平成 30 年度 環境経済の政策研究

我が国における自然環境施策への 效果的な資源動員に向けた研究

研究報告書

平成 31 年 3 月

京都大学
北海道大学
甲南大学
国立環境研究所
目次

I. 研究の実施経過 ... 3
 1. 研究の背景と目的 ... 3
 2. 3年間の研究計画及び実施方法 ... 3
 3. 3年間の研究実施体制 ... 6
 4. 本研究で目指す成果 .. 7
 5. 研究成果による環境政策への貢献 ... 7

II. 平成30年度の研究計画および進捗状況と成果 8
 1. 平成30年度の研究計画 ... 8
 2. 平成30年度の進捗状況および成果（概要） 9
 3. 対外発表等の実施状況 ... 13
 4. 英文サマリー ... 18
 5. 平成30年度の研究計画および進捗状況と成果 19

序論 .. 19
本論 .. 20

1. 現地調査 ... 20
 1.1 屋久島および協力金に関する概要 20
 1.2 屋久島の山岳部における諸問題 ... 23
 1.3 世界自然遺産屋久島環境保全協力金 25
 1.3.1 環境保全協力金の概要 .. 25
 1.4 環境保全協力金の収支状況 .. 26
 1.5 アンケート調査の内容 ... 28
 1.5.1 アンケート調査項目 ... 28
 1.5.2 分析方法 ... 30
 1.5.3 サンプリング ... 31
 1.5.4 回答者の個人属性 ... 31
 1.6 アンケート調査の結果 ... 34
 1.6.1 環境保全協力金に関する設問への回答結果 34
 1.6.2 BWSの結果（カウンティング法） 36
 1.6.3 BWSの結果（モデリング法） 39
 1.6.4 BWSの結果（回答者属性別の分析） 40
 1.7 まとめ .. 43
 1.8 引用文献 ... 44

2. 施策評価の調査票設計 .. 46
 2.1 本年度調査の概要 ... 46
 2.2 適用する統計分析手法の概要および文献整理 46
 2.3 アンケート調査票の作成方針および文献整理 47
Ⅰ 研究の実施経過

1. 研究の背景と目的

自然環境の保全と持続可能な利用を実現するためには、国立公園等の保護地域に指定し、その保全と利用を適正に管理するための施策に加えて、利用者の金銭的負担を自然環境の保全等に還元するなどの経済的手段が有効と考えられる。近年、こうした自然環境施策において新たな動きが見られる。例えば、平成28年にやんばる、平成29年に奄美群島の各国立公園が新設に指定された。また、平成27年には「地域自然資産法」が施行され、入域料などの利用者負担に関する施策も進められている。これらの自然環境施策を運用する際には、自然環境施策が地域の社会経済や国民の経済活動に及ぼす影響や、生物多様性の価値にもたらす効果をデータに基づいて評価することが政策的に必要となっている。一方、平成28年に政府が取りまとめた「明日の日本を支える観光ビジョン」では、2020年までに国立公園を訪れるインバウンドを1000万人とする目標が設定されており、外国人観光客を国立公園に誘致するためには、外国人観光客の訪問行動を分析する必要が生じている。

申請者は、環境省と連携して自然環境施策を評価するための手法を開発し、いくつかの国立公園を対象に実証研究を行ってきた。また、海外ではビッグデータをもとに観光行動を分析する研究が注目を集めているが、国内での実証研究は少なく、自然環境施策への応用可能性を検証する必要がある。本研究の目的は、自然環境を利用した地域活性化の取組を推進し、自然環境施策に対する資源（資金、労力等）の動員を加速するための自然環境施策を明らかにすることにある。

2. 3年間の研究計画及び実施方法

3年間の研究計画は表1のとおりである。また各研究項目別の実施方法は以下のとおりである。

(1) 研究統括並びに連絡調整

研究代表者は環境行政の担当者と密接に連絡を取りながら環境行政の政策ニーズを研究計画に反映させる。本研究では、国立公園等における自然環境施策の評価を実施するが、対象地域として近年に国立公園指定を受けた地域および世界遺産の指定が検討されている地域（やんばる、奄美群島など）および入域料等が実施された地域および今後検討されている地域（屋久島、知床、大雪山など）を候補として考えている。ただし、対象地域は環境行政の担当者と検討した上で決定する。

(2) 現地調査の分析

国立公園等における自然環境施策の経済効果を評価する際には、施策対象地の現状を調査するこ
とが不可欠である。そこで、評価対象地の現地調査を実施し、国立公園の利用状況や保全施策の課題を調べる。ここでは、現地の環境行政担当者とも連携を行いながら、対象地域の様々なデータを収集する。なお、現地調査では、関連するメンバーで協力しながら調査を行う。

(3) 施策評価の調查票設計
自然環境施策の経済効果にはレクリエーションなどの利用価値と生物多様性保全などの非利用価値が含まれるため、選択型実験など非利用価値の評価可能な表明選好法が必要となる。表明選好法はアンケートを用いる必要があり、調査票の設計が重要である。調査票設計に不備があると回答者が誤認し、バイアスが生じる原因となるため、小規模な事前調査を行い、調査票の問題点を検証した上で本調査を実施する。また国立公園ではレクリエーション価値も高いことから、トラベルコスト法による調査も実施する。調査票設計に関しては海外の研究協力者とも連携して分析を進める。

(4) 施策評価の統計分析
選択型実験やトラベルコスト法などの既存の評価手法、および第III期「環境経済の政策研究」で開発した最新の評価手法を適用し、自然環境施策の経済効果に対して統計分析を行う。また携帯電話の電波情報などビッグデータをもとに訪問行動を分析する統計手法を開発し、国立公園等を対象とした実証研究を行う。統計分析に関しては海外の研究協力者とも連携して分析を進める。

(5) 施策評価分析
現地調査、アンケート調査、ビッグデータの分析結果を統合し、自然環境施策の経済効果を評価することで施策評価分析を実施する。国立公園や世界遺産などの指定地地域住民や国内外の観光客に及ぼす経済効果、入場料などの経済手段を導入したときの経済効果など様々な自然環境施策の経済効果をシミュレーションにより分析する。ここで検討する自然環境施策の内容については、環境行政ニーズを反映するため行政担当者と連携して検討を行う。施策評価分析に関しては海外の研究協力者とも連携して分析を進める。

(6) 研究成果のとりまとめと政策への反映
以上の研究項目によって得られた研究成果を取りまとめ、環境政策への反映を行う。本研究では、自然環境施策の経済効果を評価し、施策効果の分析を行うことで、今後の自然環境に関わる環境政策のあり方について具体的な提言を行うことが可能となる。
表1 3年間の研究スケジュール（予定）

<table>
<thead>
<tr>
<th>1年目</th>
<th>6〜8月</th>
<th>先行研究の収集</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6〜7月</td>
<td>海外での研究成績を収集し、最新の研究成果を本研究に反映する。</td>
</tr>
<tr>
<td></td>
<td>7〜10月</td>
<td>現地調査</td>
</tr>
<tr>
<td></td>
<td>10〜1月</td>
<td>評価対象地域の現地調査を行い、現状と課題を調べる。</td>
</tr>
<tr>
<td></td>
<td>12〜1月</td>
<td>調査票設計</td>
</tr>
<tr>
<td></td>
<td>1〜2月</td>
<td>評価手法を検討したうえで、調査票設計を行う。</td>
</tr>
<tr>
<td></td>
<td>2〜3月</td>
<td>1年目の研究取りまとめ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1年目の研究成果を報告書にまとめ公表する。</td>
</tr>
<tr>
<td>2年目</td>
<td>4〜6月</td>
<td>事前調査の実施</td>
</tr>
<tr>
<td></td>
<td>6〜7月</td>
<td>追加調査の対象地域選定</td>
</tr>
<tr>
<td></td>
<td>7〜10月</td>
<td>追加対象地の現地調査</td>
</tr>
<tr>
<td></td>
<td>7〜10月</td>
<td>ビッグデータの分析</td>
</tr>
<tr>
<td></td>
<td>10〜1月</td>
<td>本調査の実施</td>
</tr>
<tr>
<td></td>
<td>1〜2月</td>
<td>データ分析</td>
</tr>
<tr>
<td></td>
<td>1〜2月</td>
<td>調査で得られたデータに対して統計分析を行う。</td>
</tr>
<tr>
<td></td>
<td>2〜3月</td>
<td>2年目の研究取りまとめ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2年目の研究成果を報告書にまとめ公表する。</td>
</tr>
<tr>
<td>3年目</td>
<td>4〜6月</td>
<td>事後調査の検討</td>
</tr>
<tr>
<td></td>
<td>6〜9月</td>
<td>事後調査対象地の現地調査</td>
</tr>
<tr>
<td></td>
<td>9〜11月</td>
<td>事後調査を行い、評価対象地域の現地調査を行い、自然環境施策の現状と課題を調べる。</td>
</tr>
<tr>
<td></td>
<td>9〜12月</td>
<td>施策評価分析</td>
</tr>
<tr>
<td></td>
<td></td>
<td>これまでの研究成果をもとに、様々な自然環境施策に対して経済効果を分析し、政策シミュレーション分析により政策分析を行う。</td>
</tr>
<tr>
<td></td>
<td>1〜3月</td>
<td>3年間の研究取りまとめ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>これまでの研究成果を報告書にまとめ公表する。</td>
</tr>
</tbody>
</table>
3. 3年間の研究実施体制

本研究の実施体制の全体構成は図1および表1のとおりである。本研究では研究項目ごとに担当者を設定しているが、各研究項目は密接に関連しているため、研究を実施する際には研究項目間で連携しながら進める予定である。

本研究の研究組織上の特徴としては、第一に本研究の代表者は第Ⅱ期および第Ⅲ期「環境経済の政策研究」においても生物多様性評価や自然環境施策評価の研究代表者を担当していたことから、これまでの評価手法に関する研究成果を適用できることがある。

第二に、本研究の研究参画者は、いずれもこれまでに「環境経済の政策研究」において共同研究の経験があることから、直ちに研究を開始できる体制が構築済みである。

第三に、本研究では海外の著名な研究者と連携し、国際的な共同研究体制を構築していることである。これにより世界の最先端水準の研究を行う体制を構築することで、学術的にも国際水準の研究を行うことが可能である。

![図1 研究の実施体制]

表1 各研究者の役割分担

<table>
<thead>
<tr>
<th>研究代表者</th>
<th>栗山浩一（京都大学）</th>
<th>研究統括、連絡調整、および施策評価分析</th>
</tr>
</thead>
<tbody>
<tr>
<td>共同研究者</td>
<td>庄子康（北海道大学）</td>
<td>現地調査、施策評価の調査票設計</td>
</tr>
<tr>
<td></td>
<td>柘植隆宏（甲南大学）</td>
<td>施策評価の統計分析</td>
</tr>
<tr>
<td></td>
<td>久保雄広（国立環境研究所）</td>
<td>現地調査、ビッグデータの分析</td>
</tr>
<tr>
<td>研究協力者</td>
<td>佐藤真行（神戸大学）</td>
<td>施策評価分析</td>
</tr>
<tr>
<td></td>
<td>三谷綾平（京都大学）</td>
<td>施策評価分析</td>
</tr>
<tr>
<td>海外協力者</td>
<td>Michael Hanemann（アリゾナ州立大学）</td>
<td>施策評価分析</td>
</tr>
<tr>
<td></td>
<td>Wie Adamowicz（アルバータ大学）</td>
<td>施策評価の調査票設計</td>
</tr>
<tr>
<td></td>
<td>Douglas MacMillan（ケント大学）</td>
<td>現地調査の分析</td>
</tr>
</tbody>
</table>
4. 本研究で目指す成果

本研究で得られる成果には以下のものが含まれる。第一に，アンケート調査やビッグデータなどを
用いた新たな政策評価手法を開発することである。これにより，国立公園などの自然環境施策に対し
て科学的根拠に基づいた定量的な政策評価を行うことが可能となる。第二に，入域料が地域経済や観
光客に及ぼす影響を実証的に明らかにすることである。これにより，入域料の導入に向けた合意形成
のための基礎資料を提供することが可能となる。第三に，施策の影響を事前に評価するための施策支
援ツールを開発することである。これにより，自然環境施策の担当者が施策を導入する前にその効果
を事前に予測することが可能となる。これらの研究成果は，施策評価のための新たな分析手法を開発
することで学術研究としての新たな知見が得られるとともに，自然環境施策に応用することで環境政
策へも貢献するものである。

