平成26年度

環境研究総合推進費補助金 研究事業

総合研究報告書

起泡クロマトによるGaの選択回収プロセスの確立と レアメタル回収への展開

(3K123006)

平成27年 3月

(研究代表者) 名古屋大学 二井 晋

- 補助事業名 環境研究総合推進費補助金研究事業(平成24年度~平成26年度)
- 所管 環境省
- 国庫補助金 29,499,000円
- 研究課題名 起泡クロマトによる Gaの選択回収プロセスの確立とレアメタル回収への展開
- 研究期間 平成 24 年 4 月 1 日 ~ 平成 27 年 3 月 31 日
- 研究代表者 二井 晋(名古屋大学)
- 共同研究者 木下武彦・柴田信行・石垣友三(名古屋市工業研究所) 北川慎也(名古屋工業大学) 岡野泰則(大阪大学)

総合研究報告書概要 1 本文 1. 研究背景と目的 10 1.1 研究背景 10 1.2 起泡クロマトの原理とH23年度までの成果 10 1.3 研究目的 14 2. 研究方法 15 2.1 スケールアップによる高度分離発現メカニズムの解明 15 2.1.1 スケールアップした場合の最適分離条件の探索 15 2.1.2 液ホールドアップの測定と泡径との相関 15 2.1.3 泡径の変化が Ga(III)分離挙動に及ぼす影響 16 2.1.4 泡沫相内液ホールドアップの測定 16 2.2 市販 PONPE20&10 の分画 10 種における構造分析並びに起泡クロマト 分離性能の比較 17 2.2.1 市販 PONPE20, PONPE10 の分画 17 2.2.2 市販 PONPE20, PONPE10 の分画 10 種を用いた起泡クロマト分離 (塔内径 3 cm)における Ga(III)/Fe(III)分離 18 2.3 低圧高速液体クロマトグラフィーを用いた金属と界面活性剤 との相互作用の評価 19 2.3.1 低流路抵抗ポリ(ST-co-DVB)モノリスカラムの調製と評価 20 2.3.2 ポリオキシエチレン鎖長と金属イオンの分離性能との相関 20 2.4 起泡クロマト分離への泡径と塔内径の影響 21 2.5 PONPE と金属イオン相互作用評価のための気泡固定マイクロチップの開発 22 2.6 塔径拡大が泡沫分離性能に及ぼす影響 23 2.7 塩酸使用量の低減を目指した硫酸との混酸の利用可能性の検討 23 2.8 塩酸および界面活性剤溶液使用量の低減を目指したベース溶液の循環利用 24 2.8.1 泡沫液中金属濃度に及ぼすベース溶液の循環利用の影響 24 2.8.2 界面活性剤の存在がイオン交換樹脂による蓄積金属の除去に及ぼす影響 24 2.9 実サンプルからの Ga の選択分離回収の検討 25 2.9.1 亜鉛精錬残渣 25 2.9.2 GaAs 基板スクラップ 27 2.10 Ga 以外の回収対象の探索 27 2.10.1 臭化水素酸溶液からの In(III)の分離回収の検討 28

目次

		2.10.2 Rh 抽出試薬(TMOEAA)の泡沫分離への適用可能性の検討	28
	2.11	NMR による Ga(III)とノニオン界面活性剤の相互作用の解析	29
		2.11.1 deca(oxyethylene)nonononylphenyl ether (DONPE)の合成	29
		2.11.2 DONPE 共存下における ⁷¹ Ga-NMR 測定と化学量論比の見積	30
	2.12	気泡固定型マイクロチップの気泡保持特性に関する検討	30
		2.12.1 PDMS 製チップを用いた場合	30
		2.12.2 ガラス製チップを用いた場合	30
	2.13	流動電位法を用いる試料-PONPE 間相互作用の解析	31
		2.13.1 流動電位法の性能評価	32
		2.13.2 HCl が PONPE に与える影響	32
		2.13.3 ポリオキシエチレン鎖へのプロトン付加の安定性の評価	32
		2.13.4 PONPE-陰イオン間相互作用	32
		2.13.5 PONPE-金属イオン種との相互作用	33
	2.14	泡沫相内液流動の数値解析	33
		2.14.1 泡沫分離装置と泡沫相内流動状態の可視化	33
	2.15	解析モデル	34
		2.15.1 解析条件	34
		2.15.2 解析格子	34
	2.16	基礎方程式	35
	2.17	境界条件	35
	2.18	解析物性值	36
	2.19	解析手法	36
3.	結果	及び考察	38
	3.1	スケールアップによる高度分離発現メカニズムの解明	38
		3.1.1 スケールアップした場合の最適分離条件の探索	38
		3.1.2 液ホールドアップの測定と泡径との相関	39
		3.1.3 泡径の変化が Ga(III)分離挙動に及ぼす影響	39
		3.1.4 泡径相内液ホールドアップの測定	40
	3.2	市販 PONPE20&10 の分画 10 種における構造分析並びに起泡クロマト	
		分離性能の比較	43
		3.2.1 市販 PONPE20, PONPE10 の分画	43
		3.2.2 市販 PONPE20, PONPE10 の分画 10 種を用いた起泡クロマト分離	
		(塔内径 3 cm) における Ga(III)/Fe(III)分離	43
	3.3	低圧高速液体クロマトグラフィーを用いた金属と界面活性剤との相互作用の	
		評価	46
		3.3.1 低流路抵抗ポリ(ST-co-DVB)モノリスカラムの調製	46

	3.3.2	ポリオキシエチレン鎖長と金属イオンの分離性能との相関	48
	3.3.3	PONPE と金属イオンとの相互作用のクロマトグラフィー的評価	50
3.4	起泡ク	ロマト分離への泡径と塔内径の影響	54
	3.4.1	泡径の分離への影響	54
	3.4.2	液ホールドアップの分離への影響	54
	3.4.3	空気流量の分離への影響	55
	3.4.4	異なる泡径における界面活性剤滴下流量の分離への影響	55
	3.4.5	異なる塔内径における界面活性剤滴下線速度の分離への影響	56
	3.4.6	起泡クロマトの分離特性と操作因子の相関	57
3.5	PONPE	Eと金属イオン相互作用評価のための気泡固定マイクロチップの開発	58
	3.5.1	気泡固定マイクロチップの調整	58
	3.5.2	気泡固定マイクロチップ中気泡表面への物質の優先吸着	59
	3.5.3	気泡固定マイクロチップによる金属イオンと界面活性剤の相互作用評価	60
3.6	塔径拡	大が泡沫分離性能に及ぼす影響	60
	3.6.1	塔径 9.0 cm の泡沫塔での泡沫分離特性	60
	3.6.2	種々の塔径における分離性能の比較	61
	3.6.3	塔径 9.0 cm 泡沫塔での液ホールドアップ	62
	3.6.4	種々の塔径における塔の高さ方向での液ホールドアップ分布の推算	63
3.7	硫酸に	よる塩酸媒体の代替可能性の調査	65
	3.7.1	硫酸及び塩酸と硫酸の混酸を用いた場合の PONPE20 による金属の	
		抽出特性	65
	3.7.2	混酸の利用が分離性能に及ぼす影響	65
3.8	塩酸お	よび界面活性剤使用量の低減を目指したベース溶液の循環利用	66
	3.8.1	泡沫液中金属濃度に及ぼすベース溶液の循環利用の影響	66
	3.8.2	界面活性剤の存在がイオン交換樹脂による蓄積金属の除去に及ぼす影響	67
3.9	実サン	プルからの Ga の選択分離回収の検討	69
	3.9.1	亜鉛精錬残渣	69
	3.9.2	GaAs 基板スクラップ	71
3.10	Ga 以	外の回収対象の探索	72
	3.10.1	臭化水素酸溶液からの In(III)の分離回収の検討	72
	3.10.2	Rh 抽出試薬(TMOEAA)の泡沫分離への適用可能性の検討	73
3.11	NMR	による Ga(III)とノニオン界面活性剤の相互作用の確認	74
	3.11.1	deca(oxyethylene)nonononylphenyl ether (DONPE)の合成	74
	3.11.2	DONPE 共存下における ⁷¹ Ga-NMR 測定と化学量論比の見積	76
3.12	気泡園	固定型マイクロチップの気泡保持特性に関する検討	78
	3.12.1	PDMS 製チップを用いた場合	78
	3.12.2	ガラス製チップを用いた場合	79

3.	13 流動電	፪位法を用いる試料−PONPE 間相互作用の解析	79
	3.13.1	流動電位法の性能評価	79
	3.13.2	HCl が PONPE に与える影響	80
	3.13.3	ポリオキシエチレン鎖へのプロトン付加の安定性の評価	81
	3.13.4	PONPE-陰イオン間相互作用	81
	3.13.5	PONPE-金属イオン種との相互作用	83
3.	14 界面流	5性剤溶液導入の影響	84
	3.14.1	泡沫分離装置と泡沫相内流動状態の可視化 - 界面活性剤溶液の影響	84
3.	15 液膜	見みの影響	85
3.	16 スケー	-ルアップが Ga の回収率、分離度に与える影響	88
4. 糸	古論		89
5. 耄	参考文献		92
6. 積	研究発表		96
7. 乡	印的財產権	の取得状況	100
8. 石	研究概要		101
9. 로	英文概要		102

環境研究総合推進費補助金 研究事業 総合研究報告書概要

研究課題名: 起泡クロマトによる Ga の選択回収プロセスの確立とレアメタル回収への展開

研究番号:3K123006

国庫補助金精算所要額: 29,499,000円

研究期間 平成 24 年 4 月 1 日 ~ 平成 27 年 3 月 31 日

研究代表者:二井 晋(名古屋大学)

共同研究者:木下武彦・柴田信行・石垣友三(名古屋市工業研究所)、北川慎也(名古屋工業大学)、岡野泰則(大阪大学)

研究目的

本研究の達成目標は、実際の廃棄物を原料として、夾雑物が共存する溶液からガリウムを回 収率100%かつ高い分離度と濃縮率を実現し、単離するための高効率プロセスを開発すること である。我々が開発した起泡クロマト法によれば、シンプルな構造の装置と簡単な操作により 連続的にガリウムを高い分離度と回収率で分離できることを明らかにしてきた。

各年度の研究目的を順に示す。H24 年度は装置の大型化(塔内径の拡大)による分離性能向 上の発現メカニズムの解明と、PONPE によるガリウムの選択捕集の鍵となるオキシエチレン鎖 長を特定すること、さらに、PONPE と金属イオンの相互作用の評価を行う簡便な手法を開発し て、相互作用メカニズムを解明することである。H25 年度は分離性能に及ぼす泡径と塔径の影 響を検討することと、気泡表面上の界面活性剤と標的金属の相互作用を直接的に評価する手法 の開発である。H26 年度には塔内径のさらなる拡大による分離促進の可能性の検討、各種の実 サンプルを原料とした分離、Ga 分離プロセスの効率化、標的金属を Ga 以外のレアメタルに展 開するために PONPE による Ga の選択性発現機構を解明するとともに、種々の標的金属の分離 特性を調査した。さらに、泡沫相内の液ホールドアップ分布を予測するためのシンプルな数理 モデルを開発するとともに、泡沫相の数値解析による泡沫相内の液流速分布のシミュレーショ ンを行うことを目的として検討を行った。

研究方法

1. 塔内径拡大による分離性能向上メカニズムの解明 (H24 年度)

図 1 に示す装置を用いて、Ga(III)、Fe(III)、Cu(II)、Zn(II)を各 20 ppm 含む 6 M HCl を金属溶 液として連続的に供給して起泡クロマト法により Ga(III)に富む泡沫液と、他の金属を含む残液

を得た。ベース溶液と界面活性剤溶液には PONPE20を0.1 wt%含む6 M HClを使用した。 塔の底部のガス分散器に空気を供給して生成し、 目の粗さの異なるガス分散器を用いて泡径を変 化させた。種々の溶液と空気を所定の流量条 件で流通し、各液中の金属イオン濃度を測定 して各金属の回収率、Ga(III)濃縮比、 Ga(III)/Fe(III)分離度を分離性能の指標として、 分離性能を評価した。さらに、塔の外側から の写真撮影により泡径を決定し、泡沫相から泡 沫を一部抜き出すことで泡沫相での液ホールド アップを測定した。

市販 PONPE の分画と各成分によるガリウ ム分離性能の比較 (H24 年度)

う画と各成分によるガリウ 残液

公分離性能の比較(H24 牛皮) 市販のPONPE20とPONPE10を溶媒で希釈
図1 塔内径 3 もしくは 6 cm 実験装置概略図

し、サイズ排除液体クロマトグラフィーを用いて分子量(ポリオキシエチレン鎖長)の異なる 10種の成分に分画し、各成分の構造を決定した。各成分を界面活性剤として用い、塔内径 3 cm での起泡クロマト操作により、金属溶液として Ga(III)、Fe(III)、Cu(II)、Zn(II)を各 20 ppm 含む 6 M 塩酸溶液を供給して Ga(III)分離実験を行い、Ga(III)の分離性能と操作の安定性を調べ、ポ

リオキシエチレン鎖長と起泡クロマト操作の安定性ならびに分離性能の関係を調べた。

3. ポリマーモノリスカラムを用いたオキシエチレン鎖長と金属イオンの相互作用評価 (H24 年度)

PONPE と金属イオンの相互作用を簡便に調べる方法として、低圧で操作する HPLC 法を開発した。流路抵抗の小さいポリ(ST-co-DVB)モノリスカラムを調製し、このカラムの表面をオキシエチレン鎖長の異なる市販 PONPE で被覆した。これらのカラムに Ga(III)、Fe(III)、Cu(II)、Zn(II)を含む金属溶液を導入し、Au(III)を添加した 6M HCl を移動相として、4種の金属の分離を行った。オキシエチレン鎖長の異なる PONPE による金属イオンの保持比を求め、各 PONPE と金属イオンとの相互作用の強さを調べた。

4. 起泡クロマト分離への泡径と塔径の影響 (H25 年度)

図1に示す実験装置において、泡沫分離塔として塔径3cmと6cmの2種類を用いた。界面活性 剤は市販のPONPE20を精製せずに用いた。泡沫相へ滴下する金属溶液はAu(III)とCu(II)を20ppm 含む2Mの塩酸溶液を用いた。その上部から滴下する界面活性剤溶液、および塔底へ供給するベ ース液はPONPE20(0.10 wt%)の2M塩酸溶液とした。塔径3cmの場合と塔径6cmの場合に同 じ空塔速度となるように各液の流量を設定した。各液中の金属濃度をICP-AESにて測定して各金

属の回収率、濃縮比、分離度を算出した。さらに、目の粗さの異なるガス分散器を用いて泡径 を変化させ、写真撮影により泡径を決定し、泡沫相から泡沫を一部抜き出すことで泡沫相での 液ホールドアップを測定した。

5. PONPE と金属イオン相互作用評価のための 気泡固定マイクロチップの開発 (H25 年度)

図 2 に示すように流路内に気泡を固定する ための凹構造を持つ流路を有するマイクロチッ プをポリジメチルシロキサン, PDMS とスライ ドガラスを用いて作製した。このチップを試料 送液のシリンジポンプ、および流路内を観察す る顕微鏡・蛍光顕微鏡と組み合わせて用いた。

図2 ポリジメチルシロキサン(PDMS)で調整
 した、気泡固定のための凹型構造を有
 するマイクロチップ

6. 塔内径9 cm への拡大が泡沫分離性能に及ぼ

す影響 (H26 年度)

塔高さはこれまでと同じで塔内径を9cmの塔を作成し、項目1と同じ金属溶液と界面活性剤 溶液を用いて所定の流量条件で、これまでと同じ高さに界面活性剤溶液、金属溶液、ベース液 および空気を流通して起泡クロマト分離を行い、分離特性を調べて塔径6cmの場合と比較した。

7. 塩酸および界面活性剤溶液使用量の低減を目指したベース溶液の循環利用 (H26 年度)

これまでの起泡クロマト操作では、泡沫相を形成する界面活性剤を補給するためにベース溶 液を連続的に供給して排出している。この排出液には夾雑金属イオンとともに塩酸と界面活性 剤が含まれるため、塩酸および界面活性剤の損失となっていた。そこで、排出液を再びベース 溶液として循環し、この循環流れに泡沫相の形成に必要な量の界面活性剤を添加すれば、界面 活性剤と塩酸の排出が抑えられ、使用量を低減できる。ただし、この循環を行うことにより液 中に Ga(III)以外の金属イオンが蓄積されて濃度が高くなり、Ga(III)の選択分離に影響を及ぼす 可能性がある。そこで、夾雑金属イオンが蓄積した状態を模擬したベース溶液を調製し、この 液を循環して装置を運転して Ga(III)の分離特性を調べた。

8. 実サンプルからの Ga 選択分離回収の検討 (H26 年度)

Gaを含有する実サンプルとして、2種の亜鉛精錬残渣およびGaAs基板スクラップからのGaの選択分離回収について検討を行った。前者はFeをはじめとする多数の夾雑金属成分が高濃度で共存することに加えてGa含有量は非常に小さいため、Gaに対する高度に選択的な分離が求められる。後者では高濃度Gaの浸出液が得られるものの、Asとの分離が問題である。各試料について塩酸浸出液を調製し、残渣浸出液では大量に含まれるFe(III)をアスコルビン酸で還元して金属溶液として用い、GaAs基板浸出液では特別な前処理を行わずに浸出液を金属溶液として、塔内径3cmの装置を用いた起泡クロマトを行いGa選択分離回収について検討した。

9. Ga 以外の回収対象の探索 (H26 年度)

PONPE と同じエーテル構造を有するジエチルエーテルによる金属抽出を参考にして、Fe, Cu, Zn, Ga, In を含む臭化水素酸溶液から、ノニオン界面活性剤による回分式泡沫分離の検討を行った。臭化水素酸濃度を 3~6 M として所定の条件で起泡クロマト分離を行い、各濃度での各種 金属に対する PONPE の相互作用について調査した。

10. NMR による Ga(III)とノニオン界面活性剤の相互作用の解析 (H26 年度)

市販試薬の PONPE10 に比べてオキシエチレン鎖長にばらつきがない化合物である deca(oxyethylene)nonononylphenyl ether (DONPE) を合成して 6 M 重塩酸中で 71Ga-NMR ス ペクトルを測定することにより、DONPE-Ga(III)系での錯体の化学量論比を調査した。

11. 流動電位法を用いる金属イオン-PONPE 間相互作用の解析 (H26 年度)

PONPE を内側に被覆したキャピラリー管に種々の金属イオンを含む溶液を流した際に発生 する流動電位を測定することで、ゼータ電位と表面電荷密度を算出して PONPE の電荷状態を 測定し、この結果より PONPE と種々の化学種の相互作用を調査した。

12. 泡沫相内液流動の数値解析 (H26 年度)

泡沫相内の液流れの適切な制御は、起泡クロマトにおける分離向上の鍵であり、泡沫相内に 導入された界面活性剤溶液と金属溶液の相内での流動状態を予測できれば、スケールアップを 含めた装置設計に有用な知見を与える。泡沫間隙を流れる液体の流動をシミュレーションする ための数値解析を行い、泡沫相に導入された、PONPEと相互作用しない夾雑金属イオンのモデ ルとして染料を用いた可視化実験と比較し

て解析結果について検討を行った。

結果と考察

1. 塔内径拡大による分離性能向上メカニ ズムの解明 (H24 年度)

起泡クロマトでは泡沫相が分離場とな るので、分離に適した泡沫相を形成するこ とが操作上重要である。泡径を変化させて 泡沫相を形成し、泡沫相中の液体の体積分 率である、液ホールドアップを測定したと ころ、泡径が大きいほど液ホールドアップ は小さくなる対応関係が得られた。優れた

分離性能が得られた泡沫相での液ホールドアップ分布の測定結果を図3に示す。バルク液面からの高さ60 cm では液ホールドアップの値が小さくかつ塔の中心からどの距離でもほぼ同じ値

であった。高さ40 cm では半径方向でわずかにホールドアップの変化が見られたが、分離性能の低い場合にはこの変化が非常に大きかったため、変化を抑えることが分離を向上させる鍵である。塔の半径方向での液ホールドアップの変化が小さい状態は、泡沫相内で流速が一様な下向き流れができていることを示している。この流れの様式は泡の間に存在する夾雑物を洗浄する効果が高い。塔内径を3 cm から6 cm に拡大することで分離が向上されたことから、分離に適した液流れを形成するためには、泡沫相への溶液の導入点(塔の中心)と塔の壁面との距離を適度に長くすることが重要であることがわかった。

2. 市販 PONPE の分子量による分画と各成分によるガリウム分離性能の比較 (H24 年度)

ガリウムと選択的に親和する市販界面活性剤である PONPE は、起泡クロマトでの起泡剤と ガリウムの捕集剤の2つの役割を果たす重要な物質であるが、市販の PONPE は種々の長さの オキシエチレン鎖を持つ物質の混合物であった。PONPE の優れた分離性能がどの成分の寄与で あるのかを解明するため、分子量すなわち鎖長ごとに PONPE を分画して、各成分を用いた起 泡クロマト分離を行って分離特性を調べた。表1に分離結果を各成分のオキシエチレンユニッ ト数が小さくなる順で示す。比較のため市販の PONPE20 と 10 での結果も示す。成分番号が大 きくなる、すなわちオキシエチレンユニット数が小さくなるにつれて泡沫が不安定になり、泡 沫相中に鬆が形成され不安定になった。PONPE20 の市販試薬をオキシエチレン鎖長により分け ると、市販試薬での分離性能を上回る性能を持つ成分があることがわかり、オキシエチレン鎖 長を整えることのメリットが確認された。

濃度	界面活性剤	分画	Air [ml/min]	Ga 回収率	Fe 回収率	Cu 回収率	Zn 回収率	Ga 濃縮比	Ga/Fe	Ga/Cu	Ga/Zn
0.424g/500ml	#1	PONPE20 f22	50	25.2%	0.75%	0.06%	0.08%	1.25	33.8	410	299
0.508g/500ml	#2	PONPE20 f33	50	38.4%	1.14%	0.07%	0.04%	1.35	33.8	583	878
0.5g/500ml	PONPE20	無し	50	32.8%	3.57%	0.09%	0.28%	1.70	9.17	362	118
0.520g/500ml	#3	PONPE20 f44	50	45.9%	0.94%	0.05%	0.05%	1.47	<u>49.1</u>	<u>903</u>	<u>928</u>
0.468g/500ml	#4	PONPE20 f55	55	31.2%	1.17%	0.08%	0.07%	1.21	26.6	410	421
0.508g/500ml	#5	PONPE10 f11	50	35.2%	1.04%	0.07%	0.06%	1.29	33.9	500	641
0.505g/500ml	#6	PONPE10 f22	50	38.1%	1.31%	0.05%	0.06%	1.53	29.1	818	633
0.506g/500ml	#7	PONPE10 f33	80	53.3%	1.50%	0.11%	0.08%	1.31	35.5	485	677
0.504g/500ml	#8	PONPE10 f44	80	49.2%	1.19%	0.23%	0.08%	1.13	41.4	212	623
0.471g/500ml	#9	PONPE10 f55	150	87.8%	9.67%	2.22%	2.52%	1.31	9.07	39.6	34.9
0.346g/500ml	#10	PONPE10 f66	220	114%	106%	107%	107%	0.59	1.07	1.06	1.07
0.5g/500ml	PONPE10	無し	50	11.8%	0.55%	0.12%	0.12%	0.60	21.4	98.0	97.3

表1 分画された PONPE の各成分を用いた起泡クロマト分離の結果

3. ポリマーモノリスカラムを用いたオキシエチレン鎖長と金属イオンの相互作用評価 (H24 年度)

それぞれ市販のPONPE3, 7.5, 20 で被覆されたポリマーモノリスカラムを用いて4種類の金属 イオンを分離した結果から得られた、各金属イオンの保持比を**表 2** に示す。最もオキシエチレ ン鎖の短い PONPE3 を持つカラムでは Ga(III)がわずかに保持されたが、他の金属イオンは PONPE と相互作用しなかった。また、PONPE7.5-20 を持つカラムでの Ga(III)の保持は、PONPE3 を持つカラムの 5-8 倍程度に増加した。Fe(III)は PONPE7.5-20 を持つカラムでわずかに保持され (k < 0.1)、Cu(II)と Zn(II)は保持されなかった。移動相として 0.5 mM の Au(III)を含む 6 M HCl の条件のもとで、これら 4 種類の金属イオン保持の序列は、Cu (II)、Zn(II) (=0) < Fe(III) < Ga(III)となり、我々が報告した 6M HCl 条件における溶媒抽出の結果と一致した。

	金属イオン	金属イオンの保持比, k(-)								
	Bare	PONPE3	PONPE7.5	PONPE15	PONPE20					
Ga(III)	0.88	0.47	2.4	2.3	3.6					
Fe(III)	0.0	0.0	0.073	0.072	0.12					
Cu(II)	0.0	0.0	0.0	0.0	0.0					
Zn(II)	0.0	0.0	0.0	0.0	0.0					

表 2 PONPE3-20 を被覆したカラムでの Ga(III)、Fe(III)、Cu(II)、Zn(II)の保持比

PONPE と金属イオンの相互作用を評価するため、PONPE の物質量あたりの保持比という指標を用いて考察した。この値は、各種金属イオンのkをカラム1本あたりのPONPE 被覆量 N_{PONPE} で割ることで規格化して得られた。 図 4(a),(b)に示すように Ga(III)と Fe(III)の k/N_{PONPE} の値は、オキシエチレン鎖が長い PONPE ほど大きくなった。このような保持の増大は、オキシエチレンユニットの数の増加によると考えられる。また、Ga(III)と Fe(III)の k/N_{PONPE} の間には直線関係が見られ ($r^2 = 1.000$)、 k/N_{PONPE} における Ga(III)/Fe(III)の比は直線の傾きから 31:1 と得られた。すなわち、Ga(III)と Fe(III)に対する PONPE の選択性はオキシエチレン鎖の長さに関わらず一定であり、鎖長という構造の影響による影響は小さいと考えられる。

図 4 PONPE 被覆量で規格化した Ga(III) (a) と Fe(III) (b) の保持比のオキシエチレン鎖長 による変化と規格化された Ga(III)と Fe(III)保持比の比 (c)

4. 起泡クロマト分離における泡径と塔径の分離への影響(H25年度)

分離に及ぼす泡径と塔径の影響について、低酸濃度(2 M HCl)で Ga(III)と同様の分離挙動を示す Au(III)を標的金属に、また夾雑物として Cu(II)を含む系における最適分離指針の検討を行った。泡沫相内の気液流動一定の条件下において、泡径が大きくなるほど標的金属の泡沫相内吸

着容量は減少するため回収率は低下していくが、分離度と濃縮比は向上することがわかった。 また塔径について、相内気液流動一定の条件下において、塔径が大きいほど回収率の低下が抑 えられ、分離度と濃縮比が向上することがわかった。さらに、本法のスケールアップ指針は、 小径塔での最適分離条件から得られることを示唆している。

5. PONPE と金属イオン相互作用評価のための気泡固定マイクロチップの開発 (H25 年度)

凹構造の液体流路を用いることでマイクロチップ中での気泡固定に成功し、気泡の大きさを 制御できた。蛍光強度測定により、気液界面での物質濃縮挙動を観測できることを明らかにし た。

6. 塔内径 9 cm への拡大が泡沫分離性能に及ぼす影響 (H26 年度)

塔内径9cmへの拡大により、塔内径6cmの場合よりもGa(III)/Fe(III)分離度とGa(III)濃縮比 は向上し、分離に対するスケールメリットは得られたが、Ga(III)回収率 100%に至らなかった。 したがって、Gaを完全に回収でき、高い分離度を実現するには塔内径6cmが適していること がわかった。

7. 塩酸および界面活性剤溶液使用量の低減 を目指したベース溶液の循環利用 (H26 年 度)

ベース溶液を循環利用することによる Ga(III)の分離性能に及ぼす影響は小さく、 PONPE の共存下でも陰イオン交換樹脂を用 いて夾雑金属イオンを除去することが可能で あった。ベース液の循環により塩酸および界 面活性剤使用量を大幅に低減できることがわ かり、図5に示すプロセスとすることで、こ れまでのプロセスの経済性を大幅に向上できる。

8. 実サンプルからの Ga 選択分離回収の検討 (H26 年度)

亜鉛精錬残渣の浸出液は多種・高濃度の夾雑物を含む微量 Ga 濃度(0.19~20 ppm)の塩酸溶液 で、Ga に対して多量の Fe を含むものの、単段の操作で2種の溶液から Ga/Fe 分離度として 1500 前後と 2400 以上を得た。これは同じ PONPE を用いた溶媒抽出の Ga/Fe 分離度 1.2 に対して、 大幅な向上となった。また GaAs 基板スクラップ粉末の塩酸浸出液を用いた起泡クロマト分離 では、泡沫液中の As 濃度は ICP-AES の定量下限値以下であり、GaAs 基板からの起泡クロマト による Ga の単離に成功した。

9. Ga 以外の回収対象の探索 (H26 年度)

PONPEを用いる起泡クロマトにより Fe, Cu, Zn, Ga, In を含む臭化水素酸溶液からの In(III)の 選択的分離回収を試み、表3に示すように In(III)の選択分離回収を確認できた。これにより、 多数の金属に関する報告がなされているジエチルエーテルを用いた金属抽出の結果は、PONPE を用いた金属の起泡クロマト分離特性を類推する手掛かりとなり得る。

