potential local sources in Todos Santos Bay, B.C., Mexico"
- 9) R.E. R.E. LAFLAMME, R.A. HITES : Geochim. et Cosmochim. Acta 42, 289-303 (1978).
- "The global distribution of polycyclic aromatic hydrocarbons in recent sediments"
- 10) R. BOONYATUMANOND, G. WATTAYAKORN, A. TOGO, H. TAKADA : Mar. Pollut. Bull. 52, 942–956 (2006).
- "Distribution and origins of polycyclic aromatic hydrocarbons (PAHs) in riverine, estuarine, and marine sediments in Thailand"
- 11) A.R. MOSTAFA, T.L. WADE, S.T. SWEET, A.K.A. AL-ALIMI, A.O. BARAKAT : J. Mar. Syst. 78, 1–8 (2009).
- "Distribution and characteristics of polycyclic aromatic hydrocarbons (PAHs) in sediments of Hadhramout coastal area, Gulf of Aden, Yemen"
- 12) P.D. NICHOLS, Q.I. ESPEY : AUSTRALIAN J. Mar. Freshw. Res. 42, 327-348 (1991).
- "Characterization of organic-matter at the air sea interface, in subsurface water, and in bottom sediments

near The Malabar Sewage Outfall in Sydney Coastal region"

- 13) P. BAUMARD, H. BUDZINSKI, P. GARRIGUES, T. BURGEOT, X. MICHEL, J. BELLOCQ : Mar. Environ. Res. 47, 415–439 (1999).
- "Polycyclic aromatic hydrocarbon (PAH) burden of mussels (Mytilus Sp.) in different marine environments in relation with sediment PAH contamination, and bioavailability"
- 14) P. BAUMARD, H. BUDZINSKI, P. GARRIGUES : Environ. Toxicol. Chem. 17, 765-776 (1998).
- "Polycyclic aromatic hydrocarbons in sediments and mussels of the Western Mediterranean Sea"
- 15) E. LIPIATOU, A. SALIOT : Mar. Chem. 32, 51-71 (1991).
- "Fluxes and transport of anthropogenic and natural polycyclic aromatic hydrocarbons in the Western Mediterranean Sea"
- 16) I. TOLOSA, J.M. BAYONA, J. ALBAIGES : Environ. Sci. Technol. 30, 2495-2503 (1996).
- "Aliphatic and polycyclic aromatic hydrocarbons and sulfur/oxygen derivatives in Northwestern Mediterranean Sediments: Spatial and temporal variability, fluxes, and budgets"
- 17) L. ASIA, S. MAZOUZ, M. GUILIANO, P. DOUMENQ, G. MILLE : Mar. Pollut. Bull. 58, 443–451 (2009).
- "Occurrence and distribution of hydrocarbons in surface sediments from Marseille Bay (France)"
- 18) J. GUINAN, M. CHARLESWORTH, M. SERVICE, T. OLIVER : Mar. Pollut. Bull. 42, 1073–1081 (2001).
- "Sources and geochemical constraints of polycyclic aromatic hydrocarbons (PAHs) in sediments and mussels of two Northern Irish Sea-loughs"
- 19) S. ORECCHIO, S. CANNATA, L. CULOTTA : J. Hazard. Mater. 181, 647-658 (2010).
- "How building an underwater pipeline connecting Libya to Sicilian coast is affecting environment: polycyclic aromatic hydrocarbons (PAHs) in sediments; monitoring the evolution of the shore approach area of the Gulf of Gela (Italy)"
- 20) E. ROMANO, A. AUSILI, N. ZHAROVA, M. CELIA MAGNO, B. PAVONI, M. GABELLINI : Mar. Pollut. Bull. 49, 487–495 (2004).
- "Marine sediment contamination of an industrial site at Port of Bagnoli, Gulf of Naples, Southern Italy"
- 21)R.M. BERTOLOTTO, F. GHIONI, M. FRIGNANI, D. ALVARADO-AGUILAR, L.G. BELLUCCI, C. CUNEO, M.R. PICCA, E. GOLLO : Mar. Pollut. Bull. 46, 907–913. (2003)
- "Polycyclic aromatic hydrocarbons in surficial coastal sediments of the Ligurian Sea"
- 22) N. CARDELLICCHIO, A. BUCCOLIERI, S. GIANDOMENICO, L. LOPEZ, F. PIZZULLI, L. SPADA : Mar. Pollut. Bull. 55, 451–458 (2007).
- "Organic pollutants (PAHs, PCBs) in sediments from the Mar Piccolo in Taranto (Ionian Sea, Southern Italy)"
- 23) M.J. ROCHA, P.A.R. P.C. FERREIRA, C. CRUZAIRO, E. ROCHA : J. of Chromatogr. Sci. 49, 695–701 (2011).
- "Determination of polycyclic aromatic hydrocarbons in the coastal sediments from the Porto Region (Portugal) by Microwave-Assisted Extraction, followed by SPME and GC-MS"
- 24) M. NOTAR, H. LESKOVSEK, J. FAGANELI : Mar. Pollut. Bull. 42, 36-44 (2001).

- "Composition, distribution and sources of polycyclic aromatic hydrocarbons in sediments of the Gulf of Trieste, Northern Adriatic Sea"
- 25) A.J. KING, J.W. READMAN, J.L. ZHOU : Mar. Pollut. Bull. 48, 229-239 (2004).
- "Dynamic behaviour of polycyclic aromatic hydrocarbons in Brighton marina, UK"
- 26) C.H. VANE, I. HARRISON, A.W. KIM : Mar. Pollut. Bull. 54, 1301-1306 (2007).
- "Assessment of polyaromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in surface sediments of the Inner Clyde Estuary, UK"
- 27) R.J. WOODHEAD, R.J. LAW, P. MATTHIESSEN : Mar. Pollut. Bull. 38, 773-790 (1999).
- "Polycyclic aromatic hydrocarbons in surface sediments around England And Wales, and their possible biological significance"
- 28) P.D. BOEHM, D.S. PAGE, E.S. GILFILLAN, A.E. BENCE, W.A. BURNS, P.J. MANKIEWICZ : Environ. Sci. Technol. 32, 567–576 (1998).
- "Study of the fates and effects of The Exxon Valdez oil spill on benthic sediments in two bays In Prince William Sound, Alaska. 1. Study Design, chemistry, and source fingerprinting"
- 29) R.A. HITES, R.E. LAFLAMME, J.W. FARRINGTON : Science 198, 829-831 (1977).
- "Sedimentary polycyclic aromatic hydrocarbons: The Historical Record"
- 30) T.P. O'CONNOR : Environ. Health Perspec. 90, 69-73 (1991).
- "Concentration of organic contaminants in mollusks and sediments at NOAA National status and trend sites in the coastal and estuarine United States"
- 31) T.L. WADE, S.T. SWEET, A.G. KLEIN : Environ. Pollut. 152, 505-521 (2008).
- "Assessment of sediment contamination in Casco Bay, Maine, USA"
- 32) G. PRAHL, R. CARPENTER : Geochim. et Cosmochim. Acta 43, 1959-1972 (1979).
- "The role of zooplankton fecal pellets in the sedimentation of polycylic aromatic hydrocarbons in Dabob Bay, Washington"
- 33) P.D. BOEHM, J.W. FARRINGTON : Environ. Sci. & technol. 18, 840-845 (1984).
- "Aspects of the polycyclic aromatic hydrocarbon geochemistry of recent sediments in the Georges Bank region"
- 34) G. WINDSOR, JR., R.A. HITES : Geochim. Cosmochim. Acta 43, 27-33 (1979).
- "Polycyclic aromatic hydrocarbons in gulf of marine sediments and Nova Scotia soils"
- 35) J.X. ALDARONDO-TORRES, F. SAMARA, I. MANSILLA-RIVERA, D.S. AGA, C.J. RODRÍGUEZ-SIERRA : Mar. Pollut. Bull. 60, 1350–1358 (2010).
- "Trace metals, PAHs, and PCBs in sediments from the Jobos Bay area in Puerto Rico"
- 36) M.C. KENNICUTT, W.W. SCHROEDER, J.M. BROOKS : Cont. Shelf Res. 15, 1-18 (1995).
- "Temporal and spatial variations in sediment characteristics on The Mississippi-alabama Continental-shelf"
- 37) P.C. HARTMANN, J.G. QUINN, R.W. CAIRNS, J.W. KING : Mar. Pollut. Bull. 48, 351–358 (2004).
- "The distribution and sources of polycyclic aromatic hydrocarbons in Narragansett Bay surface sediments"

38) R.J. PRUELL, J.G. QUINN : Estuarine, Coast. and Shelf Sci. 21, 295-312 (1985).

- "Geochemistry of organic contaminants in Narragansett Bay sediment"
- 39) E.Y. ZENG, C.L. VISTA : Environ. Toxicol. Chem. 16, 179-188 (1997).
- "Organic pollutants in the coastal environment of San Diego, California. 1. Source identification and assessment by compositional indices of polycyclic aromatic hydrocarbons"
- 40) C.L. MAXON, A.M. BARNETT, D.R. DIENER : Environ. Toxicol. Chem. 16, 775-784 (1997).
- "Sediment contaminants and biological effects in Southern California: Use of A Multivariate Statistical Approach to assess biological impact"
- 41) R.P. EGANHOUSE, R.W. GOSSETT : Organic substances and sediments in water, Processes and Analytical, Lewis Publishers, California, pp 191–220 (1991).
- "Historical deposition and biogeochemical fate of polycyclic aromatic hydrocarbons in sediments near a major submarine wastewater outfall in Southern Californi"
- 42) D.S. PAGE, P.D. BOEHM, G.S. DOUGLAS, A.E. BENCE, W.A. BURNS, P.J. MANKIEWICZ : Mar. Pollut. Bull. 38, 247–260 (1999).
- "Pyrogenic polycyclic aromatic hydrocarbons in sediments record past human activity: A case study in Prince William Sound, Alaska"
- 43) A.E. BENCE, K.A. KVENVOLDEN, M.C. KENNICUTT II : Org. Geochem. 24, 7-42 (1996).
- "Organic geochemistry applied to environmental assessments of Prince William Sound, Alaska, after the Exxon Valdez oil spill - a review"
- 44) R.C. BARRICK, F.G. PRAHL : Estuarine, Coast. and Shelf Sci. 25, 175-191 (1987).
- "Hydrocarbon geochemistry of the Puget Sound Region III. Polycyclic aromatic hydrocarbons in sediments"
- 45) W.E. PEREIRA, F.D. HOSTETTLER, S.N. LUOMA, A. VAN GEEN, C.C. FULLER, R.J. ANIMA : Mar. Chem. 64, 99–113 (1999).
- "Sedimentary record of anthropogenic and biogenic polycyclic aromatic hydrocarbons in San Francisco Bay, California"
- 46) C.R. PHILLIPS, M.I. VENKATESAN, R. BOWEN : Molecular markers in environmental geochemistry American Chemical Society, Washington D.C., , pp 242–260 (1997).
- "Interpretations of contaminant sources to San Pedro Shelf sediments using molecular markers and Principal Component Analysis"
- 47) E.Y. ZENG, A.R. KHAN, K. TRAN : Environ. Toxicol. Chem. 16, 196-201 (1997).
- "Organic pollutant in the Coastal Environment off San Diego, California. 3. Using Alkylbenzenes to Trace Sewage-Derived Organic Materials"
- 48) M.I. VENKATESAN, O. MERINO, J. BAEK, T. NORTHRUP, Y. SHENG, J. SHISKO : Mar. Environ. Res. 69, 350–362 (2010).
- "Trace organic contaminants and their sources in surface sediments of Santa Monica Bay, California, USA"
- 49) P. SHERBLOM, D. KELLY, R. PIERCE : Mar. Pollut. Bull. 30, 568-573 (1995).
- Base line survey of pesticide and PAH concentration from Sarasota Bay, Florida, USA"

- "50) F.G. PRAHL, R. CARPENTER : Geochim. Cosmochim. Acta 47, 1013–1023 (1983).
- Polycyclic aromatic hydrocarbon (PAH)-phase associations in Washington coastal sediment"
- 51) F. NISHIGIMA, R. WEBER, M. BICEGO : Mar. Pollut. Bull. 42, 1064-1072 (2001).
- "Aliphatic and aromatic hydrocarbons in sediments of Santos and Cananeia, SP, Brazil"
- 52) N. VENTURINI, L.R. TOMMASI : Mar. Pollut. Bull. 48, 97-107 (2004).
- Polycyclic aromatic hydrocarbons and changes in the trophic structure of polychaete assemblages in sediments of Todos os Santos Bay, Northeastern, Brazil"
- 53) M. MA, Z. FENG, C. GUAN, Y. MA, H. XU, H. LI : Mar. Pollut. Bull. 42, 132-136 (2001).
- "DDT, PAH and PCB in sediments from the Intertidal Zone of the Bohai Sea and the Yellow Sea"
- 54) J.L. ZHOU, K. MASKAOUI : Environ. Pollut. 121, 269-281 (2003).
- "Distribution of polycyclic aromatic hydrocarbons in water and surface sediments from Daya Bay, China"
- 55) I. BOULOUBASSI, J. FILLAUX, A. SALIOT : Mar. Pollut. Bull. 42, 1335–1346 (2001).
- "Hydrocarbons in surface sediments from the Changjiang (Yangtze River) Estuary, East China Sea"
- 56) W.X. LIU, J.L. CHEN, X.M. LIN, S. TAO : Mar. Pollut. Bull. 54, 113-116 (2007).
- "Spatial distribution and species composition of PAHs in surface sediments from the Bohai Sea"
- 57) A. LIU, Y. LANG, L. XUE, J. LIU : Environ. Monit. Assess. 159, 429-436 (2009).
- "Ecological risk analysis of polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Laizhou Bay"
- 58) B. MAI, S. QI, E.Y. ZENG, Q. YANG, G. ZHANG, J. FU, G. SHENG, P. PENG, Z. WANG : Environ. Sci. Technol. 37, 4855–4863 (2003).
- "Distribution of Polycyclic Aromatic Hydrocarbons in the Coastal Region off Macao, China: Assessment of input sources and transport pathways using compositional analysis"
- 59) X.-J. LUO, S.-J. CHEN, B.-X. MAI, Q.-S. YANG, G.-Y. SHENG, J.-M. FU : Environ. Pollut. 139, 9–20 (2006).
- "Polycyclic aromatic hydrocarbons in suspended particulate matter and sediments from the Pearl River Estuary and adjacent coastal areas, China"
- 60) M.-D. FANG, C.-L. LEE, C.-S. YU : Mar. Pollut. Bull. 46, 941–953 (2003).
- "Distribution and source recognition of polycyclic aromatic hydrocarbons in the sediments of Hsin-ta Harbour and adjacent coastal areas, Taiwan"
- 61) C.-L. LEE, M.-T. HSIEH, M.-D. FANG : Environ. Monit. Assess. 100, 217-234 (2005).
- "Aliphatic and polycyclic aromatic hydrocarbons in sediments of Kaohsiung Harbour and adjacent coast, Taiwan"
- 62) C. DOMÍNGUEZ, S. SARKAR, A. BHATTACHARYA, M. CHATTERJEE, B. BHATTACHARYA,
  E. JOVER, J. ALBAIGÉS, J. BAYONA, M. ALAM, K. SATPATHY : Arch. of Environ. Contam. and Toxicol. 59, 49–61 (2010).
- "Quantification and source identification of polycyclicaromatic hydrocarbons in core sediments from Sundarban Mangrove Wetland, India"
- 63) L. GUZZELLA, C. ROSCIOLI, L. VIGANÒ, M. SAHA, S.K. SARKAR, A. BHATTACHARYA :

Environ. Int. 31, 523-534 (2005).

- "Evaluation of the concentration of HCH, DDT, HCB, PCB and PAH in the sediments along the lower stretch of Hugli estuary, West Bengal, Northeast India"
- 64) V.M. SAVINOV, T.N. SAVINOVA, J. CARROLL, G.G. MATISHOV, S. DAHLE, K. NAES : Mar. Pollut. Bull. 40, 807–818 (2000).
- "Polycyclic Aromatic Hydrocarbons (PAHs) in sediments of The White Sea, Russia"
- 65) U.H. YIM, S.H. HONG, W.J. SHIM : Chemosphere 68, 85-92 (2007).
- "Distribution and characteristics of PAHs in sediments from the marine environment of Korea"
- 66) G.B. KIM, K.A. MARUYA, R.F. LEE, J.H. LEE, C.H. KOH, S. TANABE : Mar. Pollut. Bull. 38, 7–15 (1999).
- "Distribution and sources of Polycyclic Aromatic Hydrocarbons iIn sediments from Kyeonggi Bay, Korea"
- 67) U.H. YIM, S.H. HONG, W.J. SHIM, J.R. OH, M. CHANG : Mar. Pollut. Bull. 50, 319-326 (2005).
- "Spatio-temporal distribution and characteristics of PAHs in sediments from Masan Bay, Korea"
- 68) C.H. KOH, J.S. KHIM, D.L. VILLENEUVE, K. KANNAN, J.P. GIESY : Environ. Pollut. 142, 39–47 (2006).
- "Characterization of trace organic contaminants in marine sediment from Yeongil Bay, Korea: 1. Instrumental analyses"

## (3) アジア地域のエアロゾルの起源解析

慶應義塾大学理工学部 奥田知明

平成21~23年度累計予算額:16,719千円(うち、平成23年度予算額 2,522千円) 予算額は、間接経費を含む。

# [要旨]

北京、ハノイ、コルカタ、東京の都市大気エアロゾル中の主要・微量無機元素の測定からエア ロゾルの起源を推定することを目的とした。北京、ハノイ、東京において、Ca, Ti, Mn, Feとい った主に土壌・地殻由来と考えられる元素は冬季(乾季)/夏季(雨季)の濃度比が2以下であり、 これは季節間の気温の違いによる大気混合層高さの違いや、降雨による粒子の除去で説明できる。 一方コルカタではこれらの元素の乾季/雨季の濃度比が4.0-5.2となり、この季節変動は気象条件 だけでは説明できず、何らかの人間活動に起因している可能性が示唆された。各都市において、 特徴的なエアロゾル中化学成分についてさらに解析を行った。北京では、他の都市と比較してCu 濃度が27-68倍も高かった。元素濃縮度(EF)は132を示し、人為起源のCuの影響が大きいことがわ かった。ハノイにおいては相対的にZn濃度が高く、EFは170を示した。Znの乾季/雨季の濃度比は 1.4であり、他の土壌由来元素と同様だったことから、ハノイでは年間を通じてタイヤ摩耗粉塵等 の人為的なZnの発生源があると考えられる。コルカタにおいてはPb濃度が極めて高く、EFは289を 示し、これは北京と比較してもさらに高い値であった。人為起源粒子に汚染された土壌の巻き上 がりが現在のコルカタにおける大気中Pbの主要な発生源ではないかと考えられた。東京では冬季 と比較して夏季にVが約4倍増加しており、他の都市と異なって極めて特徴的であった。東京にお けるVの起源としては重油燃焼が挙げられ、首都圏における夏季の電力需要の増加に伴う火力発電 所での重油消費量の増加が原因の一つである可能性がある。測定結果を用いてアジア4都市のエア ロゾル中化学成分によるヒトへの発がんリスクを計算した。測定された全Crを六価クロムと仮定 した場合の相対リスクは、北京、ハノイ、コルカタ、東京の順に108, 33, 124, 38となった。こ のことは、例えば東京においても、測定されたCrのうちのわずか3%が六価クロムであった場合で も相対リスクは1を超えてしまうこととなり、Crによる深刻な健康影響が懸念される結果となった。

[キーワード]季節変動、水溶性イオン成分、金属成分、起源推定、クロム

## 1. はじめに

近年、著しい経済発展を遂げつつある東アジア地域では、その工業化に伴いエアロゾルによる 環境問題が深刻化している。エアロゾルへの対策を取るためには、エアロゾル中の主要な成分で あり質量比にして約3~5割を占めるイオン成分濃度と、質量比にして約1~2割を占める金属成分 を測定することは重要である。しかしながら、東アジア地域において長期連続的にエアロゾルを 採取し、その無機成分を含む多種の化学組成を調査してその発生源を解析した例は少ない。また 同時に、エアロゾル中に含まれる化学成分による生体へのリスク評価を行うことも極めて重要で ある。

#### 2. 研究目的

北京、コルカタ、ハノイ、東京の都市大気エアロゾル中の主要・微量無機元素の測定からエア ロゾルの起源を推定することを第1の目的とした。また測定結果を用いて、各都市における有害 金属によるリスクの定量的比較を行うことを第2の目的とした。

#### 3. 研究方法

北京、ハノイ、コルカタ、東京の各地点において石英繊維フィルター上に採取されたエアロゾル 北京、ハノイ、コルカタ、東京の各地点において石英繊維フィルター上に採取されたエアロゾ ル試料から、超純水により水溶性イオン成分を抽出し、抽出液中のイオン成分(F<sup>-</sup>, Cl<sup>-</sup>, NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup>, Na<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>)をイオンクロマトグラフィーにより分析した。また、三次元偏光光学系 エネルギー分散型蛍光X線分析装置(リガク社製EDXL300、以下EDXRFと称す)を用いて、FP(ファ ンダメンタルパラメーター)法によりエアロゾル中元素の分析を行った。EDXRFによる分析結果を、 同一試料を酸分解/ICP-MS法により分析した結果と比較し、必要に応じて測定値の補正を行った。

以下に試料採取地点の詳細な説明を記す。北京:清華大学環境科学与工学工程系校舎2F。清華 大学は北京中心部から北西に約15kmに位置し、都市域ではあるものの広大な大学キャンパス敷地 内であるため主要幹線道路からは1km以上離れている。ハノイ:ハノイ市住宅地の4階建て民家4階 バルコニー。市の中心部から南西約4kmに位置する。周辺に高速道路は無いが、市の中心部から郊 外へ伸びる放射状幹線道路までは約240mの距離である。コルカタ:コルカタ市中心部の民家3階の バルコニー。2車線(片側1車線)の道路から10~20mの距離にバルコニーが位置する。東京:東京 大学本郷キャンパス工学部14号館屋上。都市域であり、本郷通りに面しており、高速道路からは 800mほど離れた場所である。

# 4. 結果・考察

# (1) 東アジア4都市におけるエアロゾルの起源解析

# 1) エアロゾル中主要・微量無機化学成分の分析結果

北京、ハノイ、コルカタ、東京の各地点の試料についてエアロゾル中の主要・微量無機元素の 分析を行った。北京において、2008~2009年の期間(n=80)の水溶性イオン成分濃度の総和の平均 値は97±82µg/m<sup>3</sup>であった。主な成分は硫酸イオン(33±34µg/m<sup>3</sup>)と硝酸イオン(27±28µg/m<sup>3</sup>)であり、 次いでアンモニウムイオン(13±10µg/m<sup>3</sup>)とカルシウムイオン(12±7µg/m<sup>3</sup>)であった。カルシウム 塩の形態を50%ずつの硫酸カルシウムと炭酸カルシウムと仮定すると、両者を合わせて30µg/m<sup>3</sup>とな ることが判った。エアロゾル中元素濃度を見ると、A1, Ti, Mn, Fe等の土壤由来元素は相互に強 い相関があった。一方でZnとPb濃度間の相関係数も極めて高かった。ここで元素濃縮度はA1~Fe で0.9~1.8であったのに対しCu, Zn, Pbではそれぞれ132, 50, 102であり、このことからCu, Zn, Pbは人為起源であることが示された。ハノイにおいて、2009~2010年の期間(n=42)の水溶性イオ ン成分濃度の総和の平均値は31±18µg/m<sup>3</sup>であり、北京と比較して約1/3の濃度であった。主な成分 は硫酸イオン(12±8µg/m<sup>3</sup>)とカルシウムイオン(8±4µg/m<sup>3</sup>)であり、次いで硝酸イオン(5±4µg/m<sup>3</sup>) とアンモニウムイオン(4±3µg/m<sup>3</sup>)であった。ハノイでは全体的にはイオン成分濃度は低かったも のの比較的カルシウムが多いという結果となった。エアロゾル中元素濃度は、イオン成分同様ハ ノイでは北京と比較してほとんどの元素で約1/3の濃度となった。土壌由来元素同士、人為起源同 士の相関が高かったことは北京と類似していた。しかしハノイではZnの濃度が特徴的に高かった。 前述の元素濃縮度を使って表すと、ハノイのエアロゾル中Znの元素濃縮度は170であり、北京の3.4 倍も高い値を示した。コルカタにおいて、2010年1年間(n=48)の水溶性イオン成分濃度の総和の平 均値は30.5±26.3µg/m<sup>3</sup>であった。主な成分は硫酸イオン(10.4±7.7µg/m<sup>3</sup>)と硝酸イオン(6.7±6.8 µg/m<sup>3</sup>)であり、次いでアンモニウムイオン(3.1±4.1µg/m<sup>3</sup>)とカルシウムイオン(3.5±2.7µg/m<sup>3</sup>)で あった。エアロゾル中元素濃度は、多くの元素で北京よりも低い一方でハノイよりもやや高い値 を示した。元素濃度間の相関を見ると、Ti, Mn, Feをはじめ、多くの元素間に強い相関があった。 またZnとPb濃度間の相関係数も極めて高かった。ここで元素濃縮度(地殻中に含まれる各元素濃 度<sup>11</sup>のFe濃度に対する割合に対する実環境試料中の同割合、以下EF)はTi, Mnで1.2, 1.7であっ たのに対しZn, Pbではそれぞれ65, 289であり、このことからZnやPbは人為起源であることが示さ れた。次に東京の結果を示す。2009~2010年の期間(n=47)の水溶性イオン成分濃度の総和の平均 値は15.7±9.4 µg/m<sup>3</sup>であった。主な成分は硫酸イオン(4.4±2.5µg/m<sup>3</sup>)と硝酸イオン(4.0±2.6 µg/m<sup>3</sup>)であり、次いでアンモニウムイオン(2.9±1.8µg/m<sup>3</sup>)とカルシウムイオン(1.4±0.9µg/m<sup>3</sup>)で あった。エアロゾル中イオン成分濃度、元素濃度ともに、観測対象とした4都市の中で最も低い 値を示した。EFはTi, Mnで0.8, 3.8であったのに対しCu, Zn, Pbではそれぞれ19, 65, 76であり、 このことからCu, Zn, Pbは人為起源であることが示された。

