

N₂O、CH₄、硫黄化学種に着目する

GLOBAL MEAN RADIATIVE FORCINGS

N₂O (理論計算)

N₂O (三次元全球化学輸送モデル)

90S -

6.8

60E

6.82

6.84

120E

6.86

180

6.9

6.88

120W

6.92

再現

 $(\delta^{15} N^{bulk}, \%'_{atm-N2})$

60W

6.96

6.98

6.94

 CH_4 (観測)

2100

(1000 4 [bbp] H 1900 1800

[dd 2000 H 1900 H 1800

[d 2000 H 1900 H 1900 1800

1800

1800 2100

2000

1800 2100 7km

3km

1km

1994

CH₄ (三次元全球化学輸送モデル)

d13C [permil] JUL2000

CH₄ (三次元全球化学輸送モデルと観測の比較)

60N

30N

ΕQ

30S

60S

90S ·

CH₄ (データベース・発生源キャラクタリゼーション)

9

表. メタン発生源と消滅過程のフラックス、δ¹³Cの見積もり値の一例

source	$\begin{array}{c} \mathrm{flux} \\ (\mathrm{Tg} \ \mathrm{yr}^{-1}) \end{array}$	$\delta^{13}\mathrm{CH}_4\ (\%)$				
NUL IN ALM	26 36 26° (685)	38 88	-	最小 ~ 最大	データ数	文献数
rice paddies	110.0	-63.0	-58.0 ± 7.1	-78.0 ~ -42.7	86	9
ruminants	80.0	-60.5	-64.1 ± 9.1	-76.7 ~ -45.4	17	5
natural gas	45.0	-44.0	-44.5 ± 3.8	-49.2 ~ -40.5	4	4
coal	35.0	-37.0				
biomass burning	41.0	-24.6	-26.4 ± 4.2	-32.4 ~ -16.2	28	7
boreal wetlands	38.0	-62.0	$-61/7 \pm 8.0$	-90.1 ~ -37.9	233	10
tropical wetlands	77.0	-58.9				
termites	16.0	-63.0	-65.1 ± 5.9	-72.7 ~ -58.6	8	4
landfills	40.0	-55.0	$/-52.0 \pm 4.5$	-62.9 ~ -41.5	45	
ocean	10.0	-58.0 /				
freshwater	4.0	8 /	エディ	山。解析		
gas hydrates	🔺 Bilek, 2001	.5			01.1.0	0丁/在
geological	Klevenhusen,	2010	89±3	991g/ ∓ →	8113	31g/ 平
AMP _ 1.05 -	Kondo, 2011	/.2	7 (1	10%)	(4	0%)
d-CH	· · ·	•/	/ フラ	ックス見積も	り幅が湯	贰少
8 8 1.04 -	A 045 ± 0.002					
	u-1.045 ± 0.002	」/ 「				• •
1.03			.次元全球(ヒ字輸送モデ	ルへの	インブッ

硫黄化学種(理論計算)

第一原理計算によるSO₂の解析 -非断熱遷移を考慮-光解離反応速度 ~ 光吸収断面積(σ)と仮定 Three-isotope plot of SO₂ **MDF-Line**: 167nm ~ 197nm

$$\frac{\ln\left[{}^{33}S^{16}O^{16}O/{}^{32}S^{16}O^{16}O\right]}{\ln\left[{}^{34}S^{16}O^{16}O/{}^{32}S^{16}O^{16}O\right]} = 0.515$$

$$\frac{\ln\left[\sigma_{33}S^{16}O^{16}O/\sigma_{32}S^{16}O^{16}O\right]}{\ln\left[\sigma_{33}S^{16}O^{16}O/\sigma_{32}S^{16}O^{16}O\right]} = 0.456$$

$$\frac{\ln\left[\sigma_{33}S^{16}O^{16}O/\sigma_{32}S^{16}O^{16}O\right]}{\ln\left[\sigma_{34}S^{16}O^{16}O/\sigma_{32}S^{16}O^{16}O\right]} = 0.456$$

