平成25-27年度環境研究総合推進費

5-1306 日本海及び周辺域の大気・海洋における 有機汚染物質の潜在的脅威に関する研究

累積予算額 120,329千円 研究代表者 早川 和一(金沢大学)

研究体制 (O:サブテーマリーダー)

(S1) 大気・海洋環境中のPAHs及び放射性核種の起源と動態の把握に 関する研究

O<u>早川和一</u>,長尾誠也(金沢大学)

(S2) 大気・海洋環境中のPOPs条約指定物質の起源と動態の把握に 関する研究

○荒巻能史, 高澤嘉一((国研)国立環<mark>境研</mark>究所)

(S3) 大気・海洋環境中のPAHs類二次生成と毒性化の解明に関する研究 〇亀田貴之(京都大学)

(S4) 日本海及び周辺域の有機汚染物質の発生・輸送と海洋負荷の解析 に関する研究

〇<u>佐藤啓市, 猪股弥生</u>, 大泉 毅((一財)日本環境衛生センター)

研究計画と目標,環境政策・社会貢献

S1-1 最近18年間の大気中ΣPAH濃度の推移

S1-2 最近18年間の大気中ΣNPAH濃度の推移

S1-4 能登半島の過去10年間の大気中PAH濃度推移

1) 日本海のPAH汚染は軽減傾向,2) 対馬海流の濃度変化の主原因は長江の変化? 10

(A) 日本海

(B) 長江

S2-2 (A) 日本海と (B) 長江のPAH濃度の変化 (2008-2014)

S2-3 日本海のPAHの由来は?

11

K. Hayakawa (Kanazawa Univ.)

	液相NO ₃	気相OH	<mark>気相NO3</mark> 13
Compound	k_1/k_2	$10^{11}k_{\text{PAC-OH}}^{\text{b}}$	$10^{28}[NO_2]^{-1}k_{PAC-NO3}^{h}$
Naphthalene (NA)	1.00	2.39	3.65
1-Methylnaphthalene (1-MNA)	1.85 ± 0.19	4.09	7.15
2-Methylnaphthalene (2-MNA)	1.77 ± 0.12	4.86	10.2
2,3-Dimethylnaphthalene (2,3-DMNA)	2.11 ± 0.30	6.15	15.2
Fluorene (FLRE)	0.56 ± 0.07	1.6 ^c	
Phenanthrene (PHE)	1.59 ± 0.23	3.2 ^d	2 6 10
1-Nitronaphthalene (1-NNA)	0.11 ± 0.03	0.54 ^e	5-40)
Acenaphthene (ACE)	2.57 ± 0.24	8.0 ^f	(モデルへ))
Pyrene (PY)	2.40 ± 0.29	5.6 ± 0.5^{g}	し 提供 人
Fluoranthene (FLRA)	1.21 ± 0.13	3.3 ± 0.3 ^g	
Triphenylene (TP)	0.22 ± 0.04	0.86 ± 0.12^{g}	0.66 ± 0.15^{g}
Chrysene (Chry)	1.76 ± 0.08	4.4 ± 0.2	9.2 ± 0.6
Benz[<i>a</i>]anthracene (BaA)	2.27 ± 0.20	5.3 ± 0.4	12.6 ± 1.4
Benzanthrone (BA)	0.75 ± 0.01	2.3 ± 0.0	3.1 ± 0.1

^b Given in unit of cm³ molecule⁻¹ s⁻¹. ^h [NO₂] and $k_{PAC-NO3}$ are given in unit of molecules cm⁻³ and cm³ molecule⁻¹ s⁻¹, respectively.

蒸気圧が低い3種の4環PAHについて、これまで実験的に求めることが困難 だったOH及びNO₃ラジカルとのガス相反応速度定数を新たに明らかにできた*

*Kameda et al., Polycyclic Aromat. Compd., in press (doi: 10.1080/10406638.2016.1159583).

・日本国内で初めて降水中PAHsの連続観測実施 ・この結果から、モデルによるPAHsの湿性沈着量の計算結果の検証可能

S4-1 能登における降水中炭素成分, PAHs濃度の変化

PAHの収支計算・解析

アジア大陸からの風下に位置する日本, 韓国で は, 排出量よりも湿性・乾性沈着量が多い

S4-2 北東アジアにおけるPAH発生・沈着量の収支

・日本海へ沈着するPAHは中国北部・中央部からの発生源からの寄与が多く、冬は80%以上18
・大気からのPAHの除去は、湿性沈着(降水)過程が大きい(80-90%)

S4-3 発生源寄与解析による日本海へのPAH沈着量の推定

「国民との対話」リスト

<u>主催一般公開シンポジウム</u>

- (1)金沢大学薬学シンポジウム2013「東アジアのPM_{2.5}の動態と健康影響」2014.1.10, 金沢エクセルホテル東急,86名.
- (2) 環境省環境研究総合推進費[5-1306金沢大学]/大気環境学会共催「PM_{2.5} 汚染は 悪化?それとも改善している? - 」2016.1.14,石川県政記念しいのき迎賓館,40名.

<u>市民公開講座</u>

(1)野々市市ののいち市民大学校(講演)早川和一,最近のPM_{2.5}問題について, 2014.7.25,野々市市中央公民館,40名.

公開シンポジウム講演

- (1)日本臨床環境医学会 第23回日本臨床環境医学会学術集会シンポジウム「PM2.5 ー対策と研究の最前線ー」(講演)早川和一,鳥羽 陽,唐 寧,亀田貴之,多環芳香族 炭化水素類から見た東アジアのPM_{2.5},2014.6.14-15,京都.
- (2)日本環境変異原学会 平成25年度公開シンポジウム「東アジア地域の環境汚染の現 状とヒト健康への影響」(基調講演)早川和一,東アジア地域における汚染物質PAH類 の発生と動態,2013.5.25,東京.

19

5-1306 日本海及び周辺域の大気·海洋における有機汚染物質の 潜在的脅威に関する研究

S1. 大気中多環芳香族炭化水素(PAH)及びニトロ多環芳香族炭化水素(NPAH)

- ・日本,中国,韓国,ロシアとの18年間調査から,極東アジア都市の発生分布図を作成
- ・中国の都市のPAH, NPAH濃度は極めて高く、冬の石炭暖房が主要因
- ・中国発生PAH, NPAHの一部は我が国に長距離輸送, 能登半島への飛来量は減少傾向

S2. 日本海及び周辺海のPĂHs及びPOPs

- ・8年間の継続調査から、PAH分布図を作成し、変化把握
- ・日本海のPAHの汚染レベルは減少傾向
- ・日本海対馬海峡及び黄海にPOPsの高濃度域

S4. PAH動態シミュレーションモデル構築

- ・S1~S3の研究結果を総合し、極東アジアにおけるPAH動態シミュレーションモデル構築
- ・日本海へのPAH負荷経路では対馬海流由来と大気由来が大
- 大気由来のPAHの主要発生源は中国東北地方、湿性降下物の寄与が大

S3. NPAHsの二次反応

NPAHsを二次生成

・黄砂大気中で強毒性の