5. 研究成果による環境政策への貢献

本研究の環境政策への貢献には以下のもののが含まれる。第一に，アンケート調査やビッグデータな
どをもとに自然環境施策の効果を定量的に評価することで，自然環境施策の実施に向けた合意形成資
料等として活用することが可能となる。第二に，入域料が地域経済や観光客に及ぼす影響を明らかに
することで，地域自然資産法の運用に向けた政策への活用が可能となる。第三に，外国人観光客の行
動をビッグデータを用いて分析することで，インバウンドによる国立公園利用の影響評価及び利用促
進のためのツールとして活用が可能となることである。
II．平成30年度の研究計画および進捗状況と成果

1. 平成30年度の研究計画

(1) 研究統括並びに連絡調整
研究代表者は環境行政の担当者と密接に連絡を取りながら環境行政の政策ニーズを研究計画に反映させる。本研究では、国立公園等における自然環境施策の評価を実施するが、対象地域としては近年に国立公園指定を受けた地域および世界遺産の指定が検討されている地域（やんばる、奄美群島など）および入域料等が実施された地域および今後検討されている地域（屋久島、知床、大雪山など）を候補として考えている。ただし、対象地域は環境行政の担当者と検討した上で決定する。

(2) 現地調査の分析
国立公園等における自然環境施策の経済効果を評価する際には、施策対象地の現状を調査することが不可欠である。そこで、評価対象地の現地調査を実施し、国立公園の利用状況や保全施策の課題を調べる。ここでは、現地の環境行政担当者とも連携を行いながら、対象地域の様々なデータを収集する。なお、現地調査では、関連するメンバーで協力しながら調査を行う。

(3) 施策評価の調査票設計
自然環境施策の経済効果にはレクリエーションなどの利用価値と生物多様性保全などの非利用価値が含まれるため、選択型実験など非利用価値の評価可能な表明選好法が必要となる。表明選好法はアンケートを用いる必要があり、調査票の設計が重要である。調査票設計に不備があると回答者が誤認し、バイアスが生じる原因となるため、小規模な事前調査を行い、調査票の問題点を検証した上で本調査を実施する。また国立公園ではレクリエーション価値も高いことから、トラベルコスト法による調査も実施する。調査票設計に関しては海外の研究協力者とも連携して分析を進める。

(4) 施策評価の統計分析
選択型実験やトラベルコスト法などの既存の評価手法、および第3期「環境経済の政策研究」で開発した最新の評価手法を適用し、自然環境施策の経済効果に対して統計分析を行う。また携帯電話の電波情報などビッグデータをもとに訪問行動を分析する統計手法を開発し、国立公園等を対象とした実証研究を行う。統計分析に関しては海外の研究協力者とも連携して分析を進める。

(5) 施策評価分析
現地調査、アンケート調査、ビッグデータの分析結果を統合し、自然環境施策の経済効果を評価することで施策評価分析を実施する。国立公園や世界遺産などの指定が地域住民や国内外の観光客に及ぼす経済効果、入域料などの経済手段を導入したときの経済効果など様々な自然環境施策の経済効果をシミュレーションにより分析する。ここで検討する自然環境施策の内容については、環境行政ニーズを反映するため行政担当者と連携して検討を行う。施策評価分析に関しては海外
の研究協力者とも連携して分析を進める。

(6) 研究成果の取りまとめと政策への反映
以上の研究項目によって得られた研究成果を取りまとめ、環境政策への反映を行う。本研究では、自然環境施策の経済効果を評価し、施策効果の分析を行うことで、今後の自然環境に関する環境政策のあり方について具体的な提言を行うことが可能となる。

2. 平成30年度の進捗状況および成果（概要）
第一に、現地調査の分析に関しては、屋久島の観光客を対象に現地アンケート調査を実施し、環境保全協力金に対する観光客の意向を分析した。屋久島では、9割近くの観光客が環境保全協力金を支払っており、しかも9割近くが環境保全協力金の強制化に賛成していることが判明した。
このように屋久島では、環境保全協力金が観光客に受け入れられているが、この要因を分析するために、環境保全協力金に対して観光客がどのような使途を望んでいるかを表1の使用使途を対象に図1のベスト・ワースト・スケーリング(BWS)の設問を用いて分析した。

<table>
<thead>
<tr>
<th>表0 協力金の使用使途</th>
</tr>
</thead>
<tbody>
<tr>
<td>・し尿搬出 : 自然環境を保全するための山岳部のトイレからし尿の運び出し</td>
</tr>
<tr>
<td>・トイレの管理 : 快適な登山のための山岳トイレ、携帯トイレブースの維持管理・修繕</td>
</tr>
<tr>
<td>・登山道の修繕 : 安全、快適な登山のための登山道及び木道の簡易な修繕</td>
</tr>
<tr>
<td>・避難小屋の修繕 : 安全、快適な登山のための避難小屋の修繕</td>
</tr>
<tr>
<td>・案内板の設置 : 道迷いなどを防ぎ、登山者の安全を守るための案内板の設置</td>
</tr>
<tr>
<td>・山岳パトロール : 山岳地帯の価値を損なわないためのマナーを守るためのパトロール</td>
</tr>
<tr>
<td>・混雑の緩和 : 山岳地帯の混雑緩和のためのルールの啓発</td>
</tr>
</tbody>
</table>

1回目「最も優先して欲しい」使途と「最も優先してほしくない」使途を1つずつ選び。
それぞれ当てはまる1つの項目に〇をつけてください。

<table>
<thead>
<tr>
<th>最も優先して欲しい「使途」</th>
<th>協力金の使途</th>
<th>「最も優先してほしくない」使途</th>
</tr>
</thead>
<tbody>
<tr>
<td>() し尿搬出 ()</td>
<td>() トイレの管理 ()</td>
<td>() 避難小屋の修繕 ()</td>
</tr>
<tr>
<td>() 山岳パトロール ()</td>
<td>()</td>
<td>()</td>
</tr>
</tbody>
</table>

図0 ベスト・ワースト・スケーリング(BWS)の設問例
図 2 カウンティング法による分析結果
その結果、屋久島の観光客が望む使途の優先順位は「トイレの管理」「登山道の修繕」「し尿搬出」「山岳パトロール」「避難小屋の修繕」「案内板の設置」「混雑の緩和」の順であることが明らかになった（図 2）。
現在の屋久島の環境保全協力金が山岳トイレ対策を主たる目的に実施されていることから、この分析結果は、現在の環境保全協力金の使途が観光客の望む使途と整合的であることを意味する。つまり、屋久島の環境保全協力金が観光客に受け入れられている要因としては、協力金の使途が観光客の望む使途と整合的であることが考えられる。このことは、入山料・入域料などの利用者負担制度は、徴収した料金を利用者の望む使途に応じて使用することが重要であることを示唆している。
第二に、施策評価の調査票設計に関しては、本年度は以下に示す 6 つのアンケート調査を実施している。
＜本度実施した WEB アンケート調査＞
- 国立公園の選好および西表島における費用負担に関する意識調査
- 自然保護地域における費用負担（協力金や入域料など）に関する意識調査
＜本年度実施した現地アンケート調査＞
- 七山の環境整備に関する利用者アンケート調査
- 西表島の観光動向に関するアンケート調査
- 屋久島への旅行と協力金に関するアンケート調査
- 屋久島への旅行と山岳地帯利用に関するアンケート調査
本年度に実施した調査はそれぞれが独立しているものではなく、互いに関連したものであるため、地域別にどのような意図の下、どのような調査票設計を行っているのかについて整理を行った。いずれの調査においても、調査票設計時にはバイアスが生じないための対策が不可欠であることが示された。
また調査票設計の手順を確認するため、大山の環境整備に関する利用者アンケート調査のデータをもとに分析を行った。現地での課題を調査票に反映するために環境省大山隠岐国立公園管理事務所の担当者と連携し、調査票設計を行った。現地では山岳トイレ対策が課題となっていたことから、山頂の水洗トイレの維持や携帯トイレの普及に対して登山者がどのように支持しているのかを明らかにすることをリサーチクエスチョンとして設定して調査票設計を行った。そして多項ロジットモデルにより推定した結果、水洗トイレか携帯トイレかという二者択一の現状では、携帯トイレを利用できないと思う人が多いことが判明した。携帯トイレの普及を図るためにには、例えば、携帯トイレを使用すれば費用負担を（一部）免除するなどの新たな仕組みを考える必要があるだろう。

第三に、施策評価の統計分析については、ビッグデータを用いた施策評価の分析手法について検討を行った。NTTドコモの携帯電話ネットワークを利用したモバイル空間統計のデータが自然環境施策の評価に対して適用できるかを分析するため、富士山を対象に実証研究を行った。

富士山では、登山者を対象とした現地アンケート調査や赤外線カウンターによる登山者数調査が行われている。しかし、現地アンケート調査は特定期間のみ実施されるため、調査時期によるバイアスが生じやすい。赤外線カウンターは登山者数を把握できるものの、登山者の居住地などの属性が把握できないため施策評価分析は難しい。これに対して、モバイル空間統計は、すべての期間を通して去登山者数を把握できるため調査時期によるバイアスは生じない。また登山者の居住地情報も利用できるため、トラベルコスト法による施策評価分析が可能である。

表2 ゾーンごとの旅費と訪問率

<table>
<thead>
<tr>
<th>ゾーン</th>
<th>出発地</th>
<th>旅費(円)</th>
<th>ゾーン人口(人)</th>
<th>元データ人口(人)</th>
<th>補正後人口(人)</th>
<th>元データ訪問率(×10⁻³)</th>
<th>補正後訪問率(×10⁻³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道・東北</td>
<td>福島</td>
<td>21055.18</td>
<td>14267</td>
<td>10</td>
<td>5,043</td>
<td>0.00007</td>
<td>0.0353</td>
</tr>
<tr>
<td>東京</td>
<td>東京</td>
<td>16024.8</td>
<td>13624</td>
<td>14,633</td>
<td>39,878</td>
<td>0.107</td>
<td>0.293</td>
</tr>
<tr>
<td>神奈川</td>
<td>神奈川</td>
<td>16021.33</td>
<td>9145</td>
<td>12,505</td>
<td>30,522</td>
<td>0.137</td>
<td>0.334</td>
</tr>
<tr>
<td>関東</td>
<td>埼玉</td>
<td>15048.37</td>
<td>20363</td>
<td>3,065</td>
<td>38,485</td>
<td>0.015</td>
<td>0.189</td>
</tr>
<tr>
<td>山梨</td>
<td>山梨</td>
<td>10513.79</td>
<td>830</td>
<td>43,449</td>
<td>2,455</td>
<td>5.235</td>
<td>0.296</td>
</tr>
<tr>
<td>静岡</td>
<td>静岡</td>
<td>14190.24</td>
<td>3688</td>
<td>107,776</td>
<td>22,162</td>
<td>2.922</td>
<td>0.6</td>
</tr>
<tr>
<td>中部</td>
<td>愛知</td>
<td>20959.49</td>
<td>16897</td>
<td>1,158</td>
<td>25,347</td>
<td>0.00685</td>
<td>0.15</td>
</tr>
<tr>
<td>近畿</td>
<td>大阪</td>
<td>27949.18</td>
<td>20681</td>
<td>532</td>
<td>29,461</td>
<td>0.00257</td>
<td>0.142</td>
</tr>
<tr>
<td>中国・四国</td>
<td>広島</td>
<td>34711.65</td>
<td>11224</td>
<td>37</td>
<td>6,104</td>
<td>0.00033</td>
<td>0.0544</td>
</tr>
<tr>
<td>九州・沖縄</td>
<td>福岡</td>
<td>54366.98</td>
<td>14405</td>
<td>24</td>
<td>4,048</td>
<td>0.000167</td>
<td>0.0281</td>
</tr>
</tbody>
</table>