	Fe(III)	Cu(II)	Zn(II)	Ga(III)	In(III)
回収率(%)	1.2	0.0088	0.054	0.049	<i>9.8</i>
分離度(vs.In(III))	8	1115	181	198	1

表3 4M 臭化水素酸溶液での起泡クロマト分離結果

10. NMR による Ga(III)とノニオン界面活性剤の相互作用の解析 (H26 年度)

PONPE10相当の構造を持ちオキシエチレン鎖長に分布のない DONPE を用いることで、NMR を用いて、6M塩酸中での界面活性剤とGaからなる錯体の化学量論比は1:1であることがわかった。

11. 流動電位法を用いる金属イオン-PONPE 間相互作用の解析 (H26 年度)

流動電位測定測定により、塩酸濃度が 100 mM 以上では PONPE のオキシエチレン鎖へのプロトン吸着が飽和していることが明らかになった。一方、起泡クロマトでは、Au や Ga の分離に数 M 以上の塩酸が必要であり、このことは、静電相互作用以外のメカニズムが寄与している可能性を示している。Au に関しては疎水性相互作用が働いている可能性が高いことが示された。

12. 泡沫相内液流動の数値解析 (H26 年度)

図6に示すように、泡沫相への界面活性剤溶液の導入有無により、染料が相内を拡散移動す る状態が変化する様子をシミュレーションすることができた。泡沫相内での流速分布と強く相 関する実験結果として、泡沫内での液ホールドアップ分布に基づいて、数値解析により実測値

の傾向を再現するためには、図7に 示すように泡沫相内の半径方向で塔 壁に向かって流路厚みを増大させる 必要があった。

図8に示すように、塔内径6cmか ら9cmへの拡大は、泡沫相内での栓 流的な流速分布の領域を大きくする ことがわかり、実験結果の妥当性が 確かめられた。

図 6 泡沫相内での染料拡散可視化図 (左)界面活性剤溶液導入なし(右)導入あり

図 7 塔半径方向液膜厚み分布のある解析領域

図8 異なる塔内径での装置内速度分布の遷移

1. 研究背景と目的

1.1 研究背景

ガリウムは材料革新を象徴する元素の一つであり、近年の需要量は1982年に25t、1991年 に61~65t、2008年には230tに達し¹⁾、急激な増加を示している。この量は全世界需要量の 70%を占め、ガリウムは我が国の成長に必須なレアメタルである。主な用途は化合物半導体が 大半で、これらは6ナイン(99.9999%)以上の高純度精製物から製造される、ヒ化ガリウム(GaAs)、 リン化ガリウム(GaP)、窒化ガリウム(GaN)である。これらの化合物の単結晶が、発光ダイオー ド(LED)、レーザーダイオード(LD)、高周波用各種電子デバイス、ホール素子、太陽電池など として、携帯電話、通信施設、各種電気製品に組み込まれている。1990年代では光通信用の半 導体レーザー、レーザーダイオード、太陽電池などに用いられたが、今日では携帯電話用の電 子デバイスとして多く用いられ、高性能携帯電話の第3世代、3.5世代の普及がガリウムの需要 を後押ししている¹⁾。また、今後の自然エネルギー利用拡大の必要性から太陽電池の需要増加 は確実で、さらに省エネの点から LED の利用が急速に伸びると推測される。ガリウムは、製造 工程からのスクラップからリサイクルされる割合が 60%と比較的大きい元素であるが、廃棄物 からの回収は行われておらず、携帯電話や家電品を「都市鉱山」と見立てた資源回収技術の開 発が求められている。

回収技術を論ずるに先立ち、現在のガリウム製造方法を概観する。ガリウムは亜鉛やアル ミニウム精錬残渣から副産物として製造される。国内企業の亜鉛精錬および製錬残渣処理 のプロセスで発生する残渣は集約され、図1に示すプロセスによりガリウムとインジウ ム(In)に分別されて各金属が回収されている。中核となる分離技術は有機溶媒を使用する 溶媒抽出法(SX)であり、共存物質であるヒ素(As)、インジウム、鉄(Fe)を分離するため多 段操作が行われる²⁻¹⁰。特に有毒なAsは低沸点であり、揮散を避けるためにも回収プロセ スのクローズド化を必要とする。また、現状では工業的に利用できる抽出試薬は少数に限 られており、目的物質に対して高い選択性を持つ安価な抽出試薬の開発は重要な課題とな っている。

都市鉱山からの「採掘」実現の鍵を握るのは分離技術であり、高分離、高選択、低環境 負荷であることが求められ、なおかつ濃縮など付加的な効果を持つことが望ましい^{11,12)}。 そこで我々は、溶媒抽出の問題点を克服するための新たな手法として、希薄溶液からの濃 縮回収に優れ、界面活性剤を用いる有機溶媒フリーな操作を特長とする泡沫分離法に着目 し、これに基づく新たな分離法を提案してガリウムの回収を検討してきた。

1.2 起泡クロマトの原理と H23 年度までの成果

泡沫分離法は、浮遊選鉱で知られるように湿式精錬での目的物質の濃縮や、紙のリサイクル 工程でのトナー除去である脱墨などに工業的規模で適用されてきた。操作と装置が簡単である ため粗分離法として用いられているが、性質の似た成分の相互分離や精製での成功例は見られ ない。これは、泡沫分離の有する2つの問題点による。一つはバルク液中での界面活性剤と標 的物質との会合が不十分で回収率が低いことで、もうひとつは泡沫相の間隙に存在する液中に、 バルク液と同じ濃度で夾雑物が存在するため、標的物質を吸着した泡沫には必ず夾雑物が同伴 するために分離度が低いことである。

Kinoshita らが提案している起泡クロマト(Foam Chromatography or Continuous Counter-current Foam Separation [CCFS])^{11,13-21}によれば、泡沫相に金属溶液ならびに界面活性剤溶液を直接導入 するという極めて簡便な手法により、これらの問題点を同時に克服して標的物質の高回収率・ 高選択性の両立が達成できる。この手法は、上昇する泡沫と同伴水の下方流の間での積極的な 気液向流接触の促進により実現される(図 2 参照)。まず、金属溶液を泡沫相に直接導入する ことで、金属溶液は膨大な吸着面積を有する泡沫表面を縫うように流れ下り、泡沫は連続的に 上昇する。標的溶質と界面活性剤の連続的な向流接触が極めて短い拡散距離で起こり、高速・ 高効率な吸着が実現され、回収率が飛躍的に向上する。標的物質が吸着された泡が上昇してい る部分に、界面活性剤溶液を導入すると、この溶液もまた泡沫表面を縫うように流れ下る。こ のとき、泡沫の間隙にある同伴水中の夾雑物を下方に移動させるため、選択性が向上する。加 えて、この界面活性剤溶液の導入は界面活性剤と水分の補給により、泡沫相を安定化する効果 もある。

我々はH22年度から²⁰、ガリウムや金などの特定金属に相互作用する非イオン性界面活性剤 ^{10,22-25)}を用いて、各操作因子が分離に与える影響を調査した結果、向流接触する気液流量と界面 活性剤への溶質の相互作用の度合いとのバランスを調節することで、優れた分離が実現できる ことを実証してきた。得られた成果を以下にまとめる。

H22 年度には、Ga(III)との選択的な相互作用を発現する界面活性剤はポリオキシエチレン系の非イオン性界面活性剤であることを見出し、起泡クロマトを用いる Ga(III)回収での、主な夾 雑物は Fe(III)であり、Cu(II)や Zn(II)等とはほとんど相互作用しないことがわかった。起泡クロマト操作に適した起泡性・泡沫安定性および Ga(III)/Fe(III)の高い分離能を持つ界面活性剤として PONPE20 (poly(oxyethylene) nonylphenyl ethers, HO(CH₂CH₂O)₂₀-C₆H₄C₉H₁₉) が最適であった。

モデル浸出液を用いて PONPE20 による起泡クロマト分離における操作因子の影響を調査した。各金属の回収率や Ga(III)と他の金属との分離度ならびに Ga(III)濃縮比を評価項目として、 その最適分離条件を見出し、その分離性能を単段の溶媒抽出と比較して起泡クロマトが優れた 分離性能を有することを示した。

H23年度には、PONPE20を用いた起泡クロマトによる Ga(III)回収において、Ga(III)分離性能 を大幅に向上させる方策を見出し、非常に優れた分離が可能なことを実証した。多様な金属が 様々な濃度で含まれる、実際の試料として亜鉛精錬残渣の浸出液を起泡クロマトに適用して、 Ga(III)回収率 100%と、Fe, Zn, Al, As, In および Cu に対する Ga の非常に高い分離度を達成でき た。さらに、装置の大型化への検討として塔内径を拡大したところ、塔内径 6 cm での分離性 能は塔内径 3 cm よりも大幅に向上し、スケールメリットが得られることがわかった。さらに、 PONPE による Ga(III)の選択的な相互作用のメカニズムを解明するため、高い酸濃度溶液中での 界面活性剤と金属イオンとの相互作用を評価するための手法として、モノリスカラムを用いる 低圧高速液体クロマトグラフィーの有用性を明らかにした。

図1 Ga と In の溶媒抽出プロセス

(出典:化学工学会 プロジェクト研究会「レアメタルの有効利用プロセス研究会」第一期研究成果報告書,平成3年8月 pp.78)

図2 従来の泡沫分離法(左)と起泡クロマト(右)の概念図

1.3 研究目的

本研究の達成目標は、実際の廃棄物を原料として、夾雑物が共存する溶液からガリウムを回 収率100%かつ高い分離度と濃縮率を実現し、単離するための高効率プロセスの開発を行うこ とと、起泡クロマトのすぐれた特徴である大型化による分離性能の向上について装置規模と性 能の関係を明らかにすることである。さらに、標的金属をガリウム以外のレアメタルに拡大す るために、適切な界面活性剤と金属の組み合わせを探索して起泡クロマト分離を行い、高度分 離を実証することである。

H24年度はこの目標達成のため、以下の3つの課題を設定して検討した。第1に、装置(塔 内径)の大型化、すなわち塔内径3cmから6cmへの拡大による分離性能向上の発現メカニズ ムに関する検討である。泡沫相を特徴づける因子である泡径と液ホールドアップを種々の条件 下で測定し、泡沫相中に含まれる夾雑物を有効に洗浄することのできる泡沫相内の液流動状態 を解明した。第2に、界面活性剤(PONPE20)によるガリウムの選択捕集機構を解明するため、 異なるオキシエチレン鎖長の混合物である、市販の PONPE 試薬を精製し10種に分画して起泡 クロマトを行い、ガリウムの選択捕集の鍵となるオキシエチレン鎖長の特定を行った。第3に、 高酸濃度溶液中の金属と界面活性剤との相互作用を探索するためのツールとして、PONPEで被 覆されたポリマーモノリスカラムを開発してPONPEと金属イオンの相互作用の評価を行った。

H25年度は以下の2つの課題の検討を行った。第1に分離性能に及ぼす泡径と塔径の影響の 詳細を検討することと、第2に気泡表面上の界面活性剤と標的金属の相互作用を直接的に評価 する手法の開発である。第1の目的、泡径を系統的に変化させて分離への影響を調べるには、 気泡を生成するガス分散器の長期安定性確保が望ましく、先ずガリウム分離条件よりも穏和で ある低酸濃度(2 M HCl)で Au(III)と Cu(II)を含む系で検討を行った。本法では、界面活性剤と回 収目的物の相互作用の評価が極めて重要になる。第2の目的のため、気泡固定型マイクロチッ プを作製し、固定された気泡表面と蛍光物質をプローブとした、気泡表面-金属イオン間の相 互作用についての評価法について検討を行った。

H26年度は、塔内径拡大による性能向上をさらに追究するため、塔内径を9cmに拡大した場合の泡沫相の液ホールドアップ分布を測定するとともに分離特性を調査し、優れた分離を実現するための条件を探索した。また、実サンプルを原料としたガリウム選択分離を行うことと、 プロセスの効率化のため、塩酸と界面活性剤を含むベース液を循環して塩酸と界面活性剤使用 量の低減をはかった。また、塩酸使用量の低減を目指して硫酸と塩酸を混合した混酸を用いた 場合の分離性能と操作に及ぼす影響について検討した。

PONPE による Ga との高い選択親和性の発現機構の解明のため、NMR などで PONPE と Ga の相互作用を解析する。さらに、泡沫相内の液ホールドアップ分布を予測するためのシンプル な数理モデルの開発と、泡沫相の数値解析による泡沫相内の液流速分布のシミュレーションを 目的として検討を行った。

2. 研究方法

2.1 スケールアップによる高度分離発現メカニズムの解明

これまでの検討により、起泡クロマトでは塔内径3cmから6cmへの拡大によりGa(III)の分 離性能が著しく向上した。これは、夾雑物であるFe(III)が泡沫相で効果的に洗浄されて流下し、 標的であるGa(III)が選択的に泡沫に取り込まれて上昇したことを示している。また、高い濃縮 比は塔内径6cmの場合で回収される泡沫が同伴水をほとんど含まない、「乾燥した」泡沫であ ることを示している。空気流量が大きい条件で形成される泡沫相は、下部からの液体の汲み上 げにより液体を多く含む。泡沫相に汲み上げられた液体は、重力の作用を受けて流下する(排水 と呼ばれる)ため、泡沫相の上部ほど液体の量は少なくなり、泡沫相内での高さ方向で液体量に 分布を生じる。起泡クロマトでは、このような自然排水に加えて泡沫相に液体を導入するので、 泡沫相内を流下する液流れの挙動が複雑になる。この流れは、夾雑物の流下に著しく影響する ため、泡沫相内で形成される液流速分布の形が、分離性能と密接に関わると考えられる。その ため、泡沫相中の液体の体積分率(単位泡沫体積あたりの液体体積で、液ホールドアップと呼 ばれる値)を測定し、優れた分離を得ることのできる泡沫相のキャラクタリゼーションを行っ た。

2.1.1 スケールアップした場合の最適分離条件の探索

塔内径 6 cm での Ga(III)分離の最適操作条件の探索にあたり、塔内径 3 cm での各種溶液およ び空気の供給条件を空塔速度に換算して、塔内径 6 cm での分離に適用した。特に、界面活性剤 溶液の流量を固定して金属溶液流量を変化させて Ga(III)の分離特性を調べ、Ga(III)の 100 %回 収かつ高い Ga(III)/Fe(III)分離度を達成できる、最適分離条件を探索した。

金属溶液にはGa、Fe、Cu、Znを各20ppm含む6MHClを使用した。ベース溶液を2.0mL/min、 界面活性剤溶液を1.2mL/min、金属溶液を1.1~1.45mL/min、空気を160mL/minで供給した。 泡沫塔を2時間運転して定常に達せしめた後、泡沫液と残液を回収し、各溶液流量と金属濃度 を測定した。金属濃度はICP-AESにより決定した。

2.1.2 液ホールドアップの測定と泡径との相関

泡沫相内に含まれる液量は、泡の大きさと密接に関係しており、泡径が小さいほど泡の間の 空間体積が大きくなるため、液ホールドアップは大きくなる。泡径の異なる泡沫相での任意の 高さおよび半径方向の位置で泡沫(気体と液体の混合物)を一定の速度で抜き出し、単位時間あ たりに取り出された液体量から、液ホールドアップを算出した。

泡径を約 0.4~2.6 mm の所定の値に変化させるため、粗さの異なる 3 種のガス分散器(G2, G1, G0)を用いた。装置には塔内径 3 cm、高さ 87 cm の塔を用い、空気流量を 50 mL/min とした。 供給液には 2 M HCl 水溶液を、界面活性剤溶液とベース溶液には PONPE20 を 0.10 wt%含む 2 M HCl 水溶液を用いた。供給液と界面活性剤溶液の流量を 0.5 mL/min、ベース溶液を 2.5 mL/min でそれぞれ供給した。 泡径の異なる泡沫相を形成させて、測定点から図3に示す装置により、泡沫相にプローブを 設置してチューブポンプを通して所定時間泡沫を抜き出し、液ホルダーで気液を分離した。液 体積とポンプ回転数から決まる、気体と液体の混合物の体積から液ホールドアップを算出した。 測定点近傍での泡沫相の写真から泡径を算出した。

図3 泡沫相液ホールドアップ測定装置

2.1.3 泡径の変化が Ga(III)分離挙動に及ぼす影響

2.1.2 節での検討により、泡径は Ga(III)の分離性能に大きく影響を及ぼすと考えられる。これ までに報告した、Ga(III)回収率 100 %かつ高い Ga(III)/Fe(III)分離度を達成できる操作条件にお いて、ガス分散器を交換することで、泡径を意図的に小さくした場合と分離結果を比較した。

装置概略図を図 4 に示す。塔はガラス製で内径 6 cm、泡沫相高さ 80 cm である。ベース溶液 と界面活性剤溶液には PONPE20 を 0.1 wt%含む 6 M HCl を使用した。金属溶液には Ga、Fe、 Cu、Zn を各 20 ppm 含む 6 M HCl を使用した。

ガラスフィルターを交換して泡沫相の泡径を 変化させ、ベース溶液 2.0 mL/min、界面活性 剤溶液 1.2 mL/min、金属溶液を 1.16 mL/min、 空気 160 mL/min で供給した。

泡沫塔を2時間運転して定常に達せしめた 後、泡沫液と残液を回収し、各液の流量と金 属濃度を測定した。金属濃度の決定には ICP-AESを用いた。

2.1.4 泡沫相内液ホールドアップの測定

本来金属溶液を導入する場所から、金属を 含まない6MHClを滴下し、界面活性剤溶液、 ベース溶液、空気を2.1.1節と同じ条件で供給 した。2種のガス分散器を用いて、それぞれ 泡径1.8mmと1.4mmの泡沫相を生成させた。 泡沫塔を運転し始めて1.5時間後に塔中心で、

図 4 塔内径 6 cm の装置概略図

バルク液面からの高さ 60、40、20、10 cm の各位置で泡沫をチューブポンプにより設定流量 5 mL/min で抜き出し、液ホルダーで液を受けて気液を分離して液流量を測定した。また、それぞ

れの高さにおいて、塔中心から1、2 cm の位置でも同様に測定を行った。1回の測定で泡沫相1 点から抜き出しを行ったため、抜き出しによる泡沫体積の低下は無視できるほど小さい。

液ホールドアップ φ を以下の式で定義した。

 $\varphi = V_{\rm L} / (V_{\rm L} + V_{\rm G})$

ここで $V_{\rm L}$ は所定時間に採取された液体の体積、 $V_{\rm G}$ は所定時間に抜き出された気体の体積を表す。

2.2. 市販 PONPE20&10 の分画 10 種における構造分析並びに起泡クロマト分離性能の比較

2.2.1 市販 PONPE20、PONPE10 の分画

我々はこれまでの研究において、ポリオキシエチレン系の界面活性剤と Ga(III)などの金属イ オンとの相互作用の度合が疎水基の構造により変化することと、市販品の PONPE20 および PONPE10 のオキシエチレン鎖長に広い分布があることを明らかにした。そこで、PONPE を用 いる起泡クロマトによる Ga(III)分離性能に及ぼすポリオキシエチレン鎖長の影響について調査 した。市販品の PONPE20 および PONPE10 をサイズ排除液体クロマトグラフィー(分取液体ク ロマトグラフィーシステム、島津製作所製、図 5 参照、K-5002 分取用カラム、昭和電工社製、 図 6 参照)を用いて 10 種に分画し、それぞれのフラクションを用いて起泡クロマトによる金 属混合溶液からの Ga(III)分離を行い、Ga(III)/Fe(III)分離度などの性能との相関について詳細に 検討した。

得られた 10 種類の PONPE の構造は核磁気共鳴測定装置(Unity INOVA400, バリアン社製、 図 7 参照)を用いて、重クロロホルム中での¹H-NMR 測定により確認された。界面活性剤の分 子量の分布を分子量分布測定装置(分子量分布分析システム、島津製作所製、図 5 参照)によ り、溶離液にクロロホルムを用いたサイズ排除クロマトグラフィー(分析用カラム: K-802 x 2, 昭和電工社製)で確認した。

図 5 クロマトシステム&分子量分布測定装置

図6 分取用カラム

図 7 核磁気共鳴測定装置

2.2.2 市販 PONPE20&10 の分画 10 種を用いた起泡クロマト分離(塔内径 3 cm)における Ga(III)/Fe(III)分離

Ga、Fe、Cu、Zn を各 20 ppm 含む 6 M HCl 溶液を金属溶液として、市販 PONPE20 および PONPE10の分画 10種による起泡クロマト分離に用いた。この実験は塔内径 3 cm の塔(図 8 参照)を用いて、最適 Ga(III)分離条件下(表 1 参照)にて実施した。分離操作の手順は以下 の通りである。分離塔下部にガス分散器として焼結ガラスフィルター(G1)を設置した。空 気ポンプにより空気をガス分散器に導入し、塔下部に形成されたバルク液界面上に泡沫を 連続的に発生させた。バルク液高さをガス分散器上面基準からの高さ10 cm に保つように 塔下部より排液を行った。泡沫相は連続的に塔内を上昇して塔頂に達した後、破泡部を通 過させると液体として流下する。このように回収された液を泡沫液と呼ぶ。分離塔に導入 する溶液は、バルク液を形成させるために塔下部に導入するベース溶液、泡沫相に直接導 入する金属溶液、および金属溶液の導入位置よりも上に導入する界面活性剤溶液の3種類 である。ベース溶液は金属を含まない PONPE20の HCI 溶液である。金属溶液には界面活 性剤は含まれていない。また界面活性剤溶液はベース溶液と同様に金属を含まない。金属 溶液ならびに界面活性剤溶液は、チューブポンプ(EP-1 Econo Pump, Bio-Rad 社製)によ りそれぞれガス分散器上面を基準とした高さ 30 cm および 50 cm の位置で塔内中央へ導入 される。実験は室温にて連続操作で行い、定常状態に達した後、測定を開始した。泡沫の泡径 は写真計測から決定され、約2mmであった。泡沫液および残液を所定の時間間隔で採取し、 希釈後、ICP-AES (SPS3500, SII ナノテクノロジー社製、図9参照)にて金属濃度を測定した。

図 9 ICP 発光分光分析装置

操作因子	
水溶液の HCl 濃度	6 M
水溶液の PONPE 濃度	0.10 wt%
空気流量	50 mL/min
金属溶液の導入流量	0.35 mL/min
界面活性剤溶液の導入流量	0.25 mL/min

表 1 塔内径 3 cm における最適 Ga(III)分離条件

2.3 低圧高速液体クロマトグラフィーを用いた金属と界面活性剤との相互作用の評価

起泡クロマトでは、水系溶媒中における金属イオンと界面活性剤の相互作用の大きさが回収 率、分離度などの分離結果に大きな影響を与える。そのために、その相互作用を、簡便かつ迅 速に評価する手法の開発が求められている。高速液体クロマトグラフィー(HPLC)は試料成 分と固定相との相互作用の大きさに基づき分離を行う手法であるため、このような金属イオン と界面活性剤の相互作用の評価に適していると考えられる。しかし、起泡クロマトでは一般に 数 M 程度の高濃度 HCl を溶媒として用いるために、この目的に使用する HPLC システムには 高い耐酸性が要求される。耐酸性の低い金属を排除した、メタルフリーHPLC システムには で に市販されているが、そのようなシステムでも送液に必須である高圧送液ポンプの接液部には、 耐酸性が十分ではない酸化アルミニウム化合物が用いられている。そのため、先に述べたよう な高濃度 HCl を移動相として長時間用い、相互作用評価を行うことは困難である。

一方、我々はこれまでに、ポリマーモノリスカラムと呼ばれる、流路抵抗の極めて低いスポンジ状高分子多孔体を固定相とする分離カラムを開発し、真空ポンプによるわずかな吸引圧で送液を行う低圧 HPLC(LP-HPLC)を報告している²⁶⁾。LP-HPLC は高圧送液ポンプを必要としないため前述のような接液部が無く、高濃度 HCl を移動相として使用可能である。しかし、これまでに用いていたポリマーモノリスカラムはポリメタクリル酸エステルを基材とするもので

あり、高濃度酸中ではエステル結合部位が加水分解を受ける恐れがある。そこで本研究では、 まず、耐酸性の高いポリ(スチレン-co-ジビニルベンゼン)共重合体を基材とするポリマーモノリ スカラムを低転換率熱重合²⁷⁻²⁹⁾により調製した。そして調製したカラムに界面活性剤を被覆し、 高濃度 HCl を移動相とする LP-HPLC において金属イオンの保持比を測定し、界面活性剤と金 属イオンの相互作用の評価を行った。なお、酸による真空ポンプの腐食を避けるため、既報で 用いた吸引圧送液の代わりに、本報告ではガス加圧により送液を行った。Ga 回収の際に用いら れている非イオン性界面活性剤であるポリオキシエチレンノニルフェニルエーテル(PONPE) をモノリスカラムに被覆し、PONPE のポリオキシエチレン (POE) 鎖長が各種金属イオンとの 相互作用に与える影響を評価した。

2.3.1 低流路抵抗ポリ(ST-co-DVB)モノリスカラムの調製と評価

はじめに、フューズドシリカキャピラリー (内径 100 µm, 外径 375 µm, GL サイエンス, 東京) の内壁にポリマーモノリスを固定するためのアンカーである 3-メタクリルオキシプロピルトリ メトキシシランを導入した³⁰。これにスチレン (ST, モノマー, 21.9 wt%)、ジビニルベンゼン (DVB, 架橋性モノマー, 14.6 wt%)、1-ドデカノール (DDOL, 細孔形成剤, 44.5 wt%)、トルエ ン (TOL, 19.1 wt%)、2,2-アゾビスイソブチロニトリル (開始剤、全体に対し 1 wt%添加)から なる反応溶液を注入し、65℃で 0.5-24 h 熱重合した。重合反応後、カラムをテトラヒドロフラ ンで洗浄し、未反応物を除去した。続いてカラムを 8 cm に切断し、カラム後端に 10 cm の紫外 線透過キャピラリー (内径 100 µm, 外径 375 µm, GL サイエンス, 東京)を接続し、ポリマーモ ノリスカラム出口末端から 25 mm の位置で、紫外線透過キャピラリーを通じて紫外可視吸光光 度計により試料の検出を可能にした。

調製したポリ(ST-co-DVB)モノリスカラムの分離性能と流路抵抗の評価には送液ポンプを用 いる一般的な HPLC を用いた。装置は送液ポンプ(LC10ADvp,島津製作所,京都)、インジェ クタ(Model 7520, RHEODYNE, Cotani, USA)、スプリッタ、抵抗管、ポリマーモノリスカラム、 紫外/可視吸光光度計(UV-1575, JASCO,東京)から成る。溶離液にはアセトニトリル(ACN) /水 = 70/30(v/v)混合液を用い、逆相モードでアルキルベンゼンの分離を行った。

また、熱分解ガスクロマトグラフィー (Py-GC) を用いてカラム内に固定されたポリマーモ ノリスの転換率の定量を行った^{26,31)}。ここでは、垂直マイクロファーネス型熱分解炉 (PY2020iD、 フロンティアラボ、郡山)を接続したガスクロマトグラフィー (5890, Agilent Technologies, CA, USA)を用いた。調製したキャピラリーカラムのポリイミドコーティングを除去して、10 mm の断片に切断し、これを 600℃で熱分解し、解重合により生成した ST と DVB をオンライン GC で分離検出した。得られた ST と DVB のピーク面積比から、カラム内に固定された ST と DVB の比を定量し、またマイクロ天秤で定量したポリマーモノリスの重量から ST と DVB の 転換率を算出した^{26,31)}。

2.3.2 ポリオキシエチレン鎖長と金属イオンの分離性能との相関

ポリマーモノリスカラムへの PONPE の被覆を以下の手順で行った。PONPE として平均オキ

シエチレン (OE) ユニット数 n=3、7.5、15、20 の 4 種類を選択した (以下、PONPEn と略す)。 カラムへの送液圧力を 0.2 MPa(流量 0.5 μ L/min)として通液を行った。まずカラムを水で 30 分 洗浄した後、0.5 mM の PONPE 水溶液 (PONPE3 は水溶性が低いため、ACN/水=40/60、v/v に 溶解)を吸光度(190 nm)が上がりきるまで送液した。これを水で 30 分間、HCl で 30 分間の順 に送液し、その後測定に供した。このときのブレイクスルー曲線から PONPE の被覆量を算出 した。

高濃度 HCl 中における金属イオンと界面活性剤との相互作用に使用したガス加圧型 LP-HPLC システムの概略を図 10 に示す。カラムとガスラインを密封したガラス瓶中の移動相 に浸し、これに He ガスで加圧(0.2 MPa)し送液を行った。また、移動相瓶を試料溶液瓶に取替 え、5 秒間加圧(0.2 MPa)することにより試料溶液をカラムに直接導入した。試料導入後、直 ちに試料溶液瓶を移動相溶液瓶に取替え、分離を開始した。

Ga(III)と同様に PONPE に相互作用を有し、分析が容易な金属として Au(III)を選択し、PONPE 被覆カラムへの Au(III)の交換容量を調べた。送液圧力は 0.2 MPa(流量 0.5 µL/min)で、0.5 mM Au(III)の 6 M HCI 溶液を、PONPE 被覆カラムに吸光度(220 nm)が上がりきるまで送液した。このときのブレイクスルー曲線から Au(III)の交換容量を算出した。なお、本報告においては、高 濃度 HCI 中の金属-クロロ錯体を M(x)として記述する。すなわち、Au(III)は[Au(III)Cl4]を示す。