## 2) エアロゾル中主要・微量無機化学成分濃度の季節変動

東アジア4都市における降水量・気温およびエアロゾル中元素濃度の経時変化を図(3)-1~8に 示した。エアロゾル中化学成分濃度の季節変動について各都市において解析を行った。ここで北 京市では例年11月15日から翌年3月15日の期間中のみ暖房用の熱源として石炭を使用することが 許可されているため、本研究においては11/15-3/15の期間を冬季、比較対照とする期間を5/15-9/15としこれを夏季とした。東京においても同様の定義を用いることとした。またハノイとコル カタでは年間を通じて温暖であり最低気温が10℃を下回ることはほとんどないが、分析対象期間 における降水量を見ると11/15-3/15においてハノイでは192mm、コルカタで28mmであったのに対し、 5/15-9/15においてはハノイで1032mm、コルカタで641mmであったため<sup>2)</sup>、本研究においては11/15-3/15の期間を乾季、比較対照とする期間を5/15-9/15としこれを雨季とした。北京、ハノイ、東京 において、Ca, Ti, Mn, Feといった主に土壌・地殻由来と考えられる元素は冬季(乾季)/夏季(雨 季)の濃度比が2以下であり、これは冬季/夏季間の気温の違いによる大気混合層高さの違いや、 降雨による粒子の除去で説明できる。一方コルカタではこれらの元素の乾季/雨季の濃度比が4.0-5.2となり、この季節変動は気象条件だけでは説明できず、何らかの人間活動に起因している可能 性が示唆された。一つの可能性として、道路工事などのインフラ整備が乾季に集中して行われる ことにより、土壌の巻き上がりや建築工事に伴う粉塵の飛散が起こり、これに伴って元素濃度が 上昇することが考えられた。



図(3)-1 中国北京市における降水量・気温およびエアロゾル中元素濃度の経時変化。 上:降水量および気温、中:カルシウム、下:クロム。



図(3)-2 中国北京市におけるエアロゾル中元素濃度の経時変化。上:鉄、中:亜鉛、下:鉛。



図(3)-3 ベトナム ハノイ市における降水量・気温およびエアロゾル中元素濃度の経時変化。 上:降水量および気温、中:カルシウム、下:クロム。



図(3)-4 ベトナム ハノイ市におけるエアロゾル中元素濃度の経時変化。 上:鉄、中:亜鉛、下:鉛。



図(3)-5 インド コルカタ市における降水量・気温およびエアロゾル中元素濃度の経時変化。 上:降水量および気温、中:カルシウム、下:クロム。



図(3)-6 インド コルカタ市におけるエアロゾル中元素濃度の経時変化。 上:鉄、中:亜鉛、下:鉛。



図(3)-7 東京における降水量・気温およびエアロゾル中元素濃度の経時変化。
 上:降水量および気温、中:カルシウム、下:クロム。



図(3)-8 東京におけるエアロゾル中元素濃度の経時変化。上:鉄、中:亜鉛、下:鉛。

# 3) 東アジア各都市におけるエアロゾル中化学成分の特徴

各都市において、特徴的なエアロゾル中化学成分についてさらに解析を行った。北京では、他 の都市と比較してCu濃度が27-68倍も高かった。EFは132を示し、人為起源のCuの影響が大きいこ とがわかった。しかし、他の研究例では北京におけるCu濃度は数十~数百ng/m<sup>3</sup>のオーダーである ことが多く<sup>3)4)</sup>、また本研究によるCu濃度は他の元素と全く相関がなかったことから、試料採取地 点近傍で極めてローカルなCuの発生源が存在することが示唆された。ハノイにおいては相対的に Zn濃度が高く、EFは170を示した。Znの乾季/雨季の濃度比は1.4であり、他の土壌由来元素と同様 だったことから、ハノイでは年間を通じて人為的なZnの発生源があると考えられる。元素同士の 相関を見たところ、ZnはPbとの間のみ高い相関を示した。Znの発生源の一つとしてブレーキパッ ド摩耗粉塵が考えられるが、この場合はZnよりも一桁高い濃度でCuが含まれているという報告が あり<sup>5)6)</sup>、今回のハノイのケースには当てはまらない。一方、タイヤゴム中には重量比で約1%のZn が含まれており<sup>677</sup>、これが発生源となっている可能性がある。ハノイにおける大気粉塵中のCaと Znとの組成はタイヤ摩耗粉塵のもの<sup>8)</sup>と類似しており、またハノイにおけるCaのEFも5.2と他の都 市と比較して高かったことから、ハノイにおけるZnの主要な起源の一つはタイヤ摩耗粉塵である 可能性は高いと考えられた。またハノイにおけるZnの起源として2サイクルエンジン潤滑油<sup>9</sup>や無 煙炭燃焼<sup>10</sup>なども考えられているため、さらに本プロジェクトによるPAHsの測定結果と照合しな がら議論を進める必要がある。コルカタにおいてはPb濃度が極めて高く、EFは289を示し、これは 北京と比較してもさらに高い値であった。インドでは2000年までに全国で有鉛ガソリンを禁止し ており<sup>11)</sup>、ガソリン自動車からのPbの直接の排出は考えにくい。Pbと他の元素との相関を調べた ところ、Pb-Zn間で最も高い相関係数を示し(r=0.927)、また土壌・地殻由来元素とも概ね高い相 関(r>0.7)を見せたことから、人為起源粒子に汚染された土壌の巻き上がりが現在のコルカタにお ける大気中Pbの主要な発生源ではないかと考えられた。東京における各元素の濃度レベルは過去 の報告例<sup>12)13)</sup>と同様であったが、ここではVの季節変動に着目した。北京、ハノイ、コルカタにお けるVの冬季(乾季)/夏季(雨季)比はそれぞれ1.7, 1.2, 4.7だったのに対し、東京では0.26と 夏季にVが約4倍増加しており、他の都市と異なって極めて特徴的であった。東京におけるVの起源 としては重油燃焼が挙げられ<sup>14)</sup>、首都圏における夏季の電力需要の増加に伴う火力発電所での重 油消費量の増加が原因の一つである可能性がある<sup>13)</sup>。

## (2) 中国北京市をモデル都市とした急激な発展に伴う大気環境変化の解析

#### 1) 北京五輪開催に伴う排出規制について<sup>15-17)</sup>

北京市政府は、五輪開催時期における大気環境の改善をはかるために、五輪開催約一ヶ月前の7 月1日から閉会後の9月20日にかけて様々な活動に対して一時的な規制措置を講じてきた。この規 制は自動車に関するものと、工場その他排出源に関するものとに大別できる。

自動車の規制に関しては、交通量の規制を行い、市内を走る自動車の台数を制限するだけでな く、大気汚染物質の排出量の多い自動車に対する交通規制にも重点が置かれた。まず国家排出基 準I(排出ガス基準Euro 1に相当)を満たしていないガソリン車、また国家排出基準III(Euro 3 に相当)を満たしていないディーゼル車は "vehicles with yellow environmental labels" と して他の自動車と分けられ通行禁止となった。また、一部(生鮮農産品や必要な生産・生活物資) を除いてトラックや貨物自動車、バイクなどの通行も市内全域または中心部で禁止された。さら に、市内および市外から北京市に乗り入れる車両をナンバープレートの偶奇で分け通行規制を行 った。このことによって、北京市内を走る自動車は単純に通常の半分以下になると考えられ、規 制による大気汚染ガスの排出の減少が期待できると考えた。

自動車以外の規制には、火力発電所、鉄鋼精錬所のような大規模施設の規制から工事現場やガ ソリンスタンドのような小規模ながら数の多い施設まで多岐にわたっている。まず、大気汚染物 質の大規模な固定発生源に関しては石炭燃焼を行うものとそれ以外に分けられる。石炭燃焼を行 うすべての発生源は厳しい規制を敷かれ、火力発電所は汚染物質の30%の排出削減、そのほかの ボイラー施設でも「ボイラー大気汚染物質排出基準(DB11/139-2007)」という基準が課された。 石炭燃焼を行わない排出源に関しては、鉄鋼、石油化学、セメント生産、採石、精錬、建材など 多くの分野の工場が汚染物質の30%の排出削減や生産停止などの措置をとられた。

また大規模ではないものの施設数が多く総排出量の多い排出源も規制の対象となっている。こ のようなものには工事現場、市内の道路、ガソリンスタンド、自動車修理、塗装現場などが挙げ られる。五輪期間中はすべての土木工事が中断され、道路も毎日の吸引清掃と水洗作業が義務付 けられた。また、VOC排出の原因となるため、屋外での吹きつけ塗装や家具生産、自動車修理に関 しては排出基準を満たさないところは生産停止の措置がとられた。火力発電・石炭ボイラー・鉄 鋼・石油化学・セメント・鉄精錬などの排出源は、工場由来のSO<sub>2</sub>の総排出量に対して大きい割合 を占めておりこれらに汚染物質30%の排出削減もしくは生産停止という措置がとられた。これら の措置が適切に行われていれば、期間中に排出される大気汚染物質の量は大きく減少すると考え られる。

本調査においては、五輪期間におけるイオン成分濃度の変化を調べるために、規制の行われて いる期間と通常の期間である比較対照期間を設けた。本調査では一試料の捕集期間が一週間であ るため、規制の行われた期間と実際に試料が捕集された期間ずれが生じている。この点を考慮し て、本研究で扱う五輪の規制期間を2008年6月27日~9月19日とした。また、比較対象である、濃 度変化の起こる前の通常の期間としては季節変動を考慮し、2008年以前の各年7月1日~9月20日に 該当する期間を設定した。この期間を他年規制期間という名前で用いることとする。したがって、 他年規制期間は2005年7月1日~2005年9月23日,2006年6月30日~2006年8月4日,2007年6月29日~ 2007年9月21日とした。表(3)-1に試料の捕集全期間と並べたまとめを示す。

|        | 期間          | 試料数 |
|--------|-------------|-----|
| 規制期間   | 2008年6月27日~ | 0   |
|        | 2008年9月19日  | 9   |
| 他年規制期間 | 2005年7月1日~  |     |
|        | 2005年9月23日  |     |
|        | 2006年6月30日~ | 26  |
|        | 2006年8月4日   | 20  |
|        | 2007年6月29日~ |     |
|        | 2007年9月21日  |     |
| 全期間    | 2004年10月1日~ | 170 |
|        | 2008年11月14日 | 1/0 |

表(3)-1 本調査における規制期間の定義まとめ



\*北京市環境保護局 HP http://www.bjepb.gov.cn/bjhb/publish/portal0/default.htm

表(3)-2 規制期間と前年規制期間のPM2.5濃度



前年規制期間 : 2007年7月1日~9月20日

# 2) エアロゾル濃度の測定結果

ここでは北京五輪期間においてエアロゾル濃度に変化があったかどうかについて検討する。図 (3)-9に示すのは2001年から2009年にかけての北京市における7-9月のPM10月平均濃度の比較であ る。図中の線は2001年から2009年における7-9月のPM10の濃度すべての平均値であり、117±25 µg/m<sup>3</sup>(n=279)であった。ここから各年7-9月におけるPM10の濃度の平均値を比較してみると、2002 年より2007年まではPM10濃度は平均値に近い値で推移していることがわかる。しかし2008年にな ると濃度が大きく減少し、平均値は88±25 µg/m<sup>3</sup>(n=31)となった。減少率は25%であった。そこで 2008年の濃度と2008年以外の7-9月の濃度をt検定によって比較すると1%で有意差があらわれた。 従って、2008年の7-9月は他年の同時期に比べて濃度が大きく減少しているということが判った。

規制期間および他年規制期間のPM2.5濃度の測定結果を表(3)-2に示す。規制期間と前年度規制 期間でPM2.5濃度の平均値を比較した所、規制期間では58.5±35.9 µg/m<sup>3</sup>(n=82)、前年度規制期 間では59.8±38.6□ μg/m<sup>3</sup>(n=75)となり、規制期間の方が2%低かったが、統計的に有意な差はな かった。北京市政府は北京五輪期間中および周辺時期に様々な規制を行ったがPM2.5質量濃度に関 しては前年度と比較して有意に減少したとは言えない。

## 3) 北京五輪期間におけるエアロゾル中イオン成分濃度の測定結果

次に、本調査で分析を行っている、中国科学院で捕集されたTSP中のイオン成分濃度に関しての 検討を行った。濃度の変化を見る期間は規制の行われていた期間2008年6月27日から9月19日で9試 料を対象とした。2008年の規制期間と他年規制期間での濃度の平均値を比較すると、他年規制期 間55.37±21.26□ µg/m<sup>3</sup>に対して規制期間35.41±15.24□ µg/m<sup>3</sup>と濃度が37%減少していた。二つの 濃度の間には統計的に有意な差があり(有意差5%)、2008年の五輪の規制期間中にTSP中のイオン 成分濃度が減少しているということがわかった。そこで次に各イオン成分、特にTSP中の主要なイ オン成分であるCa<sup>2+</sup>, SO<sub>4</sub><sup>2-</sup>, NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>-</sup>に注目して個別に検討を行った。

表(3)-3に規制期間における総イオン成分濃度と、他年規制期間におけるCa<sup>2+</sup>, SO<sub>4</sub><sup>2-</sup>, NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>-</sup> 成分の濃度の比較を示す。Ca<sup>2+</sup>濃度に関しては、規制期間の平均濃度3.48±1.24□µg/m<sup>3</sup> (n=9) に 対して他年規制期間の平均濃度9.54±3.30□µg/m<sup>3</sup> (n=26) と規制期間中に大きく濃度が減少して いることがわかった。規制期間の濃度と他年規制期間の濃度の違いはt検定を行うと統計的に有意 差があらわれたので、Ca<sup>2+</sup>の濃度が五輪期間中に大きく減少しているということが言える。大気中 のCa<sup>2+</sup>の発生源としては主に土壌、セメント工場および建設現場、自動車走行時に削られる道路の コンクリート・アスファルトなどが挙げられる<sup>18)</sup>。五輪期間には大規模に工場の稼動規制が行わ れるとともに市内の交通量に制限がかけられており、これらの規制によりCa<sup>2+</sup>の大気への飛散量が 抑えられたため、Ca<sup>2+</sup>濃度が下がったと考えられる。

 $SO_4^{2-}$ 濃度に関して規制期間と他年の規制期間を比較すると、他年の規制期間の濃度31.86±15.88  $\mu g/m^3$  (n=26) に対して規制期間の濃度が17.68±8.62□  $\mu g/m^3$  (n=9) と46%低いことがわかり、統計的にも有意な差があることがわかった。このことから、 $SO_4^{2-}$ 濃度の変動に季節性を考慮すると、五輪期間における濃度の大きな減少を認めることができる。

| μ <b>g/m</b> ³                       | 規制期間 <sup>a)</sup><br>n=9 |   |       | 他年期   | 見制<br>n=2 | 期間 <sup>b)</sup><br>6 |        |  |
|--------------------------------------|---------------------------|---|-------|-------|-----------|-----------------------|--------|--|
|                                      | Ave.                      | ± | S.D.  | Ave.  | ±         | S.D.                  | 他牛死刺刑间 |  |
| $NH_4^+$                             | 7.59                      | ± | 3.73  | 3.76  | ±         | 2.33                  | 2.02   |  |
| Ca <sup>2+</sup>                     | 3.48                      | ± | 1.24  | 9.54  | ±         | 3.30                  | 0.36   |  |
| NO <sub>3</sub> <sup>-</sup>         | 5.48                      | ± | 2.07  | 6.93  | ±         | 3.64                  | 0.79   |  |
| <b>SO</b> <sub>4</sub> <sup>2-</sup> | 17.68                     | ± | 8.62  | 31.86 | ±         | 15.88                 | 0.55   |  |
| Total                                | 35.41                     | ± | 15.24 | 55.37 | ±         | 21.26                 | 0.64   |  |

表(3)-3 TSP中イオン成分濃度の比較

a) 2008年6月27日~2009年9月19日

b) 2005年7月1日~2005年9月23日 2006年6月30日~2006年8月4日 2007年6月29日~2007年9月21日 規制期間にCa<sup>2+</sup>およびSO<sub>4</sub><sup>2-</sup>濃度が大きく減少していることがわかった。そこでこれらのイオン成 分が実際に何の物質によってもたらされたのかに関して検討を行う。Wangら<sup>19)</sup>の論文からCa<sup>2+</sup>の主 なカウンターイオンとしてSO<sub>4</sub><sup>2-</sup>, NO<sub>3</sub><sup>-</sup>, CO<sub>3</sub><sup>2-</sup>がありCaSO<sub>4</sub>が最も大きく55%の割合を占めているとい うことがわかった。また、SO<sub>4</sub><sup>2-</sup>の主なカウンターイオンとしてはCa<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>があり、CaSO<sub>4</sub>の形が76% と最も大きい割合を示していることがわかった。そこでエアロゾル中のCa<sup>2+</sup>およびSO<sub>4</sub><sup>2-</sup>に関しては 主にCaSO<sub>4</sub>という形で存在していると考え、本調査の分析結果でもこのことがいえるかどうか検討 した。

まず、(a)本調査で捕集されたSO<sub>4</sub><sup>2-</sup>のカウンターイオンがCa<sup>2+</sup>,NH<sub>4</sub><sup>+</sup>のみである、(b)SO<sub>4</sub><sup>2-</sup>とNH<sub>4</sub><sup>+</sup> の塩のすべてがNH<sub>4</sub>HSO<sub>4</sub>という形で存在するという二つの仮定をおいた上で次の式を立てた。

 $SO_4^{2-}$ 濃度計算値 = ( a × Ca<sup>2+</sup>濃度 ) + ( b × NH<sub>4</sub><sup>+</sup>濃度 ) ・・・(1) (1)式はCa<sup>2+</sup>のうちaの割合が、NH<sub>4</sub><sup>+</sup>のうちbの割合がSO<sub>4</sub><sup>2-</sup>との結合に寄与していると考え、その和を SO<sub>4</sub><sup>2-</sup>濃度の計算値としておいている。各試料においてこの計算値とSO<sub>4</sub><sup>2-</sup>濃度の実測値をグラフにプ ロットし、1:1となる直線つまり、SO<sub>4</sub><sup>2-</sup>濃度計算値=SO<sub>4</sub><sup>2-</sup>濃度実測値となる直線に近くなるように最 小二乗法を用いてSO<sub>4</sub><sup>2-</sup>濃度計算値を決定した。その結果a, bの割合が求まりSO<sub>4</sub><sup>2-</sup>のカウンターイオ ンの寄与の割合を推定することができた。他年規制期間に関してSO<sub>4</sub><sup>2-</sup>の寄与の割合を見てみると CaSO<sub>4</sub>が0.23 µmo1/m<sup>3</sup>で73%、(NH<sub>4</sub>)HSO<sub>4</sub>が0.10 µmo1/m<sup>3</sup>で27%という配分になっていることがわかっ た。この結果はWangらの結果とよく一致していることがわかる。CaSO<sub>4</sub>に関して他年規制期間から 規制期間の濃度の変化を見てみると、濃度が0.23□ µmo1/m<sup>3</sup>から0.09 □µmo1/m<sup>3</sup>と約65%と大きな減 少を示したが(NH<sub>4</sub>)HSO<sub>4</sub>は減少していなかった。したがって五輪規制期間においては例年と比較し てCaSO<sub>4</sub>濃度が大きく減少しているということが言える。

 $SO_4^{2-} \ge NH_4^+$ のつくる塩に関しては、 $(NH_4)_2SO_4$ が形成されるには、前段階として $NH_4^+ \ge$ 塩を作るす べての $SO_4^{2-}$ が $(NH_4)$ HSO<sub>4</sub>の形をとる必要があるため、 $SO_4^{2-} \ge NH_4^+$ のつくる塩の形態としては $(NH_4)_2SO_4$ より $(NH_4)$ HSO<sub>4</sub>の方が多い割合を占めると考えられる。Shenら<sup>20)</sup>によると北京市のTSP中では  $(NH_4)$ HSO<sub>4</sub>の形態が多くの割合を示しているという結果を示しており、この仮定が妥当であること を支持している。また、 $(NH_4)$ HSO<sub>4</sub>ではなく $(NH_4)_2SO_4$ が主な $NH_4^+ - SO_4^{2-}$ の塩の形であるという仮定の もとで同様の検討を行ったところ、前者の結果とほぼ同様にCaSO<sub>4</sub>濃度が大きく減少するという結 果を示したためCaSO<sub>4</sub>の減少は同様に説明できる。

## (3) 東アジア各都市における大気中化学成分によるリスク評価

最後に、本研究による観測結果を用いて、北京、ハノイ、コルカタ、東京におけるエアロゾル 中化学成分によるヒトへの発がんリスクを計算した。国際がん研究機関(IARC)<sup>21)</sup>により発がん性 グループ1(ヒトへの発がん性あり)と区分されているNiとCr(六価クロム)についての評価を行 った。世界保健機関(WHO)によると、NiとCr(六価クロムとして)の10<sup>-5</sup>ユニットリスクに相当す る大気中濃度はそれぞれ25ng/m<sup>3</sup>、0.25ng/m<sup>3</sup>である<sup>22)23)</sup>。本研究で対象とした東アジア4都市にお けるエアロゾル中Ni濃度は、北京:25±13ng/m<sup>3</sup>(n=80)、ハノイ:11±5ng/m<sup>3</sup>(n=43)、コルカタ: 16±10ng/m<sup>3</sup>(n=48)であり、東京:4.9±4.1ng/m<sup>3</sup>(n=43)を採用した。これより、各都市における Niの相対リスクは、北京、ハノイ、コルカタ、東京の順に1.0,0.4,0.6,0.2となり北京でやや 高いものの、その他の都市では相対リスクが1を下回った。同様にCrについて考えると、エアロゾ ル中Cr濃度は、北京:27±16ng/m<sup>3</sup>(n=80)、ハノイ:8.3±3.8ng/m<sup>3</sup>(n=39)、コルカタ:31±20ng/m<sup>3</sup> (n=48)、東京:9.5±7.0ng/m<sup>3</sup>(n=36)であり、測定された全Crを六価クロムと仮定した場合の相対 リスクは、北京、ハノイ、コルカタ、東京の順に108,33,124,38となった。このことは、例え ば東京においても、測定されたCrのうちのわずか3%が六価クロムであった場合でも相対リスクは1 を超えてしまうこととなり、Crによる深刻な健康影響が懸念される結果となった。またエアロゾ ル中におけるCrの価数別分析を早急に行う必要性が示された。

# 5. 本研究により得られた成果

# (1)科学的意義

エアロゾル中の主要・微量無機元素は、北京とコルカタでは水溶性イオン成分および金属成分 ともに濃度が非常に高く汚染が深刻であり、次いでハノイ、東京の順に濃度が低くなった。ハノ イではエアロゾル中のZn濃度が特徴的に高く、主要な起源としてタイヤ摩耗粉塵が考えられた。 コルカタにおいてはPb濃度が特徴的に高く、人為起源粒子に汚染された土壌の巻き上がりによる ものと推察された。東京では冬季と比較して夏季にVが約4倍増加しており、他の都市と異なって 極めて特徴的であった。東京におけるVの起源としては重油燃焼が挙げられ、首都圏における夏季 の電力需要の増加に伴う火力発電所での重油消費量の増加が原因の一つである可能性が示唆され た。中国北京市において、2008年夏季五輪開催に伴い極めて厳しい環境対策が施された結果、粗 大粒子を減少させる効果はあったものの微小粒子はほとんど減少しなかったことが判った。測定 結果を用いてアジア4都市のエアロゾル中化学成分によるヒトへの発がんリスクを計算したとこ ろ、特にCrによるリスクが懸念される結果となった。

## (2)環境政策への貢献

アジア各都市においてその汚染状況と原因が異なっており、環境政策を立案する上で詳細な現 地調査がまず必要不可欠であることが明らかとなった。中国北京市をモデル都市とした急激な発 展に伴う大気環境変化の解析を行った結果、エアロゾル中の成分によって環境対策が有効であっ たかそうでなかったかを判別することができた。またリスク計算により、東アジア地域において Crによるリスクが懸念される結果となったことから、今後エアロゾル中Crの長期的かつ広域的な 動態の把握や、Crの価数別分析を早急に行う必要性が示された。またこれら重金属によるリスク を、多環芳香族炭化水素類 (PAHs) に代表される有機汚染物質によるリスクと定量的に比較してい く必要があることを明らかにした。これらの知見は、将来東アジア各都市において大気汚染防止 対策の最適化を図る上で極めて重要な知見である。

## 6. 国際共同研究等の状況

本調査は、中国北京市清華大学環境学院の賀克斌教授および馬永亮教授を海外共同研究者とし て遂行したものである。現地調査にあたっては、清華大学博士課程学生程圓氏および梁林林氏の 協力を得た。

## 7. 研究成果の発表状況

- (1)誌上発表
- 〈論文(査読あり)〉

 <u>Okuda, T.</u>, Matsuura, S., Yamaguchi, D., Umemura, T., Hanada, E., Orihara, H., Tanaka, S., He, K., Ma, Y., Cheng, Y., Liang, L. (2011) The impact of the pollution control measures for the 2008 Beijing Olympic Games on the chemical composition of aerosols, Atmospheric Environment, 45 (16), 2789-2794.