出典：モバイル空間統計、日本交通公社(2017)、総務省統計局(2016)をもとに作成。

表2はモバイル空間統計のデータを使っている。このデータを用いて実証分析を行った結果、モバイル空間統計は、個人情報保護のため人数が少ない地域の情報が秘匿されるため、モバイル空間統計のみの分析は秘匿によるバイアスが生じることが示された。そこで、現地アンケート調査や赤外線カウンターなどの他の情報とモバイル空間統計のデータを組み合わせて分析する手法の改良を行った。
その結果、ゾーントラベルコスト法では富士山の訪問価値は訪問一回あたり37,661 円と推定された。

第四に、施策評価分析では、自然環境施策の中で近年注目を集めている入域料の効果について分析を行った。入域料の効果を分析するため、西表島を対象に実証研究を行った。2018年8月に西表島の観光客を対象とした現地アンケート調査を実施し、310人から有効回答を得た。

表3 西表島現地アンケート調査 訪問者データ

<table>
<thead>
<tr>
<th>地方</th>
<th>往復 旅行費（円）</th>
<th>回答者数（人）</th>
<th>比率</th>
<th>訪問者数（人）</th>
<th>人口（千人）</th>
<th>1000人あたりの訪問者率</th>
<th>訪問者率対数</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道・東北</td>
<td>60,012</td>
<td>6</td>
<td>0.0194</td>
<td>6,102</td>
<td>14,267</td>
<td>0.428</td>
<td>-0.849</td>
</tr>
<tr>
<td>北関東</td>
<td>63,379</td>
<td>13</td>
<td>0.0419</td>
<td>13,222</td>
<td>6,928</td>
<td>1.91</td>
<td>0.646</td>
</tr>
<tr>
<td>南関東</td>
<td>47,485</td>
<td>158</td>
<td>0.510</td>
<td>160,698</td>
<td>36,470</td>
<td>4.41</td>
<td>1.48</td>
</tr>
<tr>
<td>北陸</td>
<td>77,800</td>
<td>3</td>
<td>0.00968</td>
<td>3,051</td>
<td>5,292</td>
<td>0.577</td>
<td>-0.551</td>
</tr>
<tr>
<td>甲信</td>
<td>51,100</td>
<td>1</td>
<td>0.00323</td>
<td>1,017</td>
<td>2,953</td>
<td>0.344</td>
<td>-1.07</td>
</tr>
<tr>
<td>東海</td>
<td>65,199</td>
<td>22</td>
<td>0.0710</td>
<td>22,376</td>
<td>15,183</td>
<td>1.47</td>
<td>0.388</td>
</tr>
<tr>
<td>近畿</td>
<td>42,160</td>
<td>69</td>
<td>0.223</td>
<td>70,178</td>
<td>20,775</td>
<td>3.38</td>
<td>1.22</td>
</tr>
<tr>
<td>中国・四国</td>
<td>59,825</td>
<td>9</td>
<td>0.0290</td>
<td>9,154</td>
<td>11,297</td>
<td>0.810</td>
<td>-0.210</td>
</tr>
<tr>
<td>九州</td>
<td>43,151</td>
<td>12</td>
<td>0.0387</td>
<td>12,205</td>
<td>13,069</td>
<td>0.934</td>
<td>-0.0684</td>
</tr>
<tr>
<td>沖縄</td>
<td>22,151</td>
<td>17</td>
<td>0.0548</td>
<td>17,290</td>
<td>1,472</td>
<td>11.7</td>
<td>2.46</td>
</tr>
</tbody>
</table>

（出典）分析結果より作成。

図3 西表島の訪問者率と旅行費用の関係

表3は訪問者の地域別訪問率を示している。これをもとにトラベルコスト法による推定を行った。図3は旅費と訪問率の関係を示している。

表4は入域料の効果を分析した結果を示している。入域料を導入することで、人数抑制効果と費用
捻出効果の2つの効果が見込まれる。竹富島で導入予定である入域料の金額と同額の300円の入域料を西表島で導入した場合、人数抑制効果はわずか1.48％にすぎないが、9,319万円の費用捻出効果が期待できることが判明した。また入域料の使途に対しては、海や森にすむ生物の保護を求める意見が多く、観光環境の整備やツアーガイドの質の向上を求める意見は少なかったが、使途に対する意見は観光客の性別、職業、過去の訪問回数、訪問動機、観光に対する考え方によって異なることが示された。

<table>
<thead>
<tr>
<th>金額</th>
<th>訪問者数</th>
<th>訪問者率</th>
<th>人数抑制効果</th>
<th>費用捻出効果</th>
</tr>
</thead>
<tbody>
<tr>
<td>0円(現状)</td>
<td>315,300人</td>
<td>1.4442</td>
<td>0人(0%)</td>
<td>0円</td>
</tr>
<tr>
<td>100円</td>
<td>313,734人</td>
<td>1.4370</td>
<td>1,566人(0.497%)</td>
<td>3,137万円</td>
</tr>
<tr>
<td>300円</td>
<td>310,626人</td>
<td>1.4228</td>
<td>4,674人(1.48%)</td>
<td>9,319万円</td>
</tr>
<tr>
<td>500円</td>
<td>307,549人</td>
<td>1.4087</td>
<td>7,751人(2.46%)</td>
<td>1億5,377万円</td>
</tr>
<tr>
<td>1000円</td>
<td>299,989人</td>
<td>1.3741</td>
<td>15,311人(4.86%)</td>
<td>2億9,999万円</td>
</tr>
<tr>
<td>3000円</td>
<td>271,562人</td>
<td>1.2439</td>
<td>43,738人(13.9%)</td>
<td>8億1,469万円</td>
</tr>
<tr>
<td>5000円</td>
<td>245,829人</td>
<td>1.1260</td>
<td>69,471人(22.0%)</td>
<td>12億2,914万円</td>
</tr>
<tr>
<td>10000円</td>
<td>191,664人</td>
<td>0.8779</td>
<td>123,636人(39.2%)</td>
<td>19億1,664万円</td>
</tr>
</tbody>
</table>

（出典）分析結果より作成。

3. 対外発表等の実施状況

平成30年度は各メンバーのミーティングを16回実施した。現地調査でも研究メンバーの多くが参加し、情報交換を密接に行った。またメーリングリストを設置し、日常的に意見交換を行った。対外的発表については著書2件、学術論文等16件、学会報告・セミナー報告等19件、一般市民向けシンポジウム開催4件である。その内訳は以下のとおりである。

ミーティング

1. 平成30年7月11日 知床財団（北海道斜里郡斜里町）
 参加者：庄子・明石（庄子の研究補助）
 知床における外国人旅行者の費用負担に関するモニタリング調査に関する打ち合わせ

2. 平成30年8月2日 北海道大学
 参加者：久保・柘植
 自然環境施策の経済評価に関する打ち合わせ

3. 平成30年8月3日 北海道大学
 参加者：栗山・庄子・柘植
 自然環境施策の経済評価に関する打ち合わせ

4. 平成30年8月24日 環境省
 参加者：栗山・庄子・柘植
自然環境施策の経済評価に関する打ち合わせ

5. 平成30年8月27日 環境省大山隠岐国立公園管理事務所
参加者：柘植・庄子・岡野（庄子の研究補助）
大山におけるアンケート調査の実施に関する打ち合わせ

6. 平成30年9月9日 上智大学
参加者：栗山・柘植
自然環境施策の経済評価に関する打ち合わせ

7. 平成30年9月21日 環境省大山隠岐国立公園管理事務所
参加者：岡野（庄子の研究補助）
大山におけるアンケート調査の実施に関する打ち合わせ

8. 平成30年9月27日 知床財団（北海道斜里郡斜里町）
参加者：庄子・明石（庄子の研究補助）
知床における外国人旅行者の費用負担に関するモニタリング調査に関する打ち合わせ

9. 平成30年10月11日 甲南大学
参加者：久保・柘植
自然環境施策の経済評価に関する打ち合わせ

10. 平成30年11月2日 環境省大山隠岐国立公園管理事務所
参加者：岡野（庄子の研究補助）
大山におけるアンケート調査の実施に関する打ち合わせ

11. 平成30年11月19日 近畿大学
参加者：柘植・庄子
自然環境施策の経済評価に関する打ち合わせ

12. 平成30年11月30日 京都大学東京オフィス
参加者：栗山・庄子
自然環境施策の経済評価に関する打ち合わせ

13. 平成30年12月9日 まぜのおか
参加者：栗山・柘植
自然環境施策の経済評価に関する打ち合わせ

14. 平成30年12月18日 京都大学
参加者：栗山・庄子・金（庄子の研究補助）
自然環境施策の経済評価に関する調査票整理および統計分析に関する打ち合わせ

15. 平成30年12月27日 秋葉原ルノアール
参加者：久保・柘植
自然環境施策の経済評価に関する打ち合わせ

16. 平成31年1月10-11日 北海道大学
参加者：柘植・庄子・岡野（庄子の研究補助）
自然環境施策の経済評価に関する調査票整理および統計分析に関する打ち合わせ
著書
1) 栗山浩一 編(2018)『企業経営と環境評価』（環境経営イノベーション〈4〉）中央経済社
2) 柿澤宏昭・山浦悠一・栗山浩一（編著）『保持林業』築地書館.

学術論文等
3) 栗山浩一(2019)「実験・行動経済学」農業経済学事典編集委員会編『農業経済学事典』丸善出版，(forthcoming)
4) 栗山浩一(2019)「環境評価」農業経済学事典編集委員会編『農業経済学事典』丸善出版，(forthcoming)
7) 栗山浩一(2018)「環境保全効果の経済評価 これまでの到達点と今後の課題」運輸と経済，78(7)，101-108
8) 佐藤真行, 栗山浩一, 藤井秀道, 馬奈木俊介(2019)「日本における森林生態系サービスの経済評価」『統計数理』『統計数理』(forthcoming)
9) 栗山浩一(2018)「環境政策の評価（手法と結果）」第10章，環境経済・政策学事典編集委員会編『環境経済・政策学事典』丸善出版，612-613
10) 柘植隆宏(2018)「レクリエーションの経済学」第5章，環境経済・政策学事典編集委員会編『環境経済・政策学事典』丸善出版，298-299
11) 柘植隆宏(2018)「コンジョイント分析」第7章，環境経済・政策学事典編集委員会編『環境経済・政策学事典』丸善出版，416-417
12) 柘植隆宏(2018)「リスクと認知バイアス」第10章，環境経済・政策学事典編集委員会編『環境経済・政策学事典』丸善出版，580-581
13) 庄子康(2018)「保護地域制度と自然環境の保全」第4章，環境経済・政策学事典編集委員会編『環境経済・政策学事典』丸善出版，238-239
14) 庄子康(2018)「環境の経済評価」第7章，環境経済・政策学事典編集委員会編『環境経済・政策学事典』丸善出版，408-409
15) 栗山浩一(2018)「自然資本の持続的活用と森里川海の連携」『グローバルネット』328号，14-15

学会報告・セミナー報告等

2) 栗山浩一「森林認証制度の政策分析-実験経済学アプローチ-」林業経済学会 2018 年大会, 筑波大学, 2018 年 11 月

3) 栗山浩一「地域農林業政策の評価と実験研究の可能性」地域農林業経済学会 2018 年大会シンポジウム, 基調講演, 東京農業大学, 2018 年 10 月

4) 栗山浩一「自然環境施策の評価手法とグリーンインフラへの適用可能性」環境経済・政策学会 2018 年大会, 上智大学, 2018 年 9 月.

5) 金慧隣・庄子康・柘植隆宏・久保雄広・中村太士「グリーンインフラは土地利用に関する合意形成を複雑化させるか：二つの選択型実験の結果を踏まえて」環境経済・政策学会 2018 年大会, 上智大学, 2018 年 9 月.