2.4. 起泡クロマト分離への泡径と塔内径の影響

実験装置の概略を図 11 に示す。泡沫分離塔として塔内径 3 cm と 6 cm の 2 種類を用いた。界面 活性剤は市販の PONPE (Poly(oxyethylene) nonylphenyl ethers)のうち、オキシエチレン平均付加 モル数が 20 のものを精製せずに用いた。泡沫相へ滴下する金属溶液は PONPE を含まず、Au、Cu 各 20 ppm の 2 M HCl 溶液を用いた。その上 部に滴下する界面活性剤溶液、および塔底へ 供給するベース溶液(分離塔下部へ導入す る溶液)は金属を含まない PONPE20 (0.10 wt%)の2 M HCl 溶液とした。塔内径 3 cm の場合、ベース溶液は 2.5 mL /min で塔底に 供給し、空気を 50 mL /min で導入して泡沫相 を連続的に生成した。金属溶液および界面活 性剤溶液は、チューブポンプによりガス分散 器上面を基準とした高さ 30 cm および 50 cm の位置にて、それぞれ 0.50 mL /min および所 定の流量で泡沫相へ滴下した。また塔内径 6 cm の場合、上記流量と同じ空塔速度となる ようにそれぞれを設定した。

図11 実験装置概略図

泡径を変化させる実験は、塔内径3 cm の分離塔を用いて3 種類の粗さの異なるガス分散器を 用いて、界面活性剤溶液の滴下流量を 0.5mL/min として行った。

従来の泡沫分離法においては、塔内径3 cm の分離塔を用いてベース溶液に PONPE と金属を両 方含む2 M HCl 溶液を用いた。ベース溶液流量および空気流量は上記の値と同じである。

実験は室温で連続操作を行い、定常後に泡沫液と残液を所定の時間間隔で採取し、それぞれの 金属濃度を ICP-AES にて測定した。

起泡クロマトの分離性能評価には以下の指標を用いた。

回収率= 100×(泡沫液中の金属濃度×泡沫液流量)/(金属溶液初濃度×金属溶液の滴下流 量)

濃縮比=(泡沫液中の金属濃度)/(金属溶液中の金属初濃度)

分離度=(泡沫液中の目的金属の濃縮比)/(泡沫液中の夾雑物金属の濃縮比)

2.5 PONPE と金属イオン相互作用評価の ための気泡固定マイクロチップの開発

図 12 に示す、流路内に気泡を固定する ための凹構造を持つ流路を有するマイクロ チップを以下の手順で作製した。適切に設 計した流路の鋳型をポリエチレンテレフタ レートシートから、カッティングマシンを 用いて作製した。ポリジメチルシロキサン (PDMS:キャタリスト=10:1)を鋳型上に塗 布し熱硬化(70℃、2 時間)させた後、スライ

図 12 ポリジメチルシロキサン(PDMS)で調整
 した、気泡固定のための凹型構造を有す
 るマイクロチップ

ドガラスにプラズマ接着し、セル基盤を調整した。次いで、流入出口孔を設けたスライドガラ スとセル基盤をプラズマ接着したのち、流入出口に流路となる溶融シリカキャプラリー(内径: 320 µm, 外径:450 µm)を接着し、気泡固定のための凹構造を持つ流路を有するマイクロチップ を調整した。このマイクロチップを試料送液のシリンジポンプおよび流路内を観察する顕微 鏡・蛍光顕微鏡と組み合わせた。

2.6 塔径拡大が泡沫分離性能に及ぼす影響

実験装置の概略を図 13 に示す。泡沫分離塔には 塔内径 9 cm の塔を用いた。界面活性剤は市販の PONPE (Poly(oxyethylene) nonylphenyl ethers) で、 オキシエチレン平均付加モル数が 20 のものを精製 せずに用いた。泡沫相へ滴下する金属溶液は PONPE を含まず、各金属初濃度 20 ppm の6 M 塩 酸溶液を用いた。その上部に滴下する界面活性剤溶 液、および塔底へ供給するベース溶液は金属を含ま ない PONPE20 (0.10 wt%) の6 M 塩酸溶液とした。 ベース溶液を 4.5 mL /min で塔底に供給し、空気を 360 mL /min で導入して泡沫相を連続的に生成した。 金属溶液および界面活性剤溶液は、チューブポンプ

によりガス分散器上面を基準とした高さ 30 cm および 50 cm の位置にて、2.7 mL/min の流量で泡沫 相へ滴下した。

実験は室温で連続操作を行い、定常後に泡沫液と排液を所定の時間間隔で採取し、それぞれの金 属濃度を ICP-AES にて測定した。同じ流量条件のもとで、ホールドアップの測定を行った。測定 点は、高さ方向ではバルク液面からそれぞれ10,20,40,60 cm で、半径方向は塔中心から0,2,3.5 cm の位置とした。測定点に泡沫抜出用のプローブを取り付け、チューブポンプを用いて泡沫 を一定流量で抜き出し、採取した液の重量から液ホールドアップを決定した。

2.7 塩酸使用量の低減を目指した硫酸と塩酸の混酸の適用可能性の検討

実用的な観点から、酸として比較的高価な塩酸の使用量を低減できれば操作コストを下げる ことができる。そこで、水相媒体をこれまでの6M塩酸から、塩酸と硫酸の混酸とした場合に Ga(III)に対する PONPEの親和性に及ぼす影響を検討するために、溶媒抽出実験を行った。

水相として6M 塩酸と6M 硫酸を体積比1/9, 3/7, 1/1, 7/3, 9/1 で混合した溶液を用いて 100 ppm の Ga(III)溶液を調製した。10 mL の水相に油相として PONPE20 を 0.015 M 含むクロ ロホルム溶液を 10 mL 加えて平衡に達せしめた後に水相を取り出し、Ga(III)濃度を ICP-AES に て測定した。

さらに、6 M 塩酸と6 M 硫酸を体積比 1/1 で混合した混酸を用いて、塔内径3 cm の泡沫塔 で泡沫分離を行い Ga(III)の分離特性を調べた。金属溶液として、6 M 塩酸または混酸を用いて Ga, Fe, Cu, Zn の各種金属を20 ppm で含む溶液を調製した。ベース溶液と界面活性剤溶液には、 混酸を用いて調製した 0.1 wt% PONPE20 溶液を用いた。空気、ベース溶液、金属溶液を所定の 流量で供給した。定常到達後、泡沫液と残液を1時間ごとに採取し、各金属濃度を ICP-AES で 測定した。

2.8 塩酸および界面活性剤溶液使用量の低減を目指したベース溶液の循環利用

2.8.1 泡沫液中金属濃度に及ぼすベース溶液の循環利用の影響

これまでの起泡クロマト操作では、泡沫相を形成する界面活性剤を補給するためにベース溶 液を連続的に供給して排出してきた。この排出液には夾雑金属イオンとともに塩酸と界面活性 剤が含まれるため、塩酸と界面活性剤の損失となっていた。そこで、排出液を再びベース溶液 として循環し、この循環流れに泡沫相の形成に必要な量の界面活性剤を添加すれば、塩酸と界 面活性剤の排出が抑えられ、使用量を低減できる。ただし、この循環を行うことにより、液中 に Ga(III)以外の金属イオンが蓄積されて濃度が高くなるため、Ga(III)の選択分離に影響を及ぼ す可能性がある。そこで、夾雑金属イオンが蓄積した状態を模擬したベース溶液を調製し、こ の液を循環して装置を運転して Ga(III)の分離特性を調べた。

塔内径 3 cm の泡沫塔を用い、水相媒体には塩酸を含む混酸を用いて泡沫分離を行った。金属 溶液は 20 ppm の Ga, Fe, Cu, Zn を含む塩酸と硫酸の混酸溶液で、界面活性剤溶液は 0.1 wt% PONPE20 混酸溶液である。ベース溶液として、これまで用いてきた 0.1 wt% PONPE20 混酸溶 液に代え、0.1 wt% PONPE20 混酸溶液に Fe、Cu、Zn を 50 ppm となるように添加したものを 用いた。運転条件は空気流量 60 mL/min, ベース溶液流量 2.5 mL /min, 金属溶液流量 0.25 mL /min、界面活性剤溶液流量 0.10 mL/min とした。

ベース溶液の循環は図14に示すように行った。容器に300mLのベース溶液を満たし、溶液 をマグネットスターラーで撹拌した。チューブポンプを用いて泡沫塔にベース溶液を供給し、 塔からの排出液を容器に戻して循環した。操作を開始して4時間後、容器に0.35gのPONPE20 を添加し、その後1時間ごとに泡沫液とベース溶液を採取して添加後4時間まで運転した。試 料中の各金属濃度をICP-AESで測定した。

図14 ベース溶液の循環実験装置概略図

2.8.2 界面活性剤の存在がイオン交換樹脂による蓄積金属の除去に及ぼす影響

ベース溶液を循環する連続操作を確立するには、液中に蓄積された夾雑金属イオンを除去す

る必要がある。このためにはイオン交換樹脂を用いた吸着除去が有効と考えられるが、液中の 界面活性剤溶液が金属イオンの吸着に及ぼす影響は明らかでない。そこで、PONPE20と夾雑金 属イオンを含む模擬ベース溶液を用いて、イオン交換樹脂による回分吸着実験を行った。

模擬ベース溶液として 0.1%の PONPE20 と Fe, Cu, Zn を各 10 ppm 含む 6 M 塩酸を調製し、比 較のために PONPE20 を含まずに Fe, Cu, Zn を 10 ppm 含む 6 M 塩酸を用いた。 陰イオン交換樹 脂として三菱化学製の DIAION SA10A を用い、溶液 100 mL に樹脂 20 g を加えて 72 h 振とうし て平衡に達せしめ、溶液を採取し、各金属イオン濃度を ICP-AES で測定した。

2.9 実サンプルからの Ga の選択分離回収の検討

実サンプルとして工程からの Ga の含有排液の入手を試みたが困難であったため、Ga を低濃 度で含有し、かつ夾雑金属イオンを多種、高濃度で含んでいる代表的な試料として、2 種類の 亜鉛精錬残渣を用いた。これらの試料は、破砕後の電子基板の樹脂を熱分解した試料のモデル として想定しており、電子基板に含有される夾雑金属よりも、本手法での Ga との選択分離が 困難な Fe を多量に含有していることから、電子基板よりも Ga の選択分離が難しい対象である。 また、実際の GaAs 基板の製造工程スクラップとして GaAs 基板の切れ端を入手して、塩酸浸 出液からの Ga の選択分離回収を行った。

2.9.1 亜鉛精錬残渣

図 15 に亜鉛精錬残渣の外観を示す。左は、新たに市中より入手した残渣 A である。また右は、既報^{10,19)}で用いたサンプル、残渣 B である。ただし、残渣 A は混合粉砕による均一化を行っていない。王水浸出による各サンプル浸出液の平均金属濃度を表 2 に示す。固液比は 3.0 g/20 mL で行った。本系の主夾雑物は Fe(III)であり、Ga(III)/Fe(III)の濃度比に関して、残渣 A は残渣 B に比べて 1/15 程と低く、Ga(III)の選択回収が非常に難しい試料である。

図 15 亜鉛精錬残渣(左:残渣A、右:残渣B)

表 2 各残渣から調製した金属溶液中の平均金属濃度

	Ga	Fe	Cu	Zn	Al	As
残渣A [ppm]	2.30	4300	186	6200	106	190
残渣B [ppm]	12.0	1500	87.0	3100	1400	600

予備検討 - 泡径変更による最適分離条件の微調整

H26年度に用いた装置では新たに選定したガラスフィルターを用いたので、泡径がこれまで と変化した。H25年度までの平均泡径は約1.5 mmに対して、今回は約1.8 mmであったので、 泡径拡大による最適分離条件の微調整を行った。塔内径3 cm、塔高80 cmの分離塔を使用し、 Ga(III)、Fe(III)、Cu(II)、Zn(II)を20ppm含む6M塩酸合成溶液(アスコルビン酸は無添加)を 作成して、金属溶液の滴下開始から2時間後に、泡沫液および残液の採取を1時間行った。各 溶液は ICP-AES にて分析した。結果として表3右欄に示す操作条件と起泡クロマト分離結果 を得た。泡径拡大によるGa(III)/Fe(III)分離度とGa(III)濃縮比の向上を確認した。ここで得られ た実験条件を実液による分離に適用した。

フィルター	旧ガ	ラスフィル	ター(既発	表)	新ガラスフィルター				
泡径		0.15	cm		0.18 cm				
空気流量		50 mI	_/min		50 mL/min				
ベース溶液		2.5 ml	L/min		2.0 mL/min				
金属溶液	0.35 mL/min					0.28 mL/min			
界面活性剤溶液		0.25 m	L/min		0.24 mL/min				
	Ga(III)	Fe(III)	Cu(II)	Zn(II)	Ga(III)	Fe(III)	Cu(II)	Zn(II)	
金属溶液[ppm]	21.5	22.0	25.1	22.0	18.5	19.3	18.8	19.2	
泡沫液[ppm]	72.4	1.07	0.07	0.06	70.5	0.82	0.06	0.07	
回収率	100%	1.50%	0.10%	0.09%	100%	1.21%	0.09%	0.11%	
Ga(III)分離度		67.0	1250	1040		90.0	1180	1000	
Ga(III)濃縮比	3.6				3.8				

表3 合成溶液による起泡クロマトの最適条件ならびに分離結果

実液の試料調製-アスコルビン酸添加による Fe(III) 還元

残渣 B を用いてアスコルビン酸添加の有無を比較した既報¹⁹では、無添加の系で泡沫の破泡 が著しく、回収率が低下した。今回、残渣 A での無添加の系では激しい破泡により泡沫回収不 能のため実験不成立であった。全ての実験において、所定量のアスコルビン酸を添加して実験 に供した。

残渣は6Mの塩酸溶液に浸出して濾過し、得られた濾液をさらに6M塩酸で希釈して金属溶液を得た。残渣Aの濾液では希釈率を変えて複数のGa初濃度の金属溶液を調製した。ここで、 アスコルビン酸を溶解限度まで添加したが、図16に示すように金属溶液は黄色から完全な無 色透明にはならず、Fe(III)還元は不完全であった。しかし、アスコルビン酸の大量添加による 泡沫の不安定化やGa(III)回収への干渉は一切見られなかった。

図16 Run 3 (残渣 A) に用いた金属溶液の外観(左:アスコルビン酸添加、右:無添加)

実液の試料調製-Zn 粉末添加による Fe(III) 還元

アスコルビン酸を溶解限度以上の量を添加しても、残渣によっては Fe(III)の完全な還元が達成されなかったので、次に Fe(III)還元剤として Zn 粉末を試した。最初に、濃黄色から無色透明

に変わるまで Zn 粉末を浸出液に添加した。この時、激しく発泡した後に液面に黒色浮遊物も 発生したので、濾過して実験に供した。しかし、起泡クロマト分離後に得られた泡沫液ならび に残液中に Ga はほとんど検出されず、浮遊物に吸着して濾液から除かれたと考えられる。し たがって、Zn 粉末を無色透明になるまで添加することは、Ga 分離回収には不向きである。

次に、浸出液 60 mL にアスコルビン酸 6.0 g を投入して、溶液の呈色を限度一杯まで薄めた 後に Zn 粉末を 0.5 g 添加し、ほぼ無色透明にして濾過後に金属溶液を得た。添加前の浸出液で は、Ga、Fe 濃度はそれぞれ 1.60 ppm と 2880 ppm であったが、2 種還元剤の添加後の金属溶液 ではそれぞれ 1.13 ppm と 2630 ppm に低下した。また Zn 以外の金属濃度においても同様の低下 が見られ、これは還元による浮遊物への吸着によると推測される。

2.9.2 GaAs 基板スクラップ

GaAs 基板スクラップ試料

予め粉砕された GaAs 基板スクラップ(図 17 参照) 2.0gに6M 塩酸溶液80 mL を加えて 10日間攪拌浸出したところ、Ga 143 ppm、As 35.6 ppm の金属溶液を得た。この溶液を希釈せ ずに、図 8 に示す塔内径3 cm の分離塔を用いて、先述の最適条件で起泡クロマト分離を実施 した。

図 17 GaAs 基板スクラップの粉末

2.10 Ga 以外の回収対象の探索

OE 鎖を分子構造中に有する PONPE による回分スクリーニングテストを実施したところ、 Ir(III)の濃縮比 1.2 を得た。H24 年度報告において、Ga(III)と Fe(III)のノニオン界面活性剤との 相互作用の立ち上がりは OE 鎖長による違い³²⁾が見られた。そこで塩酸濃度 6~8 M の条件下 で、OE 鎖長 20 および 50 の界面活性剤を用いて、先述の操作条件にて起泡クロマト分離を実 施した。しかしながら、Ir(III)の選択分離回収を確認できなかった。

これまでの PONPE を用いた本分離の事例は、OE(エーテル)鎖と金属との相互作用を利用 しており、塩酸溶液からのジエチルエーテルによる抽出挙動とかなり一致している。そこで、 ジエチルエーテルによる臭化水素酸溶液からの In(III)抽出³³⁾を参考に、本法による In(III)分離 の可能性について検討した。

2.10.1 臭化水素酸溶液からの In(III)の分離回収の検討

回分式泡沫分離

Fe(III)、Cu(II)、Zn(II)、Ga(III)、In(III)の各イオンを 20 ppm と POLE (Polyoxyethylene lauryl ether) 20 0.1 wt% を含む臭化水素酸溶液 35 mL を塔内径 1.7 cm 塔高 33 cm の回分式の泡沫分離装置に入れ、40 mL/min で窒素ガスを吹き込み、10 mL の泡沫液が得られるまで、泡沫分離を行った。

起泡クロマト分離

金属溶液は先述の各金属 20 ppm の 4 M 臭化水素酸溶液を用い、泡沫相と塔底部に供給する 界面活性剤溶液も 4 M 臭化水素酸溶液を用いた。塔底部への溶液の導入は 2.5 mL/min、窒素 ガスの導入は 70 mL/min、泡沫相への金属溶液の導入は 0.35 mL/min、泡沫相への界面活性剤溶 液の導入は 0.25 mL/min とした。

2.10.2 Rh 抽出剤(TMOEAA)の泡沫分離への適用可能性の検討

本節では起泡クロマト分離のAu、Ga分離からの汎用性拡大の検討を行うため、産総研開発のRh 抽出試薬TMOEAA (Tris(N-methyl-N-octyl-ethylamide)amine、N(CH₂CON<u>EH₂</u>)₃、 <u>EH</u>=2-ethylhexyl、株式会社ケミクレアより10g提供)を用いて、泡沫分離への適用可能性を検討した。本法においては、充分な界面活性を有する抽出試薬を用いることが望ましいが、入手可能な該当品が見当たらないため、界面活性剤と抽出試薬の混合溶液を作成して検討した。ここでは、抽出試薬が油滴となって水中分散したり、容器内壁等の界面に付着することなく、均一に混合されることが必須条件である。

市販のノニオン界面活性剤10種をTMOEAA との混合テストに用いて、その挙動を調査した。 その後に適用可能な組合せを選び出し、回分式の泡沫分離ならびに起泡クロマト分離を実施し た。界面活性剤は、poly(ethylene glycol) monooleyl ether (POOE, n=2, 7, 10, 20, 50)、poly(ethylene glycol) mono-4-nonylphenyl ether (PONPE, n=10, 20)、poly(ethylene glycol) monocetyl ether (POCE, n=23)、 poly(ethylene glycol) monododecyl ether (PODE, n=25)、 poly(ethylene glycol) mono-4-octylphenyl ether (POOPE, n=10)の 10 種を精製せずに用いた。

溶解テスト

50 mL のバイアル瓶に TMOEAA 0.04 g とそれぞれのノニオン界面活性剤 0.15 g 以上を 2 M の塩酸溶液40 mL に加えて 10種のサンプルを作成し、回転攪拌機(アズワン製、Mix Rotor MR-5) を用いて混合攪拌した。ブランクとして、脱イオン水 40 mL に TMOEAA 0.04 g および 2 M の 塩酸溶液に TMOEAA 0.04 g の 2 つも実験に供した。攪拌時間は 50 日間。攪拌開始から 2 日後 と 50 日後に 30 分以上静置して溶液観察した。

回分式泡沫分離

塔内径 3 cm、塔高 30 cm の泡沫分離装置に、上記溶液のうち選定した溶液 40 mL を入れて、 空気流量 50 mL/min で泡沫分離を実施した。

起泡クロマト分離

POOPE(#3)を界面活性剤として選定し、POOPE 2.5 g/L、TMOEAA 1.0 g/L の濃度で 2.5 M 塩

酸溶液に加えて界面活性剤溶液 500 mL を調製し4ヶ月攪拌した。金属溶液は各金属濃度 20 ppm の Rh、Cu の 3 M 塩酸溶液を調製した。塔内径 3 cm、塔高 80 cm の起泡クロマト分離装置を用いて、空気流量 50 mL/min、塔底に供給するベース液流量 15.8 mL/min、泡沫相へ滴下した金属溶液ならびに界面活性剤溶液流量はともに 0.26 mL/min とした。

2.11 NMR による Ga(III)とノニオン界面活性剤の相互作用の解析

Ga と界面活性剤の相互作用は NMR で観測できる可能性がある。しかしながら PONPE には 分子量分布があり、NMR による詳細なピークシフトを観測するには不適である。そこで、分 子量分布のない、PONPE10 に相当する deca (oxyethylene) nonononylphenyl ether (DONPE) を 合成し、得られた DONPE と Ga(III)の相互作用について NMR を用いて検討した。

2.11.1 deca(oxyethylene)nonononylphenyl ether (DONPE)の合成

分子量分布のない PONPE10 に相当する DONPE は以下の3ステップで合成された。

ステップ1 tri(ethylene glycol) 2-chloroethyl nonylphenyl ether の合成

窒素雰囲気下 1.22 g の水素化ナトリウム(50.9 mmol) を 100 mL の脱水 tetrahydrofuran (THF) に分散した。これに 12.4 mL の nonylphenol (53.5 mmol) を滴下し、室温で 12 時間撹拌したとこ ろ均一な溶液になった。これを-78℃に冷却し、9.50 mL の di(ethylene glycol) bis(2-chloroethyl) ether (48.5 mmol)を滴下した。冷却を停止し室温で 24 時間撹拌した後、24 時間還流した。この 溶液を濃縮し、Kugel-Rohr 蒸留(200℃ / 0.02 mmHg)したことにより 5.61 g の目的物を無色液体 として得た (収率 27.9%)。

ステップ2 deca(ethylene glycol) benzyl nonylphenyl ether の合成

窒素雰囲気下 69.5 mg の水素化ナトリウム(2.90 mmol) を 3.0 mL の脱水 THF に分散した。こ れに 1.00 g の nonylphenol (2.68 mmol) を滴下し、室温で 12 時間撹拌したところ均一な溶液にな った。これを-78℃に冷却し、1.23 g の tri(ethylene glycol) 2-chloroethyl nonylphenyl ether (3.00 mmol)を滴下した。冷却を停止し室温で 24 時間撹拌した後、24 時間還流した。この溶液を濃縮 し、クロロホルムに溶解して氷浴中で 3 時間冷却した。この溶液を濾過し、分取 SEC (カラム: Shodex 社製 K-5002 を 2 本連結) で精製することにより 0.647 g の目的物を無色粘稠液体とし て得た (収率 32.1%)。

ステップ3 DONPE の合成

窒素雰囲気下 50 mL のナスフラスコ中で 39.9 mg の Pd/C 触媒 (Pd 10wt%) を 3.0 mL のメタ ノールに分散させ、ここに 0.395 g の deca(ethylene glycol) benzyl nonylphenyl ether を加えた。ア スピレータを用いて減圧にし、水素風船から水素を導入して室温で撹拌した。サンプリングし ¹H-NMR で追跡して 40 時間で反応が完了したことを確認し、反応混合物中の触媒を濾別して得 た溶液の溶媒を減圧留去することにより、0.299 g の目的物を無色粘稠液体として得た(収率 85.8%)。

2.11.2 DONPE 共存下における⁷¹Ga-NMR 測定と化学量論比の見積

DONPE と GaCl₃ をそれぞれ 6 M 重塩酸に溶解し、0.1 M 溶液とした。この溶液を用いて [DONPE+Ga]=0.10 M, [DONPE] / [GaCl₃]=10 / 0,9 / 1,8 / 2, ..., 1 / 9,0 / 10 の溶液を調製し、そ れぞれの溶液について ¹H、¹³C および ⁷¹Ga-NMR 測定を行った。

2.12 気泡固定型マイクロチップの気泡保持特性に関する検討

2.12.1 PDMS 製チップを用いた場合

従来のポリジメチルシロキサン (PDMS) で作製したマイクロチップ(気泡固定用の凹部の 幅は約 0.4 mm) に気泡を固定した際に、試料溶液を通液すると時間とともに気泡の大きさが縮 小するという現象が見られることがあった。気泡縮小の原因として、通液している溶液への気 体(酸素、窒素)の溶解が考えられたため、溶存空気量が気泡体積の縮小に与える影響を調査 した。試料溶液は、溶存酸素量が 64 %と 100 %の蒸留水、蒸留水に 18 mM PONPE20 を添加し たものを用意した。それぞれの試料溶液には、気泡表面の可視化のために 8 μMとなるようにロ ーダミン B を添加した。

2.12.2 ガラス製チップを用いた場合

PDMS は比較的気体透過性の高い材質として知られている。そこで、PDMS の代わりにガラス製のチップ(気泡固定用の凹部の幅は 0.5 mm)を作製して同様の実験を行った
2.13 流動電位法を用いる試料-PONPE 間相互作用の解析

流動電位とは、電荷を有する固体面に接する流体が動くとき、固体面に沿って生じる電位差 である。すなわち流動電位を測定することで表面の電荷状態を判断することができる。H24 年 度には、相互作用の大きさの評価を行った³⁴⁾が、相互作用の詳細なメカニズムについては調査 が不十分であった。今回の実験では PONPE を内壁に被覆したキャピラリー管を用い、種々の 溶液を送液した際に発生する流動電位(E)を測定した。測定した流動電位からゼータ電位(*G*)、表 面電荷密度(*o*)を算出して PONPE の電荷状態を測定し、その結果より PONPE と種々の化学種 の相互作用について解明を行った。

流動電位測定に用いた装置の概略を図 18 に示した。ヘリウムガスによる加圧を行い、キャ ピラリー両端間に生じる電位差を、銀塩化銀電極対およびデジタルマルチメーターを用いて測 定を行った。測定した流動電位から次式を用いてゼータ電位の推定を行った。

$$\zeta = \frac{K\eta}{s\Delta P}E \quad (1)$$

ただし、K、 η 、 ε 、 ΔP はそれぞれ、溶液の電気伝導度、溶液の粘性率、溶液の誘電率、キャピ ラリー両端間の圧力差である。今回の実験では溶液の電気伝導度は電気伝導度計(SevenGoPro SG7, Mettler Toledo)を用いて測定した。また、粘性および溶液の誘電率は 25 °Cにおける水の 値 8.9×10⁴ [Pa·s]、 6.95×10⁻¹⁰ [F/m]をそれぞれ用いた ³⁵⁾。計算で得られたゼータ電位と表面電 荷密度の関係は次式で与えられる。

$$\zeta = \frac{\sigma}{sw} \quad (2)$$

①加圧用ヘリウムボンベ
 ②排気バルブ
 ③溶液供給バイアル
 ④銀塩化銀電極
 ⑤キャピラリー
 ⑥溶液受給側バイアル
 ⑦排気用キャピラリー
 ⑧デジタルマルチメーター
 ⑨コンピューター

図18 流動電位測定装置の概略

なお、κは電気二重層厚さに関連する Debye パラメータであり、N_A、z、e、C、k、T はそれぞ れアボガドロ数、イオンの電荷数、電気素量、イオン濃度、ボルツマン定数、温度である。

測定に用いるキャピラリーは、(1)未修飾キャピラリー(表面にはシラノール基が存在)、 (2)PONPE を疎水性相互作用により被覆するためのオクタデシル基(ODS)で内壁処理を行った キャピラリー(表面にはオクタデシル基および残存シラノール基が存在)、および、ODS 修飾 キャピラリーを PONPE で被覆したキャピラリーの三種類を用いた。

2.13.1 流動電位法の性能評価

流動電位測定を用い未修飾キャピラリーのく電位を様々なpHの溶液にて測定し、表面電荷の変化を観測した。

2.13.2 HCI が PONPE に与える影響

PONPE と金属種との相互作用は、プロトン付加により正に帯電したオキシエチレン鎖に対し て、負に帯電した金属塩化物錯体が静電的に相互作用を行うメカニズムが考えられる。そこで まず、塩酸濃度が PONPE の電荷状態に与える影響について測定を行った。

まずは、0~300 mM の塩酸溶液を試料として用い、流動電位を測定し、その値を用いて表面 電荷密を測定した。なお、2.13.1 節の検討結果から、酸性条件下ではシラノールに対してプロ トンが付加することがわかっている。そのため、ODS 修飾を行ったキャピラリー(PONPE 未 被覆)と、ODS 修飾キャピラリーに対して PONPE 被覆を行ったキャピラリーの二種類を用い て実験を行い、その違いを評価した。