<査読付論文に準ずる成果発表> 特に記載すべき事項はない。

<その他誌上発表(査読なし)> 特に記載すべき事項はない。

# (2) 口頭発表(学会等)

- 1) <u>奥田知明</u>、田中茂、賀克斌、馬永亮、趙晴 (2009) オリンピック開催に伴う中国北京市大気粉 塵濃度の変化、第50回大気環境学会年会、慶應義塾大学(横浜市)、2009年9月。
- 2) Okuda T., Matsuura S., Yamaguchi D., Tanaka S., He K., Ma Y., Jia Y., Zhao Q. (2010) Long-term observation of aerosols in Beijing, China, from 2001 to 2009: The impact of the Olympic Games 2008 on the air quality of Beijing city. *Joint International Symposium on Atmospheric Chemistry: Challenging the Future (12th CACGP & 11th IGAC)*, Halifax, Canada, July 2010.
- 3) 奥田知明、松浦慎一郎、山口大介、田中茂、賀克斌、馬永亮、趙晴、梁林林 (2010)、オリンピック開催に伴う中国北京市大気粉塵中化学成分組成の変化、第51回大気環境学会年会、大阪大学、2010年9月。
- 4) 折原寛樹、<u>奥田知明</u>、矢口好恵、田中茂、Sri Juari Santosa (2010)、インドネシアにおける大気 粉塵中多環芳香族炭化水素類(PAHs)の測定、第51回大気環境学会年会、大阪大学、2010年9月。
- 5) 奥田知明、松浦慎一郎、山口大介、梅村友章、花田絵里子、田中茂、賀克斌、馬永亮、梁林林 (2010)、 オリンピック開催が中国北京市エアロゾル化学組成に与えた影響、第16回大気化学討論会、首 都大学東京、2010年11月。
- 6) 折原寛樹、<u>奥田知明</u>、Roni Maryana、矢口好恵、田中茂、Sri Juari Santosa (2010)、インドネシア における大気粉塵中多環芳香族炭化水素類(PAHs)の発生源の推定、第16回大気化学討論会、首 都大学東京、2010年11月。
- 7) <u>Okuda, T.</u>, Matsuura, S., Yamaguchi, D., Umemura, T., Hanada, E., Orihara, H., Tanaka, S., He, K., Ma, Y., Cheng, Y., Liang, L. (2011) The impact of the pollution control measures for the 2008 Beijing Olympic Games on the chemical composition of aerosols. *7th Asian Aerosol Conference*, Xi'an, China, August 2011.
- 8) Roni MARYANA、<u>奥田知明</u>、Sri Juari SANTOSA、田中茂 (2011) インドネシア・ジョグジャカ ルタ市におけるエアロゾル中水溶性イオン成分の測定、第28回エアロゾル科学・技術研究討論 会、大阪府立大学、2011年8月。
- 9) <u>奥田知明</u>、Roni MARYANA、山口大介、高田秀重、熊田英峰、畠山史郎、中島典之、内田昌男、 Sri Juari SANTOSA、田中茂、賀克斌、馬永亮、梁林林 (2011) 東アジア都市域エアロゾル中無 機化学成分の特徴、第28回エアロゾル科学・技術研究討論会、大阪府立大学、2011年8月。
- 10) 奥田知明、大山愛美里、梅村友章、松浦慎一郎、山口大介、田中茂、賀克斌、馬永亮、梁林林

(2011)、環境規制に伴う中国北京市大気粉塵中化学成分組成の変化、第52回大気環境学会年会、 長崎大学、2011年9月。

## (3) 出願特許

特に記載すべき事項はない。

(4) シンポジウム、セミナーの開催(主催のもの)

特に記載すべき事項はない。

# (5) マスコミ等への公表・報道等

特に記載すべき事項はない。

# (6) その他

特に記載すべき事項はない。

# 8. 引用文献

- 1) Mason B. and Moore C.B., 1982, Principles of Geochemistry, 4<sup>th</sup> ed., Wiley, New York, pp. 46-47 and 176-177.
- National Climatic Data Center, National Environmental Satellite, Data, and Information Service, National Oceanic and Atmospheric Administration (NCDC/NESDIS/NOAA), 2011. Climate Data Online. <u>http://www.ncdc.noaa.gov/cdo-web/search</u>, Accessed on 8<sup>th</sup> December, 2011.
- Schleicher, N., Norra S., Chai, F., Chen, Y., Wang, S., Stuben, D., 2010, Anthropogenic versus geogenic contribution to total suspended atmospheric particulate matter and its variations during a two-year sampling period in Beijing, China, J. Environ. Monit., 12, 434–441.
- 4) Lu, S., Shao, L., Wu, M., Jiao, Z., Chen, X., 2007, Chemical elements and their source apportionment of PM10 in Beijing urban atmosphere, Environ. Monit. Assess., 133, 79–85.
- Iijima A., Sato K., Yano K., Kato M., Kozawa K., Furuta N., 2008, Emission factor for antimony in brake abrasion dusts as one of the major atmospheric antimony sources. Environ. Sci. Technol., 42, 2937-2942.
- 6) Councell, T.B., Duckenfield, K.U., Landa, E.R., Callender, E., 2004, Tire-wear particles as a source of zinc to the environment. Environ. Sci. Technol., 38, 4206-4214.
- 7) 中西準子,内藤航,加茂将史,2008,詳細リスク評価書シリーズ20 亜鉛,丸善.
- 8) Adachi, K., Tainosho, Y., 2004, Characterization of heavy metal particles embedded in tire dust, Environ. Int., 30, 1009-1017.
- 9) Hopke, P.K. et al., 2008, Urban air quality in the Asian region, Sci. Total Environ., 404, 103-112.
- Gatari, M., Wagner, A., Boman, J., 2005, Elemental composition of tropospheric aerosols in Hanoi, Vietnam and Nairobi, Kenya, Sci. Total Environ., 341, 241-249.
- 11) Singh, A.K., Singh, M., 2006, Lead decline in the Indian environment resulting from the petrol-lead phase-out programme, Sci. Total Environ., 368, 686-694.

- 12) 溝畑朗, 伊藤憲男, 楠谷義和, 2000, 道路沿道における大気浮遊粒子状物質の 物理的・化学 的特性, 大気環境学会誌, 35, 77-102.
- 13) 奥田知明,勝野正之,田中茂,近藤豊,竹川暢之,駒崎雄一,2007,マルチノズルカスケード インパクタを用いて捕集された都市域PM2.5及びPM1中微量金属濃度の測定と発生源の推定, エアロゾル研究,22,126-134.
- Okuda, T., Nakao, S., Katsuno, M. Tanaka, S., 2007, Source identification of nickel in TSP and PM2.5 in Tokyo, Japan, Atmos. Environ., 41, 7642-7648.
- 15) Public Notice of Beijing Municipal People's Government (2008.6.19).
- 16) J. Hao et al., 2006, Transportation Research Part A 40, 639-651.
- 17) Public Notice of Beijing Municipal People's Government (2008.4.4).
- 18) P.P. Parekh et al. 1988, Atmos. Environ. 22, 707-713.
- 19) Y. Wang, G. Zhuang, Y. Sun, Z. An, 2005, Atmos. Environ. 39, 7020-7029.
- 20) Z.X. Shen et al., 2008, J. Air Waste Manage. Assoc. 58, 1560-1570.
- 21) International Agency for Research Cancer (IARC), 2011. Agents Classified by the IARC Monographs, Volumes 1–102, updated on 17 June 2011, http://monographs.iarc.fr/ENG/Classification/index.php
- 22) 中西準子, 恒見清孝, 2008, 詳細リスク評価書シリーズ19 ニッケル, 丸善.
- 23) 中西準子,小野恭子,2008,詳細リスク評価書シリーズ21 六価クロム,丸善.

(4) リモートサイトPAHsの起源解析および越境輸送の評価

# 東京薬科大学

生命科学部

熊田英峰

平成21~23年度累計予算額:24,661千円

(うち、平成22年度予算額:6,136千円)

予算額は、間接経費を含む。

#### 〈研究協力者〉

| 東京薬科大学大学院 | 生命科学研究科 | 伊藤麻南美 |
|-----------|---------|-------|
| 東京薬科大学大学院 | 生命科学研究科 | 斉藤祥一  |

[要旨](1)都市域及びリモート地域(コルカタ(インド)市街地及び周辺地域、東京都心及び郊 外、沖縄県辺戸岬)の大気試料についてPAHsの汚染に及ぼす越境汚染の影響を評価するこ とを目的として研究を行ったほか、(2)リモート地域でのサンプリングに用いるパッシブ エアサンプラー (PAS<sub>Air</sub>) とパッシブバルクサンプラー (PAS<sub>fallout</sub>) の特性・信頼性を評 価し、定量的なモニタリング技術としての利用法を確立した。PAS<sub>fallout</sub>を用いた観測から、 コルカタ市内と周辺地域での降下フラックスは欧米の観測結果よりも1桁大きく、汚染 対策が喫緊の課題であることが明らかとなった。また、同地域での降下フラックスおよ びPAHs組成変動の比較と流跡線解析から、市街地の外では外来性の汚染大気の影響が重 要であることが示された。東京では、PASAirを用いた観測から、長距離輸送の影響が春先 等に首都圏全体に及んでいること、夏季において広範囲にバイオマス燃焼の影響が強ま ること、石油燃料の揮発の影響が強まること等が組成解析から明らかになった。辺戸岬 ではH21~23の各年度2~3回の集中観測で大気エアロゾルを捕集し、PAH類を分析した。 PAH濃度は同時に観測された福岡、福江よりも低く、近隣のローカル発生源がほとんどな いこと、長距離輸送されていることを示唆した。季節別にみるとPAHs濃度は秋に春より 約1.5倍高くなった。後方流跡線解析により気塊の発生源を推定すると、秋は主に北京を 中心とした中国北部から、春は韓国・日本と中国北部から約半数ずつ輸送されていた。 また、PAHの異性体同士の比をとることで、気塊に含まれる汚染物質の排出源を推定した。 春には石油燃焼由来が多く、韓国・日本からの自動車排ガスなどが影響している。一方、 秋は石炭やバイオマス燃焼が主要な排出源であり、主なPAHの排出源がバイオマス、家庭 での石炭使用である中国北部の影響を捉えたものと考えられる。

[キーワード] PAHs、越境汚染、異性体比、パッシブエアサンプラー、沖縄辺戸岬

## 1. はじめに

経済発展の著しい中国、インド、ベトナム等の東~東南アジア諸国では、経済活動が拡大し、 それに伴って大気中に排出される汚染物質の濃度も増加している。排出された汚染物質は、風と ともに長距離輸送され、風下に位置する日本に到達する。黄砂によるアレルギーなどの健康影響 は近年日本でも非常に注目されているが<sup>1)</sup>、黄砂だけでなく石炭などの燃焼によって排出される 粒子やそれに付着する有害汚染物質も日本に飛来していると考えられる。

有機物の燃焼によって発生する代表的な汚染物質の一つである多環芳香族炭化水素類(PAHs) は、発癌性をはじめとするさまざまな毒性を持ち、低濃度でも人体へ悪影響を及ぼすことから、 排出抑制をはじめとする汚染対策が求められている。そのためには、PAHsの発生源地域と燃焼起 源を明らかにする必要がある。発生源地域とは、ある地域のPAHs汚染がどこで発生したのか、あ るいは外来性なのか内在性なのかといった情報で、多点観測による汚染トレンドの比較やホット スポットの検出等によって明らかにすることができる。

PAHsの中国からの排出量は2004年において年間約11万4千トンと世界全体の排出量の約22%を 占めており、そのうち年間約131トンが日本に到達していると見積もられている<sup>2)</sup>。これら有害大 気汚染物質の排出を抑制するためには自国で対策を行うだけでなく、さらに広範囲な地域レベル での対策が有効であると考えられる。従って、長距離越境汚染過程の解明は重要な研究課題であ る。

燃焼起源は、大気中PAHsがどのような種類の燃料燃焼あるいは人間活動から発生したのかといった情報で、異性体組成や同族体組成などいわゆるmolecular fingerprintingの手法によって明らかにすることができる。またPAHsは大気輸送の過程でオキシダントとの反応を含む光化学反応によって分解を受けるが、その分解速度は化合物によって異なる。従って、PAHsの組成を詳細に解析することは、エージングの影響に関する情報を取得し、長距離輸送によってもたらされる外来性PAHsの寄与を評価することにも繋がる。

大気気相中の汚染物質を受動捕集媒体 (PSM) に捕集するパッシブエアーサンプラー (PAS<sub>Air</sub>) は 電源を使わず、小型・低コストなため、住宅地やリモート地域でのモニタリングに適している。 PAS<sub>Air</sub>で捕集された化合物の測定結果から、molecular fingerprintingによる起源解析やエージン グ解析を行うためには、PAS<sub>Air</sub>の受動捕集の原理に基づいて、捕集量を大気中の濃度に換算する必 要がある。また、都市域ではサンプリング地点の高さや気流を遮るような障害物の条件を一定に することは難しく、このような条件がPASサンプリングに与える影響についても明らかにする必要 がある。こうした観点から、本研究ではPAS<sub>Air</sub>の特性評価とサンプリング条件がモニタリングに及 ぼす影響の評価を行うことも目的とした。

最近ではCO<sub>2</sub>排出量の抑制という観点から、化石燃料とバイオマス炭素源の燃焼によって発生す る有機エアロゾルや燃焼生成物質の相対的な寄与を識別することが重要視されている。近年、加 速器質量分析計による極微量スケール<sup>14</sup>C測定技術が進歩し、環境中に存在する特定の有機化合物 について<sup>14</sup>C年代を測定(CSRA)することが可能となった。最近、都市大気中PAHsの現代炭素割合 (pMC)が、燃焼インベントリーから推測されるよりも高くバイオマス燃焼の影響が強いことが報 告されている<sup>3)</sup>。このことから、リモート地域など広域大気についても今後、化石燃料/バイオマ ス燃料による大気汚染の影響を明らかにする必要がある。多地点に設置したPASで捕集したPAHsを コンポジットしてCSRA用の試料とすることができれば、広域大気のPAHsのpMCを調査することが可 能になるなど、汚染解析の可能性が広がることが期待される。そこで本研究では、PAS<sub>Air</sub>で採取し た試料からPAHsを単離してCSRAに供することを視野に入れ、低バックグラウンドのPAHs画分を得 るための精製方法についても検討した。

PAS<sub>Air</sub>について: PAS<sub>Air</sub>で利用されるPSMの一種であるポリウレタンフォーム (PUF) への大気気相中 有機物質の吸着量は、時間に依存して増加するリニア期と平衡期に分けられ、リニア期において 定量的なサンプリングが可能である<sup>4)</sup>。PUFと大気間での有機物質のPSM-大気間総括物質移動係数 (k) は大気およびPSM中の物質移動速度 ( $k_{A}$ ,  $k_{PUP}$ ) とPSM-大気間の分配係数 ( $K_{PUF-A}$ )を用いて(1) 式で表される<sup>5)</sup>。PSMであるPUFディスクの表面積 ( $A_{PUP}$ )がQに対して十分小さいとき、右辺第3項 は無視できる。また非極性半揮発性有機化合物では $k_{PUF}$ 、 $K_{PUF-A}$ >>1のため $k \approx k_{A}$ と近似される。PUF への有機化合物の蓄積量の時間変化は大気中およびPUF中の当該化合物の濃度 ( $C_{A}$ および  $C_{PUF}$ [ng/m<sup>3</sup>])を用いて(2)式で表される。右辺の第1項は大気からPUFへの捕集を、第2項はPUFから 大気への脱離を示す。吸着の初期段階では、 $C_{PUF}$ <( $K_{PUF-A}$ であり脱離が無視されるので、(3)式を得 る。即ち、吸着量 (M[ng]) は $C_{A}$ の1次関数(4)式として表される。kは対象とする物質やPAS<sub>Air</sub>チャ ンバーのデザイン、捕集剤の特性によって異なるので、本事業で用いるPAS<sub>Air</sub>について新たに求め る必要がある。また、(4)式より、PAS<sub>Air</sub>とアクティブサンプラーとの同時サンプリングによってM と $C_{A}$ を実測することで、kを算出できる<sup>6</sup>。

$$1/k = (1/k_A) + (1/k_{puF}K_{puF-A}) + (A_{puF}/Q)$$
(1)

 $V_{pUF}(dC_{pUF}/dt) = kA_{pUF}(C_A - C_{pUF}/K_{pUF-A})$ (2)

 $V_{PUF}C_{PUF}/\Delta t = kA_{PUF}C_A \tag{3}$ 

 $M = kA_{PUF}C_A\Delta t \tag{4}$ 

Q:チャンバー内の流速[cm<sup>3</sup>/s], A<sub>PUF</sub>: PUFの露出表面積[cm<sup>2</sup>] Δt:捕集期間[日]

# 2. 研究目的

本研究の目的は、特定の発生源や発生地域に固有な化合物(マーカー)の分析から、リモート サイトのPAHsについて長距離輸送されたものとローカルな発生源のものを区別することである。 また、PAHsの中には長距離越境輸送の過程で変質する成分が存在するので、変質した成分の測定 も組み合わせ、PAHsの長距離輸送の評価も行う。また、これらの目的を達成するために、本研究 では上述したPAS<sub>Air</sub>とパッシブバルクサンプラー(PAS<sub>fallout</sub>)、2種類のパッシブサンプラーを用 いるので、これらを用いたサンプリング手法の特性評価も合わせて実施し、定量的なモニタリン グを実施するための条件を確立することも目指した。また、本サブテーマでは特に、大陸から日 本列島へ輸送されてくる汚染の詳細な調査を行った。我が国には東アジアから大気汚染物質・エ アロゾルが長距離輸送されており、その影響は大きいものと考えられている。特に、東シナ海周 辺は東アジア地域の風下に位置し、長距離越境汚染を受けやすい地域である。沖縄島の最北端に 位置する辺戸岬はローカルな汚染源が少なく、長距離越境汚染の影響を評価するのに適した地域 である。これまでの辺戸岬における観測において、大陸から汚染気塊が輸送される際に高濃度の PAHsが検出されたが、それらのPAHs組成分布による排出源の種類の詳細な検討は行われていない<sup>71</sup>。 本研究では辺戸岬における大気エアロゾル中に含まれるPAHsの濃度や化学組成を測定することで、 長期間にわたるデータを蓄積すると共に、季節変動および気塊の起源に因る濃度変化を明らかに する。さらに、PAHs異性体比および統計的な解析により排出源の推定を行うこと、PAHsの大気反 応性の差異によるエアロゾル成分の化学変化について議論することも本サブテーマの目的とした。

# 3. 研究方法

(1) パッシブエアサンプラー(PAS<sub>Air</sub>)を用いた環境モニタリングの特性評価と東京都心・郊外 での大気質モニタリング

# 1) PAS<sub>Air</sub>サンプルのPAHs分析方法

a. PAS<sub>Air</sub>用吸着捕集材(ポリウレタンフォーム:PUF)の準備

柴田科学製PUFプラグ(ダイオキシン用、φ9cm×5cm)を用いて種々の洗浄方法を検討した。予 備洗浄の方法(手もみ洗いあるいは超音波洗浄)、本洗浄の方法(ソックスレー抽出あるいは加 圧抽出)、洗浄液の種類を変えてPUFを洗浄した。洗浄後のPUFを有機溶媒で加圧抽出した抽出液 をGC/MSで分析し、洗浄効果を比較した。最終的に、分析時のバックグラウンドを最も低く保ち、 且つ省力・省コストな方法として、純水で超音波洗浄した後にアセトン置換、さらに高速溶媒抽 出装置(Dionex製ASE200)で抽出条件を表(4)-1のmethod 1, 2, 3の順に替えながら、アセトン、 アセトン/*m*-ヘキサン(35:65 v/v)、ジクロロメタンによる逐次加圧抽出を行う方法を採用した。 実際のサンプリングでは、富士ゴム産業製PUFディスク(U0020 13×140mmφ 中10mmφ抜き)を上記 の方法で洗浄したあと、減圧乾燥したものを用いた。

| Method n         | 1                | 2    | 3       | 4    | 5    |      |
|------------------|------------------|------|---------|------|------|------|
| Preheat (m       | nin)             | 1    | 1       | 1    | 1    | 1    |
| Heat (mi         | 5                | 5    | 5       | 5    | 5    |      |
| Static (m        | 20               | 20   | ) 20 20 |      |      |      |
| Flush (Vo        | 60               | 60   | 60      | 60   | 50   |      |
| Purge (se        | 60               | 60   | 60      | 60   | 60   |      |
| Cycle            | 1                | 1    | 1       | 2    | 3    |      |
| Pressure (psi)   |                  | 1500 | 1500    | 1500 | 1500 | 1500 |
| Temperature (°C) |                  | 100  | 100     | 100  | 100  | 100  |
| Solvent (vol%)   | Acetone          | 100  | 35      | 0    | 35   | 0    |
|                  | DCM              | 0    | 0       | 0    | 0    | 100  |
|                  | <i>n</i> -hexane | 0    | 65      | 100  | 65   | 0    |

表(4)-1 PUF洗浄およびサンプル抽出時のASE装置条件

#### b. 抽出

PAS<sub>Air</sub>から回収したPUFをASE用セルに詰め、アセトン/n-ヘキサン(35:65 v/v)で加圧抽出した。 ASEの抽出条件は表(4)-1のmethod.4に示す通りである。未使用のPUFに標準物質を添加し、 method.4の条件で2回連続抽出を行った抽出液を個別にGC/MSで測定して抽出効率を確認したと ころ、分子量164~202で平均94%、分子量219~306で99~107%であり、ほぼ100%の回収率を得た(デ ータ非表示)。また、2回目/1回目の比はほぼすべての化合物で0%であり、method.4による抽出を 1回行えばPUFに捕集されたPAHsをほぼ全て回収できることを確認した。

#### c. 分画精製

PAS<sub>Air</sub>抽出液からのPAHs分画精製は次に示す分析方法-1、2のいずれか一方を用いて行った。 <u>分析方法-1</u>:抽出液を濃縮、n-ヘキサンに溶媒置換した後にn-ヘキサン/5%不活性化N,N-ジメチル ホルムアミド分配(DMF分配:次項参照)に供し、脂肪族/芳香族画分を分離した。芳香族画分を 2%不活性化シリカゲルカラムクロマトグラフィーで精製し、精製PAHs画分を得た。これをn-ヘキ サンで定容して1 µLをGC/MS (SIMおよびSCAN)に注入し、PAHsを測定した。