6) 庄子康・柘植隆宏・久保雄広・今村航平・栗山浩一「部分プロファイル選択実験による森林の生態系サービスの経済評価」環境経済・政策学会 2018 年大会, 上智大学, 2018 年 9 月．

7) 柘植隆宏・庄子康・久保雄広・今村航平・栗山浩一「ベスト・ワースト・スケーリングによる森林生態系サービスに対する選好の把握」環境経済・政策学会 2018 年大会, 上智大学, 2018 年 9 月．

9) Kim Hyerin, Shoji Yasushi, Tsuge Takahiro, Aikoh Tetsuya and Kuriyama Koichi, “Understanding the demand for ecosystem services provided by parks and green spaces: Using the partial profile choice experiment”, The 9th International Conference on Monitoring and Management of Visitors in Recreational and Protected Areas, August 31, 2018, Bordeaux, France.

10) Akashi Mizue, Shoji Yasushi and Aikoh Tetsuya, “Understanding the distance between humans and brown bears that tourists consider appropriate: A case study at Shiretoko National Park, Japan.”, The 9th International Conference on Monitoring and Management of Visitors in Recreational and Protected Areas, August 29, 2018, Bordeaux, France.

14) 栗山浩一・中塚耀介・藤野正也・福冨雅夫・嶌田栄樹「環境保全型農業政策に関する実験経済学的分析─直接支払と非貨幣型支援の比較─」日本農業経済学会 2018 年大会，北海道大学，2018 年 5 月

15) 三ツ井聡美・庄子康「知床国立公園の利用をめぐる議論の見える化─テキスト分析を通じて」第 129 回日本森林学会大会，高知大学，2018 年 3 月。

16) 明石瑞恵・王茂琪・庄子康・愛甲哲也「知床国立公園における野生動物に対する訪日外国人旅行客の意識」第 129 回日本森林学会大会，高知大学，2018 年 3 月。

17) 栗山浩一・庄子康・栢植隆宏「公園の経済評価」第 129 回日本森林学会大会，高知大学，2018 年 3 月。

18) 三ツ井聡美・庄子康・保野雄一・栗山浩一「外来魚駆除を組み込んだエコツアーを観光客は評価するか？」第 129 回日本森林学会大会，高知大学，2018 年 3 月。

一般向けシンポジウムなど

1）一般市民向け講習会「現地アンケート調査のための基礎実習」
日程・場所：（東京会場）平成 30 年 11 月 30 日～12 月 1 日　京都大学東京オフィス
内容：本プロジェクトで分析を進めている現地アンケート調査を用いた環境評価手法等を一般市民にわかりやすく解説
参加者：本プロジェクト関係者，一般市民

2）あいち環境塾「自然のめぐみはタダなのか？」2018 年 11 月 11 日，名古屋商工会議所ビル
報告者：栗山浩一
内容：環境施策の評価に関する近年の研究動向をわかりやすく解説
参加者：本プロジェクト関係者，研究者，行政担当者，一般市民

3）兵庫遺産シンポジウム「自然の価値をどう測るか？」2018 年 9 月 22 日，洲本市文化体育館
報告者：栗山浩一
内容：環境施策の評価に関する近年の研究動向をわかりやすく解説
参加者：本プロジェクト関係者、研究者、行政担当者、一般市民

4) えひめ環境大学「自然の恵みはタダなのか？」2018年8月4日、徳島大学
報告者：栗山浩一
内容：環境施策の評価に関する近年の研究動向をわかりやすく解説
参加者：本プロジェクト関係者、研究者、行政担当者、一般市民

4. 英文サマリー
The purpose of this study includes the development of techniques for analyzing the economic effects of the natural environment policy and analysis of conservation management policy that reflect the value of biodiversity. In this year, research results are as follows.

First, it was conducted a field investigation. The local natural assets law makes the possibility of legal arrangements for the user payment for the costs of natural areas such as national parks. Therefore, we conducted a field survey for the Yakushima National Park where the user fees has been considered, and analyzed the current situation and problems of the usage of the national park.

Second, we examined the questionnaire design. To investigate the economic effects of the national environmental policy, we conducted six surveys (two web surveys and four field surveys). The questionnaire design process for these surveys is described.

Thirdly, the statistical analysis was investigated. We consider the econometric models for the big data analysis using the mobile spatial data of NTT docomocon. To illustrate the proposed zone travel cost and discrete choice models using the big data, an empirical analysis of Mount Fuji is considered.

Fourth, we analyzed the natural resource management policy. The economic effects of the entrance fee at the national park are considered. The travel cost study of the entrance fee policy at Iriomote Island is analyzed.

本研究の目的は、自然環境を利用した地域活性化の取組を推進し、自然環境施策に対する資源（資金、労力等）の動員を加速するための自然環境施策を明らかにすることにある。今年度の研究内容は以下のとおりである。

第一に、現地調査を実施した。協力金制度が導入されている屋久島国立公園にて現地調査を実施し、協力金に対する意向を調査した。

第二に、調査票設計の検討を行った。本年度は6件のアンケート調査（ウェブ調査2件、現地調査4件）を実施したが、これらは相互に関連するため、調査票設計のプロセスについて示した。

第三に、統計分析を実施した。ビッグデータを用いた施策評価の可能性を検討するため、NTTドコモのモバイル空間統計を用いた分析を検討した。ビッグデータを用いてゾーントラベルコスト法および離散選択モデルによる分析手法を検討し、富士山を対象に実証研究を行った。

第四に、施策評価の分析を行った。入城料の経済効果を分析するため、西表島を対象に実証研究を行った。
5. 平成 30 年度の研究計画および進捗状況と成果

序論
自然環境の保全と持続可能な利用を実現するためには、国立公園等の保護地域に指定し、その保全と利用を適正に管理する従来の施策に加えて、利用者の金銭的負担を自然環境の保全等に還元するなどの経済的手段が有効と考えられる。近年、こうした自然環境施策において新たな動きが見られる。例えば、平成 28 年にやんばる、平成 29 年に奄美群島の各国立公園が新規に指定された。また、平成 27 年には「地域自然資産法」が施行され、入域料などの利用者負担に関する施策も進められている。これらの自然環境施策が運用する際には、自然環境施策が地域の社会経済や国民の経済活動に及ぼす影響や、生物多様性の価値にもたる効果をデータに基づいて評価することが政策的に必要となっている。一方、平成 28 年に政府が取りまとめた「明日の日本を支える観光ビジョン」では、2020 年までに国立公園を訪れるインバウンドを 1000 万人とする目標が設定されており、外国人観光客を国立公園に誘致するためには、外国人観光客の訪問行動を分析する必要が生じている。

これまで、本プロジェクトの研究参画者は、環境省と連携して自然環境施策を評価するための手法を開発し、いくつかの国立公園を対象に実証研究を行ってきた。また、海外ではビッグデータをもとに観光行動を分析する研究が注目を集めているが、国内での実証研究は少なく、自然環境施策への応用可能性を検証する必要がある。

本研究の目的は、自然環境を利用して地域活性化の取組を推進し、自然環境施策に対する資源（資金、労力等）の動員を加速するための自然環境施策を明らかにすることにある。具体的には、第一に、国立公園や施設の利用者等から費用を徴収し、適切な維持管理をすすめる仕組みを構築する。第二に、国立公園や世界自然遺産の指定等がインバウンドを含めて、地域経済にもたらす影響を評価する。本研究では、地域住民や観光客へのアンケート調査と携帯電話の電波情報などのビッグデータの両方のデータを統合した新たな分析手法を開発し、自然環境施策への応用可能性を明らかにする。

今年度の研究成果の概要は以下のとおりである。

第一に、現地調査については屋久島の観光客を対象に現地アンケート調査を実施し、環境保全協力金に対する観光客の意向を分析した。屋久島では、9 割近くの観光客が環境保全協力金を支払っており、しかも 9 割近くが環境保全協力金の強制化に賛成していることが判明した。このように屋久島では、環境保全協力金が観光客に受け入れられているが、この要因を分析するために、ベスト・ワースト・スケーリング（BWS）の設問を用いて分析した。

第二に、調査票設計に関しては、本年度は 6 つのアンケート調査を実施している。これらの調査票設計を行うとともに、バイアスが生じないための対策を検討した。また調査票設計の手順を確認するため、大山の環境整備に関する利用者アンケート調査のデータをもとに分析を行った。

第三に、施策評価の統計分析については、ビッグデータを用いた施策評価の分析手法について検討を行った。NTT ドコモの携帯電話ネットワークを利用したモバイル空間統計のデータが自然環境施策の評価に対して適用できるかを分析するため、富士山を対象に実証研究を行った。

第四に、施策評価分析では、自然環境施策の中で近年注目を集めている入域料の効果について分析を行った。入域料の効果を分析するため、西表島を対象に実証研究を行った。2018 年 8 月に西表島の観光客を対象とした現地アンケート調査を実施し、回収データをトラベルコスト法で分析した。
本論

1 現地調査

生物多様性の保全管理やレクリエーション施設の維持管理等、国立公園をはじめとする自然公園の管理には多大な予算や人的資源が必要である。昨今では世界各地で予算不足により保全管理が停滞する事案が報告されており、長期的な観点に立った予算や資源の確保は環境行政における重要課題の1つである。その解決策として、我が国では協力金や入域料・入島料に改めて注目が集まっている。特に持続的予算および資源確保に向けて、如何に観光客や利用者、登山者に支持してもらえる収集方法や収集目的を確立するのか、どのような方法であれば協力金等を効率的・効果的に収集できるのかといった疑問に答えることは今後の自然公園施策を考える上で重要な知見を提供するものになることが期待される。

本年度、本プロジェクトの現地調査では屋久島を事例地として、屋久島で実施されている協力金制度である「環境保全協力金」に関する観光客の行動、認識、要望について、アンケート調査を用いて明らかにした。特に、本章では「環境保全協力金」の対象者である観光客（観光客）がどのような用途であれば、協力金の支払いに同意してくれるのか、環境評価手法の1つであるベスト・ワースト・スケーリング（BWS）を応用することで、観光客が望む「環境保全協力金」の使用用途を定量的に評価した結果を中心に報告する。

1.1 屋久島および協力金に関する概要

屋久島は鹿児島県最南端の佐多岬の南南西約60kmの海上に位置しており、面積は約505㎢のほぼ円形の形をした島である（図1-1）。その立地から年間降水量が平地では4000㎜、山頂では10000㎜を超え、貴重な水環境を作り出している。また、屋久島は樹齢数千年のヤクスギをはじめとした多くの固有種や絶滅の恐れのある動植物を有し、海岸部から亜高山帯にかけて植生の垂直分布が見られるなど、貴重な生態系と優れた自然景観を有している地域である（図1-2、図1-3）。

図1-1 屋久島および屋久島国立公園の位置
図 1-2 屋久島の景観

図 1-3 屋久島の亜高山帯の風景
そのように類まれなる生物多様性および景観を有する屋久島は島の一部が国立公園として登録されている他、1993年12月11日に日本で初めての世界自然遺産として登録された。世界自然遺産に登録されたことにより、屋久島の知名度は大きく向上することで、屋久島への入込者数は大きく増加し、2007年度には過去最高となる40万人以上が屋久島を訪れた。また、近年は入込者数が減少に転じ、30万人をやや下回る程度となっている。

図1-4 屋久島への入込者数（出典 http://yakushima-shoko.or.jp/1120/）

しかし、入込者数が減少に転じた一方で、山岳地域での利用の集中が高まっており、特に、山岳部でのし尿処理に関する問題をはじめとした諸問題が発生している。それらの問題を解決するために、2017年3月から「世界自然遺産屋久島山岳部環境保全協力金（以下、環境保全協力金）」がトイレや登山道等の利用施設の維持管理と安心で安全な自然体験の環境整備を目的として導入されている。