MDF-Line: 197nm ~ 228n $\frac{\ln \left[{}^{36}S^{16}O^{16}O / {}^{32}S^{16}O^{16}O \right]}{\ln \left[{}^{34}S^{16}O^{16}O / {}^{32}S^{16}O^{16}O \right]} = 1.90$ <mark>8</mark>' 36S16O16O 非断熱動力学(緑と赤): -1 $\frac{\ln \left[\sigma_{^{36}\mathrm{S}^{16}\mathrm{O}^{16}\mathrm{O}} / \sigma_{^{32}\mathrm{S}^{16}\mathrm{O}^{16}\mathrm{O}} \right]}{\ln \left[\sigma_{^{34}\mathrm{S}^{16}\mathrm{O}^{16}\mathrm{O}} / \sigma_{^{32}\mathrm{S}^{16}\mathrm{O}^{16}\mathrm{O}} \right]} = 0.689$ -2 -2 ともに異方分布

2

硫黄化学種 (模擬実験•理論計算)

OCSとSO,の酸化反応における同位体分別の波長依存性を世界に先駆けて求めた。

12 <u> 硫黄化学種 (三次元全球化学輸送モデル)</u> CCSR/NIES/FRCGC AGCM (5.7b) **он** -2.8‰¹ 水平解像度: T42(~2.8°) 鉛直解像度: 67層(0~90km) 2.6‰⁵? H_2O_2 $\epsilon_{hv190-260} = -3.1\%^2$ ocs Sulfate SO₂ 3,4,0 50 0, 45 40 50 50 40 30 20 20 45 -30 -25 40 25 -21.7‰³ O(3P) ОН 35 8.9‰4 20 20 OH (E 30 -25 -20 -15 **1**5 DMS 15 1: Schmidt et al. (2011) 2: Hattori et al. (2011) 3: Hattori et al. Submitted 15 4: Harris et al. (2012) 10 OCSの δ^{34} S値(‰) 5: Kruose et al. (1991) 5 0 -1‰ 5 11‰ 5 5‰ 5? 5‰ 5 90S 6ÒS 3ÖS EQ 30N 60N 90N 50 5 10 15 20 25 30 35 40 45 50 55 0 45 硫酸エアロゾルの δ^{34} S値 (‰) 50 -40 45 35 SO₂の δ³⁴S値 (‰) 40 30 (km) 35 2110 25 (E 30 25 20 0 112 10 0 20 6 6 8 -4 4 15 (2_8 -4 2.6‰? 6 15 10 10 5 5 0. 0 -90S 60S 30S EQ 30N 60N 90S 60S 30S 90N EQ 30N 60N 90N

モデルと観測の比較から、成層圏硫酸エアロゾルの起源は、従来のモデルよりもSO₂ 由来に対するOCS由来の寄与が小さい可能性が示唆された。

2

3

4

5

7

9

10

11

12 13 14

6

-2

0

2

4

6

8 10

-4

-10 - 8

-6

モデルによる
 人為発生源の
 寄与率の
 高精度
 推定
 (N2
 の例)

13

まとめ

21世紀初頭の北半球における対流圏大気中N₂Oアイソトポマー比の経年変化お よび各種人為発生源のアイソトポマー比を観測で明らかにした。成層圏のN₂O光分 解におけるアイソトポマー分別を理論計算した。これらの結果を用いてN₂Oの全球 収支・分布をいくつかのモデルで解析・シミュレーションし、各種人為発生源の寄与 率の高精度推定、発生源データベースの妥当性確認、今後必要な観測の提案を 行った。

観測空白域の一つであるシベリア地域において、長期にわたる高精度のCH₄濃度とCH₄アイソトポマーのデータを得た。CH₄濃度とCH₄アイソトポマーに関するプロセスを組み込んだモデルフレームを開発し、観測との比較が可能になった。主要な結果として西シベリアを中心とした湿地起源フラックスを定量化できる可能性が示唆された。一方、CH₄アイソトポマーによる発生源のプロセス解析により、モデルに有用な畜産起源情報が得られた。

模擬実験と理論計算からOCSとSO₂の酸化反応における同位体分別の波長依存 性を世界に先駆けて求めた。また、SO₂の光解離の際に起こる同位体異常の原因 として、量子効果である非断熱遷移が大きな影響を及ぼしていることを明らかにで きた。これらの結果をもとにモデルを構築し、観測との比較から、成層圏硫酸エア ロゾルの起源として、SO₂由来に対するOCS由来の寄与が従来のモデルよりも小 さい可能性が示唆できた。