<u>分析方法-2</u>:抽出液をアルカリ鹸化後、液-液分配により中性有機画分を得て、2%不活性化シリカ ゲルで分画してGC/MSでPAHsを同定・定量した。エアロゾル試料を用いて繰り返し分析における再 現性を確認した結果、比標準偏差(n=4)が3環以下の低分子量のもので<21%、高分子量のもので <7.9%であった。また、サンプルへの標準物質の添加回収実験を行った結果、回収率は低分子量の もので40~92%、高分子量のもので87~91%であった。この方法は(4)-1-1-(1)アーカイブ試料の 分析に用いた。

#### d. n-ヘキサン/5%不活性化N, N-ジメチルホルムアミド分配(DMF分配)の検討

環境試料(東京都八王子市で採取したトンネル粉塵、PAS<sub>Air</sub>試料)から(4)-1-0-(2)の方法で抽 出した。抽出液を5%不活性化シリカゲルカラムと2%不活性化シリカゲルカラムで精製したPAH画分 を得た。これをGC/MSで分析した後に、*n*-ヘキサン/5%不活性化*N*,*N*-ジメチルホルムアミド分配 (Mandalakisら<sup>8)</sup>による*n*-ペンタンを用いたDMF分配の変法)に供し、GC/MSで測定し、精製効果 と分析精度への影響を検討した。

トンネル粉塵、PAS試料ともにDMF分配前のTICで存在したベースラインのHumpがDMF分配後には 著しく低下した。PAHsのピーク高さとHump高さの比(P/B)はDMF分配によって2.5~13倍高い値と なった(図(4)-1左右)。DMF分配によって効率的にPAHs画分のバックグラウンドレベルを下げる ことができることが分かった。DMF分配における回収率は、2環のnaphthaleneシリーズ(分子量=128 ~156)を除けば概ね100%前後だった(図(4)-2)。PAS<sub>Air</sub>試料では高分子量化合物の回収率が70 ~80%とやや低かったが、これらはPAS<sub>Air</sub>試料においては僅かしか存在しないため、CSRAに供する 試料量への影響はないと言える。これらの結果から、PCGCで分取されたPAHs化合物の純度を高め、 CSRAを高精度で実施するためにDMF分配が有効であることが分かった。



図(4)-1 DMF 分配におけるピーク高さ対バックグラウンド比(P/B比)の変化



図(4)-2 DMF 分配における PAHs 化合物の回収率

# 2) PAS<sub>Air</sub>の特性評価

# a. リニア期の決定と物質移動係数の算出

2008年5月~2009年2月の期間を春・梅雨季(P1)、夏季(P2)、秋季(P3)、冬季(P4)と季節 ごとに4期に分け、それぞれの期間でローボリウムエアサンプラー(LVS)1台とPAS 6個を用いた 連続同時サンプリングを行った(表(4)-2)。PASのPUFは1、2、3、4、6、8週目で回収し蓄積量の 変化を調べた。LVSにはガラス繊維フィルターとPUFを装着して毎分4Lの速度で大気を吸引し、そ れぞれ全粒径(TSP)エアロゾルと気相中化合物を採取し個別に分析した。LVS中のPUFはPAS<sub>Air</sub>の PUFと同じタイミングで回収・交換を行い、大気中PAH濃度を算出した。

表(4)-2 PAS<sub>Air</sub>特性評価のためのサンプリング期間と気象パラメーター

|      | 期間    |                     | 日数 | 降水量   | 降水量 気温[℃] |                                  | 風速    | 日照    | 気圧  | 気圧 湿度[%] |      |      |
|------|-------|---------------------|----|-------|-----------|----------------------------------|-------|-------|-----|----------|------|------|
|      |       |                     |    | 合計    | 平均        | 回帰直線                             | $r^2$ | 平均    | 平均  | 最高       | 平均   | 最小   |
|      |       |                     |    | [mm]  |           |                                  |       | [m/s] | [h] | [hPa]    |      |      |
| P1 考 | 春・梅雨季 | 2008.5.21~7.16      | 56 | 386.5 | 21.3      | y=0.14x+17.2                     | 0.48  | 3.0   | 4.0 | 1005.9   | 70.7 | 54.6 |
| P2   | 夏季    | 2008.8.8~9.3        |    |       |           |                                  |       |       |     |          |      |      |
| P3   | 秋季    | 2008.10.10~12.6     | 57 | 100.5 | 12.3      | y=-0.21x+19.2                    | 0.79  | 2.3   | 5.1 | 1014.0   | 58.8 | 41.5 |
| P4   | 冬季    | 2008.12.11~2009.2.5 | 57 | 171.0 | 5.5       | y=0.0061x <sup>2</sup> -0.39x+1. | 00.38 | 2.5   | 6.0 | 1012.8   | 49.5 | 35.7 |
|      |       |                     |    |       |           |                                  |       |       |     |          |      |      |

# b. PAS<sub>Air</sub>の再現性評価

東京都心((4)-1-3-(3)参照)にPAS 3個を設置して、約3ヶ月間のサンプリングを冬季(2009.12.25 ~2010.3.30,95日間,平均気温8.2℃)と初夏季(2010.3.30~2010.7.10,102日間,平均気温

19.4℃)に実施した。それぞれのPUFを個別に分析し、各PAH化合物の捕集量の平均と標準偏差か ら変動係数を求め再現性を評価した。東京郊外((4)-1-2参照)でも、同一地点にPAS2個を設置し て、1ヶ月間のサンプリングを行った(期間:2010年6~7月の1ヶ月間)。このうち一つは通常通 りPUFディスクを1枚、もう一つにはPUFディスクを2枚設置した。それぞれのチャンバーから回 収したPUFについて、捕集された化合物量を比較し再現性を評価した。

#### c. サンプリング地点の高さの影響評価

PAS<sub>Air</sub>を多地点に設置してモニタリングを行う際、サンプリング地点の高度や周囲の障害物の有 無などの条件を一定にすることが難しい。同じ建物で階(高度)を変えてPAS<sub>Air</sub>による同時サンプ リングを実施した。サンプリング地点は、障害物などの条件が同一であると見なせるよう、同じ 型式のベランダが各階に設置された建物(本学研究3号棟、地上11階建て、北側)を選び、2~5F、 7~9F、12F(地上1~4F, 6~8F, 11Fに相当)にPAS<sub>Air</sub>を設置しサンプリングを行った(2010年6~ 7月)。それぞれのチャンバーから回収したPUFについて、捕集された化合物量を比較し設置高さ の影響を評価した。直射日光の当たりにくい北側ベランダ

## 3) PAS<sub>Air</sub>を用いた東京都心・郊外での大気質モニタリング

東京都心地点:東京大学工学部14号館10階テラス(東京都文京区)にて、2009年12月25日~2011 年8月25日の期間においてPASを3個設置した。2009年12月25日~2010年7月10日の期間は3ヶ月ごと に交換を2回、その後は3個のPASそれぞれのPUFを約1ヶ月(28~37日および59日\*)・約2ヶ月(59 ~66日)・約3ヶ月(87~102日)間隔で交換した。このうち、1ヶ月ごとに交換した2010年7月~ 2011年8月までの12個のサンプルを比較して季節変動を評価した。(\*東日本大震災の影響でPUF交 換が出来ず、2011年2月~3月の間のみ2ヶ月間隔)

東京郊外地点:東京薬科大学新部室棟屋上(東京都八王子市、地上4階)にPASサンプラーを設置し、2009年10月30日から2011年1月15日の間に約1ヶ月(25~44日間)ごとにPUFを交換した。これらのPUFの分析結果から、kを用いて大気中濃度を計算し、組成の特徴などから季節変動や起源を推定した。

これらのサンプルを(4)-0-1記載の方法(分析方法-1)でPUFに捕集されたPAHsを同定・定量した。定量した35化合物のうち、物質移動係数(*k*)が算出されている分子量152~228の12化合物について大気中濃度を計算した。

# (2) パッシブバルクサンプラー(PAS<sub>fallout</sub>)の再現性評価と東京、ハノイ、コルカタでのPAHs降 下量モニタリング

## 1) PAS<sub>fallout</sub>サンプルのPAHs分析方法

# a. PAS<sub>fallout</sub>の準備

PAS<sub>fallout</sub>はKGW Isotherm社(ドイツ)から購入したUMEGサンプラーを用いた。このサンプラーは 内径25cmのガラスロートと吸着捕集剤を充てんしたガラスカラム(捕集管)からなり、両者はボ ールジョイントで接続される。吸着捕集材は既報<sup>9,10)</sup>を参考に、イオン交換樹脂アンバーライト IRA-743を用いた。樹脂は希塩酸で水和させた後、純水、アセトンの順に置換してからアセトンで 48時間ソックスレー抽出を行って洗浄し、減圧乾燥したものを再び希塩酸で水和、さらに純水置 換してからカラムに充てんして、サンプリングに用いた。

#### b. 抽出および分画精製

捕集管にアセトン200mLを流しカラム内の水分と供に化合物の一部を溶出させてから、捕集管の 樹脂を円筒ろ紙に入れてアセトンで24時間ソックスレー抽出した。この抽出液と捕集管からの溶 出液を合わせたものを試料溶液とした。試料溶液に内部標準物質(*p*-terpheny1-d<sub>14</sub>)を添加後、 50 mL以下まで減圧濃縮した。これにヘキサン50 mLと水950 mLを添加して液々分配を行って有機 相を回収した。これを、5%不活性化シリカゲルカラムおよび2%不活性化シリカゲルカラムで分画 精製して精製PAHs画分を得た。これを*m*-ヘキサンで定容して1 μLをGC/MS (SIMおよびSCAN)に注 入し、PAHsを測定した。(4)-2-2のモニタリング調査で採取した試料の分析を通じて、内部標準物 質の回収率は92.3±7.4%であった。

# 2) PAS<sub>fallout</sub>の再現性評価

研究期間を通じて、東京都心地点((4)-2-2-(1)参照)にPAS<sub>fallout</sub>を2台設置して同時サンプリン グを行った。採取した2連の試料を個別に分析し、PAHs降下量の平均値と偏差を求め、バルクサン プラーの再現性を評価した。

## 3) PAS<sub>fallout</sub>を用いた東京、ハノイ、コルカタでのPAHs降下量モニタリング

#### a. 調查地概要

東京1地点、コルカタ4地点、ハノイ1地点でパッシブバルクサンプラーによってイオン交換樹脂 (IRA-743)に捕集されたPAHsを分析した。

東京では、東京大学工学部14号館10階テラス(東京都文京区)にPAS<sub>fallout</sub>を2基設置して、2009 年12月25日~2011年8月25日の期間に大気降下物試料を採取した。試料採取を行った建物は片側1 車線の道路から約20~30 m、最も近い幹線道路からは約640 mの距離にある。近傍の道路は近いが、 地上高が高いことから、周辺の固定発生源や自動車排ガスの直接的な影響のない、東京都心のバ ックグラウンド大気を採取したと考えられる。吸着捕集材を詰めたカラム(吸着管)は、約3ヶ月 毎に交換した。

ハノイでは、市縁辺部の新興住宅地域内にある4階建て民家4階バルコニーで、2009年9月28日~2010年9月30日の期間にサンプリングを行った。この民家は市の中心部から南西約4 kmに位置する。 周辺に高速道路は無いが、市の中心部から郊外へ伸びる放射状幹線道路までは約240 mの距離であ る。この場所は、周辺の固定発生源や自動車排ガスの直接的な影響のない場所であることから、 ハノイ市のバックグラウンド大気を採取したと考えられる。PAS<sub>fallout</sub>の捕集管は、2010年2月初旬、 3月初旬で交換した後は、約3ヶ月毎に交換した。

コルカタでは市街地1地点 (Beleghata) と周辺農村地域3地点 (Baligari, Pandua, Surajpur) でサンプリングを行った。市街地では市中心部の住宅地にある3階建て民家3階のバルコニーに PAS<sub>fallout</sub>で、2010年1月初旬~2010年末の期間にサンプリングを行った。このバルコニーから付近 を通る2車線 (片側1車線) 道路までの距離は約10-20 mである。Barigariは市街地 (Beleghata) から東 (85°) へ9.6 km、Panduaは北北西 (344°) へ58.1 km、Surajpurは南南東 (168°) へ31 km の地点に位置し、いずれも農村地帯の集落の地表にサンプラーを設置した。PAS<sub>fallout</sub>の捕集管は、
サンプリング開始後約6ヶ月経過後に交換した後は、約3ヶ月毎に交換した。

#### (3) 沖縄辺戸岬におけるPAHsの越境輸送の評価

中国を中心とした東アジア地域の急速な経済発展による大気汚染物質の排出量の増加に着目し、 東アジアの風下地域に位置して大きな影響を受ける日本の状況を解明するため、汚染物質中の有 機エアロゾルに注目し、清浄地域である沖縄県辺戸岬において大気中のPAHsおよびAlkanesの濃度 を分析した。沖縄県辺戸岬において、2009年、3-4月(春)と10月(秋)、2010年1月(冬)、3-4 月(春)、7月(夏)、10月(秋)、12月(冬)、2011年10月(秋)の春2回、夏1回、秋3回、冬2 回の集中観測を行った。詳細は以下の通りである。

#### a. 観測地点

観測は、沖縄県辺戸岬(北緯26.87、東経128.25)において行った。比較のため、長崎県福江島 (北緯32.75度、東経128.68度)、福岡県福岡市(北緯33.55度、東経130.36度)で行った測定に ついても同時に解析した。辺戸岬はサイト周辺に工場や民家がなく、交通量も少ないためローカ ルな人為起源のエアロゾルの排出が少ないとされるルーラル地域である。福江島は人口約4万人の 島で、サイト周辺は畑が広がっており辺戸岬と同様なルーラル地域である。辺戸岬は北京から約 1800 km、福江島は約1400 km離れており、福江の方が大陸に近い。福岡市は人口約145万人の大都 市である。また東シナ海周辺のこの地域は、冬季や春季なると北西の季節風により大陸の風下に 位置し、大陸で発生したエアロゾルが頻繁に運ばれてくるとされ、東アジア地域から輸送される 気塊を捉えるのに適したサイトであるといえる。

## b.エアロゾル捕集

エアロゾルの捕集にはハイボリュームエアサンプラー(HV-1000F、柴田科学株式会社)を使用 した。流量は1000 L min<sup>-1</sup>に設定し、捕集開始時および終了時に気温、気圧、積算流量を記録した。 捕集はおよそ24~72時間行った。

#### c.GC-MSによる分析

分析にはガスクロマトグラフ - 質量分析計(Hewlett Packard 5890 Series II+5972A)を用いた。PAH分析は、分析試料1 µL を、注入口温度300 ℃、スプリットレスモードで試料注入後、1 分後にパージさせた。カラムの昇温条件は、初期温度70度(2分間保持)から150 ℃まで30 ℃ min<sup>-1</sup> で昇温、310 ℃まで4 ℃ min<sup>-1</sup>で昇温後、10分間保持した。イオンを高感度で検出するために、SIM 法を用いた。

## 4. 結果及び考察

(1) パッシブエアサンプラー(PAS<sub>Air</sub>)を用いた環境モニタリングの特性評価と実環境でのモニ タリング実施について

## 1) PAS<sub>Air</sub>を用いた環境モニタリングの特性評価

#### a. リニア期間の決定と物質移動係数(k)の算出

表4-2に示した4期間のうちP1, P3, P4について分析を行い、PUFへのPAHs蓄積質量(M)、大気 中濃度(C<sub>A</sub>)と式(4)より、各PAHsの物質移動係数(*k*)[cm/day]を算出した。

まず、サンプリングレート(V<sub>eq</sub>)を(5)式により計算し、サンプリング期間の妥当性を検討した。

 $V_{eq} = M/C_A$  (5)

V<sub>eq</sub>は期間中PUFが捕集した大気の量を表し、V<sub>eq</sub>がサンプリング時間に比例する期間(リニア期間) において、PAS<sub>Air</sub>は定量的なサンプリングを実施できていると考えることができる。

図(4)-3に主要化合物のV<sub>eq</sub>と時間の関係を示した。この図から3環(分子量178)以上の分子量の 化合物であればどの季節でもV<sub>eq</sub>とサンプリング時間の間に直線的な関係が成り立ち、リニア期間 を決定できることが分かる。分子サイズが3環未満になるとこの関係は成立し難くなる。例えばFlr (分子量166)では、冬季(P4)においてリニア期を認めることができるが、春・梅雨季(P1)や 秋季(P3)においては直線性を判別し難くなっている。2環のNap(分子量128)のP1, P3において は、正の相関関係も認められなかった。

観測されたV<sub>eq</sub>は、ANTy~Fluの低分子量化合物において値の範囲が文献値と概ね一致したが、 MW≥228の化合物では文献値を大幅に上回った。これはPUFディスクが、気相分子を吸着捕集するだ けでなく、チャンバー内に侵入したエアロゾル粒子も補足したこと、及び(5)式に代入したアクテ ィブサンプラーによる大気中PAH濃度( $C_A$ )が粒子相のPAHs濃度を反映していないため、V<sub>eq</sub>が過大 評価されたと考えられる。図(4)-3では、P1におけるChr, BbFのVeqがP3, P4に比べて著しく大き な値となっている。この結果は、P1においては上で述べたような粒子の影響が特に顕著であった 可能性がある。PUFに捕集された化合物量を検討してみると、図(4)-3でP1のV<sub>eq</sub>が他の期間の値か ら大きく乖離し始めた28日目以降では、MW≥228の化合物の低分子量(MW178~202)の化合物に対 する存在比が、P1(8.7±1.7%)ではP3, P4(6.6±1.9%, 6.4±0.3%)に比べて高くなっており、上 の推論を支持した。

各化合物のV<sub>eq</sub>とサンプリング時間の回帰直線およびその決定係数(r<sup>2</sup>)をサンプリング期間毎 に検討し、リニア期を決定した(表(4)-3)。P1,P3,P4ともに、化合物の分子量が大きいほどリ ニア期間は長かった。また、分子量202以上の化合物では気温が低下するほどリニア期が長い傾向 にあった。これに対し、F1rやPheなどの低分子化合物のリニア期はP1>P3であり、平均気温との関 係が逆転していた。これについては本セクションの後半で考察する。

PUFディスクを捕集材として用いるPAS<sub>Air</sub>について、PAHsのリニア期間が過去にも報告されている(表(4)-3)。それらと比較すると、本研究で決定したリニア期間はかなり短く、定量的なサン プリング期間が限定されていることが明らかになった。ただし、一部の化合物では今回の観測期 間だけではリニア期からの乖離を確認できなかったため(P1: Flu, Pyr, P3: Ant, BaA, Chr, P4: ANTy, ANTh, Ant~Per)、リニア期間を観測期間の日数以上(>56日または>57日)とした。これ らの化合物については、より長期間の観測を行えば、さらに長いリニア期間を決定できる可能性 がある。また、別な化合物では観測期間の最後(56~57日目)のプロットでリニア期からの乖離 が認められた(P1のPhe, P1, P3のChrやP4のF1r, BaP)。これらの化合物のV<sub>eq</sub>の直線性(r<sup>2</sup>)に 対して最後のデータポイントの有無が及ぼす影響は極僅かであった。これらの化合物では確実に リニア期が継続している期間として42~43日間を採用した。

以上で決定したリニア期を用いて当該化合物の*k*を算出した(表(4)-3)。*k*はNap(分子量128)で10<sup>2.8</sup>~10<sup>3.0</sup>、Chr(分子量228)で10<sup>4.3</sup>~10<sup>4.9</sup>と高分子の化合物ほど高い傾向が認められた。各期間のlog *k* とオクタノール-空気分配係数(log *K*<sub>04</sub>)の間には強い相関(r=0.93-0.98)が認めら

れ、(1)~(4)式で示した原理に基づいた化合物捕集が行われていたことが示された。

ただし、P1, P3におけるMW<166の化合物、Ant、MW>252の化合物、P4の1MNでは、リニア期間を 決定できなかった。これらの化合物については要因を下記のように考察し、期間中のkの平均値を 用いることとした。



図(4)-3 代表的な PAHs 化合物の Veq-サンプリング時間相関の季節間比較

|                               |        |              | P1     |            |              | P3     |            |              | P4     |            | リニア期間                   |                 |
|-------------------------------|--------|--------------|--------|------------|--------------|--------|------------|--------------|--------|------------|-------------------------|-----------------|
|                               | MW     | log <i>k</i> | day    | $r^2$      | log <i>k</i> | day    | $r^2$      | log <i>k</i> | day    | $r^2$      | 文献値<br>(日) <sup>1</sup> | $\log K_{OA}^2$ |
| Nap                           | 128    | 3.0          | -      | -          | 2.8          | -      | -          | 2.8          | -      | -          | -                       | 5.2             |
| 1MN                           | 142    | 3.3          | -      | -          | 2.7          | -      | -          | 2.9          | -      | -          | -                       |                 |
| ANTy                          | 152    | 3.4          | -      | -          | 3.1          | -      | -          | 3.0          | >57    | 0.73       | <50                     | 6.3             |
| ANTh                          | 154    | 3.4          | -      | -          | 3.0          | -      | -          | 3.3          | >57    | 0.88       | <50                     | 6.5             |
| Flr                           | 166    | 3.8          | 27     | 0.74       | 3.3          | -      | -          | 3.6(3.5)     | 43(57) | 0.95(0.91) | ~100                    | 6.9             |
| Phe                           | 178    | 4.0(3.9)     | 42(56) | 0.95(0.95) | 4.0(3.9)     | 21(28) | 1.00(0.95) | 4.2          | 43     | 0.99       | ~100                    | 7.7             |
| Ant                           | 178    | 4.0          | -      | -          | 3.8          | -      | -          | 4.0          | >57    | 0.99       | >125                    | 7.7             |
| Flu                           | 202    | 4.2          | >56    | 0.98       | 4.3          | 28     | 1.00       | 4.3          | >57    | 1.00       | >125                    | 8.8             |
| Pyr                           | 202    | 4.1          | >56    | 0.98       | 4.2          | 21     | 0.93       | 4.3          | >57    | 0.96       | -                       |                 |
| BaA                           | 228    | 5.2          | 42     | 0.93       | 4.5          | >57    | 0.95       | 4.7          | >57    | 0.98       | -                       | 10.3            |
| Chr                           | 228    | 4.9(4.8)     | 42(56) | 0.96(0.95) | 4.3(4.4)     | 42(57) | 1.00(0.98) | 4.7          | >57    | 0.99       | >125                    | 10.3            |
| BaP                           | 252    | 5.9          | 42     | 0.90       | 4.7          | -      | -          | 4.7          | >57    | 0.97       | >125                    | 11.6            |
| Per                           | 252    | 5.4          | -      | -          | 3.1          | -      | -          | 4.7          | >57    | 0.98       | -                       |                 |
| log <i>K<sub>OA</sub>との相関</i> | 関係数(r) |              | 0.983  | 3          |              | 0.957  | 7          |              | 0.934  | 1          |                         |                 |

表(4)-3 各観測期間の物質移動係数(k) およびリニア期間

<sup>1</sup>Melymukら<sup>6)</sup>より引用, <sup>2</sup>Odabashiら<sup>11)</sup>より引用

- i. グラフが直線または曲線を描かない、または傾きが小さい: MW<166の低分子量化合物 は揮発性が高く、PUFからの脱離や分析での回収率が低下しやすいので、サンプリング過 程や分析過程での損失を見積もることが難しい。特に高温期には PUF からの脱離が容易 に起り、リニア期を決定するのは困難と考えられる。
- ii. 気相中の濃度が低く、定量出来ない: BaP 以降の高分子側の化合物については P4 を除 き大気中濃度が低く、アクティブサンプラーでの短期間の気相中濃度も定量が難しいた め、リニア期間の判定は難しいと考えられた。

期間ごとに比較すると、MW≤202までの低分子量化合物ではP4>P1>P3の順にkが高い値となった。 平均気温が最も低いP4で最大となったのは気温の低下によって吸脱着平衡が固相側へ移動したこ とによると考えられる。しかし、P3とP1で気温と k の関係が逆転するなど、必ずしも平均気温だ けでkの変化を説明できるわけではなかった。気温と k の関係の異常はMW≥228のBaA, Chr, BaP, Perにおいて顕著であり、これらの化合物の k は最も平均気温が高いP1において最高値となった。 これは、上で述べたように、P1において粒子の影響が顕著であったことによるもので、P1におけ る k は実際には表に示した値よりも低かった可能性がある。

## b. PAS<sub>Air</sub>の再現性評価

表(4)-4に東京都心と郊外地点で複数のPAS<sub>Air</sub>を用いて同時サンプリングを行って評価したPAS<sub>Air</sub>の化合物捕集量の平均値と再現性を示す。冬季(2009年12月~2010年3月)に東京都心地点で実施した3ヶ月間の同時サンプリングでは、PAHs捕集量の平均からの非標準偏差(RSD)が0~22%(n=3)で、良好な再現性を確認できた。これが初夏季(2010年4~7月)になると、捕集量のRSDが15~67%(n=3)と低温期よりもバラツキが大きくなった。これは、気温の上昇によって大気中PAHsのPUFへの吸着が平衡に近づいた(リニア期から外れた)ために定量性が低下したと考えられる。