さらに、表面電荷に対するポリオキシエチレン鎖の影響を調べるために、平均オキシエチレン鎖長が10、15、20のPONPE(それぞれ、PONPE10、PONPE15、PONPE20)をODS修飾キャピラリーに被覆し、表面電荷密度の違いを調べた。なお、上記の検討結果より、100 mM 塩酸溶液を用いて測定を行った。

2.13.3 ポリオキシエチレン鎖へのプロトン付加の安定性の評価

ポリオキシエチレン鎖は、ナトリウムやカリウムなどのアルカリ金属と相互作用をすること が報告されている³⁰。実試料を取り扱う際には、試料溶液中にこれらのアルカリ金属が存在す ることも考えられる。したがって、ナトリウムやカリウムが存在する条件における、ポリオキ シエチレン鎖へのプロトン付加の安定性の評価を行った。

初めに、塩酸を含まない条件において、ナトリウムやカリウムが表面電荷に与える影響について検討を行った。

2.13.4 PONPE-陰イオン間相互作用

起泡クロマトで回収対象としているガリウムと金などの金属種は、塩酸濃度の増加に伴い塩 化物錯体を形成し負の電荷を持つことが報告されている。前述したとおり、PONPEは、塩酸溶 液中でオキシエチレン鎖にプロトン付加が起きていると考えられる。したがって、負電荷を有 する化学種は、正の電荷を有するオキシエチレン鎖に静電相互作用により捕捉されると考えられる。そこで、PONPE20と陰イオンとの静電相互作用を、種々の陰イオンを添加することによる表面電荷密度の変化から測定した。

2.13.5 PONPE-金属イオン種との相互作用

プロトン化したポリオキシエチレン鎖と陰イオンの静電相互作用を測定可能であることが確認されたため、金属イオン種を試料として相互作用の測定を行った。PONPE20で被覆したキャピラリーを用い、塩化ガリウム(III)、塩化亜鉛(II)、塩化金酸(III)ナトリウムを、それぞれ 0-50 mMの濃度で 100 mM の塩酸溶液に溶解させた試料溶液を用いて、金属塩添加量に対する表面電荷密度の変化を調べた。

2.14 泡沫相内液流動の数値解析

2.14.1 泡沫分離装置と泡沫相内流動状態の可視化

先述のように、起泡クロマトにおける分離向上の鍵は泡沫相内の液流れの適切な制御であり、 泡沫相内に導入する界面活性剤溶液と金属溶液の相内での流動状態を予測することができれば、 操作条件、導入位置、スケールアップに有用な知見を与える。泡沫相内部での流体の速度分布 を直接実測することは困難であるため、数値シミュレーションが有効である。そこで、泡沫分 離装置内の数値解析モデルを構築し、実験結果との比較検討を行った。泡沫に吸着しない夾雑 金属のモデルとして、染料のメチルレッドを用いて金属溶液の導入部から供給したところ、図 19に示すように導入点から下向きに流れることが確認された。図20はGa(III)/Fe(III)分離の実 験装置概略図で、図21には図19と別の条件での泡沫相内液流動の可視化実験結果の一例を示 す。数値シミュレーションにあたり、計算結果とこのような可視化実験およびGa(III)/Fe(III)の 分離実験の結果を比較検討して、実験結果を予測できるモデルの確立を目標とした。

2.15 解析モデル

先に述べたように、泡沫分離装置では界面活性剤溶液の導入による洗浄効果により、夾雑金 属の分離が促進されるので、界面活性剤溶液導入部から金属溶液導入部までの位置における流 体挙動が特に重要となる。すべての範囲を計算領域としてしまうと、計算負荷が莫大となって しまうので、本研究では特に重要な先述の領域に着目し、二次元数値解析を行った。図 22 に 本解析モデルを示す。図の六角形の領域が泡沫で、水色の領域が泡沫間隙部である。この間隙 部を流れる流体に対して数値解析を行った。

2.15.1 解析条件

本研究の解析では以下の仮定を用いた

- 1. 流体は粘性を持つ非圧縮性流体である。
- 泡沫はすべて六角形である。
 図 23 のように実験において、泡沫は主に六角形で観測されている。計算を単純化するためにこの仮定を用いた。
- 泡沫は静止しており、変形、回転しない。
 界面活性剤の濃度が十分高い場合、泡沫表面の動きは十分遅くなり、動いていないものと みなせる³⁷⁾ので、この仮定を用いた。
- 泡沫相は静止しており、動かない。
 移動相を考えると、計算領域の境界条件の設定が非常に複雑で困難なものとなるので、この仮定を用いた。

2.15.2 解析格子

解析格子を図 24 に示す。長方形領域(プラトー境界)には構造格子、三角形領域(プラトー境界のジャンクション)には非構造格子を用いて、格子の歪みが小さくなるようにした。格子点数は約 10 万-760 万点となった。

図 22 二次元数値解析モデルの(a)概念図と(b)拡大図

図 23 実験で観測された泡沫相

図 24 本解析格子の(a)概略図と拡大図;(b)構造格子、(c)非構造格子

2.16 基礎方程式

用いた基礎方程式を以下に示す。

<u>連続式</u>

$$\nabla \cdot \boldsymbol{u} = 0 \tag{2-1}$$

<u>Navier-Stokes</u> 式

$$(\boldsymbol{u}\cdot\nabla)\boldsymbol{u} = -\frac{1}{\rho}\nabla p + \nu\nabla^2\boldsymbol{u} + \boldsymbol{g}$$
(2-2)

染色液の移流拡散方程式

$$\frac{\partial C}{\partial t} + (\boldsymbol{u} \cdot \nabla)C = D\nabla^2 C \tag{2-3}$$

ここで、*u* は速度ベクトル、*p* は圧力、*p*は流体の粘度、*v*は流体の動粘度、*C* は染色液の濃度、*D* は染料の水中での拡散係数を示している。ここで、レイノルズ数 *Re* は以下のように、流入境界液膜径と流入境界速度を基準にして以下の式で定義される。

<u>レイノルズ数 Re</u>

$$Re = \frac{u_{\rm in}d}{v}$$
(2-4)

2.17 境界条件

以下に本解析で用いた境界条件を示す。

<u>流入境界面(Inlet boundary)</u>

速度:一様速度 $u_x = 0, \quad u_y$:固定値 (Inlet value), $u_z = 0$ (2-5)

圧力:勾配ゼロ

$$\frac{\partial p}{\partial n} = 0$$
 (2-6)
ここでnは面に対する法線ベクトルである。
淋出境界面 (Outlet boundary)
速度:対流流出条件
 $\frac{\partial u}{\partial n} = 0$ (2-7)
圧力:固定値
 $p = 0$ (2-8)
装置壁表面
速度:すべり無し条件
 $u_x = 0, u_y = 0, u_z = 0$ (2-9)
圧力:勾配ゼロ
 $\frac{\partial p}{\partial n} = 0$ (2-10)
泡沫表面
2.2.1節の解析条件で述べたように、泡沫表面は固定したものと仮定されているので、境界条
件としてすべり無し条件 (no-slip condition) を採用した。
速度:すべり無し条件

$u_x = 0$,	$u_y = 0, u_z = 0$	(2-11)
圧力:	勾配ゼロ	

$$\frac{\partial p}{\partial n} = 0 \tag{2-12}$$

2.18 解析物性值

表4に本解析に用いた界面活性剤溶液、染色液の物性を示す。

	表 4 流位	本および染料の物性	值
流体	密度 $ ho$ [kg/m³]	動粘度v[m²/s]	染料の水中拡散係数 $D[m^2/s]$
界面活性剤溶液	1.0×10 ³	1.0×10 ⁻⁶	—
染料溶液	1.0×10^{3}	1.0×10 ⁻⁶	1.5×10 ⁻⁹

2.19 解析手法

基礎式と境界条件は有限体積法により離散化を行った。また、空間の離散化に対しては2次 精度中心差分法、時間の離散化に対しては1次精度陰的 Euler 法を適用した。SIMPLE アルゴリ ズムを用い、速度-圧力場の連成を行うことによって離散化された方程式を解析した。各成分の 計算の反復法に関しては共役勾配法を適用した。

3. 結果及び考察

3.1 スケールアップによる高度分離発現メカニズムの解明

3.1.1 スケールアップした場合の最適分離条件の探索

図 25 に分離結果を示す。Ga(III)回収率は金属溶液流量が 1.16 mL/min まではほぼ 100 %の 値であったが、これを超えると Ga(III)回収率は低下した。Fe(III)回収率は調査した全ての流量 範囲で十分低い値であった。Ga(III)/Fe(III)分離度の変化は比較的小さく 100~300 の値となり、 高い回収率が得られた 1.1~1.16 mL/min では約 300 であった。以上から塔内径 6 cm での Ga(III) 分離の最適操作条件を表 5 のように決定した。

図 25 塔内径 6 cm における金属溶液流量に対する各金属の回収率と分離度の変化

塔内径 6 cm
6
1.71
1.16
1.2
2.0
160
11
300

表 5 塔内径 6 cm における最適分離条件

3.1.2 液ホールドアップの測定と 泡径との相関

代表的な泡沫の外観と泡径を変化 させた場合の液ホールドアップの値 を図 26(a~c)に示す。写真(a)はガス 分散器として目の細かい G2 を用い た場合の泡径が小さい場合で、液ホ ールドアップは 0.085 であった。写 真(b)は最も目の粗い分散器である G0を用いた場合で、液ホールドアッ プは 0.005 であった。液ホールドア ップは泡径の増大とともに大きく低 下し、ガス分散器の選択により泡径 と液ホールドアップを制御できるこ とがわかった。

図 26(a~c) 泡沫相の外観と液ホールドアップ vs 泡径

3.1.3 泡径の変化が Ga(III)分離挙動に及ぼす影響

表 6 に泡径による分離挙動の変化を示す。泡径が 1.8 mm からわずかに小さくなるだけで、 Ga(III)濃縮比と Ga(III)/Fe(III)分離度は大幅に低下した。泡沫液流量は泡径の低下により約1オ ーダー増加しており、この増加が Ga(III)濃縮比の低下を導いた。Ga(III)/Fe(III)分離度の低下は、 泡径 1.4 mm の泡沫相に供給された界面活性剤溶液の一部が上方に流されてしまったことによ り、洗浄効果が低下したためと考えられる。このような洗浄効果と泡径の関係について、分離 性能の高い場合と低い場合のそれぞれの泡沫相で液ホールドアップの測定を行って考察する。

泡径 [mm]	1.8	1.4			
泡沫液流量 [mL/min]	0.071	0.69			
Ga(III)濃縮比 [-]	15	1.8			
Ga(III)/Fe(III)分離度 [-]	310	10			

表 6 泡径による分離挙動の変化

3.1.4 泡沫相内液ホールドアップの測定

泡径 1.8 mm で操作した場合に塔中心位置での泡沫相高さ方向の液ホールドアップ分布を図 27 に示す。塔上部では重力による排水が進むため液ホールドアップは低く、下部では高い値 となる。界面活性剤溶液の導入により液ホールドアップは増加し、高さ 40 cm の点では壁面で わずかに高い値となった。塔下部では壁面近くでホールドアップは著しく高くなり、塔下部で は液が壁面を優先的に流れているためと考えられる。塔下部での偏流は充填層内を流下する液 体の典型的な特徴であり、上部では液体が充填物の間隙を流れるが、一旦壁に到達すると流動 抵抗の大きい充填層内には戻らず、流動抵抗の小さい壁面を流下する。

塔の半径方向での液ホールドアップ分布について考察するため、図 27 のデータを中心から の距離を横軸にとりプロットしたものを図 28 に示す。塔上部では半径方向の液ホールドアッ プの分布がフラットであった。これは、泡沫相での下向きの液流れが塔の断面にわたって一様 に生じる、栓流的な状態であることを示している。泡径 1.8 mm では高い分離性能が得られて おり、泡の間の液体中に含まれる夾雑物を効果的に洗浄するには、このような栓流が望ましい ことがわかる。また塔下部では壁近傍で液ホールドアップが高くなったが、このことは概念図 に示すように、泡沫相内の壁面近傍を液体が優先的に流れていることを反映している。

図 28 塔半径方向での液ホールドアップ分布と液の下降流の概念

泡径 1.4 mmで操作した場合の泡沫相の液ホールドアップ分布を泡径1.8 mmの場合と比較し、 分離性能と液ホールドアップ分布の関係について考察する。図 29 は、泡沫相高さ方向のホー ルドアップを縦軸にプロットしたもので、右図に泡径1.8 mmの結果を示す。泡径1.4 mmでは 液ホールドアップの値が全体的に大きく、特に塔上部での液ホールドアップが大きくなった。 このような高い液ホールドアップは低い Ga(III)濃縮比を導く。また、半径方向の液ホールドア ップが大きく変化し、壁に向かうにつれて増大した。特に界面活性剤溶液の導入位置の直下で ある高さ 40 cm の位置での半径方向の変化が大きくなった。これは栓流とは大きく異なる液流 れが生じていることを示している。

図 30 は、塔中心からの距離を横軸にとり液ホールドアップの半径方向での分布を示したものである。泡径により液ホールドアップの値と分布形状が大きく異なり、分布形状が分離特性を良く反映していることがわかる。優れた分離特性が得られた泡径 1.8 mm の場合と比較して、 泡径 1.4 mm では塔上部での分布の傾きが非常に大きく、塔下部での泡沫の液ホールドアップ の値が著しく大きいことから「湿った泡沫」が形成されている。

泡径の値の差は 0.4 mm にも関わらず分離性能が大きく異なり、泡沫相の液ホールドアップ 分布は全く異なった。したがって、液ホールドアップ分布の測定は、泡沫相を特徴づけるため に有効であり、塔上部で塔の半径方向での液ホールドアップの変化が小さく、液ホールドアッ プの小さい泡沫相を形成させることで、優れた分離性能が得られることがわかった。

図 30 異なる泡径での塔半径方向の液ホールドアップ分布の比較

泡沫相の液ホールドアップが小さくなると、泡の形状は球から多面体に変化し、隣の泡と面 接触するようになり、両側の泡の界面で挟まれた液膜が形成された。重力による排水が進むに つれて、この液膜厚みが小さくなり毛管力が強くなる。泡沫相の上部でこのような液体の薄膜 が多い領域ができ、その領域で塔の中心部に液体が供給された場合には、毛管力により液体は すばやく半径方向に広がりながら重力の影響を受けて流下すると推測される。塔内径 6 cm の塔 の中心の1点から界面活性剤溶液を供給しても、夾雑物の洗浄に効果的な栓流的な流れが形成 されたのは、このような理由によると考えられる。

塔内径 3 cm と 6 cm での界面活性剤溶液による洗浄効果の違いについて考察する。どちらの 塔でも、液ホールドアップの小さい泡沫相を形成させれば、塔の中心に供給された界面活性剤 溶液は半径方向に広がりながら、重力の影響を受けて流下する。図 31 の左図で示すように、 塔内径 6 cm では塔の中心すなわち溶液の導入位置と装置の壁面との距離が長いため、導入さ れた溶液の多くが壁に接触する前に下降する。一方塔内径 3 cm では、図 31 の右図のように、 導入された溶液の多くが壁に接触してしまい、先述で論じたように一旦液が壁に接触すると圧 力損失の小さい壁面に沿って流れ、泡沫相内には戻らない。そのため塔内径 6 cm と比較して 洗浄に効果的な、泡沫相を下降する流れが弱くなってしまうと考えられる。したがって、泡沫 相への溶液の導入点と装置の壁面との距離は、洗浄に効果的な下降流を形成するためのキーポ イントであると考えられ、栓流的な流れを得るための、適切な溶液導入量、液ホールドアップ と塔内径の相関関係があると推測される。

図 31 泡沫相に導入された溶液が相内を下降する流量分布の概念図

3.2 市販 PONPE20&10 の分画 10 種における構造分析並びに起泡クロマト分離性能の比較3.2.1 市販 PONPE20, PONPE10 の分画

PONPE20 の 10%クロロホルム溶液を調製し、この溶液を島津製作所製液体クロマトグラフィーで分画することにより、フラクション1~4を得た。同様に PONPE10 も分画し、フラクション5~10を得た。これらのフラクションについて¹H NMR 測定と GPC 測定(図 32)を行うことでオキシエチレン, OE, ユニット数とポリスチレン換算分子量を求めた(表 7)。

3.2.2 市販 PONPE20, PONPE10 の分画 10 種を用いた起泡クロマト分離(塔内径 3 cm)における Ga(III)/Fe(III)分離

分画後の界面活性剤の各フラクションによる起泡クロマト分離結果を表8 に OE 基数の降 べきの順で示す。比較対象として分画前の PONPE20 と 10 を用いた分離実験の結果も示す。ま た実験中の泡沫および調製した試料液の外観を図 33 に示す。H23 年度までに使用したものと 別のガス分散器を用いて実験を行ったところ、以前(泡径 1.5 mm)と比べて大きい泡(泡径 2 mm) が発生した。また、ガス分散器の個体差に起因すると思われるが、泡径にばらつきが生じ、H23 年度までと比べて鬆が発生しやすくなった。各フラクションを用いて泡沫を生成させたところ、 フラクション番数が高くなるにつれて大きな鬆が発生する傾向であった。具体的には、#1~#4 までは細かい鬆が頻繁に発生し、鬆は偶で大きく成長した。#5~#6 では泡沫はさらに不安定に なり、細かい鬆が大きく成長したため、泡沫回収が断続的になった。#7 以上では、破泡が著し くなったため空気流量を段階的に大きくして分離実験を行った。特に#9~#10 では泡沫の安定 性は著しく低下したため大幅に空気流量を上げて実験したが、それでも塔上部で泡が粗大化し て間欠的な回収となった。また、#9 では回収した泡沫液を希釈すると自濁し、#10 では実験前 に調製した溶液そのものが自濁していた。 比較的泡沫が安定していた#1~#6の分離結果について、#3が最も高いGa(III)回収率を示し、 ポリオキシエチレンの鎖長が長くなることにともなう顕著な傾向は見られなかった。Ga(III)濃 縮比では、比較対象として用いた PONPE20 を除いて#6 で高い値となった。

図 32 分画した PONPE の GPC クロマトグラム

	NMR		G	GPC		
No.	n	Rt (min)	M_p	M _n	$M_{\rm w}$	$M_{\rm w}/M_{\rm n}$
1	32.4	11.57	2734	2721	2760	1.01
2	24.0	11.86	2260	2214	2244	1.01
3	19.5	12.14	1881	1843	1880	1.02
4	16.1	12.41	1594	1547	1598	1.03
PONPE20	20.8	11.95	2130	1913	2045	1.07
5	12.5	12.74	1312	1296	1313	1.01
6	10.7	12.99	1137	1131	1147	1.01
7	9.1	13.21	1005	987	1002	1.02
8	7.8	13.52	848	872	888	1.02
9	6.5	13.76	750	758	773	1.02
10	5.2	14.02	657	646	658	1.02
PONPE10	10.0	12.91	1190	1015	1116	1.10

表 7 分画した PONPE の OE ユニット数とポリスチレン換算分子量

また Ga(III)と各金属との分離度では#3 が一番良好であり、総合的な分離特性では、#3 が Ga(III) の分離回収に最適と判断できる。一方、比較対象として用いた PONPE20 では Fe(III)回収率が 3.57 %と最も高く、Ga(III)/Fe(III)分離度は一番低い値となった。この結果より、PONPE20 の市 販品をオキシエチレン鎖長により分画すると、市販品での分離性能を上回る性能を持つフラク ションがある事がわかり、オキシエチレン鎖長を整えることのメリットが確認された。 ただし、界面活性剤の分画操作には非常に長い時間を必要として、半年間の分画操作で採取 された量が0.5gに満たないフラクションもあった。そのために全てのフラクションの分離条件 を等しい界面活性剤濃度にそろえることができなかったため、厳密に見れば分離性能の比較に は課題が残されている。

濃度	界面活性剤	分画	Air [ml/min]	Ga 回収率	Fe 回収率	Cu 回収率	Zn 回収率	Ga 濃縮比	Ga/Fe	Ga/Cu	Ga/Zn
0.424g/500ml	#1	PONPE20 f22	50	25.2%	0.75%	0.06%	0.08%	1.25	33.8	410	299
0.508g/500ml	#2	PONPE20 f33	50	38.4%	1.14%	0.07%	0.04%	1.35	33.8	583	878
0.5g/500ml	PONPE20	無し	50	32.8%	3.57%	0.09%	0.28%	1.70	9.17	362	118
0.520g/500ml	#3	PONPE20 f44	50	45.9%	0.94%	0.05%	0.05%	1.47	<u>49.1</u>	<u>903</u>	<u>928</u>
0.468g/500ml	#4	PONPE20 f55	55	31.2%	1.17%	0.08%	0.07%	1.21	26.6	410	421
0.508g/500ml	#5	PONPE10 f11	50	35.2%	1.04%	0.07%	0.06%	1.29	33.9	500	641
0.505g/500ml	#6	PONPE10 f22	50	38.1%	1.31%	0.05%	0.06%	1.53	29.1	818	633
0.506g/500ml	#7	PONPE10 f33	80	53.3%	1.50%	0.11%	0.08%	1.31	35.5	485	677
0.504g/500ml	#8	PONPE10 f44	80	49.2%	1.19%	0.23%	0.08%	1.13	41.4	212	623
0.471g/500ml	#9	PONPE10 f55	150	87.8%	9.67%	2.22%	2.52%	1.31	9.07	39.6	34.9
0.346g/500ml	#10	PONPE10 f66	220	114%	106%	107%	107%	0.59	1.07	1.06	1.07
0.5g/500ml	PONPE10	無し	50	11.8%	0.55%	0.12%	0.12%	0.60	21.4	98.0	97.3

表8 各フラクションを用いた起泡クロマト分離結果

#1の泡沫の外観

#5 の泡沫の外観

#6 の泡沫の外観

#10 の泡沫の外観

#9 と#10 の溶液の外観(実験前)#1~#9 は透明の溶液だが、#10 は白濁していた

図 33 各フラクションを用いて生成された泡沫の外観

3.3 低圧高速液体クロマトグラフィーを用いた金属と界面活性剤との相互作用の評価

3.3.1 低流路抵抗ポリ(ST-co-DVB)モノリスカラムの調製

低転換率熱重合により、低流路抵抗ポリ(ST-co-DVB)ポリマーモノリスカラムを調製した。これまでに、低転換率熱重合により調製したポリ(ST-co-DVB)ポリマーモノリスカラムはNischangらにより報告されている²⁹⁾が、流路抵抗が高く LP-HPLC に適さないために、ここでは低流路抵抗を重視して再検討を行った。はじめに、反応溶液の組成について、ST (10-24 wt%), DVB

(10-16 wt%), DDOL (42-56 wt%), TOL (10-24 wt%)の間で検討を行ったところ、21.9 wt% ST,
14.6 wt% DVB, 44.5 wt% DDOL, 19.1 wt% TOL で良好な分離性能と低流路抵抗が得られたため、
以降この組成を用いて検討を行った。

低転換率熱重合では、重合時間が転換率を支配する重要な変数であるため、様々な重合時間 (0.5, 1.0, 1.5, 3.0, 4.5, 9.0, 24 h)でカラムを調製した。調製したカラムを走査型電子顕微鏡(SEM, JXA-8800, JEOL, 東京)で観察した結果を図 34 に示す。重合時間 1-24 h のカラムでは、カラ ム全体にポリマーモノリスが生成した。最も重合時間の短い 0.5 h で調製したカラムは、十分な 強度をもつポリマーモノリスが生成しなかったので、以降の検討から除外した。Py-GC で定量 した ST と DVB の転換率は、重合時間 1.0 h のカラムではそれぞれ 18 %と 35 %、重合時間 24 h では 98 %と 97 %だった。

調製したカラムの分離性能と流路抵抗を評価するために、送液ポンプを用いる通常の HPLC 装置を用い、t₀マーカーとしてウラシルを添加した 5 種類のアルキルベンゼン標準試料を定組 成移動相(アイソクラティック)条件(ACN/水 = 70/30, v/v)で分離した。図 35 に重合時間 1.5 h(転換率 ST: 33 %, DVB: 59 %)と 24 h で調製したカラムの分離結果を示す。重合時間 24 h のカラムでは、個々のアルキルベンゼンの分離はできず、ひとつの重なった広がりの大きいピ ークとなった。これに対して、1.5 h のカラムではいずれの試料成分に対しても鋭いピークが得 られた。

重合時間と線流速 1.0 mm/s におけるウラシル、トルエン、*n*-プロピルベンゼンの理論段数の 関係を図 36 に示す。トルエン、*n*-プロピルベンゼンの理論段数はいずれも重合時間 1.5 h のカ ラムで最も高く、それぞれ 63000 段/m, 63000 段/m だった。理論段数は重合時間の増加に伴い 減少し、重合時間 9 h では、トルエンと *n*-プロピルベンゼンの理論段数はそれぞれ 7600 段/m と 3900 段/m だった。保持されないウラシルでは、重合時間 1.5 h で最も高い理論段数 40000 段 /m が得られた。重合時間の増加に伴い理論段数は徐々に低下傾向にあり、重合時間の最も長い 24 h では 31000 段/m であった。このような理論段数の変化傾向は、これまでに報告されてい る低転換率重合によるポリマーモノリスカラムの理論段数の傾向と一致した。図 36 に重合時 間と線流速 1.0 mm/s における背圧の関係を示す。背圧は重合時間の増加に伴い増加した。最も 高い分離性能が得られた重合時間 1.5 h での背圧は 0.14 MPa だった。この値は透過性に換算す ると 2.8×10⁻¹³ m²に相当し、LP-HPLC に適する十分高い浸透性、すなわち低い流路抵抗を示し ている。

図 34 調製したカラム断面の SEM 像

図 35 重合時間 1.5 h と 24 h のカラムの線流速 1.0 mm/s におけるアルキルベンゼン分離結果 カラム長 8 cm、移動相 ACN/水=70/30 (v/v)、試料 (1) ウラシル、(2) トルエン、(3) エチルベ ンゼン、(4) *n*-プロピルベンゼン、(5) *n*-ブチルベンゼン、(6) *n*-ペンチルベンゼン

図 36 重合時間と理論段数(ウラシル,トルエン,n-プロピルベンゼン),および重合時間と 理論段数の関係。クロマトグラフィー条件は図 35 と同じ。エラーバーは最大・最小値,シン ボルは平均値を示す(n=2)

重合時間 1.5 h のカラムについて、カラム内再現性、カラム間再現性、耐酸性を評価した。線 流速 1.0 mm/s における、*n*-プロピルベンゼンの保持時間、保持比、理論段数のカラム内再現性 は RSD (*n*=5) で 0.01 %, 0.2 %, 3 %だった。さらに、*n*-プロピルベンゼンの保持時間、保持比、 理論段数、背圧のカラム間再現性は RSD (*n*=3) で 0.5 %, 1 %, 4 %, 10 %だった。このように、 良好なカラム内およびカラム間再現性が得られた。また、カラムは少なくとも 5 ヶ月間の 6 M HCl の使用では劣化しなかった。

以上の検討の結果得られた、最も分離性能が高く、十分低い流路抵抗が得られた重合時間1.5hのカラムを、LP-HPLCを用いた高濃度HCl中における金属と界面活性剤の相互作用の評価に用いた。

3.3.2 ポリオキシエチレン鎖長と金属イオンの分離性能との相関

上述の最適条件で調製したポリ(ST-*co*-DVB)モノリスカラムに平均 POE 鎖長 3、7.5、15、 20 の PONPE を被覆した。ブレイクスルー曲線から算出したカラム 1 本当たりの PONPE 被覆 量 (N_{PONPE}) と 6 MHCl 条件でのこれらのカラムの Au(III)の交換容量 ($N_{\text{Au(III)}}$) を図 37 に示す。 N_{PONPE} は POE 鎖長の長い PONPE ほど少なかった。この理由として、POE 鎖長の長い PONPE ほど親水性が高くなる、あるいは 1 分子あたりの分子サイズが大きくなることが可能性として 挙げられる。一方、 POE 鎖長の長い PONPE を被覆したカラムほど PONPE の被覆量は少ない にも関わらず、 $N_{\text{Au(III)}}$ は大きくなることがわかった。図 37 に示すように、各 PONPE における $N_{\text{Au(III)}}/N_{\text{PONPE}}$ のモル比は PONPE3 で最も小さい 0.06 で、PONPE20 で最も大きい 1.4 であり、両 者は約23倍の開きがあった。このように、POE 鎖長が長い PONPE ほど強く Au(III)と相互作用 することがわかった。

図 37 PONPE3-20 のカラム1本あたりの被覆物質量と6 M HCl 中における Au(III)の交換容量 (左軸)、及び両者の比(右軸)

さらなる検討のため、カラム1本当たりのオキシエチレンユニットの物質量(N_{OE} 、 N_{PONPE} × 平均 OE ユニット数)を算出した。図 38 に示すように、全体的な傾向として PONPE3-15 を被 覆したカラムでは、POE 鎖長が長くなるに伴い N_{OE} は大きくなることがわかる。一方、PONPE15 と PONPE20 を被覆したカラムの N_{OE} の値はほぼ同一であった。また、図に示す $N_{Au(III)}$ と N_{OE} の モル比について、 $N_{Au(III)}/N_{OE}$ は PONPE3 で最も小さく、他の PONPE7.5-20 の 1/3 程度の値であ った。一方、PONPE20 の $N_{Au(III)}/N_{OE}$ は PONPE7.5、15 と比較して 20 %程度大きかった。この結 果から、Au(III)と PONPE の相互作用は、PONPE7.5-20 において POE 鎖の長さへの依存は小さ いことがわかった。一方で、PONPE3 では $N_{Au(III)}/N_{OE}$ の値が小さいことから、短い POE 鎖では Au(III)との相互作用が小さいことが示唆された。