また、屋久島では入込者数が減少傾向に転じた昨今を屋久島の山岳部利用のあり方の転換期と位置付けている。そして、屋久島山岳部利用のあり方検討会では、これからの山岳部利用のあり方として、これまでの利用集中に起因する観光客の利用体験の質の低下という状況から脱却し、観光客に対して、「質の高い利用体験の提供」を行うことを将来像として掲げている。そのため、さらなる「質の高い利用体験の提供」を行うために、屋久島の山岳部での登山道荒廃、避難小屋の老朽化、道迷いの発生やし尿処理といった問題の解決に環境保全協力金を使用していく必要が生じている。現在、環境保全協力金は約80％の高い協力率であり、2017年度の収入が支出を600万円ほど上回っている。このことからも、これまで中心的な目的として使われてきた山岳部でのし尿処理に関するものではなく、登山道の管理や、観光客の安全を守る使命にも積極的に利用することが期待されている。限られた協力金を効率的に使うためには、協力金をどのような用途に使って欲しいかと協力金を支払う観光客が考えているのかを知り、優先順位をつける必要があるだろう。そのため、本研究で実施するアンケート調査は、観光客が支持し、協力しやすい環境保全協力金の構築・改善に寄与するのみならず、「質の高い利用体験の提供」の設計にも寄与することが期待されている。また、観光客に対して強制的な支払いを求める入域料についても議論・検討されている。仮に、協力金が強制的な入域料に取って代わった場合、これまで以上に納得感のある使途に収集したお金を使う必要があることは言うまでもない。本アンケート調査はその議論の基
礎的な資料となることも目指している。

1.2 屋久島の山岳部における諸問題

1993年の世界遺産登録後から、多くの人が屋久島を訪れるようになり、2007年度に、40万人を超える人が屋久島を訪れるようになった。また、それに伴い、屋久島の山岳部に訪れる人も増加した。特に、縄文杉方面では、多くの人が訪れるようになり、2008年には9万人を超える人が縄文杉方面に入山するようになった。この山岳部の利用集中の傾向は、屋久島への入込者数が減少に転じた後にも見られ、その結果、表1-1に示すように山岳部で様々な問題が発生するようになった。

表1-1 屋久島山岳部の問題の概要

<table>
<thead>
<tr>
<th>区分</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>トイレ</td>
<td>混雑期の山岳トイレの過剰利用による水環境への影響</td>
</tr>
<tr>
<td></td>
<td>携帯トイレの利用率の普及状況、利用率</td>
</tr>
<tr>
<td></td>
<td>トイレの維持管理及び、し尿処理</td>
</tr>
<tr>
<td>登山道</td>
<td>縄文杉ルートへの利用集中</td>
</tr>
<tr>
<td></td>
<td>登山道周辺の土壌浸食、植生への影響</td>
</tr>
<tr>
<td></td>
<td>木道、石積み歩道の老朽化</td>
</tr>
<tr>
<td></td>
<td>標識の老朽化</td>
</tr>
<tr>
<td>避難小屋</td>
<td>避難小屋の老朽化</td>
</tr>
<tr>
<td></td>
<td>避難小屋の混雑</td>
</tr>
<tr>
<td>霧雨気</td>
<td>観光客とルートの不一致による遭難の発生</td>
</tr>
</tbody>
</table>

屋久島山岳部利用のあり方検討会を元に作成

トイレに関する問題は、屋久島の山岳部において現在最も深刻な問題の1つである。特に、山岳部に放置されたし尿は、そのまま放置された場合には屋久島の重要な水環境に影響を与える恐れがあるため、し尿処理に関する問題はトイレ問題の中でも最も注意を要する問題である。今までのところ、環境保全協力金の導入により、し尿処理のための予算があり、処理が正常になされているため、環境を脅かす問題には至っていないが、今後予算が不足した場合や観光客が急増した場合には予断を許さないだろう。また、山岳トイレに比べて、環境に与える影響の少ない携帯トイレの利用状況が低いこともトイレ問題における課題の1つとして指摘されている。

次に、登山道に関する問題を指摘しておきたい。登山道問題の大半は山岳部の利用集中により引き起こされたものだと言われており、登山道の土壌侵食は快適なレクリエーション活動を妨げるのみならず、生態系への影響を与える恐れもあることから、早急に解決すべき問題である。また、木道の老朽化は高齢者を含む多様な観光客を屋久島の山岳部へ受け入れる障害の1つとなっている。

また、避難小屋に関する問題は、観光客の利用体験の質の低下につながっていることが指摘されている。避難小屋の老朽化に伴い、発生する雨漏りが観光客の快適な登山体験を阻害している可能性もあることから、該当する避難小屋では雨漏りの修繕など、観光客が最低限快適に登山を行うことができるように整備が必要となっている。

最後に、雰囲気に関する問題は山岳部での遭難の発生につながっている可能性が指摘されている。具体的には、屋久島では年間20人を超える人数が遭難しており、平成18年度の10年前と比べて約
1.4 倍に増加している。また、遭難が多いルートは、観光客が多く、登山の難易度も他のルートに比べて高い縄文杉ルートや宮之浦岳ルートである。遭難が多い年代は、40代以上であるが、他の山域に比べて、幅広い年代で遭難が発生している。そのため、年代に関係なく観光客それぞれに合った登山ルートを選択するような雰囲気づくりが完全ではないことが問題である。さらに、道迷いによる遭難も多くみられるため、案内板の整備が足りていないことも問題としてあげられる。

これらの問題はいずれも今すぐに完全に解決することは難しい問題であるが、少なからず対策法が提案されている（表 1-2）。まず、トイレの問題に対する対策法として、環境保全協力金を新しい協力金制度として導入し、し尿処理を行うための十分な資金を集めることで、人力でし尿を山岳部から運びだし、し尿処理のための問題に対応することがあげられる。この理由としては、山岳地域で残されていたし尿処理のための費用が、環境保全協力金が導入する前に行っていた協力金制度である屋久島山岳部保全募金で集められた収入だけでは不足しており、従来の対策法では不十分であったことがあげられる。また、山岳トイレだけでは混雑時に利用が集中するため導入された携帯トイレの利用率を高めるために、ウェブサイトなどで呼びかけを行うことや島内各地で販売を行っている。次に、登山道の問題に対する対策法として、すれ違いや休憩による踏圧等による登山道周辺の植生への影響に対しては、ネットなどで保護することで対応し、登山道の老朽化に対しては、パトロールにより点検や補修を行うことで対応している。また、避難小屋の問題に対する対策法として、避難小屋の補修を行うことで、登山者が快適、そして、安全に登山をすることができる助けを行っている。最後に、雰囲気の問題に対する対策法としては、ルートのゾーニングを行い、登山客とルートの不一致を防ぐことを行っている。また、屋久島で多く発生している道迷いを防ぐために、案内板の整備や、老朽化した案内板の補修を行うことも行っている。

このようなそれぞれの問題に対し、対処法の充実は求められているが、予算や人的資源等は限られている。そのため、継続的に対策を行うためには、本調査で扱うような施策や政策の優先順位付けと次節で述べる予算の継続的な獲得が不可欠である。

<table>
<thead>
<tr>
<th>区分</th>
<th>対策法</th>
</tr>
</thead>
<tbody>
<tr>
<td>トイレ</td>
<td>環境保全協力金を利用した、人力でのし尿搬出、携帯トイレブースの設置や広報</td>
</tr>
<tr>
<td>登山道</td>
<td>木道などの登山道修繕、植生保護ネットの設置</td>
</tr>
<tr>
<td>避難小屋</td>
<td>避難小屋の修繕、避難小屋の新設</td>
</tr>
<tr>
<td>雰囲気</td>
<td>情報提供や規制による利用コントロール、パトロールの実施</td>
</tr>
</tbody>
</table>

表 1-2 屋久島の山岳部の問題の対策法

屋久島山岳部利用のあり方検討会を元に作成
1.3 世界自然遺産屋久島環境保全協力金
1.3.1 環境保全協力金の概要

本節では世界自然遺産屋久島環境保全協力金（環境保全協力金）の概要を説明する。環境保全協力金は、2017年3月1日より施行されたもので、「世界自然遺産地域をはじめとする屋久島の山岳部の自然環境を将来にわたって保全するため、山岳部に入山する者や自然環境保全の取組に賛同する者の協力により、トイレや登山道等の利用施設の維持管理と、安心で安全な自然体験の環境整備を行う」（世界自然遺産屋久島環境保全協力金条例第2条）ことを目的としている。環境保全協力金はこれまで、主にし尿処理の費用を集める目的で行ってきた屋久島山岳部保全募金をさらに拡大したものである。また、し尿処理以外の使途にも協力金を用い、山岳部の環境保全や利用者の安心で安全な自然体験を保全することを新たな目的として、新しく導入されたという経緯を有している。

環境保全協力金は世界自然遺産屋久島環境保全協力金条例第2条に定められている目的を達成するために用いていることが定められている。その多くは既に述べた問題解決に準じたものとなっている（表1-3）。

表 1-3 世界自然遺産屋久島山岳部環境保全協力金の具体的な使途

| 1. 山岳トイレの維持管理経費 |
| 2. 携帯トイレブースの維持管理経費 |
| 3. 登山道（トロッコ道を含む）の点検及び軽微な補修費 |
| 4. 山岳地域の安心安全のための諸活動にかかる経費 |
| 5. 奥岳をはじめ山岳地域の普遍的価値を損なわないマナー及び利用ルールの啓発にかかる経費 |
| 6. 協力金の収納にかかる経費及び事務局経費 |
| 7. 町道荒川線のマイカー規制等に係る経費 |
| 8. その他山岳部の自然環境を良好に保全する経費 |

（屋久島山岳部保全利用協議会（http://yakushima-tozan.com/）を元に作成）

また、屋久島山岳部保全利用協議会によって環境保全協力金の使い道の優先順位が想定されている。具体的には、協力金制度の実施のための人件費や事務手数料や事務費が1番の優先事項となっている。次いで、山岳トイレの撤去・設営、山岳トイレの維持管理、バイオトイレの維持管理、携帯トイレブースの維持管理の順で優先事項としており、その後に、登山者の安全確保と必要な登山道の緊急的な補修経費が続く。このように使途として当初から想定されていたものすべてに関する協力金を使う予算はないと想定されていた。また、環境保全協力金の対象者に関しては、「屋久島の世界自然遺産地域に登録されている奥岳をはじめ、山岳地域に入山しようとする者及びこの制度に賛同する者」（世界自然遺産屋久島環境保全協力金条例第3条）と定められている。さらに、金額は、日帰り入山の場合1,000円、宿泊予定の入山の場合は2,000円の納入をお願いしている。

徴収方法は、観光案内所での事前納入、もしくは屋久島自然館から荒川登山口へのバス料金に付随した事前、当日納入、さらに、淀川登山口、白谷雲水峡では当日に業務員に納入する方法もある。登山西口での業務員に納入する方法は限定的である。保護区の新たな業務員が登場した場合、新たに業務員に納入をする方法もある。
いずれの徴収方法においても協力金を支払うかどうかは任意である。

1.4 環境保全協力金の収支状況

では現在の環境保全協力金の収支状況はどのようになっているのだろうか？ここでは、2017年の収支状況を紹介する（表 1-4）。環境保全協力金の用途としては、原子炉処理に関するものだけでなく、登道修繕などにもわずかながら使用されている。しかしながら、多くの支出項目としては、人件費・事務費・事務手数料とトイレの維持管理に関する費用に関するものである。

<table>
<thead>
<tr>
<th>項目</th>
<th>内訳</th>
<th>金額</th>
</tr>
</thead>
<tbody>
<tr>
<td>収入</td>
<td>環境保全協力金の協力金収入</td>
<td>65,411,286 円</td>
</tr>
<tr>
<td></td>
<td>計</td>
<td>65,411,286 円</td>
</tr>
<tr>
<td>支出</td>
<td>人件費・事務費・事務手数料</td>
<td>30,329,000 円</td>
</tr>
<tr>
<td></td>
<td>し尿搬出費</td>
<td>20,964,428 円</td>
</tr>
<tr>
<td></td>
<td>屋久島山岳部トイレ清掃業務費</td>
<td>1,787,724 円</td>
</tr>
<tr>
<td></td>
<td>携帯トイレ回収費</td>
<td>491,832 円</td>
</tr>
<tr>
<td></td>
<td>バイオトイレ維持管理費</td>
<td>560,736 円</td>
</tr>
<tr>
<td></td>
<td>登山道修繕</td>
<td>293,760 円</td>
</tr>
<tr>
<td></td>
<td>その他</td>
<td>5,228,807 円</td>
</tr>
<tr>
<td></td>
<td>計</td>
<td>59,656,287 円</td>
</tr>
</tbody>
</table>