東京郊外で初夏季(2010年6~7月)に実施した1ヶ月間の同時サンプリングでは、PUFディスク を1枚入れたPAS<sub>Air</sub>と2枚入れたPAS<sub>Air</sub>を比較した。それぞれのPUFディスクを、個別に分析したとこ ろ、PAHsの捕集量・組成共に有為な差は認められなかった(データ非表示)。PAS<sub>Air</sub>チャンバー内 のPUFディスク枚数に係らず、PUF一枚あたりの捕集能は等しいことが確認できたので、1枚設置の 結果と2枚設置の結果の平均値をPAS<sub>Air</sub>2個のデータと見なし、上記の3ヶ月の同時サンプリングと の比較を行った。東京郊外での1ヶ月間の同時サンプリングで1枚設置の結果と2枚設置の結果の平 均値をPAS<sub>Air</sub>2個のデータと見なしたとき、その偏差は0~17%であった(表(4)-4)。これは、都心 地点での冬季の同時サンプリングにおける再現性(RSD)よりも良好な結果である。

表(4)-43ヶ月間および1ヶ月間同時サンプリングでの再現性

| -24 (1)        | 10    | / /1 14140 01 / | J I / /3 | 1611-3-3 > + | / / • / |        |       |
|----------------|-------|-----------------|----------|--------------|---------|--------|-------|
|                |       | c<br>u          | 3ヶ月(夏    | 東京都心)        |         | 1ヶ月(東京 | 京郊外)  |
|                |       | 冬季              |          | 初夏季          | 季       | 初夏     | 季     |
|                | MW    | 亚坎[ng]          | RSD      | 亚齿[ng]       | RSD     | 亚肉[ng] | 偏差    |
|                | 141 W | +≈ [iig]        | (n=3)    | -→ [lig]     | (n=3)   |        | (n=2) |
| Nap            | 128   | 283             | 3%       | 158          | 28%     | 297    | 2%    |
| $1\mathrm{MN}$ | 142   | 89.6            | 3%       | 41.8         | 28%     | 128    | 17%   |
| ANTy           | 152   | 32.8            | 12%      | 31.2         | 21%     | 5.3    | 5%    |
| ANTh           | 154   | 21.0            | 2%       | 17.3         | 44%     | 35.5   | 4%    |
| Flr            | 166   | 273             | 0%       | 115          | 24%     | 171    | 5%    |

| Phe | 178 | 1185 | 2%  | 1068 | 15% | 517  | 8%  |
|-----|-----|------|-----|------|-----|------|-----|
| Ant | 178 | 36.9 | 22% | 25.5 | 19% | 516  | 8%  |
| Flu | 202 | 653  | 4%  | 931  | 19% | 260  | 3%  |
| Pyr | 202 | 353  | 6%  | 505  | 23% | 155  | 1%  |
| BaA | 228 | 19.5 | 3%  | 72.3 | 47% | 6.3  | 4%  |
| Chr | 228 | 40.6 | 0%  | 117  | 42% | 50.0 | 16% |
| BaP | 252 | 5.8  | 8%  | 34.4 | 57% | 4.5  | 11% |
| Per | 252 | 1.1  | 15% | 4.9  | 56% | 1.0  | 0%  |
| Cor | 300 | 4.0  | 7%  | 11.6 | 67% | 4.5  | 11% |

## c. サンプリング地点の高さの影響評価

本学研究棟(地上11階建て)1~11階のベランダにPASを1ヶ月間設置し、PAHsの捕集量、組成 を比較した。PAHsの捕集量は2階以上では明確な差が認められなかった(図(4)-4)。1Fは道路に 近く、道路からの汚染大気が拡散しにくい場所であったことが影響した可能性がある。PAHs組成 はいずれの階でも違いが認められなかった。PASの設置は、地上2階以上であれば高さの影響を受 けないことが確認された。



図(4)-4 同一地点での高さ方向の PAHs 捕集量分布

#### d. PAS<sub>Air</sub>の特性評価についてのまとめ

梅雨期・秋季・冬季におけるリニア期間を明らかにし、適切なPAS<sub>Air</sub>サンプリング期間を設定した。また、個々のPAHs化合物について季節毎のリニア期間を反映した*k*を算出し、PUFに捕集された化合物量から大気中濃度に換算することを可能にした。

ただし未解決の課題も残されている。今回はV<sub>eq</sub>やkの算出において、LVSの気相試料のみを用いており、粒子相中の化合物は考慮しなかった。この結果、高分子量PAHsについてPAS<sub>Air</sub>の測定結果から算出した大気中濃度と実際の大気中濃度とのずれをもたらしている可能性があるので、測定結果の解析には注意が必要である。

サンプリング時間と季節を変えた複数チャンバーによる同時サンプリングを実施してPAS<sub>Air</sub>の 再現性を評価した結果、サンプリングが長期間になると、気候条件によっては再現性が低下する ことが明らかとなった。再現性を確保しつつ、年間を通じて共通したサンプリング期間としては、 1ヶ月程度が適切であると考えられる。

## 2) PAS<sub>Air</sub>を用いた東京都心・郊外での大気質モニタリング

# a. 東京都心・郊外定点での大気中PAHs濃度変動

東京郊外の12化合物の濃度の合計(ΣPAH12、図(4)-5)は、95~535 ng/m<sup>3</sup>の範囲で変動し、冬 に高く夏に低いという過去の報告<sup>12-14)</sup>と一致した季節変動が認められた。都心のΣ<sub>12</sub>PAHsは、321 ~736 ng/m<sup>3</sup>の範囲で変動し、郊外(八王子)の3.5~7.8倍の濃度であった。郊外と異なり、冬(12 月)だけでなく夏(2010年8月、2011年6月)にも濃度の極大が観測された。ただし盛夏(8~9月) 季の*k*は算出されていないため、この時期の大気中濃度の計算にはP1期(梅雨・初夏季)の値を用 いた。このため、図中の盛夏季の大気中濃度は過大評価されており、実際にはもっと低濃度であ った可能性がある。これを踏まえると、都心の季節変動において2011年初夏の極大は際立ってお り、多くの都市域で繰り返し報告されてきた冬季に高く、夏季に低くなるという季節トレンド<sup>12, 15)</sup> とは異なると言える。この季節トレンドにおける異常は、東日本大震災後の化石燃料消費の増大 を反映している可能性があるが、その検証のためにさらに長期間の観測を実施すべきで、今後の 課題と言える。



図(4)-5 PAS<sub>Air</sub>で観測した東京の大気中 PAHs 濃度変動

#### b. 東京都心・郊外定点での大気中PAHsの組成変化

Yunkerら<sup>16)</sup>は、PAHsの異性体同士のモル生成熱の違いに着目し、実際の環境試料や起源物質の PAHs組成の文献値からPAHs起源を識別するための各異性体比の境界値を以下のように提唱した。 これらの境界値を基準とした起源推定は、多くの研究で用いられている。本研究でもPAS<sub>Air</sub>の測定 結果をこれらの異性体比によって解析した。

- Ant/178: <0.1 石油由来、>0.1 燃焼生成由来
- Flu/202: <0.4 石油由来、0.4-0.5 石油燃焼由来、>0.5 草木および石炭燃焼由来
- BaA/228: <0.2 石油由来、0.2-0.35 石油由来と燃焼由来の混合、>0.35 燃焼由
- InP/276: <0.2 石油由来、0.2-0.5 石油燃焼由来、>0.5 草木および石炭燃焼由来

Ant/178 (図(4)-6a) は郊外(0.01~0.07)、都心(0.01~0.06) とも、全期間にわたり石油由 来の影響を示したが、冬(2009年9月、2010年12月)と夏(2010年7月) に極大となり、燃焼起源 の汚染が強まったことを示した。夏(2010年5~7月、8~9月、2011年2~5月)の極小はこの時期 に石油由来の割合が増加したことを示している。冬季には暖房などによる燃料燃焼が増加する一 方、夏季には気温の上昇によって燃料油の揮発が促進されるので、石油起源のPAHsの寄与が増大 するのだと考えられる。同様に石油起源と燃焼起源の優劣を示す指標であるBaA/228は概ね石油・ 燃焼由来の混合の範囲内であった(図(4)-6b)。比の値が冬から春にかけて低下するトレンドや 夏(2010年8,9月、2011年6月)にも強い燃焼の影響を示すなど、Ant/178と調和的な変動を示し た。



F1u/202(図(4)-6c)は郊外(0.55~0.68)と都心(0.56~0.65)でほぼ同じ範囲で変動し、草 木および石炭燃焼の広域にわたって常に影響していることを示した。比の値の季節変化は、石油 燃焼の寄与の割合が冬に高く夏に低くなることを示している。濃度変動と合わせると、夏の濃度 低下は石油燃料の消費の減少によるもので草木および石炭燃焼の減少幅は相対的に小さいと推察 される。

Retene/ΣPAH12(図(4)-6d)は、郊外、都心それぞれ0.72~2.6%、0.58~2.1%で、Reteneが常 に検出された。このことは、寄与率は高くないがマツ科樹脂を含む燃料の燃焼が定常的にあるこ とを示している。2010年8~10月にバイオマス燃焼によるPAHs発生イベントが特に強まったことが 示された。

## c. エージング指標を用いた長距離輸送の評価

大気中での光化学反応性の違いに基づいたエージング指標であるBaP/BePの変動を図(4)-7に示 す。BaP/BePが極小(郊外:0.39(2010年3月)、都心:0.61(2011年1月))となる冬~春の変 わり目は、黄砂に代表されるように大陸からの風送ダストイベントによって輸送されてきたガス 状物質やエアロゾル粒子が日本国内の大気質にも影響を及ぼすことが知られている。また、Σ PAH12のトレンドから見て取れるように、PAHs濃度は12月頃をピークとして2~3月以降には低下し ている。ここへ大陸由来の気塊(Airmass)が輸送されてくることで、相対的に外来性PAHsの影響 が強まっていると推察された。一方、6月、8月にBaP/BePが著しく上昇していることから、この時 期はエージングを経ない汚染大気の影響が強いことが見て取れる。夏季に長距離輸送されてくる Airmassは主に太平洋を通過してくる汚染レベルの極めて低いものであるため、夏季のBaP/BePの 上昇は、近傍から汚染大気のシグナルを反映した結果だと推察される。



図(4)-7 PAS<sub>Air</sub>で観測した東京都心および郊外大気中の BaP/BeP 変動

## d. まとめ

パッシブエアサンプラーを用いた気相中PAHsの観測から、東京都心と郊外が同じトレンドで推移しており、長距離輸送の影響は春先等に首都圏全体に及んでいることが示唆された。また、夏季において広範囲にバイオマス燃焼の影響が強まること、石油燃料の揮発の影響が強まることが 組成の解析から明らかになったほか、都心においては夏季に気相中PAHs濃度が上昇することが明らかとなった。

(2) パッシブバルクサンプラー(PAS<sub>fallout</sub>)を用いた環境モニタリングの信頼性評価と実環境でのモニタリング実施について

## 1) PAS<sub>fallout</sub>の再現性評価

東京都心(東京大学構内)ではPAS<sub>fallout</sub>を2台設置して2連のサンプリングを行ってきた。採取した7組の試料のうち5組について個別に分析し、PAHs降下量の平均値と偏差を求め、バルクサンプラーの再現性を評価した。5組のサンプルの相対偏差の平均は分子量152以上の主要PAH化合物では4.7~9.6%であった(図(4)-8)。これは分析操作の再現性を含む数値としては良好な結果であり、PAS<sub>fallout</sub>によって異なる地点で採取した試料についてPAHs降下フラックスを比較することが十分に可能であることを示している。



図(4)-8 2 連で採取した PAS<sub>fallout</sub> サンプルの測定結果の偏差の平均値(n=5)

## 2) PAS<sub>fallout</sub>を用いた東京、ハノイ、コルカタでのPAHs降下量モニタリング

## a. アジア諸都市でのPAHs降下フラックス

東京、ハノイおよびコルカタ市内とコルカタ周辺 の2地点、合計5地点についてPAS<sub>fallout</sub>を分析し、PAHs の降下フラックスを求めた(表(4)-5、(4)-6)。コ ルカタ市内では観測地点中最大のPAHs降下フラッ クスが観測された。一方、コルカタ市郊外、田園地 域では降下フラックスは市内の半分以下に低下し ていることから、PAHsの主要な発生源は市街地に集 中していると考えられる。ハノイの数値が低いのは、 サンプラーの設置場所が民家のバルコニーであり、 家屋の構造物が近接していたために捕集効率が低

表4-5 東京、ハノイ、コルカタおよびコルカタ 周辺地域のPAHs降下フラックス測定結果概要 (ug/m<sup>2</sup>/年)

| (µg/m /)             |                |      |
|----------------------|----------------|------|
|                      | $\Sigma$ PAH12 | BaP  |
| 東京                   | 426            | 26.9 |
| ハノイ                  | 160            | 10.1 |
| コルカタ                 |                |      |
| Beleghata (市内)       | 2909           | 197  |
| Baligari(市郊外)        | 1049           | 76.0 |
| Pandua(田園地域)         | 897            | 43.1 |
| Σ PAH12: EPA指定16化合物の | うち、分子量         | 178以 |
| 上の12化合物の合計,BaP:Be    | enzo[a]pyren   | пе   |

下したためと考えられる。また、同様の手法よって観測された ΣPAH12、BaPの降下フラックスは 米国で27~184、1~6 μg/m<sup>2</sup>/年、欧州で108~286、5~11 μg/m<sup>2</sup>/年という値が報告されている(表 (4)-7)。ハノイ以外の地点の降下フラックスは、これらの既報値に比べ同等以上であり、PAHsに よる大気汚染がより深刻であると言える。

図(4)-9に、3都市で採取された全降下物試料中PAHs組成を示した。マツ科(*Pinaceae*)樹脂燃 焼のマーカー物質であるretene、プラスチック燃焼のマーカー物質である*m*-quaterphenylが全地 点から検出された。いずれの地点でもこれらの排出源の影響を受けていることが示された。ハノ イでは*m*-quaterphenylがpyreneなどの主要PAHと同等レベルで検出されるなど他の地点よりも相 対的に高濃度であった。このことから、ハノイではゴミ燃焼によるPAHsの排出が相対的に重要で あると考えられた。

起源識別のための分子量202と276の異性体比を比較したところ、コルカタおよびその周辺地域 は他の2都市(東京・ハノイ)とクラスターが分かれた(図(4)-10)。これは、コルカタ周辺と他 の2都市とではPAHsの排出に係る燃料の種類が異なることを示している。

|       | Tokwo             |       | Venei             |       | Kolkata          |         |        |            |         |                 |         |
|-------|-------------------|-------|-------------------|-------|------------------|---------|--------|------------|---------|-----------------|---------|
|       | TOKYO             |       | nanoi             |       | Beleghata (u     | rban)   | Baliga | ri (sub    | urban)  | Pandua (        | rural)  |
|       | mean sd ar        | nnual | mean sd a         | nnual | mean sd          | annual* | mean   | sd         | annual* | mean sd         | annual* |
| DBT   | $0.24 \pm 0.04$   | 1.21  | $0.00 \pm 0.00$   | 0.00  | NA               |         | NA     |            |         | NA              |         |
| Phe   | $5.01 \pm 1.17$ ( | 60.18 | $1.74 \pm 0.29$   | 21.37 | $27.09 \pm 0.37$ | 325.1   | 7.64   | $\pm 1.94$ | 91.6    | 12.10 $\pm$ 2.1 | 6 145.2 |
| Ant   | $0.88 \pm 0.77$   | 10.55 | $0.12 \pm 0.02$   | 1.51  | $4.51 \pm 0.21$  | 54.1    | 0.87   | $\pm 0.27$ | 10.4    | $0.89 \pm 0.1$  | 9 10.7  |
| 3MP   | $0.56 \pm 0.37$   | 6.75  | $0.22 \pm 0.02$   | 2.68  | $4.09 \pm 0.62$  | 49.1    | 0.84   | $\pm 0.21$ | 10.1    | $0.92 \pm 0.1$  | 0 11.0  |
| 2MP   | $0.77 \pm 0.45$   | 9.28  | $0.33 \pm 0.03$   | 3.94  | $5.40 \pm 0.96$  | 64.8    | 1.10   | $\pm 0.21$ | 13.2    | $1.33 \pm 0.2$  | 0 15.9  |
| 2MA   | $0.12 \pm 0.10$   | 1.46  | $0.06 \pm 0.04$   | 0.70  | $1.47 \pm 0.23$  | 17.6    | 0.22   | $\pm 0.07$ | 2.7     | $0.13 \pm 0.0$  | 4 1.5   |
| 9MP   | $0.44 \pm 0.29$   | 5.25  | $0.18 \pm 0.01$   | 2.17  | $3.50 \pm 0.48$  | 42.0    | 0.84   | $\pm 0.21$ | 10.1    | $0.82 \pm 0.1$  | 6 9.9   |
| 1MP   | $0.46 \pm 0.32$   | 5.62  | $0.18 \pm 0.02$   | 2.23  | $3.51 \pm 0.41$  | 42.1    | 0.81   | $\pm 0.25$ | 9.8     | $0.86 \pm 0.1$  | 6 10.3  |
| Flu   | $6.53 \pm 1.68$   | 78.14 | $1.86 \pm 0.51$   | 11.21 | $37.47 \pm 1.13$ | 449.7   | 11.08  | $\pm 4.00$ | 133.0   | $15.07 \pm 1.5$ | 1 180.9 |
| Pyr   | $5.18 \pm 1.54$ ( | 62.01 | $1.15 \pm 0.86$   | 4.46  | $32.13 \pm 0.87$ | 385.5   | 8.99   | $\pm 4.41$ | 107.9   | $10.71 \pm 1.6$ | 1 128.5 |
| Ret   | $0.38 \pm 0.31$   | 4.56  | $0.19 \pm 0.07$   | 2.29  | $1.11 \pm 0.37$  | 13.4    | 0.18   | $\pm 0.07$ | 2.2     | $0.09 \pm 0.0$  | 2 1.1   |
| BaA   | $1.72 \pm 0.80$   | 20.60 | $0.42 \pm 0.09$   | 5.13  | $14.66 \pm 0.24$ | 175.9   | 4.99   | $\pm 2.93$ | 59.9    | 2.76 $\pm$ 0.3  | 8 33.2  |
| Chr   | $3.23 \pm 0.94$ 3 | 38.77 | $1.75 \pm 0.60$   | 10.00 | $28.38 \pm 1.69$ | 340.6   | 10.06  | $\pm 4.94$ | 120.7   | $7.93 \pm 0.4$  | 6 95.2  |
| o-Qtp | $0.05 \pm 0.01$   | 0.38  | $0.10 \pm 0.02$   | 1.21  | NA               |         | NA     |            |         | NA              |         |
| BbF   | 4.21±1.44 §       | 50.35 | $3.25 \pm 0.71$   | 40.01 | $28.16 \pm 1.99$ | 337.9   | 13.19  | $\pm 8.09$ | 158.2   | 9.37 $\pm 1.0$  | 8 112.5 |
| BkF   | $1.37 \pm 0.57$   | 16.41 | $0.74 \pm 0.17$   | 9.17  | $12.00 \pm 0.24$ | 144.0   | 4.78   | $\pm 3.33$ | 57.3    | $2.43 \pm 0.2$  | 4 29.2  |
| BeP   | $2.64 \pm 0.91$ 3 | 31.60 | $1.81 \pm 0.32$   | 22.26 | $21.65 \pm 0.73$ | 259.8   | 8.34   | $\pm 5.11$ | 100.0   | $5.09 \pm 0.6$  | 4 61.1  |
| BaP   | $2.25 \pm 1.14$   | 26.86 | $0.82 \pm 0.14$   | 10.08 | $16.44 \pm 0.72$ | 197.2   | 6.33   | $\pm 3.33$ | 76.0    | $3.59 \pm 0.8$  | 3 43.1  |
| Per   | $0.55 \pm 0.33$   | 6.60  | $0.20 \pm 0.02$   | 2.37  | $6.54 \pm 0.18$  | 78.5    | 1.45   | $\pm 0.76$ | 17.4    | $0.57 \pm 0.0$  | 9 6.9   |
| m-Qtp | $0.30 \pm 0.23$   | 3.57  | $0.98 \pm 0.20$   | 11.93 | $3.62 \pm 1.18$  | 43.4    | 0.68   | $\pm 0.15$ | 8.1     | $0.39 \pm 0.0$  | 4 4.6   |
| q-Qtp | $0.00\pm0.00$     | 0.01  | $0.\ 01\pm0.\ 00$ | 0.15  | $0.06 \pm 0.05$  | 0.7     | 0.04   | $\pm 0.04$ | 0.5     | $0.01 \pm 0.0$  | 0 0.1   |
| InP   | $2.26 \pm 0.87$   | 27.04 | $1.42 \pm 0.26$   | 17.40 | $17.98 \pm 2.91$ | 215.8   | 9.46   | $\pm 6.59$ | 113.6   | 4.76 $\pm$ 0.8  | 0 57.1  |
| DBahA | $0.38 \pm 0.24$   | 4.56  | $0.19 \pm 0.03$   | 2.37  | $5.35 \pm 0.26$  | 64.2    | 1.84   | $\pm 1.56$ | 22.0    | $0.48 \pm 0.0$  | 5 5.7   |
| BgP   | $2.55 \pm 0.87$ 3 | 30.55 | 1. $54 \pm 0.21$  | 18.85 | $18.29 \pm 2.76$ | 219.5   | 8.17   | $\pm 5.46$ | 98.1    | $4.64 \pm 0.7$  | 0 55.7  |
| PAH12 | 36                | 426   | 3                 | 32    | 242              | 2909    | 103    |            | 1049    | 75              | 897     |
| BaP   | 2.25              | 26.9  | 0.43              | 5.05  | 16.4             | 197     | 7.44   |            | 76.0    | 3.59            | 43.1    |

表(4)-6 東京、ハノイ、コルカタ、コルカタ周辺地域のPAHs降下フラックス測定結果詳細

ΣPAH12: EPA指定16化合物のうち、分子量178以上の12化合物の合計, BaP: Benzo[a]pyrene, mean:月平均 値(μg/m<sup>2</sup>/月), annual:年平均値(μg/m<sup>2</sup>/年)

| 表(4)-7 PAHs降 <sup>-</sup> | 下フラ | ック | スの既報値 |
|---------------------------|-----|----|-------|
|---------------------------|-----|----|-------|

| Sampling method                            | Study area                  | PAH12     | BaP       | Reference |
|--------------------------------------------|-----------------------------|-----------|-----------|-----------|
| Porgorhoff                                 | Germany                     |           | 2.2-11.2  | 17        |
| bergernori                                 | Germany                     | 142       | 7.4       | 18        |
|                                            | Germany                     |           | 14.7-27.0 | 19        |
| Funnel-bottle                              | France                      | 52-68     | 1.5       | 20        |
|                                            | France                      | 46        | 1.5       | 21        |
|                                            | Germany                     | 108-201   | 4.9-10.5  | 10        |
| Eurol edeember contridee                   | High mountain areas, Europe | 12.6-16   | 0.4-0.7   | 22        |
| Funnel-adsorber-cartridge                  | Sweden                      | 286       | 11        | 23        |
|                                            | Sweden                      | 186       | 9.5       | 24        |
| Funnel-bottle,<br>wet-only                 | Hungary                     | 393       | 13        | 25        |
| Funnel-adsorber-                           | USA (Ches. Bay)             | 26.8-72.0 | 1.0-2.0   | 26        |
| cartridge, wet-only                        | USA (Ches. Bay)             | 72        | 2         | 27        |
| Funnel-adsorber-                           | USA (Ches. Bay)             | 135-184   | 6         | 26        |
| cartridge, wet only+calc.<br>dry           | USA (Ches. Bay)             | 184       | 6         | 27        |
|                                            | USA (Gr. Lakes)             |           | 0.7-4.2   | 28        |
| wet-only                                   | Canada                      | 6.0-9.6   | 0.3-0.4   | 29        |
| Air concentrations, calc.<br>dry+calc. wet | USA, east coast             | 186       | 6.4       | 30        |