このように、ある程度の長さをもつ POE 鎖が Au(III)との相互作用に有利であることから、 分子鎖の自由度が相互作用に影響を与えていると考えられる。

図 38 カラム1本当たりの OE ユニット物質量と6 M HCl 中における Au(III)の交換容量との 比

3.3.3 PONPE と金属イオンとの相互作用のクロマトグラフィー的評価

6M HCl を移動相として用い、PONPE3-20 を被覆したカラムで Ga、Fe、Cu、Zn を分離し、 これら金属イオンと PONPE との相互作用を評価した。ここでは、移動相に 0.5 mM Au(III)を添 加した。Au(III)は溶離剤としての役割と、Ga(III)と Zn(II)の間接吸光を測定するために添加した。

図 39 に PONPE15 を被覆したカラムと未被覆のカラムでの、4 種類の金属イオンの分離結果 を示す。ウラシル、Fe(III)、Cu(II)、Au(III)のピークは直接吸光による正ピークとして観測され た。一方、Ga(III)は間接吸光による負ピークとして検出された。Cu(II)は PONPE15 の被覆の有 無に関わらず保持されなかった。Fe(III)は PONPE 未被覆のカラムでは保持されなかったが、 PONPE15 被覆後にわずかに保持された(保持比 *k* = 0.072)。Ga(III)は PONPE 未被覆のカラムで はわずかに保持され(*k* = 0.88)、PONPE15 を被覆したカラムではさらに保持が大きくなった(*k* = 2.3)。なお、Ga(III)のクロマトグラム上の 2.5 min 付近の正ピークは Ga(III)の注入により固定 相から溶離された Au(III)のピークであると考えられる。すなわち、固定相上の PONPE と相互 作用していた Au(III)のピークであると考えられる。すなわち、固定相上の PONPE と相互 た用していた Au(III)と導入された Ga(III)が交換されたため、放出された Au(III)が検出されてい ると考えられる。また、PONPE15 被覆の有無に関わらず、Zn(II)のピークは検出されなかった。 このとき、Ga(III)のクロマトグラムでみられたような Au(III)の交換に由来するピークが検出さ れなかったことから、Zn(II)は固定相上の PONPE と相互作用しないと結論付けた。

図 39 ガス加圧型 LP-HPLC を用いた Ga(III)、Fe(III)、Cu(II)、Zn(II)のクロマトグラム 移動相 0.5 mM Au(III)を含む 6 M HCl、加圧 0.2 MPa、UV 吸光度検出 220 nm

4 種類の金属イオンを、PONPE3-20 をそれぞれ被覆したカラムで分離した結果から得られた 保持比を**表 9**にまとめて示した。最も POE 鎖の短い PONPE3 を被覆したカラムでは Ga(III)が わずかに保持されたが、他は保持されなかった。興味深いことに、PONPE 未被覆のカラムより も PONPE3 を被覆したカラムでの Ga(III)の保持は小さくなった。詳細は不明であるが、ポリ (ST-*co*-DVB)と Ga(III)との間には何らかの相互作用が存在し、その相互作用は PONPE3 の被覆 により遮蔽されたものと考えられる。また、PONPE7.5-20 を被覆したカラムでの Ga(III)の保持 は、PONPE3 を被覆したカラムと比較して 5-8 程度増加した。Fe(III)は PONPE7.5-20 を被覆し たカラムでわずかに保持され (k < 0.1)、Cu(II)と Zn(II)は保持されなかった。この 0.5 mM の Au(III)を含む 6 M HClを移動相とする条件のもとで、これら4 種類金属イオンの保持の序列は、 Cu (II)、Zn(II) (= 0) < Fe(III) < Ga(III)となった。これは報告されている 6M HCl 条件にお ける溶媒抽出の結果¹⁹⁾と一致した。

	Capacity factor, k (-)					
	Bare	PONPE3	PONPE7.5	PONPE15	PONPE20	
Ga(III)	0.88	0.47	2.4	2.3	3.6	
Fe(III)	0.0	0.0	0.073	0.072	0.12	
Cu(II)	0.0	0.0	0.0	0.0	0.0	
Zn(II)	0.0	0.0	0.0	0.0	0.0	

表9 Ga(III), Fe(III), Cu(II), Zn(II)の PONPE3-20 を被覆したカラムでの保持比

先に述べたように、カラム1本当たりの PONPE 被覆物質量 N_{PONPE} は PONPE ごとに異なるの で、ここでは各種金属イオンの $k \in N_{PONPE}$ で割ることにより規格化した。図 40 に示すように Ga(III)と Fe(III)の k/N_{PONPE} の値は、POE 鎖が長い PONPE ほど大きくなることがわかった。この ような保持の増大は、先に述べた Au(III)の交換容量の増加と同様に、 N_{OE} の増加によるものだ と考えられる。また、Ga(III)と Fe(III)の k/N_{PONPE} の間には直線関係が見られ ($r^2 = 1.000$)、 k/N_{PONPE} の Ga(III)/Fe(III)の比は直線の傾きから 31:1 と得られた。すなわち、Ga(III)と Fe(III)に対する PONPE の選択性は POE 鎖の長さに関わらず一定であることがわかった。

ジクロロメタンを用いる溶媒抽出では、PONPE20による6MHClからのGa(III)とFe(III)の回 収率はそれぞれ99%と80%であり、両者に大差はなかった¹⁹⁾。一方、クロマトグラフィー的 に測定する本手法における選択性の差はGa(III)とFe(III)で31:1であり、両者に大きな差があっ た。このような溶媒抽出と本手法の結果が異なる理由の一つとしては、有機溶媒の存在の有無 が挙げられる。すなわち、有機溶媒中での熱力学的安定性から、有機溶媒が存在する溶媒抽出 では水系溶媒のみを用いる本手法とは選択性が変化したと考えられる。起泡クロマトのような 水系溶媒下での金属イオンと界面活性剤の相互作用を用いる回収方法では、その相互作用の評 価には本手法が適していると考えられる。

図 40 PONPE のコート量で規格化した Ga(III)(a)と Fe(III)(b)の保持比の変化と 両者の比(c) クロマトグラフィー条件は図 39と同じ、エラーバーは最大・最小値、シ ンボルは平均値を表す (n=2~4)

PONPEをコートしたカラムを用いる LP-HPLC により Ga(III)、Fe(III)、Cu(II)、Zn(II)と界面 活性剤の相互作用をクロマトグラフィー的に評価することができた。そこで、他の金属イオン と PONPE の相互作用の評価への適用を試みた。図 41 に移動相として 0.5 mM Au(III)を含む 6 M HCI を用い、 & マーカーとしてウラシルを含む各種金属イオン溶液を PONPE20 で被覆したカ ラムを用いて分離した結果を示す。紫外可視領域に強い吸収帯をもつPt(IV)は かけ近に溶出し、 ほぼ保持されないことがわかった。Pt(IV)以外の金属イオンは紫外可視領域に吸収帯がない、 あるいはあっても弱いため、それぞれの金属イオンに由来する直接吸光による明瞭なピークは 得られなかった。一方、いずれのクロマトグラムでも & 直後にショルダー状のピークがみられ た。これは先に述べた Au(III)の交換によるショルダーピークと考えられる。そのため、いずれ の金属イオンもわずかに PONPE と相互作用することが示唆された。Nd(III)は他の金属イオン と比較して大きいショルダーピークが見られるため、他の金属イオンよりも強い相互作用をも つと考えられる。このように、本手法は、種々の金属イオンと PONPE の相互作用を簡便に測 定する方法として、有効であることがわかった。

図 41 PONPE20 を被覆したカラムでの各種金属イオンの分離結果 クロマトグラフィー条件は図 39 と同じ

3.4. 起泡クロマト分離への泡径と塔内径の影響3.4.1 泡径の分離への影響

起泡クロマト操作において、泡径は分離に影 響を及ぼす重要なパラメータであり、図26で示 すように、液ホールドアップと相関することを 明らかにした。図 42 は平均泡径(a)もしくは液 ホールドアップ(b)による Au(III)回収率ならび に Au(III)/Cu(II)分離度への影響を示す。泡径が 大きくなるにつれて Au(III)回収率が低下し、 Au(III)/Cu(II)分離度は増加した。100%のAu(III) 回収率を維持できた泡径領域は 0.26~0.75 mm であった。泡径が 0.75 mm を超えて 2.8 mm へ 大きくなると、Au(III)吸着媒体である泡沫相中 の泡沫総表面積は約3.7分の1まで縮小し、吸 着容量を超える金イオンは下方のバルク液へと 洗い流され回収率は28%へと低下する。一方、 泡径の拡大により同伴水の下方排水がより容易 となるため、溶液滴下による泡沫相の洗浄が促 進され、Au(III)/Cu(II)分離度は径 0.26 mm での1 から径 2.8 mm での 1143 へと著しく向上した。 また Au(III)濃縮比に関しても径 0.26 mm の 0.4 から径 2.8 cm の 6.8 と、泡径の拡大により向上 することが確認された。

平均泡径が分離特性に及ぼす影響について、 Au(III)回収率と Au(III)/Cu(II)分離度、Au(III)濃 縮比はトレードオフの関係にあることがわかっ た。また、泡径とは逆比例関係にある液ホール ドアップの分離特性への影響については図 42 (b)に示すように、泡径の影響とは逆の傾向が見 られた。

3.4.2 液ホールドアップの分離への影響

次に、回収した泡沫液中の夾雑物(Cu(II))濃度 への液ホールドアップの影響を図 43 に示す。 ここでは夾雑物への洗浄効果を明確にするため に、泡沫相中への界面活性剤溶液の滴下を行わ ない分離操作(NS モード)も実施した。起泡

図 43 泡沫液中夾雑物(Cu)濃度に及ぼす液ホー ルドアップの影響

クロマト(CCFS モード)においては、界面活性剤溶液の滴下流量を 0.5 mL/min とした。本系で は PONPE が Cu(II)とは相互作用しないため、Cu(II)は同伴水中にのみ存在する。NS モードにお いて、泡沫液中の Cu(II)濃度は液ホールドアップの増加とともに緩やかに低下した。これは同 伴水の下方排水が重力に因るため、液ホールドアップが小さいほど下方排水の効果が弱まり、 泡沫相内での同伴水残留が多くなるためと考えられる。一方、起泡クロマト操作では逆に、液 ホールドアップの小さい系で Cu(II)濃度が著しく低下し、液ホールドアップが増加するにつれ て泡沫液中の Cu(II)濃度が増加する傾向が見られた。これは泡沫相上端で下方排水効果の低減 する NS モードと異なり、起泡クロマトでは溶液滴下により重力による下方排水効果が持続す ること、また泡径が大きいほど泡の壁の液膜厚みが薄くなるため毛細管現象により下方排水が 促進されたと推測される。G0 フィルターにおける両操作モードでの液ホールドアップの値は溶 液滴下の有無にも関わらずほぼ一定であり、滴下溶液が泡沫に同伴せずに効果的な下方排水を 形成していることを示唆している

3.4.3 空気流量の分離への影響

空気流量の分離への影響を図 44 に示す。この実験では、下方排水による Cu(II)洗浄効果の 大きいガス分散器として G0 フィルター(泡径 0.22 cm、液ホールドアップ 0.008)を用いて実 験を行った。これまでに行った他の系と同様に、空気流量の増加に対して Au(III)回収率は増加 し、Au(III)/Cu(II)分離度は低下する傾向を示している。これは滴下する金属溶液に対して、吸 着媒体である泡沫の生成速度の増加により Au(III)が効果的に吸着されて回収率は増加し、また 泡沫相内の滞留時間の低下に伴う洗浄不足と泡沫液の体積増加による Au(III)の希釈効果により 分離度は低下するためである。

図 44 分離に及ぼす空気流量の影響

3.4.4 異なる泡径における界面活性剤滴下流量の分離への影響

図 45 は泡径 2.2 mm と 0.7 mm (G1 フィルター) による界面活性剤溶液の滴下流量の分離へ

の影響を示す。ここでは塔内径 3 cm の泡沫分離塔を用いた。泡径 2.2 mm での Au(III)回収率は 流量 0.1 mL/min で 100 %を示すが、それ以上の流量域では低下している。一方、泡径 0.7 mm では流量 0.5 mL/min まで回収率は 100 %を維持している。泡径が小さいほど泡沫相内の吸着総 面積が大きく、滴下流量に対する Au(III)吸着保持に余裕があることを示している。一方、泡径 2.2 mm の Au(III)/Cu(II)分離度は流量 0.15 mL/min で最大値 1060 を得る凸型のプロファイルを示 すのに対して、泡径 0.7 mm での Au(III)/Cu(II)分離度は流量増加により向上する傾向を示すが、 滴下流量 0.5 mL/min で最大値は比較的小さい 64 であった。これは先述のとおり、泡径が大き いほど毛細管現象により下方排水が促進されるため、より少ない滴下流量で大きな夾雑物洗浄 効果が得られると考えられる。また泡径が大きいほど乾いた泡となり、Au(III)濃縮比は泡径 0.7 mm の 3.2 から泡径 0.22 cm では 19 まで向上した。

以上より、泡沫相内の気液流動一定の条件下において、泡径が大きくなるほど Au(III)の相内 吸着容量は減少していくが、分離度と濃縮比は向上することがわかった。

図 45 異なる泡径における界面活性剤滴下 流量の分離への影響

3.4.5 異なる塔内径における界面活性剤滴下線速度の分離への影響

図 46 は、塔内径 3 cm および 6 cm の分離塔を用いた場合の界面活性剤溶液の滴下線速度の 分離への影響を示す。泡径は 2.2 mm の一定値とし、各塔内径における空気流量や金属溶液の 滴下線速度は 6.6 cm/min および 0.07 cm/min とした。Au(III)回収率に関しては、100%回収可能 な線速度範囲は同じであるが、塔内径が大きい場合には線速度の増加に対する Au(III)回収率の 低下が抑えられる傾向にあることがわかる。また Au(III)/Cu(II)分離度に関しては、塔内径 3 cm では 1060 であるのに対し、塔内径 6 cm では 3840 と約 4 倍に向上した。このことは、塔内径が 大きいほど滴下溶液が壁を伝って流れにくく、より均一に泡沫相内に分散して下方排水を促進 するためと考えられる。Au(III)濃縮比につい ても塔内径3 cm の4から塔内径6 cm では6.8 に向上した。

以上より、相内気液流動一定の条件下において、塔内径が大きいほど Au(III)回収率の低下が抑えられ、Au(III)/Cu(II)分離度と Au(III) 濃縮比が向上することがわかった。さらに、 Au(III)回収率と Au(III)/Cu(II)分離度の滴下最 適条件は塔内径に関わらず 0.02 cm/min と一 定であることより、本系のスケールアップ時 の重要な操作指針は、小型塔の最適分離条件 から得られることを示唆している。

滴下線速度の分離への影響

3.4.6 起泡クロマトの分離特性と操作因子の相関

図 47 に本分離法の操作因子と分離結果の相関図を示す。分離の支配因子は泡径もしくは液 ホールドアップの設定であり、泡径が小さい、もしくは液ホールドアップが高い場合には標的 物質の回収率は高いが分離度は低くなり、分離操作に適さない。そこで、分離を向上するには 泡径を大きくして、泡沫相内の気液向流バランスによる分離最適化を行うのが望ましい。空気 の流量を小さくするとともに、界面活性剤溶液の流量も小さくすることで分離度のみならず濃 縮比も高められることが、図 47 に示されている。この条件下で回収率を 100%に近づけるには、 金属溶液の滴下流量を調節すればよい。

図 47 起泡クロマトの分離特性と操作因子の相関

3.5. PONPE と金属イオン相互作用評価のための気泡固定マイクロチップの開発 3.5.1 気泡固定マイクロチップの調整

マイクロチップの調整に際して、まず最初に作製した凹 構造を持つ流路による気泡の固定能力の有無を確認した。 流路に予め気体として空気が満たされた状態で蒸留水を送 液したとところ、図 48 に示す通り各凹型構造に気泡が残 存し、蒸留水の流通下でも気泡が固定されていることが確 認された。次に、固定されている気泡体積(気体量)をコ ントロールする手法について検討を行った。予めバブリン グにより空気を飽和させた蒸留水を、空気で満たされた流 路に注入することで、図 48 と同様に気泡の固定が確認さ

図 48 凹型構造により流路内に固 定された気泡

れた。空気飽和蒸留水を送液している間にマイクロチップの温度を上昇させると、溶存できな くなった気体(空気)が、主として固定されている気泡を核として集合するために、固定され ている気泡は成長する。任意の大きさに成長した時点で、マイクロチップの温度を元の温度ま で低下させると、流路を流れる液体は空気飽和であるため、気泡として固定された空気は液に 溶解できない。そのため、温度低下後も加熱時とほぼ同じ大きさを保ち続ける。一方、チップ の温度を低下させれば、溶液に空気が溶解できるようになるため、流路中に固定された気泡の 大きさを小さくすることができる。

3.5.2 気泡固定マイクロチップ中気泡表面への物質の優先吸着

次に、気泡表面に存在する物質量評価のため、蛍光色素であるローダミンBの気液界面への 吸着挙動を調べた。図 49 に蛍光顕微鏡により観測された気泡固定チップの蛍光画像を示した。 図 49A は空気飽和蒸留水に溶質としてローダミンB(8 µM)のみの溶液を送液した際の蛍光 画像で、図 49B は空気飽和蒸留水にローダミンB(8 µM)と PONPE20(18 mM)の溶液を送液

した際の蛍光画像である。どち らの画像においても気液界面に おける蛍光強度が高くなってい る。また、図 49B では気液界面 以外の部分においても蛍光強度 が図 49A よりも高くなってい る。これは、液中に存在する疎 水場としてのミセルにローダミ ンBが取り込まれたことで、蛍 光強度自体が増大したためであ る可能性が高い。

気液界面における試料の濃縮 率を算出するために、図 49A、 B の点線部における蛍光強度プ ロファイルを求めた。図 49C に

示す蛍光強度プロファイルでは、図 49B の方が図 49A よりも明らかに全体的な蛍光強度が高い。また、界面(図 49C で 1000~1200 ピクセル)に近づくにつれ蛍光強度が大きくなっている。ここで、界面への濃縮効率を求める際の基準として、気液界面と関連のない 195~205 ピクセル領域における平均蛍光強度を求め、これを基準値(B値)として、気液界面において最も大きな蛍光強度をT値と

し、T/B 比を濃縮効率と して定義した。その結果、 PONPE20 を含む溶液で は 2.1、含まない溶液では 2.3 となりほぼ同程度の 値であった。このことか ら今回用いた PONPE20 は、ローダミンBの気液 界面への吸着を促進して いないことがわかった。

図 49 において、気液 界面におけるローダミン

図 49 蛍光色素を含む溶液を通液時の気泡固定流路の蛍光顕 微鏡観察結果(A, B)および蛍光強度プロファイル(C)

図 50 蛍光色素を含む溶液を通液した際の T/B 値の時間変化 (A)と B 値・T 値の蛍光強度変化(B, SDS)

B の吸着挙動に界面活性剤(PONPE20)が大きな影響を与えなかったのは、PONPE が非イオン性であるためと推測される。この仮説を検証するため、陰イオン性界面活性剤であるドデシル硫酸ナトリウム(SDS)を用いて、カチオン性のローダミンBと相互作用するかどうか検討を行った。図 50A に示すように、SDS を用いた場合には、界面活性剤とローダミンB を含む溶液を通液した際の T/B 比は時間経過と共に増大した。一方、PONPE20 を用いた場合は、ほぼ一定値であった(4~5分の値は実験操作上のばらつきによると思われる)。SDS を用いた際の挙動をさらに調査するため、T 値(気液界面)とB 値(非気液界面)の時間変動を調べたところ、図 50B に示すように、気液界面以外の領域では一定であるが、気液界面で蛍光強度が増大しており、界面にローダミンB が濃縮されていることがわかった。今回の実験では、T/B 比がほぼ一定になるために約5分が必要であり、濃縮過程が比較的遅いことがわかる。

図 50 に示すように、気液界面における蛍光強度測定により、気液界面での物質濃縮挙動を 観測できることが明らかになった。同様の実験を他の金属イオン(Fe、Cu、Au、Al、Zn)存 在下で行い、これらの金属イオンによるローダミンBが吸着した界面への吸着に与える影響に ついて調べた。いずれの金属イオンを用いた場合においても、T/B 比の減少が確認されたこと から、カチオン性の金属イオンが、同じくカチオン性のローダミンBの吸着を阻害している可 能性が示唆された。これは気液界面での金属イオン類の濃縮を反映する結果である可能性があ るため、気泡固定マイクロチップの改善も含めて、詳細な検討を行う必要がある。

3.5.3 気泡固定マイクロチップによる金属イオンと界面活性剤の相互作用評価

また、気泡固定マイクロチップをカラムとして用いて、H24 年度に行ったポリマーモノリス カラムを用いた実験系と同様の手法での相互作用評価が可能であるかを調べたところ、ごくわ ずかではあるが試料と界面活性剤との相互作用を観測することができた。しかし、その大きさ は十分とは言えず、本実験で用いた装置では流路体積に対する気液界面の割合が小さいことが わかった。この問題を解決するためには、より流路が狭く、固定される気泡数を増大させたマ イクロチップが必要である。

3.6 塔内径拡大が泡沫分離性能に及ぼす影響

3.6.1 塔内径 9 cm の泡沫塔での泡沫分離特性

塔内径9cmの塔を用いる実験では、これまでの塔内径3cmと塔内径6cmでの操作と比べて 塔頂部での泡沫の状態を一定に保つのが難しく、操作条件よりも気温など泡沫の安定性に影響 を及ぼす因子の影響を大きく受けるため、操作パラメータを系統的に変化させた場合の分離挙 動の把握は困難であった。

表 10 に、比較的再現性の高い実験結果を実験条件とともに示す。実験番号 1,2 では Ga(III)/Fe(III)分離度は約 540 となり塔内径 6 cm よりも向上した。一方、Ga(III)回収率は約 60 % で、これまで塔内径 3 cm と 6 cm の塔で達成していた Ga(III)回収率 100 %には至らなかった。 これらの場合、塔頂部付近では泡沫の断続的な破泡が観察された。実験番号 3 は、実験番号 1,2 と同じ流量で気温がわずかに高い条件である。この場合の Ga(III)/Fe(III)分離度と Ga(III)回収率 は同程度で、Ga(III)濃縮比が68となり実験番号1,2よりも飛躍的に向上した。泡沫液流量が実験番号1,2と比べて低かったことから、わずかに気温が高いことで破泡が進んだためと考えられる。以上より、塔内径9cmでの泡沫分離には空気流量360mL/min,金属溶液及び界面活性剤溶液流量の条件として2.7mL/minが好ましいと言える。

実験番号	1	2	3
平均室温 [℃]	18.0	18.0	21.3
空気流量 [mL/min]	360	360	360
金属溶液流量 [mL/min]	2.7	2.7	2.7
界面活性剤溶液流量 [mL/min]	2.7	2.7	2.7
泡沫液流量 [mL/min]	0.47	0.49	0.33
残液流量 [mL/min]	11	10	11
Ga(III)回収率 [%]	61	59	63
Ga(III)/Fe(III)分離度 [-]	555	523	485
Ga(III)濃縮比 [-]	3.5	3.3	68

表10 塔内径9 cm での泡沫分離結果および条件

3.6.2 種々の塔内径における分離性能の比較

塔内径 3、6、9 cm での Ga(III)の泡沫分離について比較するため、各種の液と空気の供給流量を空塔速度で表した条件とともに結果を表 11 に示す。

塔内径 [cm]	3	6	9
金属溶液速度 [cm/min]	0.05	0.04	0.04
界面活性剤溶液速度 [cm/min]	0.04	0.04	0.04
空気速度 [cm/min]	7	6	6
泡径 [mm]	1.5	1.7	1.6
Ga(III)回収率 [%]	100	100	63
Ga(III)/Fe(III)分離度 [-]	67	300	485
Ga(III)濃縮比 [-]	3.6	11	68

表11 各塔内径での分離性能の比較

塔内径を3 cm から6 cm に拡大した場合、3.4.5 節で論じた Au(III)/Cu(II)分離と同様に、Ga(III) 回収率を100%として Ga(III)/Fe(III)分離度及び Ga(III)濃縮比は増加した。塔内径6 cm から9 cm への拡大は、Ga(III)濃縮比と Ga(III)/Fe(III)分離度をさらに向上させたが Ga(III)回収率を63%に

低下させた。これは、塔内径拡大により界面活性剤溶液による夾雑金属の洗浄は効果的に行わ れているものの、標的金属が塔頂に十分に運ばれずに塔底に流下していることを示している。 泡沫相の観察によれば、界面活性剤滴下部より上の部分での破泡が進み泡沫液の回収量が少な くなる場合があった。このような塔内径拡大による泡沫相の安定性の低下は文献 38 でも示され、 塔内径を拡大すると破泡が著しくなり、高さの大きい泡沫相の形成が困難であると報告されて いる。

したがって、調査した塔内径範囲においては、塔内径拡大により Ga(III)回収率 100% かつ高い Ga(III)/Fe(III) 分離度、Ga(III) 濃縮比を得るには塔内径 6 cm が適している。

3.6.3 塔内径9 cm 泡沫塔での液ホールドアップ

3.6.1 節で述べた、塔内径 9 cm での Ga(III)分離に好ましい操作条件のもとで Ga(III)の泡沫分離を行った場合の分離結果と、このときの泡沫相内での液ホールドアップ分布を示す。

表12には、実験番号4として、表11の実験番号3と同じ流量条件での実験結果を示す。 Ga(III)/Fe(III)分離度、Ga(III)濃縮比およびGa(III)回収率の値は実験番号3の結果と良く一致し、 結果の再現性は十分高い。泡沫液流量が実験番号3よりも小さいのは、実験上の都合により、 塔内径3cmと6cmの場合と異なり、同時に複数地点で泡沫相からの泡沫の引き抜きを行って 液ホールドアップの測定を行ったことによるものである。

図 51 に塔半径方向での液ホールドアップ分布を示す。特に塔頂部ではホールドアップの値 が小さく、かつ半径方向での変化が少ないフラットな分布となった。このことは、塔内径6 cm の場合に 3.1.4 節で述べた結果の傾向と同じであり、塔内径が大きい場合でも優れた分離を与え る条件は変わらないことを示している。塔の高さ方向のホールドアップ分布(図 52)の傾向も、 3.1.4 節で示した塔内径6 cm の結果と同様であった。

実験番号	4
平均室温[℃]	23.5
空気流量 [mL/min]	360
金属溶液流量 [mL/min]	2.7
界面活性剤溶液流量 [mL/min]	2.7
泡沫液流量 [mL/min]	0.03
残液流量 [mL/min]	10
Ga(III)回収率 [%]	65
Ga(III)/Fe(III)分離度 [-]	449
Ga(III)濃縮比 [-]	55

表 12 塔内径 9 cm における液ホールドアップ測定時の Ga(III)分離結果

62

図 51 塔半径方向での液ホールドアップ 分布

図 52 塔高さ方向での液ホールドアップ分布

3.6.4 液ホールドアップ分布を予測するモデルの開発

泡沫相を特徴づける、液ホールドアップ分布を予測するモデルを構築するため、現実の泡沫 相で生じている、重力による排液、破泡や泡の合一といった複雑な液とガスの流れに関して単 純化のための仮定を置き、できるだけ少ないパラメータを用いて液ホールドアップの実測値の 傾向を表現する式を導くことを目標として検討を行った。

設定した仮定は以下の通りである。

- 1. 泡沫は塔内を栓流で流れる。
- 2. ガス空塔速度, uG は高さ方向で一定値である。
- 3. ガス (u_G) と液 (u_L) は混相流 (u_M) で、それぞれの流速の間に以下の式が成立する。

 $u_M = \phi \ u_{\rm L} + (1 - \phi) \ u_{\rm G}$

- 4. 液ホールドアップ, φ は高さ, z のみに依存する関数であり、半径方向では変化しない。
- 5. 微小体積中での破泡による液の減少を表わすために、破泡速度定数, *k* [1/s] (*k*>0)を導入する。
- 6. 文献 15 より液ホールドアップと液流速の間には次式の関係が成り立つ。 $u_1 = 0.5 \times 10^{-5} + 1.85 \times 10^{-2} \phi^2$

図53 泡沫相微小体積におけるガスと液の流入と流出の概念

図 53 のように泡沫相の微小体積を考え、ここでの混相流流速と液ホールドアップの変化について、体積内で生じる破泡や泡の合一による液流速変化について破泡速度定数を用いて表現すると、液の収支式は以下のように書かれる。

 $u_M \phi S - (u_M - \Delta u_M)(\phi - \Delta \phi) S - (k \phi S \Delta z) = 0$

これを整理して次式を得る。

$$\therefore \quad \frac{d (u_M \phi)}{dz} - k \phi = 0$$

この式は高さ方向での液ホールドアップ分布を与える基礎式であり、この式を代数的に解くこ とで k のみをパラメータとして分布が算出できる。得られた計算結果を実測値と比較した。