（屋久島山岳部保全利用協議会を元に作成）

写真（図 1-5, 図 1-6, 図 1-7）にも示すとおり、トイレの維持管理は運搬費用のみならず、清掃業務・維持管理業務も膨大に発生している。これらの業務が安定的に回るよう、予算や人材資源を確保していく必要があるだろう。一方、環境保全協力金は 2017 年度に支出を収入が 5,754,999 円上回っている。このように支出を収入が上回った主たる理由は、観光客に対する協力金の受受率が約 79%であり、多くの観光客に協力してもらうことが出来たことが挙げられる。環境保全協力金を実施する前に行っていた屋久島山岳部保全募金の協力金の受受率が約 40%であった事実と比較するとその受受率は大きく上昇しており、今後も高い受受率を維持できるかどうかが、持続的な管理になるかどうかの成否を決めるものになるだろう。先行研究から環境保全協力金の受受率が高い理由は、使途が明確であること、人によって協力金への協力が呼びかけられていること、バスチケットに付随する方法で納入するため協力金の納入が容易であることが挙げられるが、その客観的証拠は不足している。本研究を通じて、少なくらず要因を特定することが期待される。
図 1-5 屋久島山岳域におけるトイレ作業

図 1-6 屋久島山岳域におけるトイレ資材
1.5 アンケート調査の内容

1.5.1 アンケート調査項目

本節では、これまでに述べた背景および研究目的に沿ってデザインしたアンケート調査の内容について解説する。なお、紙面の関係から本章ではアンケート票本体の掲載は割愛し、質問項目のみ以下の表に記載する。まず、アンケート票は14の設問項目から構成されており、「今回の旅行内容」、「協力金に対する認識や意向」、「個人属性」についての3つに大別される（表 1-5）。

<table>
<thead>
<tr>
<th>質問番号</th>
<th>質問内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>問1</td>
<td>訪問回数（過去5年間）</td>
</tr>
<tr>
<td>問2</td>
<td>訪問動機</td>
</tr>
<tr>
<td>今回 の旅行 について</td>
<td></td>
</tr>
<tr>
<td>問3</td>
<td>山岳地帯への訪問の有無</td>
</tr>
<tr>
<td>問4</td>
<td>訪れた入山口</td>
</tr>
<tr>
<td>問5</td>
<td>訪れた下山口</td>
</tr>
<tr>
<td>問6</td>
<td>宿泊した避難小屋</td>
</tr>
<tr>
<td>協力金に ついて</td>
<td></td>
</tr>
<tr>
<td>問7</td>
<td>協力金の支払い状況</td>
</tr>
<tr>
<td>問8</td>
<td>協力金の強制化への考え方</td>
</tr>
</tbody>
</table>

図 1-7 屋久島山岳域におけるし尿
なお、本研究では研究目的に沿って、ベスト・ワースト・スケーリング（BWS）を用いて協力金に関する意向を聴取した質問（問9）の結果を中心に報告する。BWSは環境評価手法の中でも比較的新しい分析手法であり、提示した選択肢間の相対的な好みや優先順位を把握できる点に利点を有している（Louviere et al. 2015）。

BWSを用いた応用研究は近年急速に発展してきているが、国内の環境評価に用いた例としては、奄美群島において住民の気候変動リスクに対する認識（Kubo et al. 2018b）、奄美大島の金作原ルートにおける管理方針に対する観光客の意向（三ツ井・久保 2018）、富士山における中国人の国立公園整備への意向（安ほか 2017）なども明らかにした研究が行われている。本研究では、これらの先行研究で得られた知見を適宜参考にしながら、屋久島においてどのような協力金の使用使途が求められているのか、観光客の支持を取り付けるための協力金の使用使途を把握し、広く自然公園政策に貢献することを念頭にしたアンケート設計を行っている。

本研究では観光客、登山者の考える環境保全協力金の使用使途の優先順位を明らかにするため、BWSで取り上げる選択肢として、次の7項目を選定した（1回目）: し尿搬出、トイレの管理、登山道の修繕、避難小屋の修繕、案内板の設置、山岳パトロール、混雑の緩和。なお、これらの選定にあたっては世界自然遺産屋久島環境保全協力金条例2条に定められている使途及び、屋久島町での聞き取りを参考とし、選定した使途の詳細については、表1・6にまとめる。
表 1-6 協力金の使用用途

<table>
<thead>
<tr>
<th>協力金の用途</th>
<th>使用用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>し尿搬出</td>
<td>1</td>
</tr>
<tr>
<td>トイレの管理</td>
<td>1</td>
</tr>
<tr>
<td>登山道の修繕</td>
<td>1</td>
</tr>
<tr>
<td>避難小屋の修繕</td>
<td>1</td>
</tr>
<tr>
<td>案内板の設置</td>
<td>1</td>
</tr>
<tr>
<td>山岳パトロール</td>
<td>1</td>
</tr>
<tr>
<td>混雑の緩和</td>
<td>1</td>
</tr>
</tbody>
</table>

この7つ選択肢を組み合わせ，各選択肢セットにつき4つの選択肢を含む組み合わせを作成し，回答者にその組み合わせを4セット提示し，「最も高く評価する（“BEST”）」選択肢と，「最も低く評価する（“WORST”）」選択肢をそれぞれ1つずつ各選択肢セットから選択してもらうような形式にした（BWSの設問例については，図1-8に示す）。

| 1回目 | 「最も優先して欲しい」使途と「最も優先してほしくない」使途を1つずつ選ぶ。

それぞれ当てはまる1つの項目に○をつけてください。

<table>
<thead>
<tr>
<th>最も優先して欲しい使途</th>
<th>協力金の使途</th>
<th>「最も優先してほしくない」使途</th>
</tr>
</thead>
<tbody>
<tr>
<td>（ ）</td>
<td>し尿搬出</td>
<td>（ ）</td>
</tr>
<tr>
<td>（ ）</td>
<td>トイレの管理</td>
<td>（ ）</td>
</tr>
<tr>
<td>（ ）</td>
<td>避難小屋の修繕</td>
<td>（ ）</td>
</tr>
<tr>
<td>（ ）</td>
<td>山岳パトロール</td>
<td>（ ）</td>
</tr>
</tbody>
</table>

当てはまる項目1つに○当てはまる項目1つに〇

図 1-8 ベスト・ワースト・スケーリング（BWS）の設問例

なお，本研究では先行研究に従い，つり合い型不完備計画（BIBD）を用いて，選択肢の組み合わせを作成した。作成には統計ソフト R の中の crosdes パッケージに含まれている関数 find.BIB()と isGYD()を利用している。なお，設問順の影響等によるバイアスを軽減するため，BIBDを満たすアンケート票を7パターン（つまり，計28個の選択セット）用いてアンケート調査を実施した。

1.5.2 分析方法

本研究では，推定にBWSを用いて，「屋久島への旅行と世界自然遺産屋久島環境保全協力金」に関するアンケートのデータを元に分析を行った。また，分析の手法は，カウンティング法とモデリング法の両方を用いることとした。この2つの手法を用い，選択肢として選定した環境保全協力金の使途
の順位付けを行う。その結果、観光客の考える環境保全協力金の使途の優先順位を明らかにする。
また、観光客全体として考える使途の優先順位だけでなく、アンケート問4、問5で尋ねた登山道や、問10から問14で尋ねた観光客の属性を参考にグループを作り、そのグループとして考える使途の優先順位についてもそれぞれ分析によって明らかにし、各グループの差によって、どのように使途の優先順位が変化するのかについても明らかにする。

1.5.3 サンプリング
アンケート調査は2018年9月7日から9月10日の間に屋久島にて実施した。アンケート調査の対象は屋久島で観光を終えた観光客である。屋久島以外から来島した観光客が帰宅するための交通手段は飛行機、高速船、フェリーであることを鑑み、アンケート調査の場所は、屋久島空港ロビー、宮之浦港高速船待合室、宮之浦港フェリーターミナル、安房港高速船待合室に設定して調査を実施した（図1-9）。また、アンケートは、現地でアンケート票を配布し、後日郵送にて回収した。アンケート票の配布数は395部、回収数は278部であった（回収率70％）。また、実際に分析で用いた有効な回答を有するアンケート票の数は213部である。

図1-9 アンケート調査の様子

1.5.4 回答者の個人属性
回答者の個人属性は表1-7に示す通りである。性別は、女性が46.5％で男性が53.5％であり、ほぼ同じ割合で山岳部に訪れている。回答者の年齢は、20代が最も多く（43.1％）、次いで30代（20.7％）、40代、50代（ともに14.1％）、60代（6.1％）、70代以上（1.4％）、10代（0.5％）であった。回答者の居住地域は屋久島がある九州（鹿児島県）が多く、それ以外では関東圏や関西圏と人口動態および主要空港がある地域が多数を占める結果となった。屋久島への訪問方法は鹿児島空港、福岡空港、大
阪国際空港からの航空機、鹿児島港からの高速船、フェリーのみであるため、屋久島への訪問の容易さが都道府県別の入山者の割合に影響を与えているといえる。

<table>
<thead>
<tr>
<th>表 1-7 回答者の個人属性</th>
<th>人数（人）</th>
<th>割合（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>性別</td>
<td></td>
<td></td>
</tr>
<tr>
<td>男性</td>
<td>99</td>
<td>46.5</td>
</tr>
<tr>
<td>女性</td>
<td>114</td>
<td>53.5</td>
</tr>
<tr>
<td>年齢</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 代</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>20 代</td>
<td>92</td>
<td>43.1</td>
</tr>
<tr>
<td>30 代</td>
<td>44</td>
<td>20.7</td>
</tr>
<tr>
<td>40 代</td>
<td>30</td>
<td>14.1</td>
</tr>
<tr>
<td>50 代</td>
<td>30</td>
<td>14.1</td>
</tr>
<tr>
<td>60 代</td>
<td>13</td>
<td>6.1</td>
</tr>
<tr>
<td>70 代以上</td>
<td>3</td>
<td>1.4</td>
</tr>
<tr>
<td>居住地域（地方）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>北海道</td>
<td>4</td>
<td>1.9</td>
</tr>
<tr>
<td>東北</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>関東</td>
<td>98</td>
<td>45.9</td>
</tr>
<tr>
<td>中部</td>
<td>23</td>
<td>10.9</td>
</tr>
<tr>
<td>近畿</td>
<td>47</td>
<td>22.0</td>
</tr>
<tr>
<td>中国</td>
<td>5</td>
<td>2.4</td>
</tr>
<tr>
<td>九州</td>
<td>30</td>
<td>14.1</td>
</tr>
<tr>
<td>沖縄</td>
<td>5</td>
<td>2.3</td>
</tr>
</tbody>
</table>

また本章で詳細は論じないが、協力金の用途について、回答者の利用した入山口・下山口、宿泊した避難小屋に関して得られた情報を以下に記載する。まず、アンケート調査から得られた入山口・下山口ごとの利用人数を図 1-10 にまとめ、なお、複数回答を含めて集計を行っているため、回答者数は 213 であるが、延べ入山口（人数）が 237、下山口（人数）が 231 となっている点には注意が必要である。回答者の内、白谷雲水峡を入山口として利用したのは 28.2％、下山口として利用したのは 25.8％であり、ヤクスギランドを入山口として利用したのは 14.6％、下山口として利用したのは 12.7％であった。また、荒川登山口を入山口として利用したのは 61.0％、下山口として利用したのは 67.6％であり、淀川登山口を入山口として利用したのは 7.0％、下山口として利用したのは 1.9％であった。
また続いて、避難小屋ごとに宿泊した回答者数を示す（表 1-8）。こちらも入山口・下山口の設問と同様に、複数回答を含めて集計を行っているため、回答者数は 213 であるが延べ 223 人となってい る。回答者の内、92.5%が避難小屋に宿泊していなかった。また、新高塚小屋には 7.0%、淀川小屋には 4.7%が宿泊していた。

![入山口・下山口ごとの観光客数](image)

図 1-10 入山口・下山口ごとの観光客数

<table>
<thead>
<tr>
<th>避難小屋</th>
<th>人数（人）</th>
<th>割合（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>新高塚小屋</td>
<td>15</td>
<td>7.0</td>
</tr>
<tr>
<td>淀川小屋</td>
<td>10</td>
<td>4.7</td>
</tr>
<tr>
<td>鹿之沢小屋</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>宿泊していない</td>
<td>197</td>
<td>92.5</td>
</tr>
<tr>
<td>計</td>
<td>223</td>
<td>104.7</td>
</tr>
</tbody>
</table>