ΣPAH12:EPA指定16化合物のうち、分子量178以上の12化合物の合計, BaP:Benzo[a]pyrene



図(4)-9 東京、ハノイ、コルカタ市内の全降下物試料中 PAHs の組成比較

## b. コルカタ市内および周辺地域

コルカタ市内(Beleghata)の月平均降下フラックスは季節(風向)に係り無くほぼ一定である のに対し、郊外(Baligari)では南西風が卓越する7~10月に2.7倍に増大、田園地域(Pandua) では約3/4に減少した(図(4)-11)。このとき、大気中での光化学反応性の違いに基づいたエ ージング指標であるBaP/BePは郊外、田園地域ともに低下している。これらの結果から、(1)コル カタ郊外、田園地域のPAHsによる大気汚染のレベルは外来性の気塊(Airmass)の汚染レベルに依 存する、(2)郊外、田園地域の大気質に影響を及ぼすAirmassは1~6月よりも7~10月の方が遠方か ら輸送されてきていることなどが示された。即ち、図(4)-11に示したような降下フラックス変化 は風向の変化によってPAHsの発生源地域が変化したために起ったと考えられる。図(4)-11におい て、郊外と田園地域のプロットが1~6月から7~10月かけて逆方向に変化していることも、この仮 説と調和的である。一方、コルカタ市内では降下フラックス、異性体比(図(4)-10)、BaP/BePの いずれも季節による変化が認められなかった。コルカタ市街地の大気中PAHsは、その大部分が市 内の燃焼起源に由来するもので、遠隔地からの汚染大気の影響は相対的に重要でないと言える。





図(4)-12 NOAA HYSPLIT MODEL によるコルカタ市街地から発生した粒子状物質の拡散予測



NOAA HYSPLIT MODEL

図(4)-12 NOAA HYSPLIT MODEL によるコルカタ市街地から発生した粒子状物質の拡散予測(続)

NOAA HYSPLIT MODEL

## c. 東京、ハノイ、コルカタでのPAHs降下量についてのまとめ

パッシブバルクサンプラーを用いた全降下物試料の観測から、コルカタと東京のPAHsの降下フ ラックスが、欧米で観測されている値よりも高いことが明らかとなった。特にコルカタ市内と周 辺地域での降下フラックスは欧米の観測結果よりも1桁大きい値であり、汚染対策が喫緊の課題 であることが浮き彫りとなった。コルカタ市内と周辺地域の降下フラックスおよびPAHs組成変動 の比較から、市街地の外では外来性の汚染大気の影響が重要であり、広域モニタリングによる発 生源地域やホットスポットの特定をする必要性が示された。

### (3) 沖縄辺戸岬におけるPAHsの越境輸送の評価

#### 1)沖縄辺戸岬と東シナ海上(長崎県福江)および九州北部(福岡市)の比較

2009年に標記地点での比較を行った。集中観測は、秋季に辺表(4)-8 TSP および PAHsの重量濃度

| 戸、福江いずれも10月12日~10月20日の期間で行った。なお参   |         | TSP ( $\mu g m^{-3}$ ) | PAHs (pg m <sup>-3</sup> ) |
|------------------------------------|---------|------------------------|----------------------------|
| 考データとする、辺戸、福江および福岡で行った春季の観測の       | 辺戸      |                        |                            |
| 期間は、辺戸が3月25日~4月27日、福江が3月26日~4月17日、 | 者       | 季 42.5 ± 17.9          | $0.49 \pm 0.46$            |
| 福岡が4月1日~4月17日である。全浮遊粒子(TSP)濃度および   | 和<br>福江 | 火 47.7 ± 20.9          | $0.73 \pm 0.61$            |
| PAH濃度はいずれも福岡>福江>辺戸となった(表(4)-8)。福   | 君       | <b>季</b> 57.7 ± 28.7   | $1.71 \pm 1.08$            |
| 岡は都市域であるため高濃度となった。福江・辺戸はルーラル       |         | 火 55.7 ± 23.7          | $2.17\pm0.59$              |
| 地域であり、福江のほうが大陸に近いために濃度が高かったと       | 福岡      | <b>系</b> 62 9 + 24 2   | 5 31 + 3 09                |
| 考えられる。季節別にみるとTSPは春と秋でほとんど差がなか      | 1       | G 02.7 ± 24.2          | $5.51 \pm 5.07$            |

ったが、PAHs濃度は秋に約1.5倍高くなった。後方流跡線解析により観測期間中の気塊の発生源を 推定すると、福江では秋は主に北京を中心とした中国北部から、春は韓国・日本と中国北部から 約半数ずつ飛来していた(図(4)-13)。気塊を中国起源、韓国・日本起源、太平洋起源に分類し、 発生源による違いを比較すると、TSP濃度、PAH濃度はいずれも中国>韓国・日本>太平洋の順に 高くなった。秋は北京を中心とした中国起源の気塊を多く捉えているためにPAH濃度は高濃度にな ったと考えられる。辺戸でも同様の傾向であった。



図(4)-13:観測点と福江からの流跡線(灰:春、黒:秋)

### 2) 異性体の比を用いた排出起源の推定

PAHにはフルオランテンとピレンやインデノピレンとベンゾペリレンなどのように炭素数、水素数 の一致する異性体が含まれる。このようなPAHの異性体同士(フルオランテン(FLT)/ピレン(PYR) やインデノピレン(IND)/(IND+ベンゾペリレン(BPE)))の比をとることで、気塊に含ま れる汚染物質の排出源を推定した(図(4)-14)。春はどの地点でも石油燃焼由来が多くなってい た。韓国・日本からの自動車の排ガスなどが影響しているものと考えられる。一方、秋は石炭や バイオマス燃焼が主要な排出源となっている。中国北部では主なPAHの排出源がバイオマス、家 庭での燃料としての石炭使用である<sup>31)</sup>ので、その影響を捉えたものと考えられる。



図(4)-14:各観測における FLT/PYR 比および IND/(IND+BPE)比と発生源

## 3) エイジングの評価

辺戸に到達した気塊の長距離輸送過程を評価するために、やはり異性体同士であるベンゾ[a]ピレンとベンゾ[e]ピレンの濃度比(BaP/BeP)を用いて解析した。この値は発生源近傍ではほぼ1であるが、BaPおよびBePの大気中での寿命に差があるため、長距離輸送されると寿命の短いBaPの減少が速いため、値が小さくなる。2009年に観測されたBaP/BeP比は、2009年の観測では辺戸で0.63(春0.62、秋0.65)、福江で0.73(春0.71、秋0.78)、福岡で0.67となった。各サイトの気塊はいずれもエイジングを受けていると考えられる。さらに2010年1/10-1/14(冬)、3/25-4/16(春)、7/17-7/22(夏)、10/23-10/27(秋)の4期間の平均では0.56であり、2009年の結果も含めて、辺戸では福江・

福岡よりも値が1~2割程度小さいので、よりエイジングを受けているといえる。また、冬から春 に東シナ海周辺で観測された他の文献値と比較したところ、福江・福岡は韓国済州島における値 と近い値となっており、辺戸は奄美や宮古での値と近い値となっている。また、福江・福岡・済 州島は北京から約1100~1400 km、辺戸・奄美・宮古は約1800 km、最も小さな値(0.15)が報告さ れている父島は約2800 km離れており、汚染物質の大発生源地域である北京からの距離が遠ざかる ほど値が小さくなっている。そこで観測で得られた値および文献値を北京からの距離に対してプ ロットし、相関を調べた(図(4)-15)。ただし、値は観測された時期が異なるため、同じ気塊を 捉えているわけではなく、注意が必要である。BaP/BeP比と北京からの距離は相関がよく、切片も ほぼ1となった。北京を発生源(つまりBaP/BeP比=1)と仮定しているので、この値はおおよそ 妥当であるといえる。このことは冬~春に東シナ海周辺で観測された気塊が、中国北部を中心と した東アジア地域から輸送された汚染物質を含んでいることを支持している。

また、PAH類に含まれるメチルフェナントレン(1-、2-、3-、9-置換体の4種類)の無置換フェ ナントレンに対する比を辺戸岬の秋季のサンプルについて調べたところ、観測期間中の平均値は 1.8と、やや大きめの値であった。この結果は、この時期に捕集されたPAH類が燃焼起源のものだけ ではないことを示唆している。



図(4)-15:北京からの距離による BaP/Bep 比の変化

#### 4)季節変化の解析

辺戸岬におけるエアロゾルの季節変化の解析のため、これまで同地で観測を行った 2008/3/25-4/4・6/9-20・10/22-31、2009/3/25-4/27・10/12-20、2010/1/10-14・3/25-4/16・7/17-22・10/23-27、 2010/12/6-17・2011/10/14-20の全データを用いた。サンプル数は、春:46、夏:13、秋:25、冬: 15である。季節別のTSP(全浮遊粒子)平均濃度は春、夏、秋、冬それぞれ53.2 µg/m<sup>3</sup>、27.2 µg/m<sup>3</sup>、 45.6 µg m<sup>-3</sup>、53.9 µg m<sup>-3</sup>、総Alkanes濃度はそれぞれ9.79 ng m<sup>-3</sup>、4.93 ng m<sup>-3</sup>、6.74 ng m<sup>-3</sup>、13.53 ng m<sup>-3</sup>、 総PAHs平均濃度はそれぞれ746.9 pg m<sup>-3</sup>、83.5 pg m<sup>-3</sup>、865.8 pg m<sup>-3</sup>、1363.3 pg m<sup>-3</sup>である。したがっ て、TSPおよび総Alkanes濃度は冬>春>秋>夏の順に高く(図(4)-16)、総PAHs濃度は冬>秋> 春>夏の順に高いことが分かる。これは、季節による気塊の起源の違いが関係していると考えら れる。NOAA HYSPRIT4を用いて後方流跡線解析を行った結果、冬は中国(CH)を通る気塊が多 く、夏は太平洋(PO)を通る気塊が多く辺戸岬に到達している。そこで、全季節における気塊別 のTSP、総alkanesおよび総PAHs濃度をみたところ、それぞれ中国(CH)>日本・韓国(JK)>太 平洋(PO)を通る気塊の順に濃度が高いことが分かり(図(4)-17)、有機エアロゾルの季節変化 に影響を与えているといえる。この結果を踏まえ、PAHsおよびAlkanesの組成や異性体比、統計解 析(PMF解析)により発生の起源を推定し、春はバイオマス燃焼の影響が、夏はローカルな交通 の影響が、秋および冬は石炭燃焼の影響が強いことが分かった。



## 5. 本研究により得られた成果

## (1)科学的意義

パッシブエアサンプラー(PAS<sub>Air</sub>)の特性評価を実施した。先ず、梅雨期・秋季・冬季における リニア期間を明らかとし、適切なPAS<sub>Air</sub>サンプリング期間を設定した。また、個々のPAHs化合物に ついて季節毎のリニア期間を反映した物質移動係数(*k*)を算出し、PUFに捕集された化合物量か ら大気中濃度に換算することを可能にした。PAS<sub>Air</sub>の特性評価は、これまで北米やヨーロッパなど 日本よりも寒冷・低湿度な気象条件下でしかなされてこなかった。本研究でPAS<sub>Air</sub>におけるPAHsの *k*を算出したことによって、日本の温暖湿潤気候下でもPAS<sub>Air</sub>を用いたモニタリングによって大気 中PAHsの汚染レベルを推定することが可能となった。この成果は、広域の大気汚染モニタリング を実施して行く上で極めて有用な知見である。

PAS<sub>Air</sub>を用いたモニタリングから、東京都心と郊外が同じトレンドで推移しており、長距離輸送の影響は春先等に首都圏全体に及んでいることが示唆された。また、夏季において広範囲にバイオマス燃焼の影響が強まること、石油燃料の揮発の影響が強まることが組成の解析から明らかになったほか、都心においては夏季に気相中PAHs濃度が上昇することが明らかとなった。

PAS<sub>fallout</sub>を用いた全降下物試料の観測から、コルカタと東京のPAHsの降下フラックスが、欧米で 観測されている値よりも高いことが明らかとなった。特にコルカタ市内と周辺地域での降下フラ ックスは欧米の観測結果よりも1桁大きい値であり、汚染対策が喫緊の課題であることが浮き彫 りとなった。コルカタ市内と周辺地域の降下フラックスおよびPAHs組成変動の比較から、市街地 の外では外来性の汚染大気の影響が重要であり、広域モニタリングによる発生源地域やホットス ポットの特定をする必要性が示された。

東アジアから輸送されるエアロゾルは様々な発生源に由来している。エアロゾルの発生源地域 の特定は重要な問題であるが、それと同時にどのような起源から発生したものが輸送されてくる のかを明らかにすることも、その影響を把握し、対策を立てる上で重要な情報となる。本サブテ ーマにおける研究ではPAHなどの有機汚染物質やそれらを高濃度で含むエアロゾルの起源の推定 を行った。これにより、ターゲットを絞ることが可能となり、対策に結びつけることができると 期待される。

## (2)環境政策への貢献

インドの西ベンガル州における大気汚染を抑制するうえで発生源地域やホットスポットを検出 するための広域モニタリングが重要であることを示した。東京においては夏季の汚染抑制には都 心~郊外広域のバイオマス燃焼起源の制御と、燃料油の揮発対策の強化が重要であることを示し た。UNEP(国連環境計画)では南アジア・東南アジアの上空にかかる密度の高いエアロゾル層(ABC) が地球規模の気候変動にも影響を与えうることから、世界的な体制でこれを監視・研究すること とし、体制を整えている。我が国でもこのプロジェクトに応分の寄与が期待されており、これに 対応する体制を構築し、中島映至東京大学教授がアジア地域のリーダーとして活動している。ま た、辺戸岬大気・エアロゾル観測ステーションはこのUNEP/ABCのメジャーサイトに認定されてい る。本研究は我が国におけるABC研究の一つに位置づけられるものであり、東アジア地域における エアロゾルの輸送・変質・沈着のプロセスを解明することに貢献する。

#### 6. 国際共同研究等の状況

ベトナム、ハノイ市での調査は、ハノイ科学大学のResearch Centre for Environmental Technology and Sustainable Development (CETASD)のPham Viet Hung教授を海外共同研究者と して遂行したものである。現地調査にあたっては、同研究センターのDuong Anh Hong博士の協 力を得た。

## 7. 研究成果の発表状況

#### (1) 誌上発表

<<p><論文(査読あり)> 特に記載すべき事項はない

<査読付論文に準ずる成果発表> 特に記載すべき事項はない

<その他誌上発表(査読なし)> 特に記載すべき事項はない

- (2) 口頭発表(学会等)
- <u>熊田英峰</u>,小池康代,都筑幹夫,内田達也,藤原祺多夫,内田昌男,柴田康行,バイオマス 燃焼指標としてのレボグルコサンの有用性の評価:放射性炭素による起源識別との相互比較, つくば国際会議場,第18回環境化学討論会,2009/6/9-11
- 2) 伊藤麻南美、<u>熊田英峰</u>、青木元秀、藤原祺多夫(2010):パッシブエアーサンプラー(PAS)

を用いた大気中PAH汚染起源解明のための分析方法の最適化、第19回日本環境化学討論会、2010/6/21-23

- 3) Mahua Saha, <u>Hidetoshi Kumata</u>, Masao Uchida, Hideshige Takada, Compound Class Specific Radiocarbon Analysis (CCSRA) of PAHs from Highly Contaminated Kolkata Canal Sediments, 12th International Conference on Accelerator Mass Spectrometry, Wellington, New Zealand, 2011/03/20-25. (震災のためポスター掲示のみ)
- 浜出早紀,伊藤麻南実,<u>熊田英峰</u>,青木元秀,藤原祺多夫,Windowウォッチによる大気中 PAHsの分布調査:東京都多摩地区の小学校でのケーススタディ,熊本県立大学,第20回日本 環境化学討論会,2011/07/16-18
- 5) 伊藤麻南実,<u>熊田英峰</u>,青木元秀,藤原祺多夫,パッシブエアサンプラー (PAS)を用いた東 京都心・郊外における大気中PAHの季節変動評価,熊本県立大学,第20回日本環境化学討論会, 2011/07/16-18
- 6) Mahua SAHA, 熊田英峰,内田昌男,柴田康行,高田秀重,分子組成解析および化合物群レベ ル放射性炭素同位体分析 (CCSRA) によるインドコルカタ運河堆積物中PAHsの起源推定,熊本 県立大学,第20回日本環境化学討論会,2011/07/16-18
- 7) <u>熊田英峰</u>, Mahua Saha, 高田秀重, コルカタおよび周辺田園地域でのPAHs降下量の季節変動, 熊本県立大学, 第20回日本環境化学討論会, 2011/07/16-18
- 8) 斎藤祥一,<u>熊田英峰</u>,青木元秀,藤原祺多夫,堆積物中PAHsのPCGC単離のための前処理法: UCM除去,熊本県立大学,第20回日本環境化学討論会,2011/07/16-18
- 9) <u>Hidetoshi Kumata</u>, Masao Uchida, Mahua Saha, Miyuki Kondo, Yasuyuki Shibata, Hideshige Takada, Source diagnosis of PAHs from Kolkata canal sediments by using compound class specific radiocarbon analysis (CCSRA), The 4th East Asia AMS Symposium, The University of Tokyo, 2011/12/16-18
- 10) 伊藤麻南実,<u>熊田英峰</u>,中島典之、高田秀重、青木元秀,藤原祺多夫,パッシブエアサンプ ラー(PAS)を用いた東京都心および郊外大気中PAHsの季節変動観測、愛媛,第21回日本環境 化学討論会,2012/07/11-13(予定)
- 11) 斉藤祥一、熊田英峰、青木元秀,藤原祺多夫,多様な環境マトリックスからのPAH単離方法の 検討,愛媛,第21回日本環境化学討論会,2012/07/11-13(予定)

## (3) 出願特許

特に記載すべき事項はない

(4) シンポジウム、セミナーの開催(主催のもの) 特に記載すべき事項はない

#### (5) マスコミ等への公表・報道等

特に記載すべき事項はない

## (6) その他

特に記載すべき事項はない

## 8. 引用文献

- Ichinose, T., et al.: Arch. Environ. Contam. Toxicol., 55, 348-357 (2008).
   "The effects of microbial materials adhered to asian sand dust on allergic lung inflammation."
- 2) Lang, C., et al.: <u>Environmental Science and Technology</u>, 42, 5196-5201 (2008).
   "Atmospheric transport and outflow of polycyclic aromatic hydrocarbons from China."
- Kumata H., et al.: <u>Environmental Science and Technology</u>, 40, 3474-80 (2006).
   "Compound class specific <sup>14</sup>C analysis of polycyclic aromatic hydrocarbons associated with PM<sub>10</sub> and PM<sub>1.1</sub> aerosols from residential area of suburban Tokyo"
- 4) Whitman, W.G.: <u>Metal Engneering</u>, 29, 146-150 (1923).
  "Preliminary experimental confirmation of the two-film theory of gas absorption"
- Shoeib, M., Horner, T.: <u>Environmental Science and Technology</u>, 36, 4142-4151 (2002).
   "Characterization and Comparison of Three Passive Air Samplers for Persistent Organic Pollutants"
- Melymuk, L., et al. <u>Atmospheric Environment</u>, 45, 1867-1875 (2011).
   "Evaluation of passive air sampler calibrations: Selection of sampling rates and implications for the measurement of persistent organic pollutants in air"
- 7) Sato, K., et al.: <u>Chikyukagaku (Geochemistry)</u>, 41, 145-153 (in Japanese) (2007).
  "Distributions and seasonal changes of organic aerosols at Cape Hedo, Okinawa: polycyclic aromatic hydrocarbons observed during 2005-2006."
- Mandalakis, M., et al.:, <u>Journal of Chromatography</u>, A1041, 111-117 (2004).
   "Efficient isolation of polyaromatic fraction from aliphatic compounds in complex ex- tracts using dimethylformamide-pentane partitionings"
- 9) Gocht, T., et al.: Journal of Environmental Monitoring, 9, 1176-1182 (2007a).
  "Validation of an passive atmospheric deposition sampler for polybrominated diphenyl ethers"
- 10) Gocht, T., et al.: <u>Atmospheric Environment</u>, 41 (6), 1315-1327 (2007b).
  "Long-term atmospheric bulk deposition of polycyclic aromatic hydrocarbons (PAHs) in rural areas of Southern Germany"
- 11) Odabasi, M., et al.: <u>Atmospheric Environment</u>, 40, 6615-6625 (2006).
  "Determination of octanol-air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: Application to gas-particle partitioning in an urban atmosphere"
- 12) Fernández, P., et al.: <u>Environmental Science and Technology</u>, **36**, 1162-1168 (2002).
  "Atmospheric Gas-Particle Partitioning of Polycyclic Aromatic Hydrocarbons in High Mountain Regions of Europe"
- Harrad, S., Laurie, L.: *Journal of Environmental Monitoring*, 7, 722-727 (2005).
   "Concentrations, sources and temporal trends in atmospheric polycyclic aromatic hydrocarbons in a major conurbation"
- 14) Kishida, M., et al.: *Journal of Hazardous Materials*, **192**, 1340-1349 (2011).

"Gas-particle concentrations of atmospheric polycyclic aromatic hydrocarbons at an urban and a residential site in Osaka, Japan- Effect of the formation of atmospherically stable layer on their temporal change"

Tang, N., et al.: <u>Atmospheric Environment</u>, 39, 5817-5826 (2005).
"Polycyclic aromatic hydrocarbons and nitro polycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan-Japan Sea countries"

16) Yunker, M.B., et al.: <u>Organic Geochemistry</u>, **33**, 489-515 (2002).

"PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition"

17) Matzner E.: <u>Water, Air and Soil Pollution</u>, **21**, 425-434 (1984).

"Annual rates of deposition of polycyclic aromatic hydrocarbons in different forest ecosystems"

- Horstmann, M., McLachlan, M.S.: <u>Atmospheric Environment</u>, **32**, 1799-1809 (1998).
   "Atmospheric deposition of semivolatile organic compounds to two forest canopies"
- Schrimpff, E.: <u>Fresenius Zeitschrift für Analytische Chemie</u>, **319**, 147-151 (1984).
   "Organic micropollutants' balances in watersheds of Northeastern Bavaria"

20) Garban, B., et al.: <u>Atmospheric Environment</u>, **36**, 5395-5403 (2002).

"Atmospheric bulk deposition of PAHs onto France: trends from urban to remote sites"

- Motelay-Massei, A., et al.: <u>Atmospheric Environment</u>, 37, 3135-3146 (2003).
   "Polycylic aromatic hydrocarbons in bulk deposition at a suburban site: assessment by principal component analysis of the influence of meteorological parameters"
- Fernandez, P., et al.: <u>Environmental Science and Technology</u>, **37**, 3261-3267 (2003).
   "Factors governing the atmospheric deposition of polycyclic aromatic hydrocarbons to remote areas"
- Brorström-Lundén, E., et al.: <u>Atmospheric Environment</u>, 22, 3605-3615 (1994).
   "Concentrations and fluxes of organic compounds in the atmosphere of the Swedish west coast"
- Brorström-Lundén, E., Löfgren, C.: <u>Environmental Pollution</u>, 102, 139-149 (1998).
   "Atmospheric fluxes of persistent semivolatile organic pollutants to a forest ecological system at the Swedish west coast and accumulation in spruce needles"
- 25) Kiss, G., et al.: <u>Environmental Pollution</u>, 114, 55-61 (2001).
  "The seasonal changes in the concentration of polycyclic aromatic hydrocarbons in precipitation and aerosol near Lake Balaton, Hungary"
- Dickhut, R., Gustafson, K.: <u>Marine Pollution Bulletin</u>, **30**, 385-396 (1995).
   "Atmospheric inputs of selected polycyclic aromatic hydrocarbons and polychlorinated biphenyls to southern Chesapeake Bay"
- 27) Leister, D.L., Baker, J.E.: <u>Atmospheric Environment</u>, 28, 1499-1520 (1994).
  "Atmospheric deposition of organic contaminants to the Chesapeake Bay"
- 28) Buehler, S., et al., 1998. Atmospheric deposition of toxic substances to the Great Lakes. IADN results through 1998. Published by: environment Canada and the United States Environmental Protection Agency, ISBN: 0-662-31219-8, US EPA Report Number: 905-R-01-007.

- Brun, G.L., et al.: <u>Environmental Science and Technology</u>, 38, 1941-1948 (2004).
   "Atmospheric deposition of polycyclic aromatic hydrocarbons to atlantic Canada: geographic and temporal distributions and trends 1980-2001"
- 30) Gigliotti, C.L., et al.: <u>Environmental Science and Technology</u>, **39**, 5550-5559 (2005).
   "Atmospheric concentration and deposition of polycyclic aromatic hydrocarbons to the Mid-Atlantic East Coast region"
- 31) S. Xu, W. Liu, S. Tao: <u>Environmental Science and Technology</u>, 40, 702-708 (2006).
  "Emission of Polycyclic Aromatic Hydrocarbons in China."