図54 泡沫相高さ方向の液ホールドアップ分布の計算値と実測値の比較

このモデルにより、塔内径 6 cm の場合に k の値を設定して液ホールドアップを算出し、図 54 に計算値と実測値の比較を示す。計算値は実測値の傾向とよく一致し、導入した破泡速度定 数、kにより液ホールドアップの値と傾向が変化することがわかる。起泡クロマトで高い分離 性能を得るには、泡沫相における金属溶液と界面活性剤溶液の導入部の間(30 $\leq z \leq 65$ cm) での液ホールドアップ分布が重要で、この高さ範囲での予測の精度は十分に高い。k の値の増 加とともに ϕ は低下し、この傾向は観察と泡沫液流量の測定結果と一致した。k の値は、泡沫 の安定性の指標とも言える値であり、半径方向の液ホールドアップ実測値が、それぞれkの異 なる曲線上にあることは、半径方向で泡沫の安定性が異なるとも考えられる。

以上より、泡沫相内での液ホールドアップ分布を予測するモデルを確立し、モデルによる計 算値と実測値は良く一致することを明らかにした。

3.7 硫酸による塩酸媒体の代替可能性の調査

3.7.1 硫酸及び塩酸と硫酸の混酸を用いた場合の PONPE20 による金属の抽出特性

表 13 に混酸を調製した際の各体積比における Ga(III)の PONPE20 を含むクロロホルムへの抽 出率を示す。調査した全ての体積比で 100%に近い抽出率が達成され、混酸を用いた場合での PONPE20 と Ga(III)の相互作用は十分に強いことがわかった。

表 13 各種体積比で調製した混酸中からの Ga(III)抽出率

体積比 (塩酸 / 硫酸)	1 / 9	3 / 7	1 / 1	7/3	9 / 1
Ga(III)抽出率 [%]	98	98	100	99	97

3.7.2 混酸の利用が分離性能に及ぼす影響

6 M 塩酸と6 M 硫酸を同体積比で混合した混酸を利用した場合の影響を調べるための基準と して、これまで通り6 M 塩酸を用いて塔内径3 cm の塔を用いて界面活性剤溶液流量を変化さ せた場合の Ga(III)分離結果を図 55(a)に示す。界面活性剤溶液流量により Ga(III)回収率と Ga(III)/Fe(III)分離度は大きく変化し、ほぼ100%Ga(III)回収率と同時に比較的高い Ga(III)/Fe(III) 分離度を達成できた。

	流量 [mL/min]	媒体
金属溶液	0.25	塩酸
界面活性剤溶液	0~0.4	塩酸
ベース溶液	2.5	塩酸

図 55(a) 分離性能に及ぼす混酸使用の影響を調査する際の基準として塩酸媒体での結果

混酸の適用可能性について、はじめに界面活性剤溶液とベース溶液を混酸として、金属溶液 を 6 M 塩酸で調製した場合の結果を図 55(b)に示す。金属溶液のみを塩酸で調製した理由は Ga(III)を塩化物イオン錯体である GaCl₄とするためである。界面活性剤流量が小さく Ga(III)回 収率が 100 %に近い場合には Ga(III)/Fe(III)分離度は著しく低く、分離度の高い条件では Ga(III) 回収率が低下した。

これは、泡沫相への界面活性剤溶液の導入による洗浄作用が、塩酸系よりも小さくなったことを示している。液の物性について比較すると、混酸の密度は6 M 塩酸の1.1 倍、303 K での 混酸の粘度は1.4 mPa·s で、6 M 塩酸での測定値1.1 mPa·s の1.3 倍であった。溶液の粘度と密度の違いにより、泡沫相に導入された界面活性剤溶液が半径方向に広がりにくくなり、洗浄作 用が低くなった可能性がある。

	流量 [mL/min]	媒体
金属溶液	0.25	塩酸
界面活性剤溶液	0.1~0.43	混酸
ベース溶液	2.5	混酸

図 55(b) 泡沫分離性能に及ぼす混酸使用の影響-金属溶液のみ塩酸とした場合

図 55(c)には、全ての溶液を混酸で調製した場合の結果を示す。Ga(III)回収率と Ga(III)/Fe(III) 分離度の傾向は(a)と(b)の場合と同様だが、100 %の Ga(III)回収率は得られず、泡沫相での溶液の流動状態が塩酸の場合と大きく異なると考えられる。

したがって、混酸を用いた Ga(III)の起泡クロマト分離は可能であるが、分離の最適操作条件 について、塩酸媒体で決定したものとは大きく異なり、適切な条件の選定が必要となることが わかった。このような媒体による条件の違いは、溶液物性の差による泡沫相内での液体の流動 特性の差によるものと推測される。

	流量 [mL/min]	媒体
金属溶液	0.25	混酸
界面活性剤溶液	0.24~0.58	混酸
ベース溶液	2.5	混酸

図 55(c) 泡沫分離性能に及ぼす混酸使用の影響—全ての溶液を混酸で調製した場合

3.8 塩酸および界面活性剤使用量の低減を目指したベース溶液の循環利用

3.8.1 泡沫液中金属濃度に及ぼすベース溶液の循環利用の影響

ベース溶液を循環利用すると、これまで排出されてきたベース溶液中の塩酸と界面活性剤の 排出がなくなるため、大幅な効率化が期待できる。予想される問題点としては、ベース溶液か らの泡沫生成により界面活性剤が枯渇するため、断続的な補給を要することと、本来は系外に 排出されるべき、夾雑金属イオンがベース液中に蓄積することで、泡沫液中の夾雑金属イオン
濃度が高まることである。

模擬ベース溶液を循環利用した場合の泡沫液中の各金属濃度の経時変化を図 56 に示す。この図中の時間は、仕込みベース液を用いて4時間運転して、ある程度界面活性剤が枯渇した状況を作り、t=0でベース溶液の容器にPONPE20を0.35g添加した後の経過時間を表している。つまり、t=0の直前ではPONPE20濃度は仕込み時から低下した状態にある。t=2時間で、泡沫液中のGa(III)濃度が低下しているのは、PONPE20の補給により泡沫径がわずかに小さくなり、液ホールドアップが大きくなり濃度が低下したためと考えられる。2時間以降のGa(III)濃度の増加は、PONPE20の添加直後よりも液ホールドアップが低下し、Ga(III)の濃縮が進行するためである。一方、影響が懸念される夾雑金属については、泡沫液中の濃度の増大は全く見られず、操作開始後9時間までは、夾雑金属の蓄積がGa(III)の分離性能に及ぼす影響は小さい。

塩酸については、ベース液の循環により塔底部からの排出分がなくなるため、泡沫液として 排出される分に見合う量の添加で済むことになるため、大幅な使用量の低減が可能となる。 以上より、ベース溶液の循環利用は、界面活性剤と塩酸の供給量の大幅な低下を可能とする。

図56 ベース溶液リサイクル時の泡沫液とベース溶液中の金属濃度経時変化

3.8.2 界面活性剤の存在がイオン交換樹脂による蓄積金属の除去に及ぼす影響

ベース溶液を循環することによる問題として懸念される、夾雑金属イオンのベース液中への 蓄積は、3.8.1節で調べた時間スケールでは問題にならなかったが、実際の連続運転では必ず影 響を及ぼすことが想定されるため、夾雑金属イオンを除去する必要がある。100%の Ga(III)回収 を前提とすれば、ベース液中には夾雑金属イオンのみであるため、選択性を考えることなく単 純に除去すれば良い。このためにイオン交換樹脂を用いて吸着除去を行った。

表14に実験条件とともに結果を示す。PONPE20の存在の有無が吸着特性に及ぼす影響を調べるために、平衡後も水相中に金属イオンが残存する条件を設定した。平衡後の水相中金属濃度はPONPE20の存在に関わらず同程度となり、界面活性剤の存在下でも金属イオンは陰イオン交換樹脂に吸着して分離できることが示された。

金属イオン種	Fe(III)	Cu(II)	Zn(II)
水相中初期金属濃度 [ppm]	10	10	10
PONPE なしでの平衡後水相中濃度 [ppm]	0.16	4.7	0.41
PONPE ありでの平衡後水相中濃度 [ppm]	0.19	5.0	0.39
吸着量 PONPE なし[mg/g-樹脂]	0.052	0.028	0.050
吸着量 PONPE あり[mg/g -樹脂]	0.049	0.025	0.048

表 14 イオン交換樹脂による夾雑金属の吸着に及ぼす界面活性剤の影響

3.8.1 節の結果と合わせて考察すると、起泡クロマトによる Ga(III)分離プロセスでは、ベース 溶液を循環利用することで、界面活性剤と塩酸の効率的利用が可能であり、その際には循環流 れをイオン交換樹脂の充填カラムに導き、液中に蓄積した夾雑金属イオンを適宜除去した上で 分離塔に戻すフローとすることが望ましい。このような操作の概念を図 57 に示す。

図 57 泡沫分離プロセス概念図

3.9 実サンプルからの Ga の選択分離回収の検討

3.9.1 亜鉛精錬残渣

実液の Ga 初濃度が 0.19~20 ppm までの起泡クロマ ト分離結果を表 15 に記す。Run 1~Run 4 および Run 7 では残渣 A を用いた。Run 5~Run 6 では残渣 B を用い、 Run 5 は既報¹⁹⁾からの引用である。また Run 7 は後述 するアスコルビン酸と Zn 粉末を併用した。図 58 に分 離実験の様子を、また図 59 に金属溶液中の Ga 初濃度 に対する起泡クロマトの Ga(III)/Fe(III)分離度並びに Ga(III)回収率への影響を示す。Run 5 のプロットを除き 泡径は約 1.8 mm の場合の結果である。

図 58 分離実験(Run 4)の様子

表 15 残渣 A、B を用いた起泡クロマト分離結果

Run1 泡径:	0.18 cm				-	1
残渣A	Ga	Fe	Cu	Zn	Al	As
金属溶液[ppm]	1.51	2490	129	5280	47.0	198
泡沫液[ppm]	5.82	6.43	0.03	0.55	0.31	0.02
回収率[%]	94.6	0.06	< 0.01	<0.01	0.16	< 0.01
Ga分離度		1490	14600	37000	9520	40100
Ga濃縮比	3.9					
Cu actini y c						
Run 2 泡径:	0.18 cm					
残渣A	Ga	Fe	Cu	Zn	Al	As
金属溶液[ppm]	1.33	2020	117	2620	56.4	150
泡沫液[ppm]	5.73	5.55	0.06	0.36	0.20	0.03
回収率[%]	100	0.08	0.02	<0.01	0.11	<0.01
Ga分離度		1570	7870	31600	1190	24900
Ga濃縮比	4.3					
Run 3 泡径:	0.18 cm					
残渣A	Ga	Fe	Cu	Zn	Al	As
金属溶液[ppm]	0.54	818	45.6	1760	19.0	7.19
泡沫液[ppm]	2.04	6.41	0.05	0.27	0.18	0.02
回収率[%]	92.7	0.19	0.03	<0.01	0.23	0.07
Ga分離度		479	3640	24500	399	1420
Ga 濃縮比	3.8	- per o sere or		and provident and the	and the second second	
Run 4 泡径:	0.18 cm					
残渣A	Ga	Fe	Cu	Zn	Al	As
金属溶液[ppm]	0.19	313	15.8	619	7.70	21.7
泡沫液[ppm]	0.70	4.40	0.07	0.61	0.40	0.23
回収率[%]	96.4	0.36	0.12	0.03	1.30	0.27
Ga分離度		270	834	3870	74.1	360
Ga 濃縮比	3.8	an a	n 12 a code e canto de la caso -		د مرد مکانه د مشکور در خانه ^ب رور می در مکانه د مشکور در مرد مرد م	
Run 5 泡径:	0.15 cm、	既報				
残渣B	Ga	Fe	Cu	Zn	Al	As
金属溶液[ppm]	9.80	1240	74.3	2750	1160	500
泡沫液[ppm]	31.1	4.56	0.07	0.35	0.18	0.11
回収率[%]	100	0.15	0.04	<0.01	<0.01	<0.01
Ga分離度		859	3270	25000	20400	14700
Ga濃縮比	3.2		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
Run6 泡径:	0.18 cm					
残渣B	Ga	Fe	Cu	Zn	Al	As
金属溶液[ppm]	20.3	2370	134	4720	2470	999
泡沫液[ppm]	82.7	4.02	0.18	4.71	2.72	0.61
回収率[%]	93.7	0.04	0.03	0.02	0.03	0.01
Ga分離度		2410	3130	4090	3700	6640
Ga 濃縮比	4.1			1.11		

アスコルビン酸添加系

表 15 において Ga/Fe 分離度に関しては、初濃度 0.19 ppm の 270 から向上して 20 ppm では 2410 までに達し、Ga 初濃度が高くなるほど分離度の向上を得た。ここで同じ界面活性剤 PONPE を用いた溶媒抽出における Ga(III)/Fe(III)分離度は 1.2 であるが、残渣 A の系で分離度 1500 前後、より Ga 初濃度の高い残渣 B の系で 2400 以上と極めて良好な分離結果を得ており、本法は単段 でそれぞれ 1000 倍、2000 倍以上もの分離向上を得ている。他の夾雑物との分離も極めて良好 であり、多種・高濃度の夾雑物を含む極めて低品位サンプルからの本手法による Ga 選択分離 の有効性が実液でも確認された。また、これらは泡径 1.8 mm で得られた結果であり、Run 5 の 泡径 1.5 mm の結果 ¹⁹⁾と比較して、Ga(III)/Fe(III)分離度は 2~3 倍前後の向上を示した。以上よ り、H25 年度報告の Au(III)/Cu(II)の系で示された泡径拡大による分離向上 ³⁹⁾は、Ga 回収の系に おいても確認できた。

次に Ga(III)回収率に関しては、金属溶液中の Ga 量は微量にも関わらず 93 %以上を回収して おり、本手法の回収効率の高さを示している。いずれの系においても残液中に Ga は検出され なかった。ただし、本操作条件は予備実験にて Ga 初濃度 18.5 ppm での分離最適条件であるた め、より低 Ga 初濃度の分離においては Ga に対して泡沫相内の吸着サイトがより余剰となる。 そしてアスコルビン酸に還元され切っていない大過剰な Fe(III)等の夾雑物がその余剰サイトに 吸着するため、低初濃度ほど分離回収が低下すると考えられる。この場合には、金属溶液の滴 下流量をさらに絞って最適化する必要があるが、現有送液ポンプの定送量下限値を下回るため に実施に至らなかった。

以上に示した結果は塔内径3 cm の分離塔で得られた結果である。H25 年度に報告した合成溶液の結果³⁹⁾によれば、より塔内径の大きな分離塔を用いることで、分離回収の向上に繋がると考えられる。

Zn 粉末添加系

アスコルビン酸では溶解限度を超えて添加しても、残渣の種類により必ずしも Fe(III)を完全 に還元できないことが判明したので、Zn 粉末による Fe(III)の還元を試みた。Zn 粉末を溶液が 濃黄色から無色透明になるまで浸出液に添加したところ、激しい発泡の後に液面に黒色浮遊物 が発生したため、濾過して実験に供した。しかし、起泡クロマト分離後に得られた泡沫液なら びに残液中に Ga はほとんど検出されず、黒色浮遊物に吸着して濾液から除かれたと考えられ る。したがって、Zn 粉末の直接添加は、Ga 分離回収には適さないことがわかった。

そこで、浸出液 60 mL にアスコルビン酸 6.0 gを投入して、溶液の呈色を限度一杯まで薄め た後に Zn 粉末を 0.5 g 添加してほぼ無色透明にした。図 60 に得られた液の外観を示す。この 液を濾過して金属溶液を得た。還元前の Ga、Fe 濃度はそれぞれ 1.60 ppm と 2880 ppm であった が、2 種還元剤の添加後の金属溶液では表 16 に示すようにそれぞれ 1.13 ppm と 2630 ppm と低 下が見られた。また Zn 以外の金属濃度においても同様の低下が見られ、還元による浮遊物へ の吸着に起因すると推測される。分離結果を表 16 の Run 7 に示す。Ga は 100 %回収され、 Ga(III)/Fe(III)分離度は 1420 と、アスコルビン酸添加の系を凌駕するには至らなかった。以上よ り、沈殿等の生成を伴う還元剤は Ga 選択分離回収に不向きであることがわかった。引き続き アスコルビン酸に代わる還元剤の探索を行う予定である。

表 16 アスコルビン酸と Zn 粉末を併用した起泡クロマト分離結果

残渣A	Ga	Fe	Cu	Zn	Al	As
金属溶液[ppm]	1.13	2630	117	>23000	65.3	162
泡沫液[ppm]	4.48	7.36	0.42	1.91	0.25	1.45
回収率[%]	100	0.09	0.11	<0.01	0.12	0.28
Ga分離度		1420	1100	48800	1020	442
Ga濃縮比	4.0					

Run 7 泡径:0.18 cm

3.9.2 GaAs 基板スクラップ

起泡クロマト分離結果として Ga(III)回収率 23.7 %、As(III)回収率 0.003 %、Ga(III)濃縮比 0.7、 Ga(III)/As(III)分離度 8170 を得た。Ga 初濃度が高く、泡沫相の吸着容量を超えて Ga がバルク液 に漏出したため低い回収率となったが、得られた泡沫液の As 濃度は 0.003 ppm と ICP-AES の 定量下限値以下であり、泡沫液はほぼ純粋な Ga 溶液として回収できた。

次に、この金属溶液を6M塩酸溶液で6倍程に希釈して、再度起泡クロマト分離を実施した。 その結果、Ga(III)回収率 99.3%、As(III)回収率 0.04%、Ga(III)濃縮比 2.9、Ga(III)/As(III)分離 度 2470 を得た。得られた泡沫液のAs濃度は0.007 ppm と ICP-AES の定量下限値以下であり、 上記同様ほぼ純粋なGa溶液として回収できた。

今回はサンプル入手量が少量であるために、塔内径拡大や Ga の選択的浸出条件の最適化等 までは検討できなかった。しかし、選択浸出の後に起泡クロマト分離を行うことで基板からの Ga 単離の可能性がある。

3.10 Ga 以外の回収対象の探索

3.10.1 臭化水素酸溶液からの In(III)の分離回収の検討 回分式泡沫分離

本節では Fe(III)、Cu(II)、Zn(II)、Ga(III)、In(III) を含む臭化水素酸溶液から、ノニオン界面 活性剤による回分式泡沫分離の検討を行った。結果を表 17 に示す。表中の数値は分離後にお ける泡沫液と残液の各金属の分配比を示す。臭化水素酸濃度が3 M から In(III) が相互作用を 示し、5 M から Fe(III)、6 M から Ga(III) と相互作用を示した。これらの挙動より In(III)分離 には4 M が最適である。次に、ジエチルエーテルによる溶媒抽出の結果³³⁾を表 18 に示す。泡 沫分離のデータは Fe(III) と Ga(III) ともに 高濃度側へシフトしているものの、相互作用を示す 元素は溶媒抽出と同じであった。以上の結果からノニオン界面活性剤による泡沫分離にジエチ ルエーテルによる抽出を参考にできる。

UDr 迪庙	泡沫液濃度/残液濃度					
IIDI 侲皮	Fe(III)	Cu(II)	Zn(II)	Ga(III)	In(III)	
2M	1.00	0.97	1.01	0.97	1.10	
3M	0.97	0.96	1.01	0.95	1.31	
4M	1.06	0.94	1.02	0.99	1.72	
5M	1.58	0.98	1.04	1.04	1.76	
6M	5.14	1.02	0.99	2.36	1.57	

表 17 臭化水素酸濃度と回分式泡沫分離による分離結果

表 18 臭化水素酸濃度とジエチルエーテルによる抽出率³³⁾

UD* 迪库	抽出率 (%)					
ПDI 侲皮	Fe(III)	Cu(II)	Zn(II)	Ga(III)	In(III)	
2M	0.2	no data	5.0	0.9	85.2	
3M	55.0	1.5	no data	1.5	98.6	
4M	97.1	no data	4.9	54.8	<i>99.9</i>	
5M	97.1	4.2	no data	<i>96.7</i>	<i>99.4</i>	
6M	94.6	6.2	3.6	95.0	93.5	

起泡クロマト分離

続いて起泡クロマト分離を実施した。先述の分離条件で行ったが、泡沫が塔頂部に至らない ためガス流量のみ 50 mL/min から 70 mL/min へ変更した。その結果を表 19 に示す。いずれも 回収率は低いが、その中でも In(III)は 9.8 %と一番高く、Fe(III) 1.2 %、他の金属は 0.05 %以下 と、In(III)の選択的な分離回収を確認できた。本系の泡沫は非常に不安定で必ずしも分離に適し た条件ではなかったが、今後は界面活性剤の種類や分離条件の最適化を行う予定である。

表 19 4 M 臭化水素酸溶液での起泡クロマト分離結果

	Fe(III)	Cu(II)	Zn(II)	Ga(III)	In(III)
回収率 (%)	1.2	0.0088	0.054	0.049	<u>9.8</u>
分離度(vs.In(III))	8	1115	181	198	1

3.10.2 Rh 抽出試薬(TMOEAA)の泡沫分離への適用可能性の検討

溶解テスト

溶解テストの結果を表 20 およびテスト終了後の各液の様子を図 61 に示す。

表20 抽出試薬 TMOEAA に対するノニオン界面活性剤の溶解テスト結果

	界面活性剤	OE 基	添加量	2日後の観察	50 日後の観察	判定
1	PONPE	10	0.15 g	溶液白濁、内壁に油滴付着	液相の鉛直方向に少し濃淡あり	
2	POOE	7	0.15 g	内壁に油滴が付着	微細油滴が液中分散し煙の様に舞う	不適
3	POOPE	10	0.15 g	溶液白濁、一部は内壁に付着、液面上に油膜	僅かに油煙あり	
4	POOE	10	0.15 g	溶液白濁、一部は内壁に付着、液面上に油膜	微細油滴が液中分散し煙の様に舞う	不適
5	POOE	2	0.15 g	溶液白濁、一部は内壁に付着して徐々に油滴に成長	傾向は変わらず、内壁に油滴として集合し始める	不適
6	PONPE	20	0.20 g	溶液白濁、一部は内壁に付着、液面上に油膜	傾向は変わらず	不適
7	POCE	23	0.23 g	溶液白濁	液相の鉛直方向に濃淡あり、液面上に油膜	不適
8	POOE	20	0.15 g	油滴として細かく液中に分散	液相の鉛直方向に濃淡あり	不適
9	PODE	25	0.15 g	液面上に油膜	傾向は変わらず	不適
10	POOE	50	0.15 g	溶液白濁、液面上に油膜	傾向は変わらず	不適

図 61 50 日後の溶解テストの様子

溶解テストの結果は、何れの系についても均一な混合には至らなかったが、PONPE10(#1)と POOPE(#3)は放置しても油滴成長や油膜形成などの油分凝集があまり見られず、比較的安定な 分散状態を維持した。これらの2つの系について、回分式の泡沫分離を実施した。50日以降も 引き続き回転攪拌による溶解テストを実施したが、変化は見られなかった。POOE については OE 鎖長が長くなるにつれて液中の油滴の分散から界面上への油膜形成へとなる傾向があった。

回分式泡沫分離

回分式では、溶解テスト後の PONPE10(#1)と POOPE(#3)の溶液に原子吸光用標準試薬の Rh, Cu 溶液を添加して各金属濃度 20 ppm とし、3 日間回転攪拌後に泡沫分離実験を行った。しか し両液とも Rhの濃縮は見られず、回収した泡沫液では Cuの濃度とほぼ同等であった。

ただし、泡沫分離後の泡沫液と残液の ICP 測定に関しては、TMOEAA の測定阻害は見られず、問題なくデータが採れた。

回分式で濃縮が達成されなかった要因に関しては、金属と界面活性剤/TMOEAA との会合に おいて、分離前に溶液中で Rh ミセル形成による水溶液中での安定化の可能性があり、泡沫表 面への会合体の吸着が不充分となったのではないか、と推測された。

起泡クロマト分離

そこで金属溶液を直接泡沫相へ導入することにより、ミセル形成前に効率良く泡沫表面へ吸着して分離濃縮できる起泡クロマトを試した。しかしながら、結果は Rh 回収率 0.1 %未満、 Cu 回収率 0.15%と全く回収できなかった。この条件では Cu は全く相互作用がないため泡沫に 回収されないが、同程度の回収率であったことから Rh に対しても相互作用を発現していない と考えられる。そのため、要因としてはミセル形成ではなく、以下が考えられる。

- 本系のTMOEAA 濃度が薄過ぎる可能性 Rh/TMOEAA の濃度比は 20 ppm / 1g/L = 0.19 mmol/L / 0.82 mmol/L であった。しかし、TMOEAA 濃度をこれ以上濃くすると均一な分散状態が保てず油滴分散が見られるので本分離に適さない。ちなみに PONPE20 での Au(III)泡沫分離では、Au(III) / PONPE20 は 20 ppm / 1g/L = 0.10 mmol/L / 0.91 mmol/L であった。
- 2) 高塩酸濃度下での長期間の混合攪拌により、TMOEAA の加水分解に伴う抽出不能の可 能性 長期間の攪拌により均一な分散溶液になったのは、高濃度塩酸による TMOEAA の加水分解の可能性も考えられる。

以上から、Rh 抽出試薬と界面活性剤との混合系では、本分離法での選択分離は不能であった。 しかし、より本分離に適した物性を有すると思われる抽出試薬を産総研から入手する予定であ り、引き続き検討を行う。

3.11 NMR による Ga(III)とノニオン界面活性剤の相互作用の確認

3.11.1 deca(oxyethylene)nonononylphenyl ether (DONPE)の合成

得られた DONPE と PONPE10の¹H-NMR スペクトルを図 62 に示す。DONPEの方が PONPE10 よりもわずかにピークがシャープなこと以外に差異は観測されなかった。しかしながら SEC チ ャート (図 63) では PONPE10 が幅広いピークを示したのに対し、DONPE からはほぼ単分散 のピークが得られた。DSC 測定 (図 64) でも同様に PONPE10 が幅広いピークを示したのに対 し、DONPE からはほぼ単分散のピークが得られた。これらの結果から刺激に対する応答を追 跡するには単分散の DONPE の方が PONPE10 よりも適しているといえる。

図 63 DONPE (-) と PONPE10 (-) の SEC チャート

図 64 DONPE (--) と PONPE10 (--) の DSC プロファイル

3.11.2 DONPE 共存下における⁷¹Ga-NMR 測定と化学量論比の見積

調製した[DONPE+Ga]=0.10 M, [DONPE]/[GaCl₃]=10/0,9/1,8/2,...,1/9,0/10の溶液の うち、10/0~8/2と0/10は均一で10/0~8/2は起泡性があったのに対し、7/3~1/9では懸 濁あるいは油滴が観察され、起泡性が損なわれていた(図 65)。これは系中のGa濃度が上昇 すると、DONPEがGa(III)との錯体形成に消費され、起泡剤として機能しなくなるためと考え られる。

これらの溶液の¹H、¹³C および⁷¹Ga-NMR 測定を試みたが、6 M 重塩酸重塩酸中という過酷 な条件では¹H のチューニングが不可能であったため、¹H と ¹³C の測定は断念した。図 66 に [DONPE]/[GaCl₃]=9/1 ~ 0/10 の溶液の⁷¹Ga-NMR スペクトルを示す。[DONPE]/[GaCl₃]=9 /1 ~ 6/4 の範囲ではピークトップのシフト値はほとんど変化ないが、5/5 ~ 4/6 で徐々に 高磁場シフトし、3/7 ~ 0/10 の範囲ではほとんど変化していない。この⁷¹Ga-NMR のピーク シフト値の変化と DONPE のモル分率x=[DONPE]/[DONPE+Ga(III)]から錯体の化学量論比を 求めるために Job plot を行った(図 67)。x=0.5 (すなわち[DONPE]/[GaCl₃]=5/5)で極大 値を示したことから DONPE-Ga(III)系での錯体の化学量論比は1:1と見積もられた。

図 65 [DONPE+Ga] = 0.10 M 溶液の様子 左から順に[DONPE] / [Ga] = 10 / 0, 9 / 1, ..., 1 / 9, 0 / 10。10 / 0 ~ 8 / 2 と 0 / 10 は均一で10 / 0 ~ 8 / 2 は起泡性があった。7 / 3 ~ 1 / 9 は懸濁あるい は油滴が観察された。

図 66 DONPE と GaCl₃の混合溶液([DONPE + Ga] = 0.10 M、6N 重塩酸中)の⁷¹Ga-NMR スペクトル 上から順に[DONPE]/[Ga] = 9/1,8/2,...,1/9,0/10

図 67 ⁷¹Ga-NMR スペクトルにおけるピークシフト値をプローブとした Job-plot

3.12 気泡固定型マイクロチップの気泡保持特性に関する検討

3.12.1 PDMS 製チップを用いた場合

各試料溶液を流路に通液し、気泡生成から5分後までの気-液界面の位置の変化量を1分ごと に測定した結果を図 68 に示した。図 68 から明らかなように溶存酸素量に関わらず PONPE20 を含まない系では気泡の縮小が観測されなかったが、PONPE20を含む系では気泡が縮小することがわかった。溶存酸素量が 100%、すなわち気体(空気)で飽和された系においても気泡の 縮小が観測されたため、溶液以外の部位に気体が吸収されている可能性が示唆された。

