三方五湖の最上流にあり環境変革の顕著な三方湖を主な対象

湖内環境
ヒシの影響
生産構造、栄養塩
魚類などの生態

周辺環境
湖と水田の連続性
水田魚道

人と湖のかかわりの変遷

協働参加
協働参加型調査
昔の水辺の風景画

情報還流
みんなの三方五湖
マップ

目的
① 地域主体の自然再生を支援する
② 水辺生態系再生の研究モデルを提示する

三方湖総合研究プロジェクトの概要。三方湖を主な研究対象とし、5つのテーマからなります。湖内や周辺の環境において現在進行中の現象を科学的に評価するほか、水田魚道など有効な再生技術の開発を行っています。また、人文社会学の視点から地域の大地の変容を調べています。さらに、地域の多様な人々と共に調査や調査を行い、地域と相互に情報流動する仕組みをつくっています。これらの研究により、地域主体の自然再生を科学的に支援するほか、他の地域にも適用できる研究モデルを提示することを目的としています。
三方湖のヒシはいつどのように繁殖したのか？

2008年夏、三方湖の湖面は水面が見えなくなったかのように急増した。湖面の半分以上を覆うヒシの葉が湖面を覆い、水面が見えなくなった。これにより、水深が増加し、生態系が変化した。

ヒシが繁殖する場所

ヒシが繁殖する場所は、三方湖の中でのヒシが繁殖する場所の条件を解析することで明らかにされる。一方、他の湖とは、ヒシの繁殖速度は、水温、水深、塩分濃度などに大きく影響される。

ヒシはいつから増えたか?

ヒシが湖の広範囲を覆った年でも、ほとんど川の河口部付近でヒシが増えている。しかし、三方湖の中でのヒシが繁殖する場所の条件を解析することで、ヒシが繁殖する場所の条件を明らかにすることが可能となる。

ヒシの繁殖は、湖面が増加し、生態系が変化したことが原因である。三方湖の中でのヒシが繁殖する場所の条件を解析することで、ヒシの繁殖が明らかになる。
繁茂したヒシは、三方湖をどう変えたのか？

ヒシを巻くためには、三方湖に及ぼす影響を中心にまとめた図。ヒシが増えると、水中の酸素の消費が増える。このために、ミジンコの仲間やカイミジンコは増えず、センチュウやユスリカ幼虫の水生ミミズは増える。酸欠の影響で、魚類や水鳥の生息環境が変わる。"正の効果"（赤い矢印）は増えると良い影響を示し、"負の効果"（青い矢印）は悪影響を示しています。このように、ヒシの増えることで三方湖の生態系に大きな変化が生じる可能性があります。
三方湖の一次生産構造から栄養塩化の原因を探る

上図は、本研究により明らかになった三方湖の一次生産構造をまとめたものです。三方湖の植物プランクトンは、図のように多様な起源の栄養塩を取り込んで増殖します。また、植物プランクトンとヒシは、どちらも栄養塩を取り込んで増殖する一次生産者ですから、栄養塩を巡る競合関係が春から夏にかけて起こっています。栄養塩を取り込んだ植物プランクトンは、動物プランクトンなどの高次消費者に捕食されることで、最終的には魚などの重要な飼料となっています（5ページ参照）。まだまだ過剰な増殖が起こっているのが現状です。

はじめに

三方湖の栄養塩化を診断する

オフォやヒシは水中の栄養塩を取り込んで成長する一次生産者です。栄養塩の起源を考える必要がある。そこで、栄養塩の起源を調べた結果、三方湖の一次生産者が利用している栄養塩の起源が重要であることが分かりました。一つは、陸域から排出される栄養塩で、これには生活排水や農業排水を含む。次に、湖底のヘドロから分解される一次生産物が増える。今まで、三方湖の栄養塩化の原因を追究してきましたが、今後は、陸域から排出される栄養塩だけでなく、ヘドロから再生成される栄養塩の削減を実施することが必要です。
三方湖の食物網から生き物のつながりをみる