## (5) アジアの大気・水環境中のPAHsのリスク評価

東京大学環境安全研究センター

中島典之

平成21~23年度累計予算額:9,494千円(うち23年度予算額:3,250千円) 予算額は、間接経費を含む。

[要旨] 本研究課題の目的は、他のサブテーマで得られたPAHsの実測値から、ヒト健康リスクと 水生生物への影響を評価することである。人への影響としては、大気の吸引による発ガ ンリスクを想定した。文献値として得られる異なる2つのユニットリスクを用いて発ガ ンリスクを計算すると、case Aでは東京5.1×10<sup>-5</sup>、コルカタ1.0×10<sup>-3</sup>、北京1.8×10<sup>-3</sup>、 ハノイ9.5×10<sup>-5</sup>、case Bでは東京6.4×10<sup>-7</sup>、コルカタ1.3×10<sup>-5</sup>、北京2.3×10<sup>-5</sup>、ハノイ 1.2×10<sup>-6</sup>となった。各都市において試料は1地点でのみ採取しており、これを代表値と みなして都市全体の評価をすることはできないが、年間平均値において、北京やコルカ タではリスクレベルが10<sup>-5</sup>を超えており、東京やハノイでも用いるユニットリスク値によ り超えることが分かった。また、東京では季節によらず、benzo(a)pyrene毒性等価換算 濃度は一定であり、本研究で評価対象となっているPAHsのうちbenzo(a)pyreneのリスク への寄与が年平均で65%(月別で63~67%)であった。水生生物への影響としては奇形 リスクを想定し、さらにそれ以外の影響も含めて過去の知見を精査し、検討した。過去 の知見が限られており、相当の仮定を置いた上での評価であることに留意する必要があ るが、底層水での魚類奇形を引き起こす可能性のあるレベルを超える汚染地域が広く存 在していることが本研究課題の結果から示唆された。過去の知見が不十分であることか ら、特にPAHsの生体移行性に着目し、イソゴカイを用いて汚染底質の室内曝露実験を行 った。汚染底質から生物中へのPAHsの移行が示され、底質中とゴカイ中のPAHs成分組成 は大きく異なることが明らかとなった。また、fluoranthene/(fluoranthene+pyrene)比 を用いて起源を推定すると、ゴカイ中に油起源PAHsが移行しやすいことが示唆された。

[キーワード] 多環芳香族炭化水素類、リスク、底泥、イソゴカイ、生物移行性

## 1. はじめに

多環芳香族炭化水素 (Polycyclic aromatic hydrocarbons,以下PAHs)は、発がん性や突然変異誘発性、 内分泌かく乱性を持つ成分を含む2以上のベンゼン環を持つ有機物質の総称である<sup>1)</sup>。PAHsは、大 気中にガス態および粒子付着態として存在することで、ヒトへの健康影響が危惧されるだけでな く、汚濁物質の堆積しやすい海岸、感潮域、河口域の底質に蓄積していることから、水域生態系 への影響も懸念されている。日本においてPAHsに関する大気環境基準や水域の基準(水質および 底質)は設定されていない。

PAHsの都市大気中の存在状況については、これまでにも数多くの研究事例があるが、アジアの 複数の都市で同時期に詳細な調査をした事例は稀であり、本研究課題の他サブテーマでの知見を ヒト健康影響リスクという観点で整理することは、今後の規制や対策のあり方を考える上で重要 なことである。健康影響評価についての手法はある程度確立されてきているが、そこに用いる毒 性に関する諸パラメータ値についてはコンセンサスが得られていないものや、不確実性を含んで いるものなどがある。それらを考慮し、一面的にならないような検討が求められるであろう。

水環境中の実態調査についても報告事例は少なくないが、その影響評価という観点での解釈は 未だ手法としても確立されているとは言い難い。毒性評価の研究事例も様々な手法を用いて行わ れてきているが、体系的整理は不十分な状況と言える。本研究では、過去の知見の整理を、特に 催奇形性とOMIC技術を用いた応答評価の2点から行い、前者のデータをもとにした影響評価を行 う。

さらに、水環境中における実際の有害性や蓄積性を評価するには、環境中の存在量のうち生物 へと移行する量が重要であると考えられることから、実験的検討も必要である。底質から生物へ の汚染物質の移行性は様々な要素が関連している。それぞれの生物が有する底質粒子の摂取(粒 子サイズや底泥中の存在深度等)・消化(消化液の組成や消化管内滞留時間等)機構の差異だけ ではなく、底質粒子自体が有する汚染物質吸着特性と、それと密接に関連する汚染物質自体の発 生源が重要な要素と考えられる。特に生物に移行しやすいPAHs起源があるのであれば、その発生 抑制を図ることが効果的であると考えられる。本研究ではそのような視点に立ち、底質中PAHsの 底生生物への移行性を実験的に評価する。

#### 2. 研究開発目的

本研究課題の目的は、他のサブテーマで得られたPAHsの実測値から、ヒト健康リスクと水生生 物への影響を評価することである。人への影響としては、大気の吸引による発ガンリスクを想定 した。水生生物への影響としては奇形リスクを想定し、さらにそれ以外の影響も含めて過去の知 見を精査し、検討した。水生生物への影響に関しては、過去の知見が不十分であることから、特 にPAHsの生体移行性に着目した実験研究もおこなった。具体的には、試験生物としてイソゴカイ

(Perinereis nuntia)を用いて汚染底質の室内曝露実験を行い、生物中のPAHs濃度変化を測定した。 さらに、底質中の総濃度と模擬消化管液抽出画分濃度の分析と、PAHs組成の底質・生物間の比較 から、PAHs起源と生物移行性の関連性について考察を行った。さらに仮想的な環境変化としてエ ンジンオイルの水環境中への流入を想定し、その生物移行性変化への影響も検討した。

### 3. 研究開発方法

(1) アジア4都市の大気環境中のPAHsのヒト健康リスク

本研究課題の他サブテーマから得られたアジアの大気環境中のPAHsのヒトへの健康リスク評価 (吸入曝露による発ガン)を行うにあたり、過去の研究例や諸外国での事例等を参考にして、ユ ニットリスクや毒性等価係数を精査した。

リスク評価にあたり用いるユニットリスクとしては、2オーダー異なる2種類の値が利用可能 であるが両者に不確実性があることから、本研究においては2つの計算結果を併記することとし た。具体的には、benzo(a)pyreneに対する米国コークス炉労働者の疫学調査から推定された8.7×  $10^{-2}$  ( $\mu$ g/m<sup>3</sup>)<sup>-1</sup> (case A)と、ハムスターの実験からヒトへの影響を推定した1.1×10<sup>-3</sup> ( $\mu$  g/m<sup>3</sup>)<sup>-1</sup>(case B)である。case Aは環境省の初期リスク評価において、ヒトの結果を重視する観点 から採用されている値<sup>2)</sup>であり、コールタールピッチ揮発物の累積曝露量と肺がん過剰死亡率から 計算されているが、曝露物質中のbenzo(a)pyrene の存在量を全く別の事例を引用して0.71%と仮 定するとともに、他の成分との加算性を仮定して計算されている点に不確実性が残ると考えられ る。一方、case Bの値は、カリフォルニア州EPA (OEHHA; Office of Environmental Health Hazard Assessment)等で採用されている<sup>3)</sup>ものであり、体表面積当り曝露量 (mg/m<sup>2</sup>/day) による種間調 整を行って導出しているが、ハムスターの結果をヒトに換算している点に大きな不確実性が残る と考えられる。

benzo (a) pyrene以外のPAHsに対する評価に関しては、データが限られており、ユニットリスク として利用可能なものは、dibenzo (a, h) anthraceneのみである ( $1.2 \times 10^{-3}$  ( $\mu$ g/m<sup>3</sup>)<sup>-1</sup>; ただしマ ウスの飲料水曝露の結果をヒトの吸入曝露に換算)<sup>3)</sup>。本研究では、この値をそのまま使わずに、 同じリスク評価体系において用いられているbenzo (a) pyreneとの相対比として1.1 ( $\Rightarrow$ 1.2×10<sup>-3</sup>÷ 1.1×10<sup>-3</sup>)を用いた。それ以外のPAHsについては、カリフォルニア州EPA (OEHHA (May 2009))が 示している毒性等価係数Potency Equivalency Factor (PEF) 値<sup>3)</sup> (benzo (a) pyreneとの相対比) を用いた。これにより、評価対象PAHsはbenzo (a) anthrathene, chrysene, benzo (b) fluoranthene, benzo (k) fluoranthene, benzo (a) pyrene, indeno (1, 2, 3-cd) pyrene, dibenzo (a, h) anthracene と なる。

(2)底質中PAHsの水生生物への影響評価

1) 過去の知見の整理

本課題の研究から得られたアジアの水環境(底質)中のPAHsの水生生物へのリスク評価を行う にあたっては、そもそもリスク評価に用いる手法や値についてもコンセンサスが得られていると は言いがたいため、最近の論文や各種報告を精査し、検討に有用な情報を抽出し、その結果自体 を本研究の成果と捉え、結果及び考察として記載した。

2) 底質中PAHsの底生生物への移行性

PAHs濃度の異なる4箇所の底泥中にて試験生物を10日間飼育し、一定期間後の体内PAHs濃度を 測定し、PAHsの移行性を評価した。また、自動車用エンジンオイルが泥に接触することによって PAHsの移行性にどのような変化が生じるかを、エンジンオイルを異なる濃度で添加して調べた。 なお、オイルには、PAHsの付加と底質マトリックスの改質の二つの影響があると想定した。

底泥は、2009年8月、12月に、東京都内の河川・運河(St. 1~4)において底質採泥器DIK-190A-A1 (大起理化工業)を用いて表層5cm程度を採取した。採取した底泥は、保冷剤で低温に保ったまま 実験室に持ち帰り、目開き2mmのステンレス製ふるいで夾雑物を取り除いてから試験に用いた。底 質および疎水性汚染物質の付着状態の変化を最小限にするために、試験に供する前の保存時間は できるだけ短くし、保存の際は冷凍や乾燥はせず、暗所冷蔵保存とした。

試験生物は、釣り餌として養殖されているイソゴカイ (Perinereis nuntia)を購入した。同時期に 孵化し、自然の海水を用いて半年~1年程度養殖後に出荷されたものを用いた。なお、個体乾燥 重量は各試験系での曝露3日目の平均値で0.08~0.09gであった。

曝露試験は、次のような手順で行った。1Lトールビーカーに底泥400mLを入れ、その上部に400mL

の人工海水(塩分濃度30‰)<sup>4)</sup>を載せ2日間曝気した後、上澄水を交換し、20匹のイソゴカイを投入 した。エンジンオイルの影響を調べる実験系では、まず、湿底泥400mLに対し5 mg/Lあるいは50 mg/Lのエンジンオイル(鉱物油ベース(Oil R)と合成油ベース(Oil V)の二種類)を添加した400mL の人工海水を混合し、23℃の室内で3日間振とうして、底泥とエンジンオイルとを十分に接触させ た。その後、遠心分離により上澄みを取り除き、オイルを含まない清澄な人工海水に置き換えて、 生物試験に供した。別途オイルを添加せずに同様の操作を行った対照系も用意した。

試験室温は約25℃で制御し、pH、D0、塩分濃度、水温のモニタリングを行い、異常でないこと を確認した。塩分濃度のみ超純水を用いて適宜調整した。30分~10日間の曝露期間を設定し、そ れぞれの曝露期間ごとに3つのトールビーカーを準備した(イソゴカイの個体数として60匹)。曝 露後にイソゴカイを取り出し、3日間人工海水中で体内に残留する泥を吐きださせた後、PAHsの抽 出・分析を行った。

底質中PAHsの抽出には、ジクロロメタン(以下DCM)を溶媒とし超音波を照射することで全量を評価するDCM抽出と、sodium dodecyl sulfate (SDS)溶液を抽出液とし底生生物の消化管内で脱着する(=bioaccessibleな)量を模擬的に示すSDS抽出<sup>5)</sup>との2種類の方法を適用した。生物試料中PAHsの抽出は、Ozretich and Schroeder<sup>6)</sup>の手法に準じた。凍結乾燥・粉砕し内標準液を添加した生物試料からアセトニトリル中で超音波抽出し、液相を回収・濃縮後、固相抽出カラム(Bond Elut C18およびBond Elut Aminopropyl (NH2))によりクリーンアップし、さらに超純水と10%イソオクタン含有ヘキサンを添加、振とうしたのち、溶媒相を回収し、Sep-pak Silicaカートリッジによるクリーンアップの後、濃縮して分析に供した。PAHsの検出・定量にはGC/MSを用い、重水素置換されたPAHs(SUPELC0社:Semivolatile Internal Standard Mix)による回収率補正を行った。以下の12種類のPAHsを対象とした。

phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene, chrysene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a,h)anthracene, benzo(ghi)perylene

#### 4. 結果及び考察

(1) アジア4都市の大気環境中のPAHsのヒト健康リスク

本課題の研究から得られたアジア4都市の大気環境中のPAHs濃度をPEFを用いて

benzo (a) pyrene毒性等価換算濃度とすると、年間の平均値は東京0.58 ng/m<sup>3</sup>、コルカタ11.6 ng/m<sup>3</sup>、 北京20.5 ng/m<sup>3</sup>、ハノイ1.1 ng/m<sup>3</sup>となる(表(5)-1)。これをcase A, case Bの2つのユニットリ スクを用いて発ガンリスクを計算すると、case Aでは東京5.1×10<sup>-5</sup>、コルカタ1.0×10<sup>-3</sup>、北京1.8 ×10<sup>-3</sup>、ハノイ9.5×10<sup>-5</sup>、case Bでは東京6.4×10<sup>-7</sup>、コルカタ1.3×10<sup>-5</sup>、北京2.3×10<sup>-5</sup>、ハノイ 1.2×10<sup>-6</sup>となる(表(5)-1)。年間平均値において、北京やコルカタではリスクレベルが10<sup>-5</sup>を超 えており、東京やハノイでも用いるユニットリスク値により超えることが分かる。ただし、各都 市において試料は1地点でのみ採取しており、これを代表値とみなして都市全体の評価をするこ とはできない。

| 都市名  | benzo(a)pyrene<br>毒性等価換算濃度 | 生涯発ガン                | ンリスク                 |
|------|----------------------------|----------------------|----------------------|
|      | ng/m <sup>3</sup>          | Case A               | Case B               |
| 東京   | 0.58                       | 5.1×10 <sup>-5</sup> | 6.4×10 <sup>-7</sup> |
| コルカタ | 11.6                       | 1.0×10 <sup>-3</sup> | 1.3×10 <sup>-5</sup> |
| 北京   | 20.5                       | 1.8×10 <sup>-3</sup> | 2.3×10 <sup>-5</sup> |
| ハノイ  | 1.1                        | 9.5×10 <sup>-5</sup> | 1.2×10 <sup>-6</sup> |

表(5)-1 各都市の大気中PAHs(年平均値)の吸引による生涯発ガンリスク

\* benzo(a)pyrene  $\exists = " \land h \lor \forall \land h [(\mu g/m^3)^{-1}]$ : Case A=8.7×10<sup>-2</sup>, Case B=1.1×10<sup>-3</sup>

図(5)-1には、各都市の月ごとのbenzo(a)pyrene毒性等価換算濃度の相対値(年平均を1とした) を示す。東京では季節によらず、benzo(a)pyrene毒性等価換算濃度は一定であり、本研究で評価 対象となっているPAHsのうちbenzo(a)pyreneのリスクへの寄与が年平均で65%(月別で63~67%) であった。一方、コルカタや北京では11~2月の濃度上昇が明確であり、4~9月の濃度との比

(benzo(a)pyrene毒性等価換算濃度として;つまりリスク値の比を意味する)を計算すると東京 1.2、コルカタ9.4、北京16.8、ハノイ2.5となった。コルカタや北京では、冬季の発生源対策によ りリスクを10分の1程度に下げられることが示唆される。本課題で行った起源解析によると石炭の 使用が主要な起源とされており、それらの暖房や工業的使用に関する対策が効果的であると推定 される。また、東京以外でもbenzo(a)pyreneのリスクへの寄与が高く、年平均でコルカタ57%(月 別で49~62%)、北京58%(月別で43~84%)、ハノイ54%(月別で49~61%;ただし12月の試 料は14%と特異的であり平均値の計算から除外した)であった。



図(5)-1 各都市の月ごとのbenzo(a) pyrene毒性等価換算濃度の相対値
 (各都市の年平均値を1として標準化した)

#### (2) 底質中PAHsの水生生物への影響評価

1) 過去の知見の整理

PAHsの水環境中での水生生物への影響を評価するにあたり、まず過去の知見の整理を行った。 現状では、PAHsに関する水生生物へのリスク評価の一般的なスキームは存在せず、ハザードの設 定が最初の重要な検討課題となる。過去に提案されている底質ガイドライン値は、現場の底生生 物数に基づくものや、端脚類(ヨコエビ)に対する致死毒性に基づくものなどさまざまなものが ある<sup>7)</sup>。また、主として死亡、成長、繁殖といったエンドポイントに基づく個別化学物質のリスク 評価としては、環境省の環境リスク初期評価において8つのPAHsについて情報がまとめられてきて いる。本研究では、水生生物の奇形の発生と、近年研究の進展が著しいOMIC技術による応答評価 の二点に着目し、過去の知見の整理を行った。

まず、PAHsが与える水生生物の奇形に関する知見を表(5)-2にまとめた。最も低い濃度での影響 を報告しているCarls et al. (1999)の事例<sup>8)</sup>では、初期総PAHs濃度0.7µg/Lで稚魚の奇形を確認し ている。この事例では、純品のPAHsではなく環境汚染を模擬して原油を用いて試験を行っており、 どの成分が催奇形成に寄与しているかは明らかでないが、用いた原油中のPAHsの主要成分として phenanthreneおよびその同族体があげられている。このデータを用いた奇形発生リスクについて は後述する。

| 試験生物種        | РАН           | 曝露期  | 投与量             | 影響                       | referenc |
|--------------|---------------|------|-----------------|--------------------------|----------|
|              |               | 間    |                 |                          | е        |
| ニシン卵         | 混合物(原油付       | 16 日 | 初期総             | 初期総 PAHs濃度0.7 µg/Lで      | 8) Carls |
| (Clupea      | 着砂利によっ        |      | PAHs濃度          | 稚魚の奇形や遊泳能力の低             | et al.   |
| pallasi)     | て海水を間接        |      | 0.14~           | 下                        | 1999     |
|              | 的に汚染)         |      | 85.9 μg/L       | ※より風化した汚染砂利の             |          |
|              |               |      |                 | 毒性の方が高い                  |          |
| カラフトマス       | 混合物(原油付       | 孵化ま  | 初期総             | 初期総 PAHs濃度1.3 μg/L以      | 9)       |
| 印            | 着砂利によっ        | で    | PAHs濃度          | 上で脊髄奇形(spinal            | Heintz   |
| (Oncorhynchu | て海水を間接        |      | $0.8 \sim 48.0$ | deformities)が有意に増加       | et al.   |
| s gorbuscha) | 的に汚染)         |      | µg∕L            |                          | 1999     |
| ゼブラフィッ       | 混合物(中国・       | 72時間 | 抽出物を            | 被包(epiboly)の遅延、卵黄        | 10) Yang |
| シュ卵          | 青島市周辺沿        |      | 元の底質            | 嚢浮腫(yolk sac edema)の形    | et al.   |
| (Danio       | 岸底泥のジク        |      | 重量換算            | 成、頭部形成や体節分化異             | 2010     |
| rerio)       | ロロメタン抽        |      | で0~800          | 常、色素異常、尾部奇形等が            |          |
|              | 出物;PAHs含有     |      | mg/mL           | 観察された。最も汚染された            |          |
|              | 量は407.75~     |      |                 | 底質の抽出物5mg/mL             |          |
|              | 4032.62 ng/g  |      |                 | (20µgPAH/Lに相当)の曝露48      |          |
|              | dry wt)       |      |                 | 時間で、45%に奇形、25%に          |          |
|              |               |      |                 | 致死影響が認められた。              |          |
| ゼブラフィッ       | fluoranthene  | 72時間 | 100, 500        | benzo(a)pyrene10µg/Lのみ   | 11)      |
| シュ卵          |               |      | µg∕L            | あるいはfluorantheneのみ       | Matson   |
| (Danio       |               |      |                 | では心外膜液浸出                 | et al.   |
| rerio)       | benzo(a)pyren |      | $10 \mu g/L$    | (pericardial effusion) は | 2008     |
|              | е             |      |                 | 認められなかったが、               |          |
|              |               |      |                 | benzo(a)pyrene10µg/L と   |          |
|              |               |      |                 | fluoranthene 500µg/Lを共   |          |
|              |               |      |                 | 存させることで、また低酸素            |          |

表(5)-2 PAHsによる水生生物の奇形に関する知見

|      |          | 条件下でfluoranthene<br>100µg/Lに曝露させることで<br>有意な浸出が認められた。ま<br>た、低酸素条件下での<br>fluoranthene曝露によって<br>脊柱湾曲(lordosis)が認め<br>られた。 |                             |
|------|----------|------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 20時間 | 300 µg/L | 心臓奇形が観察された                                                                                                             | 12)<br>Clark et<br>al. 2010 |

|                                         |                                                                                             |                                                                                                                                                                                                                 |                                                                                                              | られた。                                                                                                                                                 |                                     |
|-----------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| マミチョグ<br>(Fundulus<br>heteroclitus<br>) | Benzo(k)fluor<br>anthene                                                                    | 120時間                                                                                                                                                                                                           | 300 μg/L                                                                                                     | 心臓奇形が観察された                                                                                                                                           | 12)<br>Clark et<br>al. 2010         |
| ゼブラフィッ<br>シュ卵<br>(Danio<br>rerio)       | naphthalene,<br>fluorene,<br>dibenzothioph<br>ene,<br>phenanthrene,<br>anthracene<br>pyrene | 96時間                                                                                                                                                                                                            | 10 mg/L<br>1 mg/L                                                                                            | 10mg/L のfluorene、<br>dibenzothiophene、<br>phenanthrene はそれぞれ体<br>幹や尾部の背側への湾曲や、<br>頭部発達の低下が認められ、<br>心膜の浮腫も確認された。<br>pyrene 1mg/Lでは若干の浮<br>腫と湾曲が認められた。 | 13)<br>Incardon<br>a et al.<br>2004 |
|                                         | chrysene                                                                                    |                                                                                                                                                                                                                 | 2 mg/L                                                                                                       | 10mg/L Onaphthalene、<br>anthracene、およびchrysene<br>2mg/Lでは異常は認められな<br>かった。                                                                            |                                     |
| カミツキガメ<br>卵(Chelydra<br>sperpentina)    | 原油<br>benzo(a)pyren<br>eおよび<br>7,12-dimethyl<br>benz(a)anthra<br>cene                       | 胚発<br>9<br>段<br>階<br>表<br>数<br>版<br>行<br>の<br>第<br>の<br>第<br>9<br>段<br>の<br>院<br>9<br>段<br>の<br>院<br>の<br>第<br>の<br>の<br>の<br>の<br>で<br>表<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の | 1 <sup>~</sup> 10 μL投<br>与または<br>砂に0.12%<br>混合して<br>投与<br>0.02% <sup>~</sup> 1.0<br>%(植物油<br>に溶解し<br>10μL投与) | 奇形発生は卵の採取地によって異なった。原油および<br>PAHsへの最低濃度での曝露<br>系でも奇形が観察された試<br>料があった。                                                                                 | 14) Van<br>Meter et<br>al. 2006     |

次に、近年研究が進んでいるがガイドライン等に反映するに至っていないOMIC技術(ゲノミク ス、プロテオミクス、メタボロミクス)を用いたPAHsによる水生生物の応答評価に関する研究に ついて特に調査を行った。合計で21の事例<sup>15~30)</sup>が得られたが、その多くは魚類に対する試験であ り、それ以外の生物群に対する情報は極めて限定されていた(6例・3文献<sup>23,24,30)</sup>・それぞれ生物 種は芝海老、蚊(幼虫)、オオミジンコ)。また、多くの事例が比較的短期間の曝露によってCYP といった従来から認識されている解毒系の応答を検出していた中で、長期間(7週)の曝露によ り遺伝子の変異や組織レベルの形態変化、免疫系や呼吸器系、繁殖といった幅広い生物活動に関 する遺伝子発現の変化が認められた事例<sup>20)</sup>もあった。PAHsの曝露による影響は多岐に渡ることが 示され、その中でどれがもっとも感度が高く、かつ個体群に与える影響が大きいかは、さらなる 知見が必要である。また、現時点で得られているものはすべて液相系の曝露であり、また底生魚 以外の底生生物を用いた事例はなく、底質汚染と結びつけるためには、未だ十分な知見が蓄積さ れているとは言い難いことも確認された。 2) 底質中PAHsの底生生物への移行性

本サブテーマの主目的はリスク評価であるが、水生生物への影響に関する知見が不足している ことから、実験的に影響評価に資する知見を得るべく、底質中PAHsの底生生物への移行性に関す る室内実験も行った。