図 68 溶存空気量および PONPE が気泡縮小に与える影響

3.12.2 ガラス製チップを用いた場合

PDMS 製チップとは異なり、ガラス製のチップでは PONPE20 を含む溶液を通液しても気泡 の縮小は観測されなかった。すなわち興味深いことに、PONPE20 を含まない溶液の場合には、 PDMS の気体透過性は高くないが、試料溶液に PONPE20 を添加した場合、PDMS へのガス透 過性が増加していると考えられる。詳細なメカニズムの解明には更なる検討が必要であるが、 気泡固定マイクロチップを調製する際の材質としては、マイクロチップ作製に汎用される PDMS は不適切であることが明らかになった。気泡固定型マイクロチップを用いて、更なる PONPE-金属種の相互作用解析を行う際には、ガラスやシリコン等の気体透過性の低い素材を 利用する必要がある。

3.13 流動電位法を用いる試料-PONPE 間相互作用の解析

3.13.1 流動電位法の性能評価

未修飾キャピラリーを用いて流動電位測定から決定された、様々な pH におけるく電位を図 69A に示す。pH 1~11 の試料溶液は1 mM の塩化カリウム溶液に塩酸および水酸化カリウム溶 液を用いて調整した。図 69A に示す様に、溶液の pH 変化に対応して、ゼータ電位が変化して いることが確認できる。ゼータ電位から式(2)を用いて算出した表面電荷密度を図 69B に示した。 pH 3 以下ではキャピラリー表面のシラノール基に対してプロトン(H⁺)が付加することにより、 表面の電荷が正になっていることがわかる⁴⁰⁾。pH 3~7 の範囲ではプロトン付加が起こらないた め、表面電荷はほぼゼロである。また、pH 8 以上ではキャピラリー表面のシラノール基(-SiOH) の解離により負電荷(-SiO⁻)が発生していることがわかる⁴¹⁾。図 69 に示す様に、本流動電位測 定装置により表面電荷状態の推定が可能であることが確認された。

図 69 未修飾キャピラリーにおける溶液の pH と(A) ζ 電位および、(B)表面電荷密度の関係

3.13.2 HCI が PONPE に与える影響

図 70 に塩酸濃度に対する表面電荷密度の変化を示した。図 70A に示すように、ODS 修飾キャピラリーにおいても、塩酸濃度の増加に従い正の電荷が上昇していることがわかる。これは、前述の通り残存シラノール基に対するプロトン付加に由来すると推測される。PONPE20 を被覆したキャピラリーにおいても、未被覆 (ODS 修飾) キャピラリーと同様に、塩酸濃度増加に対して、正の電荷が上昇していることがわかる。また、PONPE 被覆キャピラリーでは未被覆キャピラリーよりも正の電荷が大きいことから、PONPE に対してより高密度でプロトン付加が起きていることがわかる。塩酸濃度 300 mM においては、未被覆キャピラリーと被覆キャピラリーではプロトン吸着密度が 2 倍程度異なることがわかった。図 70B に示すように、いずれの塩酸

図70 塩酸濃度に対する表面電荷密度の変化 A(0~100 mM), B(0~1 M)

濃度においても約12 mC/m²の電荷密度が得られており、塩酸濃度約0.1 mM以上ではPONPE へのプロトン付加が飽和状態に達していることがわかった。

また、興味深いことに塩酸濃度 100 mM を超えたあたりから、表面電荷密度の上昇が抑制さ れていることがわかる。PONPE20 修飾キャピラリーについて、更に高い塩酸濃度を含む 0.1~1 M の溶液について表面電荷密度の測定を行った。図 70 で観測された結果は、PONPE 被覆によ りプロトン負荷量が増大することを示してはいるが、プロトン付加がポリオキシエチレン鎖に 起きていることを保証するものではない。表面電荷に対するポリオキシエチレン鎖の影響を調 べるために、平均オキシエチレン鎖長が 10、15、20 の PONPE (それぞれ、PONPE10、PONPE15、 PONPE20) を ODS 修飾キャピラリーに被覆し、表面電荷密度の違いを調べた。

3.13.3 ポリオキシエチレン鎖へのプロトン付加の安定性の評価

図 71 にポリオキシエチレン鎖長と表面電荷密度の関係を示した。ポリオキシエチレン鎖が 長くなるに従い、表面電荷密度は大きくなることが明らかになった。また、その関係は直線的 であることから、それぞれの PONPE の被覆量が同一であると仮定した場合、プロトンが一つ 付加するために必要なオキシエチレンユニットは一定であると推測される。また、図 71 中の横 線は図 70 に示した PONPE 未被覆 (ODS 修飾) キャピラリーの 100 mM 塩酸中での表面電荷密 度である。二つの直線がオキシエチレン鎖長約8 で交わることから、平均重合度8以下の PONPE ではプロトン付加を行うことが困難である可能性が示唆された。

図71 ポリオキシエチレン鎖長と表面電荷密度の関係 (試料溶液: 100 mM HCl)

3.13.4 PONPE-陰イオン間相互作用

図 72A は溶液(蒸留水)中に含まれる塩化ナトリウム、または、塩化カリウムの濃度と表面 電荷密度の関係である。いずれの測定結果においても塩化物添加量の増加に伴い、負の表面電 荷密度が増大していることがわかる。これは、キャピラリー壁面への塩化物イオンの吸着に由 来していると考えられる⁴²⁾。PONPE を被覆していない ODS 修飾キャピラリーでは、塩化ナト リウム、及び、塩化カリウムを添加した場合、ほぼ同一な表面電荷密度が得られている。これ は、表面電荷密度に対して、アルカリ金属イオンが影響を与えていない、または、影響に差が ないことを意味している。一方、PONPE20を被覆したキャピラリーでは、ODS キャピラリー に対して負の値が正にシフトしている。これは、アルカリ金属イオンのオキシエチレン鎖への 相互作用により、負の電荷が中和されたことを意味していると考えられる。PONPE20被覆キャ ピラリーでは、その中和量は塩化カリウムを添加した方が大きく、カリウムイオンはナトリウ ムイオンよりもオキシエチレン鎖への相互作用が大きいことがわかる。この挙動は、Yokoyama らの報告に一致する³⁶。

次に、100 mM の塩酸が存在する条件での塩化ナトリウム、塩化カリウム添加の影響を調べた。図 72B に示すように、塩酸存在下では、塩化ナトリウム、塩化カリウム添加はわずかに正の電荷密度を上昇させるが、大きな影響を与えないことがわかった。また、ナトリウム、カリウムで大きな差が生じていないことから、図 72A で観測されたオキシエチレン鎖とアルカリ金属イオンとの特徴的な相互作用は生じていないと思われる。これは、プロトンーオキシエチレン鎖間の相互作用が、アルカリ金属イオンーオキシエチレン鎖間の相互作用よりも大きいためであると推測される。

図72 塩化ナトリウム・塩化カリウムが表面電荷に与える影響 溶媒:(A)蒸留水溶媒、(B)100 mM 塩酸

図 73 に各種陰イオンのナトリウム塩の添加量に対する、表面電荷密度の変化を示した。塩 化ナトリウム添加では、図 72B にも示したように、表面電荷密度はほぼ変化せず、わずかに上 昇している。一方、硝酸ナトリウム、過塩素酸ナトリウム、硫酸ナトリウムを添加した場合は、 正の表面電荷密度が減少していることがわかる。一価の陰イオンにおいては、表面電荷密度の 減少量は過塩素酸イオン>硝酸イオン>塩化物イオンであり、これは陰イオンクロマトグラフ ィーにおける保持の大きさの順番と合致する。また、より静電相互作用が大きい二価の陰イオ ンである硫酸イオンは、一価の陰イオン群よりも大きく減少している。この結果より、起泡ク ロマトにおいて塩酸ではなく硫酸を用いた場合は、二価の硫酸イオンにより、目的化合物とプ ロトン付加したオキシエチレン鎖間の静電相互作用が抑制される可能性が高いことがわかる。

図73 各種ナトリウム塩(陰イオン)添加による表面電荷密度の変化(溶媒: 100 mM HCl)

3.13.5 PONPE-金属イオン種との相互作用

図 74 に各種金属塩添加濃度に対する表面電荷密度の関係を示した。塩化ガリウム、塩化亜 鉛に関しては、添加量が増加しても正の表面電荷密度は減少せず、図 72B の塩化カリウム、塩 化ナトリウム添加と同様にわずかに正の電荷密度が上昇していることがわかる。これは、ガリ ウムイオン、及び、亜鉛イオンが負電荷を有する塩化物錯体を形成していないことを意味する。 今回実験に用いている塩酸濃度が低いために、[ZnCl4]²-錯体や[GaCl4]⁻錯体を形成せず、静電 相互作用が生じなかったためだと考えられる。

一方、塩化金酸(III)ナトリウムを添加した場合は、添加量に応じて正の表面電荷密度が減少している。すなわち、100 mM 塩酸溶液中で Au(III)は[AuCl₄]⁻錯体を形成し、キャピラリー表

面と相互作用をしていることがわかる。興味深 いことに、塩化金酸(III)ナトリウムの添加量が 20 mM 以上では、キャピラリーの表面電荷密度 は負になっている。相互作用が、静電相互作用 だけであれば、表面電荷密度が負になることは 考えにくいため、静電相互作用以外の相互作用 により[AuCl4]⁻錯体がキャピラリー内壁に吸着 していると推測される。PONPE20 を被覆してい ない ODS 修飾キャピラリーを用いて実験を行 ったところ、塩化金酸(III)ナトリウムを添加す ることにより負の表面電荷密度が得られること がわかった。すなわち、[AuCl4]⁻錯体は静電相 互作用以外に、疎水性場に対する相互作用を有 することがわかった。

図 74 各種金属塩添加による表面電荷密度の 変化(溶媒: 100 mM HCl)

3.14 泡沫相内液流動の数値解析

3.14.1 泡沫分離装置と泡沫相内流動状態の可視化 - 界面活性剤溶液の影響

先述のように、泡沫相内の液流れの適切な制御は起泡クロマトにおける分離向上の鍵を握っている。泡沫相内に導入された界面活性剤溶液と金属溶液の相内での流動状態を予測できれば、 操作条件、導入位置、スケールアップに有用な知見を与える。そこで、シミュレーションによ る泡沫相内での流体解析の結果と可視化実験による染料の移動を比較検討した。

図 75 に本解析領域の概念図を示す。図中の染料および界面活性剤溶液導入部を流入境界とし、実際の装置と同様に解析領域上方部および下方部を流出境界 Outlet とした。初期流入条件としては、実験条件に基づき、界面活性剤溶液導入速度は *u* = 1.02×10⁻³ m/s、染料溶液導入速度は *u* = 9.85×10⁻⁴ mm/s、染料濃度として *C* = 4.0×10⁻² mol/m³を用いた。まず、定常状態に達するまで、ナビエストークス式と連続式を解いた。そして、求めた定常速度場を用いて、染色液の移流拡散方程式を解いた。図 76 に、界面活性剤溶液導入有りおよび無しの時の染料拡散結果を示す。界面活性剤溶液導入無しの場合、染料は上方出口および下方出口に拡散した。一方で、界面活性剤溶液導入有りの場合、染料は上方出口には向かわず、下方出口のみに拡散した。図 77 で示す、染料の拡散実験結果とこれらの結果は定性的に一致した。

84

この結果について、速度分布の観点から議論する。図 78 に解析領域内における速度分布の 全体図および拡大図を示す。界面活性剤溶液が導入されると、染料導入部近傍の遅い上向き流 れが、界面活性剤溶液導入部近傍の速い下向き流れによって阻害され、全体として下向きに流 れが発達していることがわかる。この結果から、界面活性剤溶液の流入速度が小さい場合には、 染料の上向き流れを阻害することができずに、上方出口からも流出してしまうことが考えられ るので、界面活性剤溶液の速度制御は非常に重要である。

3.15 液膜厚みの影響

泡沫分離装置の実験結果(3.1.4 節の図 28~30)において、塔頂部よりも塔底部の方が液体のホ ールドアップ(体積分率)が大きく、塔中央よりも壁近傍のほうが、液体のホールドアップが 大きくなることが示されている。ホールドアップが大きいと泡沫分離装置の分離精度に密接に 関係する液膜厚みも大きくなる。本節では、液膜厚みが泡沫分離装置内の輸送現象に与える影 響について議論する。まず、図 79 に示すように液膜厚みが異なる 2 種類の解析領域を考える。 解析条件を表 21 に示す。本解析では、界面活性剤溶液導入部のみを流入境界とし、流入流量 は両者で同じ値を用いた。この解析では領域全体で、液膜厚みが一定であると仮定されている。 図 80 に速度分布の結果を示す。液膜厚みの差異により、速度の大きさには影響があったが、 速度分布形状の傾向に関してはあまり影響が無かった。両者とも、流入口近傍では、塔中央の 流速が大きく、壁近傍では小さいのに対して、流出口近傍では、下向きの流れが塔の断面にわ たって一様に生じる栓流的な状態を示した。

表	21	解析条件

	(a)Thin	(b)Thick	
Thickness of the	0.0016	0 183	
foam film (mm)	0.0910	0.185	
Initial flow rate (mm ² /s)	0.584	0.584	
Initial flow velocity (mm/s)	6.37	3.18	

図 79 解析領域; (a)液膜厚み小、(b)液膜厚み大

次に、液膜厚みが塔半径方向に分布を持っている、図 81 で示す計算領域について議論する。 塔の中央部(液膜厚み 0.0916 mm)から壁近傍(液膜厚み 0.208 mm)に向かうにつれ、液膜厚みが増 大する系を設定した。図 81(a)の計算結果と比較検討するために、流入条件を一致させて計算 を行った。速度分布の計算結果を図 82 に示す。図 80(a)と図 82 を比較すると、流入口近傍で は、速度分布形状が類似しているのに対して、流出口近傍では顕著な差が表れた。液膜厚みが 一定の系では、速度分布は栓流的な形状だったのに対して、液膜厚みに分布をもつ系では、塔 の中央部から、壁近傍に向かうにつれ、速度が増大するような放物線状の形状となった。

次に、この速度分布を用いて流量を計算し、実験のホールドアップ値と比較検討する。ホー ルドアップはφ=V_L/(V_L+V_G)で定義されており、液体の体積流量の指標とすることができる。こ こで、V_Lは所定時間に採取された液体の体積、V_Gは所定時間に抜き出された液体の体積を表す。 実験のホールドアップ値を図 83 に、シミュレーションの流量値を図 84 に示す。界面活性剤 溶液導入近傍の高さでは、塔中央部から壁近傍に向かうにつれて、ホールドアップ、流量とも に、緩やかに増大していくのに対して、塔底部では、塔中央部から壁近傍に向かうにつれて、 ホールドアップ、流量ともに急激に増大する結果となった。このことより、塔半径方向に関し て液膜に厚み分布を持つモデルの計算結果は実験と定性的に一致していることがわかった。

図 83 塔半径方向での液ホールドアップ分布

図 84 塔半径方向での流量分布

図 85 圧力分布;(a)液膜厚み一定、(b)塔半径方向に液膜厚みの分布有り

また、このような速度分布、流量分布が得られたことを圧力分布の観点から議論する。液膜 厚みが一定のモデル、塔半径方向に液膜厚みの分布を有するモデルを図 85 にそれぞれ示す。 (a)の液膜厚みが一定のモデルでは、塔半径方向にはあまり圧力差が生じておらず、塔頂から塔 底に向かうにつれて、圧力が減少した。一方で、(b)に示す塔半径方向に液膜厚みの分布を有す るモデルでは、特に、流入口近傍において塔半径方向にも圧力差が顕著に表れた。よって、塔 の外向きに流れが発生し、壁近傍での速度が大きくなり、図 82、84 のような速度、流量分布 が生じたと考えられる。

3.16 スケールアップが Ga の回収率、分離度に与える影響

表11 に示す実験結果で、泡沫分離装置の塔内径を6 cm から9 cm にスケールアップした際に (図 86)、分離度は増大し、Ga の回収率は低下するという結果が報告されている。このメカニ ズムを解明するために数値解析を行った。図 87 に塔内径 6 cm および 9 cm の装置内における 速度分布に関する数値解析結果の概念図を示した。両者とも、Inlet 付近では塔の中央で速度が 大きく、壁付近に近づくとともに速度が小さくなった。そして、塔底部に向かうにつれ、この 速度差が減少するように速度分布が遷移し、栓流的な形状になった。このような栓流的な速度 分布が形成されると分離性能が向上することが報告されている⁴³⁾。本解析結果では、塔内径 6 cm よりも 9 cm の装置の方が、フラットな速度分布の領域が広範囲で存在することがわかった。 これにより、スケールアップの際に、分離度が増加したと考えられる。また、図 88 で示すよ うに、スケールアップの際に、Inlet 付近の速度が約2 倍増大した。このような速度の増大によ り、Inlet 近傍での液中 Ga 濃度が低下し Ga の吸着平衡が移動して Ga が泡の表面から脱離する ので、スケールアップの際に Ga の回収率が減少した可能性がある。

図 86 スケールアップの概念図

4. 結論

各年度で得られた結論を年度ごとに順にまとめて示す。H24 年度には、装置(塔内径)の大型化、すなわち塔内径3 cmから6 cmへの拡大による分離性能向上の発現メカニズムに関して、 泡沫相を特徴づける因子である泡径と液ホールドアップを種々の条件下で測定し、分離に優れ る泡径と液ホールドアップの値および分布の形状を明らかにした。また、界面活性剤(PONPE20) によるガリウムの選択捕集機構を解明するため、市販の PONPE 試薬を精製してオキシエチレ ン鎖長の異なる画分で起泡クロマト分離を行い、ガリウムの選択捕集の鍵となるオキシエチレ ン鎖長を特定した。さらに、高酸濃度溶液中の金属と界面活性剤との相互作用を探索するため のツールとして、PONPE で被覆されたポリマーモノリスカラムを開発して PONPE と金属イオ ンの相互作用の評価を行い、PONPE と金属との相互作用の強さは、オキシエチレンエチレン鎖 長よりも、オキシエチレンユニット数に強く依存することがわかり、金属捕集に対しては、 PONPE のポリマー鎖構造の寄与が小さいことが示唆された。

以下に各検討項目で得られた結論をまとめて示す。

- 泡沫相の液ホールドアップの測定手法を開発して、泡径と液ホールドアップの相関を明らかにした。
- 泡径により分離性能は大きく変化し、分離に適した泡径よりも小さくすると Ga(III)濃縮比と Ga(III)/Fe(III)分離度は大幅に低下した。
- 高い Ga(III)回収率、濃縮比および Ga(III)/Fe(III)分離度が得られる泡沫相の液ホールドアップ 分布を特定できた。泡沫相上部で液ホールドアップの値が十分低く、かつ塔の半径方向での 分布が小さい特徴を示すことがわかった。
- 液ホールドアップ分布を分離性能が高い場合と低い場合で比較することにより、優れた Ga(III)/Fe(III)分離を実現するための条件として、塔半径方向で液ホールドアップの変化を小 さくすることを見出した。塔内径 6 cm を用いることによる分離向上は、界面活性剤溶液の 泡沫相への導入点と塔壁との距離が長くなることで、半径方向での液ホールドアップ変化が 小さくなるためであることがわかった。
- 塔内径を 3 cm から 6 cm にスケールアップした場合に、Ga(III)回収率 100%t と高い Ga(III)/Fe(III)分離度を得ることのできる、最適分離条件を見出した。Ga(III)/Fe(III)分離度の 値を 300 まで増大できた。
- 市販試薬の PONPE20, 10 に含まれる界面活性剤のオキシエチレン鎖長には分布があり、 PONPE20 の市販試薬をオキシエチレン鎖長により分画すると、市販試薬での分離性能を上 回る性能を持つフラクションがある事がわかり、オキシエチレン鎖長を整えることのメリッ トが確認された。
- 十分な分離性能と低い流路抵抗をもつポリ(ST-co-DVB)モノリスカラムの調製に成功し、このカラムに鎖長の異なる PONPE をコートして、Au(III)、Ga(III)、Fe(III)、Cu(II)、Zn(II)とPONPE との相互作用を評価した。
- 各種金属イオンと PONPE の相互作用の大きさの序列は、我々がこれまでに報告した傾向と 一致した。

● PONPE7.5 から 20 までのオキシエチレン鎖長を変化させても、オキシエチレンユニットあ たりの金属イオンとの相互作用の強さに大きな差は見られず、鎖長と相互作用の強さの相関 は弱いことがわかった。ただし、最もポリオキシエチレン鎖の短い PONPE3 ではユニット 当たりの金属イオンとの相互作用は、長いポリオキシエチレン鎖をもつ PONPE と比較して 小さく、分子鎖の自由度が金属イオンとの相互作用に影響を与えていることがわかった。

H25年度には、分離に及ぼす泡径と塔内径の影響を調査して最適分離条件の指針を得るため、 低酸濃度(2 M HCl)で標的金属として Au(III)、夾雑物として Cu(II)を含む系での分離を行った。 分離に及ぼす泡径の影響について、安定な操作が可能な限り径を大きくするのが分離と濃縮に 対して望ましく、スケールアップの指針は小径塔での最適分離条件から決定できることを見出 した。さらに、気泡表面の界面活性剤と試料の相互作用評価を簡便に行うために、気泡を流路 内に固定して溶液を流通する気泡固定マイクロチップの開発に成功した。

以下に各検討項目で得られた結論をまとめて示す。

- 泡径は、標的金属の回収率、分離度および濃縮比に対して著しい影響を与える。
- 気液流動一定の条件下において、泡径が大きくなるほど標的金属の泡沫相内吸着容量は減少 するため回収率は低下していくが、分離度と濃縮比は向上することがわかった。
- 起泡クロマトにおいては、可能な限り泡径を大きくして分離と濃縮を優先し、それに伴う回 収率低下を金属溶液の滴下流量を絞ることで防ぐことが重要である。
- ●塔内径3cmと6cmについて、気液流動一定の条件下において塔径が大きいほど回収率の低下が抑えられ、分離度と濃縮比が向上することがわかった。さらに、回収率と分離度に対する最適の界面活性剤溶液滴下条件は、塔径に関わらず0.02 cm/minと一定であることより、本法のスケールアップ指針は、小径塔での最適分離条件から得られる。
- 微小流路を有するチップ中の液体流路に凹構造を持たせることで、気泡の固定に成功し、気泡の大きさを制御することができた。
- ●気液界面における蛍光強度測定により、気液界面での物質濃縮挙動を観測できることが明らかになった。

H26年度には塔内径のさらなる拡大、すなわち塔内径 6 cm から 9 cm への拡大による分離特 性を調査して塔径拡大による分離促進の可能性を検討した。また、実サンプルに対する適用可 能性を調べるため、2 種の亜鉛精錬残渣と GaAs 基板スクラップの浸出液を用いて Ga の選択分 離回収を行った。さらに、分離特性を決定づける要因である、泡沫相内での液ホールドアップ 分布をシンプルな数理モデルにより予測するとともに、泡沫相の数値解析を行ってシミュレー ションと実測値と比較した。Ga 分離プロセスの効率化を目指してベース液の循環による塩酸お よび界面活性剤使用量の低減と、塩酸使用量の低下をねらいとする、硫酸と塩酸の混酸の適用 可能性を検討した。さらに、標的金属を Ga 以外のレアメタルに展開するため、PONPE による Ga の選択性発現機構について NMR を用いた手法および流動電位を用いて検討するとともに、 種々の標的金属について起泡クロマトによる分離特性を調査した。 以下に各検討項目で得られた結論をまとめて示す。

- 塔内径9 cm への拡大により塔内径6 cm の場合よりも Ga(III)/Fe(III)分離度と Ga(III)濃縮比は 向上し、分離に対するスケールメリットは得られたが、Ga(III)回収率 100%に至らなかった。 したがって、Ga を完全に回収でき、高い分離度を実現するには塔内径 6 cm が適しているこ とがわかった。
- 塔内径9 cm で Ga(III)/Fe(III)分離度が優れた条件での塔頂部の塔半径方向の液ホールドアップの分布は、塔内径 6 cm で観察されたものと同じ形状となり、優れた分離を得るための条件は塔内径に依存しないことを明らかとした。
- 泡沫相内での液ホールドアップ分布について、実測値の挙動に制度良く一致する計算値を得ることのできるモデルを確立した。
- 硫酸による塩酸媒体の代替可能性について、硫酸と塩酸を混合した混酸の使用は PONPE による Ga の相互作用に大きな影響を及ぼさなかった。塩酸との液物性の差により泡沫相内での液流動特性が変化したため、塩酸で決定した最適操作条件では高い分離性能が得られなかった。
- ベース溶液の循環利用による Ga(III)の分離性能に及ぼす影響は小さく、塩酸と界面活性剤使 用量を大幅に低減できることがわかった。夾雑金属イオンを PONPE の共存下でも陰イオン 交換樹脂を用いてを除去できることがわかった。
- 実サンプルとして Ga 含有量の小さい2種の亜鉛精錬残渣から調製した多種・高濃度の夾雑 物を含む Ga の低濃度(0.19 ppm~20 ppm)溶液から、Ga 回収率ほぼ 100%が得られ、Ga の高 度選択分離回収を達成した。
- Ga/Fe 濃度比に 15 倍程の差がある残渣 A と B の浸出液では単段の操作でそれぞれの Ga/Fe 分離度として 1500 前後と 2400 以上を得た。この値は PONPE を用いた溶媒抽出の Ga/Fe 分離度 1.2 に対して、それぞれ 1000 倍と 2000 倍に匹敵する。
- 亜鉛精錬残渣からの Ga 選択分離回収において、金属溶液の Ga 初濃度が高いほど Ga/Fe 分離度は高かった。
- 泡径の 1.5 mm から 1.8 mm への拡大は亜鉛精錬残渣からの Ga 回収においても分離と濃縮の 向上に寄与することがわかった。
- 実サンプルとして GaAs 基板のスクラップ粉末の塩酸浸出液から、本法による Ga の選択分 離回収を達成した。得られた泡沫液からは As 濃度は ICP-AES の定量下限値以下であり、廃 GaAs 基板から Ga を単離できた。実サンプルについては今後も十分なサンプル量が確保さ れ次第、研究を継続する予定である。
- PONPE と同じエーテル構造を有するジエチルエーテルによる金属の溶媒抽出挙動を参考に、 臭化水素酸溶液からの In(III)の選択的分離回収を実施し、低回収率ながら選択分離回収が可 能であった。
- Rh 抽出試薬とノニオン界面活性剤の混合系では均一溶解には至らず、均一分散の系を選ん で分離を実施したところ、抽出試薬の低溶解性もしくは加水分解により分離回収に至らなか った。引き続き、新たな抽出剤を入手し検討を続ける。

- NMR により PONPE10 相当の構造を持つ DONPE を用いて、6 M 塩酸中での界面活性剤と Ga からなる錯体の化学量論比は1:1と見積もることができた。
- しかしながら、界面活性剤由来の核(¹H 及び¹³C)のNMR は6M 重塩酸中という通常測定 の条件から逸脱した環境下では装置的な問題で観測できなかったため、NMR 法は泡沫分離 における標的金属のスクリーニングには不適であった。
- 気泡表面での相互作用を測定するツールとして H25 年度に開発した気泡固定型マイクロチ ップを作成する際に、材質を PDMS とした場合に気体透過性が増大して気泡を長期的に安 定保持できなかったため、材質を適切に選択する必要があることがわかった。
- 流動電位測定測定により、塩酸濃度が100 mM以上ではPONPEのオキシエチレン鎖への プロトン吸着が飽和していることが明らかになった。一方、起泡クロマトでは、AuやGa の分離に数M以上の塩酸が必要であり、このことは、静電相互作用以外のメカニズムが寄 与している可能性を示している。Auに関しては疎水性相互作用が働いている可能性が高い ことが示された。
- ノニオン性界面活性剤のオキシエチレン鎖が短すぎる場合(今回の実験では繰返し単位数8 以下)は、プロトン付加が起こりにくくなり、静電相互作用が働きにくくなる可能性が示さ れた。また、上述の通り金属との相互作用について静電相互作用だけではなく疎水性相互作 用が働いている可能性が示唆された。
- 泡沫相における泡沫間隙を流れる液体の流動をシミュレーションするために数値解析を行った。泡沫相に導入された、PONPE と相互作用しない夾雑金属イオンのモデルとして染料を用いた可視化実験との比較により、染料の流動状態を予測できるモデルを確立した。
- 泡沫相内での流速分布と強く相関する実験結果として、泡沫内での液ホールドアップ分布に 基づいて、数値解析により実測値の傾向を再現するためには、泡沫相内の半径方向で塔壁に 向かって流路厚みを増大させる必要があることがわかった。
- 数値解析モデルにより、塔内径を6 cm から9 cm にスケールアップした場合の泡沫相内流 速分布を計算でき、塔内径9 cm での操作は塔内径6 cm での操作に比べて、より分離に好ま しい流速分布が得られることを明らかにした。

5. 参考文献

- 1) 西山孝: レアメタル・資源-38元素の統計と展望, 丸善 (2009).
- I. Mihaylov and P. A. Distin, "Gallium solvent extraction in hydrometallurgy: An overview", *Hydrometallurgy*, 28, pp.13-27(1992).
- 3) J. Jayachandran and P. Dhadke, "Solvent extraction separation of gallium(III) with 2-ethylhexyl phosphonic acid mono 2-ethylhexyl ester(PC-88A)", *Hydrometallurgy*, 50, pp.117-124(1998).
- H. S. Lee and C. W. Nam, "A study on the extraction of gallium from gallium arsenide scrap", *Hydrometallurgy*, 49, pp.125-133(1998).
- 5) G. V. K. Puvvada, "Liquid-liquid extraction of gallium from Bayer process liquor using Kelex 100

in the presence of surfactants", Hydrometallurgy, 52, pp.9-19(1999).