最後に、回答者の旅行や自然に対する認識を把握するために、「日頃から登山をすることが多い」「自然の豊かな場所に旅行することが多い」「人間が手を加えた自然環境よりも手付かずの自然環境に価値があると思う」「自分は常に自然環境に配慮して行動している」、「全くそう思わない」から「とてもそう思う」の観光客の数を示す（図 1-11）。なお、それぞれの設問は 5 段階のリッカート尺度にて評価しており、5 段階評価を「全くそう思わない」が「1」、「とてもそう思う」を「5」で表し、数字が大きくなるにつれて、その設問に対して、回答者が自分に当てはまると認識していることを示している。

日頃から登山をすることが多いかどうかの設問では、回答者の 58%が全くそう思わない、そう思わない（「1」, 「2」）を選択している。同様に自然の豊かな場所に旅行することが多いかどうかの設問で
は、回答者の66%がそう思う、とてもそう思う（「4」、「5」）を選択している。人間が手を加えた自然環境よりも手付かずの自然環境に価値があると思うかどうかの設問では、63%がそう思う、とてもそう思う（「4」、「5」）を選択している。自分は常に自然環境に配慮して行動しているかどうかの設問では、47%がそう思う、とてもそう思う（「4」、「5」）を選択している。

図1-11 旅行や自然に対する認識

1.6 アンケート調査の結果

1.6.1 環境保全協力金に関する設問への回答結果

本節では、本アンケートの主題である環境保全協力金について、記載する。まず、環境保全協力金の支払い状況であるが、協力率は86.4%であり、観光客の大半は支払っている状況にある（表1-9）。続いて、仮に、環境保全協力金が強制的に徴収される入域料になることについての観光客の考え方である。表1-10が示すように回答者の約9割が環境保全協力金が強制的に徴収される入域料になることを見解している。

<table>
<thead>
<tr>
<th>支払い状況</th>
<th>人数（人）</th>
<th>割合（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>支払った</td>
<td>184</td>
<td>86.4</td>
</tr>
<tr>
<td>支払わなかった</td>
<td>17</td>
<td>8.0</td>
</tr>
<tr>
<td>分からない</td>
<td>12</td>
<td>5.6</td>
</tr>
</tbody>
</table>

34
表 1-10 環境保全協力金の強制化への考え方

<table>
<thead>
<tr>
<th>賛否</th>
<th>人数（人）</th>
<th>割合（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>賛成</td>
<td>189</td>
<td>88.7</td>
</tr>
<tr>
<td>反対</td>
<td>23</td>
<td>10.8</td>
</tr>
<tr>
<td>未記入</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>

環境保全協力金の強制化への賛成理由は図 1-12 に示す通りである。過半数を超える 52.4%が「屋久島の自然環境が現状よりも良くなると思うから」を賛成理由として選択していることが示された。なお、図 1-12 では、賛成理由の選択肢「観光客全員が平等に支払う方が良いと思うから」「屋久島の自然環境が現状よりも良くなると思うから」「より多くの協力金を集められると思うから」はそれぞれ「平等」「自然環境」「協力金の増加」と省略している。また、回答者数は 189 であるが、複数回答を含めて集計を行ったので、延べ 196 の回答数であることに注意を有する。

図 1-12 環境保全協力金の強制化への賛成理由

環境保全協力金の強制化への反対理由は図 1-13 に示す通りである。39.1%が「自然環境の保全のために支払うという動機が薄れてしまうから」を、34.8%が「支払うかどうかの選択の自由があった方が良いと思うから」を反対理由として選択している。なお、図 1-13 では反対理由の選択肢「支払うかどうかの選択の自由があった方が良いと思うから」「自然環境の保全のために支払うという動機が薄れてしまうから」「入山料の金額が適当ではないから」「入山料の使途が適当ではないから」はそれぞれ「選択の自由」「動機が薄れる」「金額」「使途」と省略している。こちらも複数回答可能であるが、回答者数と回答数は同じく 23 であった。
図 1-13 環境保全協力金の強制化への反対理由

1.6.2 BWS の結果（カウンティング法）

本研究では、BWS で環境保全協力金の使途の優先順位を把握する。本研究では BWS のうち、カウンティング法とモデリング法で分析を行っているが、どちらの分析手法も「屋久島への旅行と世界自然遺産屋久島環境保全協力金」に関するアンケートの問 9 のデータを用いている。また、このデータに関しては、有効回答の中で、未記入を除いた 189 の回答を用いている。

まず、本節ではカウンティング法の結果を報告する（
カウンティング法は選択肢である使途が、それぞれ何回「最も優先して欲しい（"BEST"）」、「最も優先して欲しくない（"WORST"）」と選択されたかを集計することで分析を行う手法である。
表 1-11 において、「BEST」は N 人の回答者が全設問にわたって使途 i を「最も優先して欲しい（"BEST"）」として選択した回数 B_i（= ∑_n B_{in}）であり、「WORST」は使途 i を「最も優先して欲しくない（"WORST"）」として選択した回数 W_i（= ∑_n W_{in}）である。また、「B–W」は BW_i = B_i − W_i である。この「B–W」の値の大きさが大きいものから順に高く評価されている使途であると考え、「順位」に使途の優先順位を表した。「Sqrt.BW」は B_i と W_i の比のルートに基づいた得点 Sqrt.BW_i = √(B_i/W_i) である。「標準化得点」は Sqrt.BW_i と全使途で最も大きい Sqrt.BW の比に基づいた得点 Std.Sqrt.BW_i = Sqrt.BW_i/Max.Sqrt.BW であり、各使途の標準化得点を比較することで、各使途の相対的な重要度が分かる。
表 1-11 カウンティング法による分析結果

<table>
<thead>
<tr>
<th>使途</th>
<th>BEST</th>
<th>WORST</th>
<th>B-W</th>
<th>順位</th>
<th>Sqrt.BW</th>
<th>標準化得点</th>
</tr>
</thead>
<tbody>
<tr>
<td>し尿搬出</td>
<td>144</td>
<td>41</td>
<td>103</td>
<td>3</td>
<td>1.8741</td>
<td>0.8049</td>
</tr>
<tr>
<td>トイレの管理</td>
<td>206</td>
<td>38</td>
<td>168</td>
<td>1</td>
<td>2.3283</td>
<td>1.0000</td>
</tr>
<tr>
<td>登山道の修繕</td>
<td>201</td>
<td>51</td>
<td>150</td>
<td>2</td>
<td>1.9852</td>
<td>0.8527</td>
</tr>
<tr>
<td>避難小屋の修繕</td>
<td>55</td>
<td>120</td>
<td>-65</td>
<td>5</td>
<td>0.6770</td>
<td>0.2908</td>
</tr>
<tr>
<td>案内板の設置</td>
<td>65</td>
<td>144</td>
<td>-79</td>
<td>6</td>
<td>0.6719</td>
<td>0.2886</td>
</tr>
<tr>
<td>山岳パトロール</td>
<td>48</td>
<td>97</td>
<td>-49</td>
<td>4</td>
<td>0.7035</td>
<td>0.3021</td>
</tr>
<tr>
<td>混雑の緩和</td>
<td>37</td>
<td>265</td>
<td>-228</td>
<td>7</td>
<td>0.3737</td>
<td>0.1605</td>
</tr>
</tbody>
</table>

図 1-14 カウンティング法による分析結果

カウンティング法による分析結果より、観光客は協力金の使途として、「トイレの管理」が1番目、「登山道の修繕」が2番目、「し尿搬出」が3番目に優先して欲しいと考えていることが示された。また、「混雑の緩和」は優先順位として最も低かった。また、標準化得点の比較により、「トイレの管理」は「し尿搬出」の約1.2倍、「し尿搬出」は「山岳パトロール」の約2.7倍、「山岳パトロール」は「混雑の緩和」の約1.9倍高く評価されていることが明らかになった。

1.6.3 BWSの結果（モデリング法）

続いて、モデリング法によるBWSの分析結果を報告する。モデリング法は選択肢である使途が、それぞれ何回「最も優先して欲しい（"BEST"）」、「最も優先して欲しくない（"WORST"）」と選択されたかを集計し、離散選択モデルの中の条件付きロジットモデルで回答を分析し、得られた係数推定値から各使途の相対評価を行う手法である。複数の統計ソフトでも分析することができるが、本論文では統計ソフトのR（パッケージ：support.BWS, mlogit, gmmnl）を使用した。また、分析において、使途の中でも「混雑の緩和」の効用をゼロに基準化した上で、それ以外の使途の効用を係数推定値と
して推定できるように、以下の通りに確定効用を仮定している。

\[\nu = b_1 'し尿搬出' + b_2 'トイレの管理' + b_3 '登山道の修繕' + b_4 '避難小屋の修繕' + b_5 '案内板の設置' + b_6 '山岳パトロール' \]

上の式において、各 \(b \) は推定すべき係数である。したがって、この分析の結果、推定された各係数から、基準とした「混雑の緩和」に比べてそれぞれの使途の相対的な評価を求めることができる。

モデリング法の分析結果を表 1-12 に示す。表において、「Coef」は推定した係数、「SP」は各使途の相対的な重要度を比較するときの指標を示している。

<table>
<thead>
<tr>
<th>使途</th>
<th>Coef</th>
<th>Std.Error</th>
<th>Z-Value</th>
<th>P</th>
<th>SP</th>
<th>順位</th>
</tr>
</thead>
<tbody>
<tr>
<td>し尿搬出</td>
<td>1.5775</td>
<td>0.1076</td>
<td>14.66</td>
<td><2.2e-16</td>
<td>0.192</td>
<td>3</td>
</tr>
<tr>
<td>トイレの管理</td>
<td>1.8921</td>
<td>0.1110</td>
<td>17.05</td>
<td><2.2e-16</td>
<td>0.263</td>
<td>1</td>
</tr>
<tr>
<td>登山道の修繕</td>
<td>1.8048</td>
<td>0.1100</td>
<td>16.41</td>
<td><2.2e-16</td>
<td>0.241</td>
<td>2</td>
</tr>
<tr>
<td>避難小屋の修繕</td>
<td>0.7996</td>
<td>0.1024</td>
<td>7.81</td>
<td>5.77e-15</td>
<td>0.088</td>
<td>5</td>
</tr>
<tr>
<td>案内板の設置</td>
<td>0.7232</td>
<td>0.1016</td>
<td>7.12</td>
<td>1.11e-12</td>
<td>0.082</td>
<td>6</td>
</tr>
<tr>
<td>山岳パトロール</td>
<td>0.8727</td>
<td>0.1027</td>
<td>8.50</td>
<td><2.2e-16</td>
<td>0.095</td>
<td>4</td>
</tr>
<tr>
<td>混雑の緩和</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td>0.040</td>
<td>7</td>
</tr>
</tbody>
</table>

サンプル数 189
対数尤度 -1605.7

(注)推定された係数は、すべて 1% 水準で有意である。

モデリング法による分析結果より、使途の優先順位は、「トイレの管理」が 1 番目、「登山道の修繕」が 2 番目、「し尿搬出」が 3 番目に優先して欲しいと考えられていることが明らかになった。また、「混雑の緩和」は優先順位としては最も低かった。さらに、推定された係数はすべて 1% 水準で有意であるため、基準とした「混雑の緩和」と有意な評価差を持つ。そのため、いずれの使途も「混雑の緩和」よりも優先して欲しいと回答者が考えていることを表している。また、この結果より、カウンティング法とモデリング法は、先行研究である Marley and Louviere (2005) で述べられている様に、近似的な結果となり、両者は相関することが示された。さらに、「SP」の値の比較により、「トイレの管理」は「し尿搬出」の約 1.4 倍、「し尿搬出」は「山岳パトロール」の約 2.0 倍、「山岳パトロール」は「混雑の緩和」の約 2.4 倍高く評価されていることが明らかになった。