底泥中の12 種類のPAHsの合計濃度を表(5)-3に示す.用いた堆積物中のPAHsは1.41~ 26.9mg/kg-dryであり、その模擬消化管液抽出画分の濃度は0.23~2.55mg/kg-dryであった。Sahaら <sup>5)</sup>がまとめている各国の底質中14PAH合計濃度と比較しても、今回の試験底泥はやや汚染度の高い ものと考えられる。一方、bioaccessibility (=SDS抽出量/DCM抽出量)では、St.1,3,4は16~18%と 採取地点付近の底泥としては平均的<sup>5)</sup>な値であったのに対し、St.2は6%とやや低い結果となった。

生物試料中の12 PAHs濃度の経日変化(St.1~3)を図(5)-2に示す。曝露前のゴカイ中のPAHs濃 度は0.053mg/kg-dryであったのに対し、曝露期間中にほぼ10倍まで上昇したことから、汚染底質か ら生物中への移行が示された。なお図中のDay0は30分間曝露(+3日間の泥抜き)後の生物試料で あり、この時点でも濃度の上昇が見られることから、底泥の摂食による吸収だけではなく、接触 による生物表面への吸着もある程度あることが示唆される。また、生物試料中のPAHs濃度は曝露 数日後に最大値を示し、その後低下した。今回の生物試料回収の頻度(曝露期間設定)は粗すぎ るため、真のピーク値は捉えられていないと考えられるが、観測範囲内でのピーク時の12PAHs濃 度(mg/kg-dry)はSt.1~4でそれぞれ、0.608、0.413、0.546、0.803となり、底泥中PAHs濃度ほど の差異は認められなかった。10日目にはDay0と同等までPAHs濃度が低下している場合もあり(St.2 および3)、排泄や代謝による消失も大きいことが示唆された。

各試料のPAHsの組成を図(5)-3 (St. 1~3) に示す. 底泥DCM抽出物に関しては,全体の20%を超 える成分が存在しなかった (St. 4も同様)。底泥のSDS抽出画分については、DCM抽出画分との組 成の類似性は見られるものの、St. 3および4においてpyreneの組成比が29%、34%と顕著に増加し ている。一方、生物試料では,4地点に共通してpyreneの寄与が全体の約半分を占める結果となっ た (St. 1~4の曝露10日後の試料でそれぞれ61、43、44、47%)。Pyrene とphenanthrene, fluoranthene, benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene により約90%が構成されており,イソゴカ イ体内ではこれら6 成分が選択的に残存していることが示された. 0 日目と10 日目では特に benzo(a)anthracene, benzo(b)fluoranthene, benzo(a)pyrene の組成比に差異が認められ,周辺の底泥 による影響が認められた.

|                                               | St.1  | St.2  | St.3  | St.4  |
|-----------------------------------------------|-------|-------|-------|-------|
| 強熱減量(%)                                       | 12.2  | 11.5  | 11.7  | 10.0  |
| 底泥中12PAHs (DCM抽出)(mg/kg-dry)                  | 1.41  | 26.9  | 6.09  | 15.3  |
| 底泥中bioaccessible 12PAHs (1%SDS抽出) (mg/kg-dry) | 0.230 | 1.49  | 1.10  | 2.55  |
| Bioaccessibility (SDS/DCM)                    | 0.16  | 0.06  | 0.18  | 0.17  |
| イソゴカイ中12PAHs(10日曝露後)(mg/kg-dry)               | 0.418 | 0.252 | 0.214 | 0.363 |

表(5)-3 試験底泥および生物試料(10日曝露後)中のPAHs濃度(n=3)



図(5)-2 生物試料中PAHs濃度の経日変化



## 図(5)-3 各試料中のPAHs組成(St.1~3)

各グラフ右肩の記号は試料名を示す。最初の数字が底泥採取地点(St番号)、次のアルファベットは試料種類(a:底泥DCM抽出、b:底泥SDS抽出、c0:イソゴカイ30分曝露後、c10:イソゴカイ10日曝露後)。 横軸の略号は以下の通り。Ph: phenanthrene, An: anthracene, Ft: fluoranthene, Py: pyrene, Ba: benzo(a)anthracene, C: chrysene, B(b)f: benzo(b)fluoranthene, B(k)f: benzo(k)fluoranthene, B(a): benzo(a)pyrene, In: indeno(1,2,3-cd)pyrene, Di: dibenz(a,h)anthracene, Be: benzo(ghi)perylene

表(5)-4 試験底泥および生物試料(10日曝露後)中のfluoranthene/(fluoranthene+pyrene)比

|               | St.1 | St.2 | St.3 | St.4 |
|---------------|------|------|------|------|
| 底泥 (DCM抽出)    | 0.48 | 0.50 | 0.43 | 0.41 |
| 底泥 1%SDS抽出画分  | 0.44 | 0.33 | 0.22 | 0.35 |
| イソゴカイ(10日曝露後) | 0.18 | 0.10 | 0.10 | 0.21 |

上述のように、pyreneの存在比の変化が大きく、かつ存在量が多かったことから分子量202のPAH であるfluorantheneとの比 (=fluoranthene/(fluoranthene+pyrene)) を計算した。この比は、PAHsの 起源を示すマーカーとして過去の研究でもしばしば用いられており、例えばYunkerら<sup>31)</sup>はその目 安として0.5以上をバイオマスおよび石炭燃焼、0.4~0.5を石油燃焼、0.4以下を油起源、として いる。本研究での試料についての計算結果を表(5)-4に示す。試験に用いた底泥は0.41~0.50と燃 焼起源が卓越することを示唆する値であったものが、SDS抽出画分では0.22~0.44と低い値を示し、 さらにイソゴカイ中では0.21以下となった。この結果の一つの可能な解釈として、イソゴカイに よる選択的な摂取(起源による移行性の差異)がある。つまり、底質に含まれるPAHsのうち油起 源のものが生物への移行性が高く、それらが生体内で底泥粒子から脱着し生体内に吸収・蓄積さ れたとする解釈である。この解釈を支持する知見として、MP/P比 (methylphenanthrene/phenanthrene 比)から油起源PAHsを多く含むと示唆される底泥で、SDS抽出画分(bioaccessibleな画分)の比率が 高いという結果が示されている<sup>5</sup>。別の解釈としては、吸収後に、成分ごとに異なる代謝・排泄特 性があり、その結果としてこのような生物試料中組成が得られた、とする考え方である。後者の 解釈について検討すべく、過去の研究例を精査したが、当該生物種に関してはPAHs代謝に関連す る既報が存在せず、同属他種であるPerinereis rullieriについてPAHs分解に寄与する解毒酵素系を有 している<sup>32)</sup>という情報があるのみであり、fluorantheneとpyreneの分解の程度に差があるかどうかま では報告がなかった。他の属まで含めた多毛類全般についてもCYPを中心とした分解系についての 報告はあるが、種によって多様であり、代謝の結果としてfluoranthene/(fluoranthene+pyrene)比が 向上することを文献調査から否定あるいは肯定するには至らなかった。

なお、今回の結果ではSDS抽出画分のfluoranthene/(fluoranthene+pyrene)比は底泥全体よりは低 いものの、生物試料よりは明らかに高い値となっている。本研究で用いた1%SDS溶液は、底質中 のbioaccessibleな画分を捉えるという目的で、模擬消化管液としては界面活性をやや高めに設定し てあり、現実の底生生物は1%SDS溶液よりも界面活性の低い消化管液を持つものが多いと考えら れる。なお、本分担研究者の過去の調査データ(未発表)において、同じ底泥に対して1%と0.1% のSDSを用いて抽出量を比較したものがある。その結果では、5試料中4試料において fluoranthene/(fluoranthene+pyrene)比は0.1%SDS抽出画分で顕著に低い値となっている。油起源の PAHsの生物移行性が高いことはこの未発表データからも支持され、同時に界面活性を適切に変更 することで様々な底生生物にとってのPAHs移行性を再現することが可能となると思われる。

さらに上記の底泥のうち1つ(St.4)を選び、仮想的な環境変化として油分による水域~底質の 汚染を想定し、PAHsの移行性の変化への影響を検討した。用いた堆積物中のPAHs(12種の合計) の各系列の初期値は14.6~16.7 mg/kg-dryであり、その模擬消化管液抽出画分の濃度は3.8~4.3 mg/kg-dryであった。オイルを50mg/L添加した系のみ、3日間のオイル接触期間後にPAHs濃度の上 昇が認められた(14.6→16.2 mg/kg-dry)。一方で10日間の生物曝露期間中にはすべての系で総PAHs 濃度の低減が認められた。対照系では計13日間で2.2 mg/kg-dryの低減が認められた。オイルの添加 により、模擬消化管液抽出画分が増加することが期待されたが、オイル添加の有無によらず低減 した。3日間の振とう中に底質から液相に移行したと考えられるが、同時に模擬消化管液の界面活 性がPAHsではなく油分そのものの抽出に寄与してしまい、抽出効率が下がった可能性もある。生 物試料中のPAHs濃度は曝露開始時、3日後、10日後に測定したが、3日後に最大値を示した。オイ ルを添加した系の中では高濃度のオイルに接触した系が最も生物試料中濃度が高かった。しかし、 対照系との有意な差はなかった。この実験でも、オイル非添加系の結果(表(5)-4)と同様に生物 試料中のfluoranthene/(fluoranthene+pyrene)比が底質よりも低い結果が得られた。曝露後の生物中 fluoranthene/(fluoranthene+pyrene)比はオイルを高濃度に添加した系で0.204と最も低く、また、こ の系におけるオイル接触期間中のPAHs増分のfluoranthene/(fluoranthene+pyrene)比は0.14と油由来 を示唆していた。この比の違いの解釈については前述したとおり、現段階では確実なことを言え るだけの知見が不足しており、今後の代謝に関する基礎的検討が必要である。

3) 底質中PAHsの水生生物への影響評価

本研究では、PAHsの水生生物への影響評価を実施するにあたり、過去の知見を整理し、またPAHs の移行性に関する実験的検討も行った。しかしながら、以下のような観点で未だ十分な知見があ るとは言い難い。

・個体の致死・成長阻害だけではなく、奇形も含め種の継続性に関する影響の評価

・魚類以外の生物に対する影響

・PAHsの、底質から生物への移行性、および食物連鎖による生物間の移行性

今回は、後述のとおり大胆な過程のもとに計算を行ったが、今後さらなる検討、知見の蓄積が 必要であろう。

表(5)-1にまとめたように、最も低い濃度での影響を報告している事例<sup>8)</sup>を援用し、仮に全PAHs の分配係数logK<sub>0c</sub>をphenanthreneの値4.31に等しいとし、有機炭素含量10%の底質との分配平衡を 仮定すると、液相PAHs濃度0.7 μg/Lに対する底質PAHs濃度は1.4mg/kgとなる。これを奇形発生濃 度下限値と仮定して、本研究課題の成果として報告した各地の底質の汚染レベル<sup>33)</sup>と比較した場合、 この濃度レベルを超える汚染地域は広く存在している。実際には、産卵域での汚染状況と、水へ の溶解性や希釈、存在するPAHsの組成等を考える必要があり、この仮想的な計算は毒性を過大に 評価している可能性が高いが、今後の検討が必要と考えられる。



図(5)-4 アジアを中心とした各国の底質中PAHs濃度(Saha et al., 2009)と 奇形発生濃度下限値(図中赤線:本文参照)との比較

#### 5. 本研究により得られた成果

## (1)科学的意義

本研究において、生物を用いた試験によりPAHs汚染底泥からのPAHsの底生生物への移行 性を確認するとともに、PAHs組成という観点からその起源との関連付けを行った。燃焼生成起 源のPAHsよりも油汚染由来のPAHsの方が生物への移行性が高いことが示唆された。今後の代 謝に関する知見の集積が求められる。

#### (2) 環境政策への貢献

本研究課題で得られたPAHsに関するデータから人および水生生物への影響を評価した。どち らも毒性影響に用いることが可能な知見が不足していることが指摘され、今後の毒性評価に関 する研究の必要性を示した。信頼性に限界がある状況での検討結果からは、PAHsの汚染状況は 無影響と結論できる状況ではないことが示された。また、底質の状態および発生源の評価・管 理において、『環境中に存在するがほぼ影響のない状態で存在するもの』のリスクを過大に評 価することがないように、生物への移行性という視点を加えることでより合理的かつ効率的な 対策が可能になると考えられる。また、近年研究が進んでいるOMIC技術による生物応答の知見 も整理することで、リスク評価における視点を広げることに寄与すると考えられる。

#### 6. 国際共同研究等の状況

特に記載すべき事項はない

#### 7. 研究成果の発表状況

### (1) 誌上発表

<論文(査読あり)>

特に記載すべき事項はない

- <その他誌上発表(査読なし)>
  - 特に記載すべき事項はない

## (2) 口頭発表(学会等)

- 野口愛、中島典之、山本和夫:第19回環境化学討論会(2010)
   「イソゴカイ(Perinereis nuntia)を用いた江東内部河川底泥中多環芳香族炭化水素の移行性評価」
- C. Chu, F. Nakajima, K. Yamamoto, H. Takada, H. Kumata : Water and Environment Technology Conference 2012 (WET2012), Tokyo, Japan, 2012

"Effect of oil addition on mobility of PAHs in sediments and Road dust." (アブストラクト提出済み)

## (3) 出願特許

特に記載すべき事項はない。

# (4) シンポジウム、セミナーの開催(主催のもの)

特に記載すべき事項はない。

## (5) マスコミ等への公表・報道等

特に記載すべき事項はない。

(6) その他

特に記載すべき事項はない。

# 8. 引用文献

- Clemons J.H., Allan L.M., Marvin C.H., Wu Z., McCarry B.E., Bryant D.W., Zacharewski T.R. (1998) Evidence of estrogen- and TCDD-like activities in crude and fractionated extracts of PM<sub>10</sub> air particulate material using in vitro gene expression assays. Environmental Science and Technology, 32(12), 1853-1860
- 2) 環境省 (2006) 環境リスク初期評価第5巻, 平成18年12月.
- California Environmental Protection Agency, Technical Support Document for Cancer Potency Factors: Methodologies for derivation, listing of available values, and adjustments to allow for early life stage exposures. May 2009.
- U. S. Environmental Protection Agency, EPA 160014-911003, Section 7 Dilution Water, pp. 27-31, 1994.
- 5) 斉藤夏恵, 中島典之, 古米弘明, 高田秀重, 東後綾子 (2006) 底泥中PAHsのbioaccessibilityと石 油起源指標MP/P比の関係について. 第15回環境化学討論会講演要旨集, 222-223
- Ozretich R.J., Schroeder W.P. (1986) Determination of selected neutral priority organic pollutants in marine sediment, tissue, and reference materials utilizing bonded-phase sorbents. Analytical Chemistry, 58(9), 2041-2048
- Swartz, R.C. (1999) Consensus sediment quality guidelines for polycyclic aromatic hydrocarbon mixtures, Environmental Toxicology and Chemistry, 18(4), 780-787
- Carls MG, Rice SD, Hose JE (1999) Sensitivity of fish embryos to weathered crude oil: Part I. Low-level exposure during incubation causes malformations, genetic damage, and mortality in larval Pacific herring (*Clupea pallasi*). Environmental Toxicology and Chemistry 18, 481-493

- 9) Heintz RA, Short JW, Rice SD (1999) Sensitivity of fish embryos to weathered crude oil: Part II. Increased mortality of pink salmon (*Oncorhynchus gorbuscha*) embryos incubating downstream from weathered Exxon Valdez crude oil. Environmental Toxicology and Chemistry 18, 494-503
- 10) Yang F, Zhang QQ, Guo HR, Zhang SC (2010) Evaluation of cytotoxicity, genotoxicity and teratogenicity of marine sediments from Qingdao coastal areas using in vitro fish cell assay, comet assay and zebrafish embryo test. Toxicology in Vitro 24, 2003-2011
- Matson CW, Timme-Laragy AR, Di Giulio RT (2008): Fluoranthene, but not benzo a pyrene, interacts with hypoxia resulting in pericardial effusion and lordosis in developing zebrafish. Chemosphere 74, 149-154
- 12) Clark BW, Matson CW, Jung D, Di Giulio RT (2010) AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish (*Fundulus heteroclitus*). Aquatic Toxicology (Amsterdam) 99, 232-240
- Incardona JP, Collier TK, Scholz NL (2004) Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicology and Applied Pharmacology 196, 191-205
- 14) Van Meter RJ, Spotila JR, Avery HW (2006) Polycyclic aromatic hydrocarbons affect survival and development of common snapping turtle (*Chelydra serpentina*) embryos and hatchlings. Environmental Pollution 142, 466-475
- 15) Koskinen H, Pehkonen P, Vehniainen E, Krasnov A, Rexroad C, Afanasyev S, Molsa H, Oikari A (2004) Response of rainbow trout transcriptome to model chemical contaminants. Biochemical and Biophysical Research Communications 320, 745-753
- 16) Krasnov A, Koskinen H, Rexroad C, Afanasyev S, Molsa H, Oikari A (2005) Transcriptome responses to carbon tetrachloride and pyrene in the kidney and liver of juvenile rainbow trout (*Oncorhynchus mykiss*). Aquatic Toxicology 74, 70-81
- 17) Hook SE, Skillman AD, Small JA, Schultz IR (2006) Gene expression patterns in rainbow trout, *Oncorhynchus mykiss*, exposed to a suite of model toxicants. Aquatic Toxicology 77, 372-385
- 18) Krasnov A, Afanasyev S, Oikari A (2007) Hepatic responses of gene expression in juvenile brown trout (Salmo trutta lacustris) exposed to three model contaminants applied singly and in combination. Environmental Toxicology and Chemistry 26, 100-109
- 19) Geoghegan F, Katsiadaki I, Williams TD, Chipman JK (2008) A cDNA microarray for the three-spined stickleback, *Gasterosteus aculeatus* L., and analysis of the interactive effects of oestradiol and dibenzanthracene exposures. Journal of Fish Biology 72, 2133-2153
- 20) Holth TF, Nourizadeh-Lillabadi R, Blaesbjerg M, Grung M, Holbech H, Petersen GI, Alestrom P, Hylland K (2008) Differential gene expression and biomarkers in zebrafish (*Danio rerio*) following exposure to produced water components. Aquatic Toxicology 90, 277-291
- 21) Yu RMK, Ng PKS, Tan TF, Chu DLH, Wu RSS, Kong RYC (2008) Enhancement of hypoxia-induced gene expression in fish liver by the aryl hydrocarbon receptor (AhR) ligand, benzo a pyrene (BaP). Aquatic Toxicology 90, 235-242
- 22) Bugiak B, Weber LP (2009) Hepatic and vascular mRNA expression in adult zebrafish (Danio rerio)
following exposure to benzo-a-pyrene and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Aquatic Toxicology (Amsterdam) 95, 299-306

- 23) Li TD, Brouwer M (2009) Bioinformatic analysis of expressed sequence tags from grass shrimp Palaemonetes pugio exposed to environmental stressors. Comparative Biochemistry and Physiology D-Genomics & Proteomics 4, 187-195
- 24) Riaz MA, Poupardin R, Reynaud S, Strode C, Ranson H, David JP (2009) Impact of glyphosate and benzo a pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics. Aquatic Toxicology 93, 61-69
- 25) Wang K-J, Bo J, Yang M, Hong H-S, Wang X-H, Chen F-Y, Yuan J-J (2009) Hepcidin gene expression induced in the developmental stages of fish upon exposure to Benzo a pyrene (BaP). Marine Environmental Research 67, 159-165
- 26) Williams TD, Wu HF, Santos EM, Ball J, Katsiadaki I, Brown MM, Baker P, Ortega F, Falciani F, Craft JA, Tyler CR, Chipman JK, Viant MR (2009) Hepatic Transcriptomic and Metabolomic Responses in the Stickleback (*Gasterosteus aculeatus*) Exposed to Environmentally Relevant Concentrations of Dibenzanthracene. Environmental Science & Technology 43, 6341-6348
- 27) Fang XF, Dong W, Thornton C, Scheffler B, Willett KL (2010) Benzo(a)pyrene induced glycine N-methyltransferase messenger RNA expression in *Fundulus heteroclitus* embryos. Marine Environmental Research 69, S74-S76
- 28) Leaver MJ, Diab A, Boukouvala E, Williams TD, Chipman JK, Moffat CF, Robinson CD, George SG (2010) Hepatic gene expression in flounder chronically exposed to multiply polluted estuarine sediment: Absence of classical exposure 'biomarker' signals and induction of inflammatory, innate immune and apoptotic pathways. Aquatic Toxicology (Amsterdam) 96, 234-245
- 29) Oh JH, Moon HB, Choe ES (2010) Alterations in Differentially Expressed Genes in the Head of Oryzias latipes Following Benzo a pyrene Exposure. Bulletin of Environmental Contamination and Toxicology 84, 682-686
- 30) Vandenbrouck T, Jones OAH, Dom N, Griffin JL, De Coen W (2010) Mixtures of similarly acting compounds in *Daphnia magna*: From gene to metabolite and beyond. Environment International 36, 254-268
- 31) Yunker M.B., Macdonald R.W., Vingarzan R., Mitchell R.H., Goyette D., Sylvestre S. (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, Vol. 33, pp. 489–515, 2002.
- 32) Nesto N., Cassin D., Da Ros L. (2010) Is the polychaete, *Perinereis rullieri* (Pilato 1974), a reliable indicator of PCB and PAH contaminants in coastal sediments? Ecotoxicology and Environmental Safety, 73, 143-151
- 33) Saha M., Togo A., Mizukawa K., Murakami M., Takada H., Zakaria M.P., Chiem N.H., Tuyen B.C., Prudente M., Boonyatumanond R., Sarkar S.K., Bhattacharya B., Mishra P., Tana T.S. (2009) Sources of sedimentary PAHs in tropical Asian waters: Differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance. Marine Pollution Bulletin, Vol. 58, No. 2, pp. 189-200.

## Source-identification of polycyclic aromatic hydrocarbons (PAHs) in Asian Environments and the evaluation of the long-range transport of PAHs.

Principal Investigator: Hideshige TAKADA Institution: Tokyo University of Agriculture and Technology Fuchu, Tokyo 183-8509, Japan Tel: +81-423-67-5825 Fax: +81-423-60-8264 e-mail: shige@cc.tuat.ac.jp

Cooperated by: National Institute for Environmental Studies, Keio University, Tokyo University of Pharmacy, University of Tokyo.

## [Abstract]

Key Words: Polycyclic aromatic hydrocarbons, Tropical Asia, Sediment, Coal-combustion, Biomass burning.

Polycyclic aromatic hydrocarbons (PAHs), one of the unregulated hazardous chemicals, are contained in petroleum products and also derived from various combustion processes. Source-identification facilitates effective regulation on the emission of PAHs to the environments. The present study aims to make quantitative source-identification of PAHs in Asian atmospheric and aquatic environments. This study also reveals the range and magnitude of atmospheric transport of PAHs to Asian environments. This gives scientific basis for international reduction of the emission of PAHs in this region. Aerosol samples weekly collected from Kolkata, Beijing, Hanoi, Tokyo, and Kuala Lumpur throughout a year were analyzed for PAHs. PAH concentrations were one to two orders of magnitude higher in Beijing  $(230 \pm 291 \text{ ng/m}^3)$  and Kolkata  $(93 \pm 99 \text{ ng/m}^3)$  than Hanoi  $(12 \pm 7 \text{ ng/m}^3)$ , Tokyo  $(5 \pm 2 \text{ ng/m}^3)$ , and Kuala Lumpur  $(4 \pm 2 \text{ ng/m}^3)$ . Atmospheric PAH concentrations in all cities except for Kuala Lumpur showed seasonal variation with higher in winter than summer. Based on the seasonal patterns, measurement of molecular markers of petroleum combustion (hopanes), abundance of methylated PAHs, major source of PAHs in winter in Beijing and Kolkata is most probably derived from coal-combustion for residential heating and industrial activities during dry season, respectively. Signals of long-range transport of PAHs were detected in remote area in western India and Okinawa Island in Japan. Surface sediment samples from 180 locations in Asian waters were analyzed for PAHs. PAH concentrations in sediments from urban areas of India, Indonesia, and Japan were categorized into highly polluted areas on global standard. Sources-identification was conducted for sedimentary PAHs in

Kolkata and Jakarta based on the abundance of methylated PAHs, PAH profiles and their statistical (multi regression) analysis combined with compound-specific radio carbon analysis (CCSRA) of PAHs. Exhausts from motorbike with 2-stroke engines were identified as dominant source of sedimentary PAHs in Jakarta. CCSRA and PAH profiles concluded that sedimentary PAHs in Kolkata are mainly derived from coal-combustion.