- 6) K. Yamamoto and N. Katoh, "Solvent extraction of gallium(III) as tetrachlorogallate(III) with quaternary ammonium ions", *Anal. Sci.*, 15, pp.1013-1016(1999).
- N. Hirayama, Y. Horita, S. Oshima, K. Kubono, H. Kokusen and T. Honjo, "Selective extraction of gallium from aluminum and indium using tripod phenolic ligands", *Talanta*, 53, pp.857-862(2001).
- M. S. Lee, J. G. Ahn and E. C. Lee, "Solvent extraction separation of indium and gallium from sulphate solutions using D2EHPA", *Hydrometallurgy*, 63, pp.269-276(2002).
- B. Bhattacharya, D. K. Mandal and S. Mukherjee, "Liquid-liquid extraction of gallium(III) with LIX 26", Sep. Sci. Technol., 38(6), pp.1417-1427(2003).
- T.Kinoshita, S.Akita, S.Nii, F.Kawaizumi, K.Takahashi, "Solvent extraction of gallium with non-ionic surfactants from hydrochloric acid solution and its application to metal recovery from zinc refinery residues", *Sep. Purif. Technol.* 37, pp.127-133(2004).
- 11) 木下武彦、"簡易操作・低環境負荷を目指した有価金属の湿式分離回収に関する研究"、 名古屋大学大学院工学研究科 審査学位論文、第6章、平成17年10月、pp.66-81(2005).
- 12) 森本慎一郎、"我が国のレアメタルリサイクル技術に関する現状と動向"、エネルギ
 ー・資源、30(6), pp.52-56(2009).
- 13) T. Kinoshita, S. Nii, "Foam separation of metal ions and the potential 'green' alternative to solvent extraction", *Solvent Extraction Research and Development, Japan*, 19, pp.1-15(2012). http://www.solventextraction.gr.jp/serdj/jurnalpdf/vol19/pp1-15.pdf
- 14) T.Kinoshita, Y.Ishigaki, K.Yamaguchi, S.Akita, Y.Yamada, S.Nii, K.Takahashi, F.Kawaizumi, "Novel operational method of continuous foam separation of gold – injection of metal and/or surfactant solutions into rising foam bed –", *Sep. Purif. Technol.* 52(2), pp.357-362(2006).
- 15) T.Kinoshita, S.Akita, Y.Ishigaki, K.Yamaguchi, Y.Yamada, S.Nii, F.Kawaizumi, K.Takahashi, "Continuous foam separation of metals enhanced by down-flowing surfactant solution from column top", *Trans IChemE, Part A, Chem. Eng. Res. Design*, 85, A2, pp.229-233(2007).
- 16) 木下武彦、石垣友三、山口浩一、"泡沫分離法に関する研究開発"名古屋市工業研究所 研究報告、 No.92, pp.1-7(2007).
- 17) 二井晋、木下武彦、"連続向流操作による金属イオン泡沫分離の高度化"分離技術、 No.208, pp.15-19(2009).
- 18) "泡沫分離法および泡沫分離装置"特許第4500910 号(特願 2005-093665、特開 2006-272113)、平成22年4月30日取得(2010).
- 19) T. Kinoshita, Y. Ishigaki, N. Shibata, K. Yamaguchi, S. Akita, S. Kitagawa, H. Kondou, S. Nii, 'Selective recovery of gallium with continuous counter-current foam separation and its application to leaching solution of zinc refinery residues', *Sep. Purif. Technol.*, 78, pp.181-188(2011).
- 20) 二井晋、木下武彦、石垣友三、秋田重人、北川慎也、"機能性界面活性剤を用いた起泡

クロマトによる廃棄物からのガリウムの選択的回収 K22011"、平成22 年度 循環型社 会形成推進科学研究費補助金 研究報告書、平成23 年4 月 (2011).

- 21) 木下武彦、石垣友三、柴田信行、秋田重人、二井晋、北川慎也、平野智彦、"連続向流 泡沫分離法によるガリウムの選択的分離回収"、IMS 2011 第16 回資源循環型ものづく りシンポジウム 2011 年12 月7 日(水) (講演資料集)、 pp.147-154(2011).
- 22) S. Yanagida, K. Takahashi, M. Okahara, "Metal-ion Complexation of Noncyclic Poly(oxyethylene) Derivatives. I. Solvent Extraction of Alkali and Alkaline Earth Metal Thiocyanates and Iodides", *Bulletin of the Chemical Society of Japan*, 50(6), pp.1386-1390(1977).
- 23)秋田重人、木下武彦、小林規浩、兵藤修久、二井晋、川泉文男、高橋勝六、"非イオン 性界面活性剤を用いたガリウム(III)の抽出分離-溶媒抽出法および曇点抽出法-"、化 学工学会シンポジウムシリーズ 74 [金属のリサイクルおよび環境問題]、 pp.70-75(2000).
- 24) S. Akita, N. Hyodo, N. Kobayashi, S. Nii, K. Takahashi, H. Takeuchi, "Cloud Point Extraction of Gallium(III) with Nonionic Surfactants from Hydrochloric Acid Media", Solvent Extraction for the 21st Century, ISEC'99, Vol.1, pp.363-367(2001).
- 25) N. Kobayashi, N. Hyodo, S. Nii, K. Takahashi, H. Takeuchi, S. Akita, "Solvent Extraction of Gallium(III) with Nonionic Surfactants from Hydrochloric Acid Media.", Solvent Extraction for the 21st Century, ISEC'99, Vol. 1, pp.387-391(2001).
- 26) T. Hirano, A. Kobayashi, T. Nakaza, S. Kitagawa, H. Ohtani, K. Nagayama, T .Matsumoto, "Low-flow-resistance methacrylate-based polymer monolithic column prepared by low-conversion ultraviolet photopolymerization at low temperature ", *Anal. Sci.*, 29, pp. 205-211(2013).
- 27) L. Trojer, C. P. Bisjak, W. Wieder, G. K. Bonn, "High capacity organic monoliths for the simultaneous application to biopolymer chromatography and the separation of small molecules", J. Chromatogr., A, 1216, pp. 6303-6309(2009).
- I. Nischang, O. Brüggemann, "On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths", *J. Chromatogr, A*, 1217, pp. 5389-5397(2010).
- 29) I. Nischang, I. Teasdale, O. Brüggemann, "Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography", J. Chromatogr, A, 1217, pp. 7514-7522 (2010).
- 30) T. Hirano, S. Kitagawa, H. Ohtani, "Methacrylate-ester-based reversed phase monolithic columns for high speed separation prepared by low temperature UV photo-polymerization", *Anal. Sci.*, 25, pp. 1107-1113(2009).
- 31) T. Nakaza, A. Kobayashi, T. Hirano, S. Kitagawa, H. Ohtani, "Determination of monomer

conversion in methacrylate-based polymer monoliths fixed in capillary column by pyrolysis-gas chromatography ", *Anal. Sci.*, 28, pp. 917-920 (2012).

- 32) 二井晋, 平成 24 年度 環境研究総合推進費補助金 研究事業 補助金 研究報告書 "起泡 クロマトによる Ga の選択回収プロセスの確立とレアメタル回収への展開 (3K123006)", pp. 22(2012).
- 33) R. Bock, H. Kusche, E. Bock, "Die Verteilung von Metallbromiden zwischen wassrigen HBr-. LSsungen und Diaeithylaeither", Z anal. Chem., 138, pp.167-179 (1953).
- 34) T. Hirano, S. Kitagawa, H. Ohtani, T. Kinoshita, Y. Ishigaki, N. Shibata, S. Nii, "Evaluation of interactions between metal ions and nonionic surfactants in high-concentration HCl using low pressure-high performance liquid chromatography with low-flow-resistance polystyrene-based monolithic column", *Anal. Bioanal. Chem.* 405, pp.8319-8326 (2013).
- 35) 日本化学会, 改訂 5 版 化学便覧 基礎編 I, 丸善出版 (2004).
- 36) Y. Yokoyama, R. Hirajima, K. Morigaki, Y. Yamaguchi, K. Ueda, "Alkali-Cation Affinities of Polyoxyethylene Dodecylethers and Helical Conformations of Their Cationized Molecules Studied by Electrospray Mass Spectrometry", J. Am. Soc. Mass Spectrom. 18, pp. 1914-1920 (2007).
- 37) S.A. Koehler, S. Hilgenfeldt, H.A. Stone, "A generalized view of foam drainage: experiment and theory", *Langmuir*, 16, pp. 6327-6341(2000)
- 38) Y. Bando, T. Kuze, T. Sugimoto, K. Yasuda, M. Nakamura, "Development of bubble column of foam separation", *Korean J. Chem. Eng.*, 17, pp. 597-599(2000)
- 39) T. Kinoshita, Y. Ishigaki, N. Shibata, S. Akita, H. Kondou, S. Nii, 'Selective recovery of gold(III) via continuous counter-current foam separation from hydrochloric acid solution Effects of foam and column sizes on separation performance' *Sep. Purif. Technol.*, 116, pp. 335 341(2013).
- 40) M. A. Brown., T. Htuthwelker., A.B. Redond., M. Janousch., M. Faubel., C. A. Arrell., M. Scarongella., M. Chergui, Jeroen.. A. van Bokhoven., "Changes in the Silanol State Measured In Situ at the Sillica-Aqueous Interface", *J. Phys. Chem. Lett.* 3, pp. 231-235(2012).
- 41) S. Kitagawa, T. Tsuda, "Estimation of the dissociation constant for unreacted silanol groups on the surface of ODS-silica from the relationship between pH and electroosmotic flow velocity in capillary electrochromatography", J. Microcol. Sep. 7, pp.59-64 (1995).
- S. Schwarz., K. Lunkwitz., B. Keßler., U.Spiegler., E. Killmann., W. Jaeger., "Adsorption and stability of silica", *Colloids Surf.* 163, pp.17-27(2000).
- 43) 二井晋, 平成 24 年度 環境研究総合推進費補助金 研究事業 補助金 研究報告書 "起泡 クロマトによる Ga の選択回収プロセスの確立とレアメタル回収への展開 (3K123006)", pp. 16(2012).

6. 研究発表

論文·寄稿

- 木下武彦・柴田信行, "連続向流泡沫分離法によるレアメタルの選択的分離回収", 金属 Materials Science & Technology, 82(10), (2012) 22-28.
- 2) 木下武彦・石垣友三・柴田信行・山口浩一・中野万敬・秋田重人・二井晋・北川慎也・ 平野友彦, "ポリエチレングリコール鎖を用いた湿式分離法による希薄溶液からの有価金属 回収",「第17回資源循環型ものづくりシンポジウム IMS2012 2012 年 12 月 13 日(木)予 稿集」p.65-72.
- 3) 木下武彦, "連続向流泡沫分離法によるレアメタルの分離回収",「第5回レアメタル資源再 生技術研究会 2013 年 3 月 12 日(火) 講演予稿集 」
- 4) T. Hirano, S. Kitagawa, H. Ohtani, T. Kinoshita, Y. Ishigaki, N. Shibata, S. Nii, 'Evaluation of interactions between metal ions and nonionic surfactants in high-concentration HCl using low pressure high performance liquid chromatography with low-flowresistance polyethylene-based monolithic column', *Analytical and Bioanalytical Chemistry*, (2013) 405(25), 8319-8326.
- 5) T. Kinoshita, Y. Ishigaki, N. Shibata, S. Akita, H. Kondou, S. Nii, 'Selective recovery of gold(III) via continuous counter-current foam separation from hydrochloric acid solution Effects of foam and column sizes on separation performance' *Sep. Purif. Technol.*, (2013)116, 335 341, DOI: 10.1016/j.seppur.2013.06.012
- 6) 二井晋・木下武彦・柴田信行、"連続向流泡沫分離法による Ga の分離濃縮"、環境資源工学
 誌 第130回例会 「技術のブレークスルー レアメタル分離とバイオ技術」-2013 夏季号
 2013 年第60巻 第2号(通巻207号)、p.108-112.
- 7) 木下武彦、"泡沫分離法によるレアメタルの回収" 特集 廃水等からのレアメタル回収技術 水環境学会誌 2014 年 第 37 巻(A)2月号(通巻 388 号)、p.52-55.
- 8) R. Takamura, T. Yamamoto, Y. Takagi, Y. Okano, S. Nii, T. Kinoshita, Y. Ishigaki, N. Shibata, S. Kitagawa, 'Numerical study of transport phenomena in a continuous counter-current foam separation', Proceeding of The 25th International Symposium on Transport Phenomena, (2014) November, p.5-7, Aonang Villa Resort, Krabi, Thailand.
- 9) 二井晋・木下武彦・山口浩一・石垣友三・秋田重人、"シンプルな操作で金属イオンの高い 分離性能を実現する連続向流泡沫分離法"、シンポジウムシリーズ1 分離技術のシーズとラ イセンス技術の実用化、分離技術会 (2014) p.89-94.

学会等発表

- 2012/6/1(金) 分離技術会年会 2012 http://www.sspej.gr.jp/nenkai12_programtop.pdf「泡沫を分離 場とするレアメタルの高選択回収」於関西大学 100 周年記念会館 S4-KN。二井 ロ 頭発表。

S4-P1。木下ほか ポスター発表。

3) 2012/9/14(金) 第88回 CSTC フォーラム (第102回東海技術サロン)

http://www.cstc.or.jp/pdf/cstcforum/cstcf88.pdf 「泡沫での流れの制御によるレアメタルの高選択分離」於今池ガスビル。二井 ロ頭発表。

- 4) 2012/9/19(水) 化学工学会 第 44 回秋季大会 http://www3.scej.org/meeting/44f/「レアメタルの 連続向流泡沫分離法での塔内径拡大による分離の向上」於東北大学 川内北キャンパ ス R115。小椋ほか ロ頭発表。R115。
- 5) 2012/9/25(火) 第 22 回日本 MRS 学術シンポジウム http://mrs-j.org/home/ja/node/286 「PEG 鎖 を有する材料を用いた廃棄物からの金の回収、Gold Recovery from Industrial Wastes with Using Materials Having PEG Chains」於横浜ワールドポーターズ 6F 会議室、二井 ほか ロ頭発表。B24。
- 6) 2012/10/1(月)-2(火) 国際協力シンポジウム 眠る都市鉱山 http://www.toshikohzan.com「連続 向流泡沫分離法による亜鉛精錬残渣からのガリウムの分離回収」於京都テルサ、 木下ほか ポスター展示ならびに口頭発表。B5。
- 7) 2012/11/10(土) 第 43 回中部化学関係学協会支部連合秋季大会
 http://www.c-goudou.org/chukaren43/「ノニオン界面活性剤を用いた連続向流泡沫分離
 法によるガリウムの選択分離」於名古屋工業大学、柴田ほか、ロ頭発表。2J04。
- 8) 2012/11/15(木) 第23回クロマトグラフィー科学会議
 - http://www1.gifu-u.ac.jp/~bunseki/23scsGifu/index.html 「低圧高速液体クロマトグラフィーによる高濃度塩酸溶液中での金属イオンと非イオン性界面活性剤の相互作用の評価(3)」於長良川国際会議場、平野ほか。O-05。
- 9) 2012/11/16(金) 第 31 回溶媒抽出討論会 http://www.solventextraction.gr.jp/symposium/00top.html 「連続向流泡沫分離法を用いたガリウムの分離回収と操作因子の分離への影響」於 金沢県文教会館、柴田ほか ポスター発表。P28。
- 10)2012/11/20(火) 明日を拓くモノづくり新技術 2012 http://www.pref.aichi.jp/0000054548.html
 「連続向流泡沫分離法によるガリウムの選択的分離回収」於あいち産業科学技術総
 合センター、柴田ほか ポスター発表。B1。
- 11)2012/11/28(水)-30(金) TECH Biz EXPO 2012 (中部地域公設試研テクノフェア)

http://www.techbizexpo.com/「連続向流泡沫分離法によるレアメタルの選択的分離回 収」 於ポートメッセ名古屋、木下ほか ポスター発表。

12)2012/12/13(木) 第17回資源循環型ものづくりシンポジウム IMS2012

http://www.nipc.city.nagoya.jp/sansien/ symposium/ 「ポリエチレングリコール鎖を用い た湿式分離法による希薄溶液からの有価金属回収」於名古屋市工業研究所、木下ほ か ロ頭発表。

13)2013/2/10(日), 2/17(日)BS フジテレビ「ガリレオ X」No.46,

http://web-wac.co.jp/program/galileo_x/gx130210 「都市に眠る大鉱脈 埋もれた宝を掘 り起こせ!」出演 木下武彦。 14)2013/3/12(火) 第5回レアメタル資源再生技術研究会

http://www.raremetal-forum.jp/「連続向流泡沫分離法によるレアメタルの分離回収」 於名古屋市工業研究所、木下ほか ロ頭発表。

- 15)2013/6/7(金) 第20回クロマトグラフィーシンポジウム、http://www.org.kobe-u.ac.jp/cs20/「低 E高速液体クロマトグラフィーの開発とその高濃度塩酸溶液中での金属イオンー非 イオン性界面活性剤相互作用評価への適用」於神戸大学 百年記念館、北川ほか O-09。
- 16)2013/6/20(木) 環境資源工学会第130回例会 http://www.nacos.com/rpsj/040101.html 「連続向 流泡沫分離法による Ga の分離濃縮」 講演 5 於関西大学 100 周年記念会館、二井、 ロ 頭発表。
- 17)2013/9/12(木) 日本分析化学会 第 62 年会 http://conference.wdc-jp.com/jsac/nenkai/62/「高濃度 塩酸溶液中における金属イオンー非イオン性界面活性剤間相互作用評価法の開発」 於近畿大学 東大阪キャンパス、北川ほか ポスター発表。P3058。
- 18)2013/11/12(火) レアメタルのリサイクル技術に関する国際ワークショップ(International Workshop on Recycling Technology of Critical Elements)、 http://tohoku-timt.net/rare-elements/workshop2013/index.html 「Selective gallium recovery by counter-current foam separation and its application to hydrochloric acid leaching solution

of zinc refinery residues」於東北大、木下ほか ポスター発表。B1-4。

- 19)2013/11/12(火) 第 24 回クロマトグラフィー科学会議 http://24scstokyo.jimdo.com/「気-液界面 における相互作用評価のための起泡固定型マイクロチップの開発」於東京大学武田 先端知ビル、朝田ほか ポスター発表。P-12。
- 20)2013/11/22(金) 第 32 回溶媒抽出討論会 http://www.solventextraction.gr.jp/symposium/00top.html 「連続向流泡沫分離法における塔径と泡径の分離への影響」於名古屋大学 ES 総合 館、木下ほか ポスター発表。P-38。
- 21)2013/11/22(金) 第 32 回溶媒抽出討論会 http://www.solventextraction.gr.jp/symposium/00top.html 「ガリウムの連続向流泡沫分離法における塔径拡大による分離性能の向上」於名古 屋大学 ES 総合館、小椋ほか ポスター発表。P-28。
- 22)2013/11/22(金) 第 32 回溶媒抽出討論会 http://www.solventextraction.gr.jp/symposium/00top.html 「連続向流泡沫分離法におけるガリウムの分離回収に対する PONPE の EO 鎖長の影 響」於名古屋大学 ES 総合館、柴田ほか ポスター発表。P-40。
- 23)2013/11/23(土) 第 32 回溶媒抽出討論会 http://www.solventextraction.gr.jp/symposium/00top.html 「低圧高速液体クロマトグラフィーによる高濃度塩酸溶液中における金属イオン-非 イオン性界面活性剤間相互作用評価」於名古屋大学 ES 総合館、北川ほか ロ頭発 表。B-06。
- 24)2013/12/7(土) The 26th International Symposium on Chemical Engineering 「Two-dimensional numerical numerical investigation of the flow pattern in a continuous counter-current foam separation」於 Bexco in Busan、高村ほか、口頭発表。OF-04。

25)2013/12/14(土) エコトピア科学に関する国際シンポジウム 2013 (International Symposium on

EcoTopia Science 2013, ISETS'13) 、http://www.esi.nagoya-u.ac.jp/h/isets13/ 「Selective recovery of gallium with continuous counter-current foam separation and its application to leaching solution of zinc refinery residues」於名古屋大学、木下ほか、ポスター発表。

Session 5, Green Production, Recycling, Emission Management and Bioremediation, P-5-16。 26)2014/3/1(土) 第 16 回化学工学会学生発表会(東京大会)

http://www.chemeng.titech.ac.jp/~stu16e/index.php「連続向流泡沫分離によるガリウムの 分離特性」於東工大 大岡山キャンパス、平山ほか ロ頭発表。B24。

27)2014/3/18(火) 化学工学会第 79 年会 http://www3.scej.org/meeting/79a/ 「連続向流泡沫分離内 の流体挙に関する数値シミュレーション」於岐阜大学 柳戸キャンパス、高村ほか ポスター発表。SA1P01。

28)2014/5/30(金) 分離技術会年会 2014 http://www.sspej.gr.jp/events/annual_meeting/2014.html 「ガ リウムの連続向流泡沫分離法における PONPE の EO 鎖長の影響」於名古屋大学 ES 総合館、木下ほか ポスター発表。S3-P3。

29)2014/5/30(金) 分離技術会年会 2014 http://www.sspej.gr.jp/events/annual_meeting/2014.html「連 続向流泡沫分離法による Ga の分離特性-GaAs 基板からの分離」於名古屋大学 ES 総 合館、平山ほか ポスター発表。S4-P12。

30)2014/9/17(水) 化学工学会 第46回秋季大会 http://www3.scej.org/meeting/46f/「連続向流泡沫分離法によるガリウム分離の実用に向けた検討」 於九州大学 伊都キャンパス、平山ほか ロ頭発表。P119。

31)2014/9/18(木) 化学工学会 第46回秋季大会 http://www3.scej.org/meeting/46f/「連続向流泡沫分離法による亜鉛精錬残渣からのガリウムの分離回収」於九州大学 伊都キャンパス、 木下ほか ポスター発表。ZD2P45。

32)2014/9/19(金) 日本分析化学会 第63年会

http://conference.wdc-jp.com/jsac/nenkai/63/index.html「高濃度塩酸溶液中における金属 イオン-非イオン性界面活性剤間相互作用評価法の開発(II)」於広島大学 東広島キャ ンパス、北川ほか ポスター発表。P3173。

33)2014/9/27(土) 第 63 回理論応用力学講演会 http://news-sv.aij.or.jp/nctam/63/ 「連続向流泡沫分 離装置内の流体現象に関する数値解析」於東工大 大岡山キャンパス、高村ほか ロ 頭発表。OS05-01-02。

34)2014/11/5(水) ISTP-25 (国際移動現象シンポジウム) http://me.eng.kmitl.ac.th/istp-25/

「Numerical study of transport phenomena in a continuous counter-current foam separation」 於タイ Krabi、AONANG VILLA RESORT、高村ほか ロ頭発表。51。

35)2014/12/10(水) 第19回資源循環型ものづくりシンポジウム(IMS2014)

http://www.nipc.or.jp/sansien/symposium/pdf/ims2014_program.pdf「連続向流泡沫分離法 における泡径と塔径の分離への影響」於名古屋市工業研究所、木下ほか ロ頭発表。

36)2014/12/11(木) 第 33 回溶媒抽出討論会 http://www.solventextraction.gr.jp/symposium/00top.html 「連続向流泡沫分離法によるガリウム分離一塔径拡大の影響と混酸の適用性に関す る検討」於ホテルプラザ神戸、平山ほか ポスター発表。P-08、<u>ポスター賞受賞</u>。 37)2014/12/11(木) 第 33 回溶媒抽出討論会 http://www.solventextraction.gr.jp/symposium/00top.html

> 「ノニオン界面活性剤を用いた連続向流泡沫分離法の応用」於ホテルプラザ神戸、 柴田ほか ポスター発表。P-25。

- 38)2014/12/12(金) 第 25 回クロマトグラフィー科学会議 http://scs25.info/「ポリオキシエチレン 鎖を有する非イオン性界面活性剤と金属イオン間の酸性条件下における相互作用の 解析」於京都大学 船井哲良記念講堂、朝田ほか ポスター発表。P-48、ポスター賞 受賞。
- 39)2015/3/20(金) 化学工学会 第80年会 http://www3.scej.org/meeting/80a/index.html 「連続向流泡 沫分離塔内移動現象に関する数値解析」於芝浦工業大学、岡野ほか ロ頭発表。A221。

7. 知的財産権の取得状況

1) 特願 2013-195613 「気泡固定流路装置及びそれを用いた測定装置」北川慎也 2013/9/20 出願 研究概要図

起泡クロマトによる Ga の選択回収プロセスの確立とレアメタル回収への展開

<mark>背景</mark> Ga は日本の成長への必須資源・・・半導体、発光ダイオード、太陽電池パネルに使われ、 日本で世界需要量の 70%を消費

- <mark>達成目標</mark>・実際の廃棄物を原料としてガリウムを回収率100%かつ高い分離度で単離できる起泡クロ マトプロセスを開発する。
 - ・装置大型化による性能向上を追究する。
 - ・ガリウム以外の種々レアメタルに起泡クロマトを適用して高度分離を実証する。

・塔内径拡大により分離にスケールメリットが発現し、内径 6cm が適切
 ○ 泡径をできるだけ大きく制御すべき
 ○液ホールドアップの値を小さくかつ塔の半径方向での変化を小さくすること
 泡沫相内で栓流的な液体の下降流の形成が鍵
 泡沫相内の液流れのシミュレーションに成功
 液ホールドアップ分布を予測するモデルを確立

 ・実サンプル(GaAs 基板、亜鉛精錬残渣)からの Ga の選択
 ・実サンプル(GaAs 基板、亜鉛精錬残渣)からの Ga の選択
 ・分離を達成(Ga/Fe 分離度 1500 以上)
 ・HBr 溶液中から In の選択分離を達成

・ベース溶液をリサイクル可能で PONPE 使用量を低減

・Ga の選択捕集の鍵となる PONPE のオキシエチレン鎖長
 ○鎖長 n=20 のとき高い泡沫安定性と比較的高い
 分離度が得られた
 H(OCH₂CH₂)_n → C₉H₁₉
 オキシエチレン鎖
 PONPEの構造

・PONPE と金属の相互作用

Oオキシエチレン鎖による金属捕集には、鎖長構造よりもユニット数の影響が大きい 静電的相互作用に加えて疎水性相互作用の可能性

環境政策提言

- 小型で高性能(標的金属の回収率ほぼ100%で高純度)なガリウム分離装置の開発 酸性溶液に含まれるガリウムと金を100%回収かつ高い選択性で分離する技術 有機溶媒を使わずにレアメタルを分離する技術
- 2. 使用済み太陽電池パネルからのガリウム回収技術

英文概要

- 研究課題名: Development of Selective Recovery Processes for Gallium and Valuable Metals by using Foam Chromatography
- 研究代表者: Assoc. Prof. Susumu Nii Department of Chemical Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan.
- 共同研究者: Dr. Takehiko Kinoshita, Mr. Yuzo Ishigaki, Mr. Nobuyuki Shibata, Nagoya Municipal Industrial Research Institute, 3-4-41, Rokuban, Atsuta, Nagoya 456-0058, Japan. Assoc. Prof. Shinya Kitagawa, Department of Materials Science and Engineering, Nagoya Institute of Technolory, Gokiso, Showa, Nagoya 466-8555, Japan. Prof. Yasunori Okano, Osaka University, Machikaneyama 1-3, Toyonaka, 565-8351 Japan
- 要旨 : An excellent separation of gallium from a multi metal-ions mixture was achieved with a method of 'Foam Chromatography' using a highly selective affinity between gallium ion and the surfactant, PONPE20. Under optimized operation condition, separation factors of gallium against a metal exceeded 5000. The major contaminant was found to be Fe(III). The reduction of Fe(III) to Fe (II) was effective to enhance the separation between Ga and Fe. Applicability of foam chromatography to an industrial waste was studied with using the residue of zinc refinery as well as GaAs substrate scrup as sources of Ga. The leaching solution of the residue contains Ga, Fe, Zn, Al, As, In and Cu, and Ga concentration was low as 12 ppm. By applying foam chromatography, 100% recovery of Ga and remarkably high separation factors of Ga against a metal were attained. Furthermore, the separation performance was improved by increasing the column diameter from 30 to 60 mm. Separation factors of Ga/Fe and Ga/Cu in the bigger column were more than five times of those in the smaller one even if the recovery percentage of gallium for both cases was 100%. Enrichment ratio of Ga was as high as 66 while the ratio was 4 for the smaller column. Foam chromatography has a remarkable merit to use the wider column. The use of 90 mm in diameter showed a benefit in separation but a loss of gallium recovery. The key of the separation technique is to control the liquid flow within the froth. Numerical simulation successfully predicted the flow velocity profile in the froth. Indium was selected as a target metal, and it is successfully separated from metals mixture in HBr solution. Therefore, the foam chromatograpy is highly promising method to recover valuable metals efficiently.