研究開発目的

我が国では2000年頃から風力発電施設が建設され始めたが、近隣住民から騒音被害が訴えられるケースが多発している。しかし、この種の騒音に関してはまだ科学的知見が乏しく、評価基準が整備されるには至っていないのが現状である。（平成24年10月から風力発電施設も環境影響評価の対象事業となった。）

そこで、本研究では低周波数成分を含む風車騒音の影響を調べることを目的として、風車騒音の実測調査と施設周辺の住民を対象とした社会反応調査、及びこの種の騒音に対する人間の生理・心理的反応調べるための聴感評価実験等を3年計画で実施した。
これによって、風車騒音に対する行政的対応の指針並びに環境アセスメントのための評価手法の確立に資することを目的とする。
研究体制
サブテーマ-1 実測調査（公社）日本騒音制御工学会（末岡伸一）
サブテーマ-2 社会反応調査：同上
サブテーマ-3 聴感実験：東京大学生産技術研究所（坂本慎一）

風車の発生騒音
暗騒音：道路交通騒音、航空機騒音、
動物・虫の鳴き声など
葉擦れの音
風雑音

風車騒音の測定における問題点
広帯域騒音計の試作

防風スクリーンの試作開発

屋外における低周波音の測定方法に関する検討

全国規模の実測調査（合計34の風力発電施設周辺）
実測調査結果の一例

2,000 kW風車17機から成る風力発電施設
風力発電施設周辺における実測調査

風車周辺地域：24箇所 対照地域：12箇所

風車地域と対照地域の騒音レベル分布（中間集計）
風車騒音の距離減衰特性（全国30施設）

風車騒音に含まれる振幅変調音（swish sound）
調査の内容
(1) 住環境に関する一般的印象
(2) 風車騒音によるアノイアンスの程度
(3) 風力発電に関する意見（評価）
(4) 睡眠
(5) 自覚的健康状態（THI質問票利用）
① 呼吸器、② 目と皮膚、③ 消化器、④ 生活不規則性、⑤ 情緒不安定
(6) フェースシート
調査対象地域：風力発電施設周辺：34地域
 対照地域：18地域
調査の結果（中間集計）
対象風力発電施設：24箇所（回答率：508/973）
内、風車騒音を最も悩まされている騒音と指摘した人数：103人

社会反応調査（インタビュー方式アンケート調査）

風車騒音のうるささに関する反応（計103件）
風車騒音のうるささに関する反応（計93件）

実測結果の一例：2,000 kW風車17機から成る風力発電施設
低周波音聴感実験設備

風車騒音に含まれる低周波数成分に関する聴感実験

実験1：低周波数の純音に対する聴覚閾値

実験2：風車音に含まれる低周波数成分の可聴性 (1)：
実験音を対象とした実験

実験3：風車音に含まれる低周波数成分のラウドネスに対する寄与

実験4：風車音に含まれる低周波数成分の可聴性 (2)：
帯域制限ノイズの聴覚閾値

実験5：振幅変調音の聴感印象 (1)：
風車音に含まれる振幅変調音の可聴性

実験6：振幅変調音の聴感印象 (2)：
振幅変調の強さとノイジネスの関係

実験7：低周波数成分を含む一般環境騒音のラウドネス評価
のための騒音評価尺度の検討
Sound pressure levels in 1/3 octave bands and its variations made by limiting the frequency components.

結論：
風車音に含まれている低周波数成分の音は、聞こえない/感じない。
結論（outcome）

(1) 風車騒音には低周波数の成分も含まれているが、一般環境騒音の中で特異な特性ではなく、風車騒音の低周波数成分そのものは感覚閾以下である。
（別途行われた文献調査によれば、風車騒音の低周波数成分が直接的に健康に影響を及ぼすという疫学的エビデンスは見出されていない。）

(2) しかし、風力発電施設が建設されるのは本来静穏な地域が多く、風車騒音は可聴性の騒音として深刻な問題もある。特に規則的に変動する振幅変調音（swish音）や純音性の成分が近隣住民のアノイアンスを高めている。

(3) 風車騒音は夜間など地域の暗騒音が低い時に耳につき、睡眠影響などの原因となりやすい。ひいては、それが健康に影響を及ぼす可能性がある。環境行政としてはまずこの問題の解決に取り組むべきである。

(4) 風車騒音騒音の評価尺度としては、一般環境騒音の評価に広く用いられているA特性音圧レベル（騒音レベル）が適用できる。

(5) 風車騒音に関する環境保全の目標値としては、地域特性および風車騒音の特性を考慮し、夜間など静穏を要する時間帯に着目して建物の外部におけるレベルで規定することが望ましい。（目標値は環境省別委員会で検討中）