三方湖ではウナギ、コイ、ハゼ、白魚、外魚のブルーグリルなど30種をこえる魚類が採集されました（図）。また、植物プランクトン（緑藻類）と動物プランクトン（赤藻類）の安定同位体比は、春から夏にかけて左方向に移り、秋から冬にかけては、右上方向に変化します。上位の栄養段階の魚類（赤藻類）は、比較的まとまりように動きます。しかし、上下の移動は春にやや高くなるものの、あまり変わりません。これは、魚のように相対的に大きな生き物は、餌の安定同位体比を反映するために時間がかかるからです。また、冬から春は温度が低く、同化速度が低下することが考えられます。安定同位体比の挙動からみて、多くの魚類が食物鎖を植物プランクトンに依存しているようです（下図）。

三方湖の食物網を乱す問題

三方湖の生き物の食物関係

私たちは、食物網と栄養段階を推定することができる安定同位体比を分析している。三方湖の食物網を乱す問題の原因として、植物プランクトンに鱼類のカニが餌として食べられていることが考えられています。また、ヒトの存在も食物網に影響を与えていると考えられています。さらに、植物プランクトンの栄養段階が多様性をもたらす重要な要素であると考えられています。
久保田清光
（福井県環境対策・建設技術研究所）

三方湖における湖沼沿岸帯復元の取り組み

三方湖周辺で過去に記録されている絶滅危惧種（イバラモ、トチカガミ等）は多いですが、多くは護岸工事のときに激減し、その後は水質悪化等の影響もありほぼ滅減状態となっているのが現状です。そこで、コンクリート護岸整備前（S20～35年頃）の海岸の植生状況を聞き取り調査し、その結果を基にして復元する植生の目標設定（図1）を行いました。

図1 復元する植生の目標

植生護岸整備における基本方針（抜粋）
①水質の悪化している三方湖の浄化と失われた生物多様性の再生を目的とした植生護岸を計画する。
②植生計画に失われた自然植生の回帰を盛り込む。
③植生護岸は現在の水深よりも浅くし、植生が可能となるように盛土する必要があるが、その要因ははず川の事例をもとに、最大水深を1mとする。
④盛土の組合は、波高との関係を1：30とし、盛土材料は流域内のはず川の浚渫土を使用する。
⑤施工前後の植生状況を調査し、今後の植生護岸計画に反映していく。

図2 植生護岸整備箇所

植生護岸のタイプ

植生護岸タイプ1は、ヨシ帯において、ヨシ帯での魚類数が増加しており、ヨシ帯の魚類数が増加している。

今後の課題

ヨシ帯でモニタリング調査結果

水質浄化十生物多様性

水質浄化と生物多様性の両方を同時に考慮した取り組みが必要です。
三方五湖に生息するウナギの成長と生息域利用

海部健三・塚本勝巳 (東京大学) ほか

三方湖で採集されたウナギの年齢と全長の関係

ニホンウナギの耳石（研磨・染色）
岡山県児島湾で2008年に採集
5歳、455mm

成長

ウナギの頭骨の中には、耳石と呼ばれる数層の円筒状の物質が形成される。耳石の成長は、ウナギの生長と並行し、年輪のように年齢の変化を示す。年齢と捕獲全長（6cm）から、年間の成長速度を求めることができると考えられる。

三方湖で2010年に採集されたニホンウナギ43個体についての成長速度を求めた結果、成長速度の最大値は1.3mm/年、最小値は0.3mm/年で、年齢の全長成長速度を求めることができる。

生息域利用

三方湖水系（左図）で採集されたウナギのSr/Ca比。サンプルより下の値が淡水生息期、上の値が汽水生息期を示す。幼齢期にSr/Ca比が低く、その後高くなっていることから、淡水域から汽水域へ移動したことが分かります。

三方湖水系（右図）で河川が河川から採集され、Sr/Ca比についての43個体についての結果を示す。汽水・淡水の生息域利用履歴を推測し、各個体のSr/Ca比、Sr/Co比が汽水・淡水の生息域に応じて変化する傾向が示されました。