1.6.4 BWS の結果（回答者属性別の分析）

本節では回答者の入山口、避難小屋への宿泊の有無、旅行や自然への考え方といった属性の違いにより、使途の優先順位に違いが表われるかどうかを検討する。使途の優先順位の分析には、個々人のスコアを計算することが可能なカウンティング法を適用するが、前節において、カウンティング法はモデリング法の近似的な値をとることが既に示されていることからここでは述べておきたい。

回答者の入山口別の使途の優先順位は表 1-13 に示す通りである。白谷雲水峡と荒川登山口では、「トイレの管理」が最も優先して欲しい使途と考えられており、ヤクスギランドと淀川登山口では、
「登山道の修繕」が最も優先して欲しい使途と考えられている。

表 1-13 入山口別の使途の優先順位

<table>
<thead>
<tr>
<th>使途</th>
<th>白谷雲水峡</th>
<th>ヤクスギランド</th>
<th>荒川登山口</th>
<th>淀川登山口</th>
</tr>
</thead>
<tbody>
<tr>
<td>し尿搬出</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>トイレの管理</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>登山道の修繕</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>避難小屋の修繕</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>案内板の設置</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>山岳パトロール</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>混雑の緩和</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

続いて、回答者の避難小屋への宿泊の有無別の使途の優先順位は表 1-14 に示す。避難小屋に宿泊していない人は「トイレの管理」を最も優先して欲しい使途と考えており、宿泊をした人は、「登山道の修繕」を最も優先して欲しい使途と考えている。また、避難小屋への宿泊の有無は「避難小屋の修繕」の優先順位に違いを与えてなかった。

表 1-14 避難小屋への宿泊の有無別の使途の優先順位

<table>
<thead>
<tr>
<th>使途</th>
<th>宿泊なし</th>
<th>宿泊あり</th>
</tr>
</thead>
<tbody>
<tr>
<td>し尿搬出</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>トイレの管理</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>登山道の修繕</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>避難小屋の修繕</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>案内板の設置</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>山岳パトロール</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>混雑の緩和</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

加えて、回答者の旅行や自然への考え方別の使途の優先順位を示す（表 1-15, 表 1-16, 表 1-17, 表 1-18）。

まず、日頃から登山をすることの少ない人は「登山道の修繕」を 1 番目に優先して欲しいと考えており、日頃から登山をすることが多い人は「登山道の修繕」を 3 番目に優先して欲しいと考えているように、日頃から登山をすることが多い人ほど「登山道の修繕」の優先順位は高くなかった（表 1-15）。

表 1-15 旅行や自然への考え方別の使途の優先順位（日頃から登山をすることが多い）

<table>
<thead>
<tr>
<th>使途</th>
<th>全くそう思わないと</th>
<th>どちらとも言えない</th>
<th>とてもそう思う</th>
</tr>
</thead>
<tbody>
<tr>
<td>し尿搬出</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>トイレの管理</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

41
登山道の修繕 1 2 2 2 3
避難小屋の修繕 4 6 4 5 5
案内板の設置 5 4 6 6 7
山岳パトロール 6 5 5 4 6
混雑の緩和 7 7 7 7 4

次に、自然の豊かな場所に旅行する人が「し尿搬出」を番目に優先して欲しいと考えており、自然の豊か　な場所に旅行することが多い人は「し尿搬出」を番目に優先して欲しいと考えているように、自然の豊かな場所に旅行することが多い人ほど「し尿搬出」の優先順位が高い（表1-16）。

<table>
<thead>
<tr>
<th>表1-16 旅行や自然への考え方別の使途の優先順位（自然の豊かな場所に旅行することが多い）</th>
</tr>
</thead>
<tbody>
<tr>
<td>使途</td>
</tr>
<tr>
<td>し尿搬出</td>
</tr>
<tr>
<td>トイレの管理</td>
</tr>
<tr>
<td>登山道の修繕</td>
</tr>
<tr>
<td>避難小屋の修繕</td>
</tr>
<tr>
<td>案内板の設置</td>
</tr>
<tr>
<td>山岳パトロール</td>
</tr>
<tr>
<td>混雑の緩和</td>
</tr>
</tbody>
</table>

人間が手を加えた自然環境よりも手付かずの自然環境に価値があると思う人は「山岳パトロール」を「案内板の設置」よりも優先して欲しいと考え、人間が手を加えた自然環境よりも手付かずの自然環境に価値があるとあまり思わない人は「案内板の設置」を「山岳パトロール」よりも優先して欲しいと考えている（表1-17）。

<table>
<thead>
<tr>
<th>表1-17 旅行や自然への考え方別の使途の優先順位（人間が手を加えた自然環境よりも手付かずの自然環境に価値があると思う）</th>
</tr>
</thead>
<tbody>
<tr>
<td>使途</td>
</tr>
<tr>
<td>し尿搬出</td>
</tr>
<tr>
<td>トイレの管理</td>
</tr>
<tr>
<td>登山道の修繕</td>
</tr>
<tr>
<td>避難小屋の修繕</td>
</tr>
</tbody>
</table>
常に自然環境に配慮して行動していると考えている人よりも行動していない人の方が「登山道の修繕」を優先して欲しいと考えている（表 1-18）。

表 1-18 旅行や自然への考え方別の使途の優先順位（自分は常に自然環境に配慮して行動している）

<table>
<thead>
<tr>
<th>使途</th>
<th>全くそう思わない</th>
<th>どちらとも言えない</th>
<th>とてもそう思う</th>
</tr>
</thead>
<tbody>
<tr>
<td>し尿搬出</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>社交の管理</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>障害小屋の修繕</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>案内板の設置</td>
<td>5</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>山岳パトロール</td>
<td>6</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>混雑の緩和</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

1.7 まとめ

本年度の現地アンケート調査は、環境保全協力金に対して、協力金の対象者である観光客がどのような使途に優先的に使用して欲しいと考えているかを明らかにすることを目的として実施した。以下では、ここまでの主要な結果を簡単にまとめるとともに、環境保全協力金の使途の優先順位について考察したい。

まず、9割近くの観光客が環境保全協力金を支払っていること、同様に9割近くが環境保全協力金の強制化に賛成していることはアンケート調査特有のバイアスがある可能性を差し引いても特筆すべきことである。強制化に賛成する理由として、屋久島の自然環境が現状よりも良くなると言う声が多く聞こえた一方、強制化することで自然環境の保全のために支払うという動機が薄れてしまうというのでは回答があったことは今後の施策を検討する上で重要な視点を提供するかもしれない。

BWSによる分析によって、観光客が望む使途の優先順位は「トイレの管理」「登山道の修繕」「し尿搬出」「山岳パトロール」「避難小屋の修繕」「案内板の設置」「混雑の緩和」の順であることが明らかになった。また、使途の相対的な評価の差は、「トイレの管理」は「し尿搬出」の約1.4倍、「し尿搬出」は「山岳パトロール」の約2.0倍、「山岳パトロール」は「混雑の緩和」の約2.4倍高いことが明らかになった。このことは、観光客が現在も管理の多くを占めている山岳トイレに協力金を優先して投じてほしいと考えていることを示唆した。一方、これまで十分に予算を投じられてこなかった「登山道の修繕」や「山岳パトロール」といった観光客が安心安全に登山を楽しむことができる使途にも協力金を使って欲しいと考えていることも示された。

次に、観光客の属性の違いにより使途の優先順位にどのような違いがあらわれているのかをまとめ
たい。入山口別の使用の優先順位によると、白谷雲水峡と荒川登山口では「トイレの管理」に優先して協力金を使用して欲しいと考えられていた。特に「案内板の設置」に優先して協力金を使用して欲しいと考えられている。このことは登山道によって、優先して欲しいと考えられている使用が異なり、各登山道にあたる使用に優先して協力金を使用する必要があることを示している。特に淀川登山口では、観光客のニーズを踏まえるのであれば「案内板の設置」が優先されるべきかもしれない。本研究では観光客の先行の違いなのか、登山道の環境による差の何かを十分に議論することは難しいが、一律的な管理では問題を生むことが示唆された。

同様に避難小屋の宿泊の有無別の優先順位によると、避難小屋の宿泊の有無は「避難小屋の修繕」の優先順位に影響を与えているため、避難小屋は実際に宿泊した人にとってもそれほど修繕が必要であると思われていないのかもしれない。

最後に旅行や自然への考え方が観光客の協力金使用に対する意向に影響を与えていることは、今後の管理に大きな示唆を与える可能性を示唆した。特に「登山道の修繕」に協力金を優先して投じて欲しい人は日頃から登山することが少ない人、自然環境への配慮が浅かったりする点は特筆すべきことかもしれない。つまり、屋久島という原生的な地域においても観光客の一定数はより一層快適な登山を求めており、そこに協力金を投じてほしいという希望を有している。一方、人間が手を加えた自然環境よりも手付かずの自然環境に値値があると思う人は相対的に「案内板の設置」よりも「山岳パトロール」の使用に優先して協力金を使用して欲しいと考えている。このことは、「山岳パトロール」が自然環境に直接手を加えることなく観光客の安心安全を助けることができると捉えれば、一貫した思考に基づくものである。大事なことは前者と後者の人々が同じ空間・登山道に同居するのは困難であるということである。欧米で先進的に進められてきたROS（Recreation Opportunity Spectrum）の概念は日本に導入され、早くも10年以上が経過しようとしているが（八巻ほか 2000, 小林 2001）、まだ十分に現場の管理には適応できていないかもしれません。先に述べた登山道や避難小屋等の使用状況と合わせてより詳細な分析が必要である。

自然環境の保全や管理は多大な費用がかかるため、安定的に十分な予算を確保することは喫緊の課題である。入山料や入域料を徴収する慣習のなかった我が国の国立公園等では今後どのように予算を確保していくことができるのか、利用者をはじめとする関係者はどのように考えているのか、広く世間から同意を得られる方法を確立することが求められるだろう。屋久島での調査アンケート調査は広く観光客に協力金の仕組みを受け入れられていることを示唆した。今後、それらの仕組みが他の国立公園等にも適用できるのか、今後の調査研究が待たれる。

1.8 引用文献
Cambridge University Press.

本章については矢野圭祐氏（京都大学）および阪上高義氏（京都大学）の協力を得た．
２ 施策評価の調査票設計

ここでは、施策評価の調査票設計について報告するが、調査票設計と統計分析は対応した形で行われていることから、統計分析についても言及する。実際に使用したアンケート調査票や統計分析で用いた手法の詳細については、添付資料にまとめて掲載している。

2.1 本年度調査の概要

はじめに、本年度に実施したアンケート調査について整理を行いたい。本年度に実施したあるいは実施予定のアンケート調査は下記の通りである。

＜本度実施した WEB アンケート調査＞
- 国立公園の選好および西表島における費用負担に関する意識調査
- 自然保護地域における費用負担（協力金や入域料など）に関する意識調査

＜本年度実施した現地アンケート調査＞
- 大山の環境整備に関する利用者アンケート調査
- 西表島の観光動向に関するアンケート調査
- 屋久島への旅行と協力金に関するアンケート調査
- 屋久島への旅行と山岳地帯利用に関するアンケート調査

WEB アンケート調査 2 件については、報告書取りまとめ時点において、調査会社からデータが納品されていない予定であるため、本年度はアンケート調査票の設計についてのみ示したい。

現地調査については、本セクションにおいては大山（大山隠岐国立公園）における現地アンケート調査について主に取り上げたい。すでに実施済みで詳細な解析も終了しているためである。西表島および屋久島におけるアンケート調査は、後のセクションにおいて整理を行っている。

大山における現地アンケート調査については、環境省大山隠岐国立公園管理事務所が実施した業務（平成 30 年度大山の山岳環境保全体制構築に向けた利用者アンケート調査業務）と共同で行っており、同調査業務で使用した調査内容については、同調査業務を請け負った（株）矢野経済研究所から環境省大山隠岐国立公園管理事務所に提出される成果報告書に記載される予定である。本報告書では、成果報告書に記載される予定の内容については触れず、それ以外の部分について報告を行いたい。ただし、アンケート調査票とその単純集計結果については、結果が 1 つしか存在しないため、重複して掲載することとしたい。また、成果報告書に記載される予定の選択型実験の内容について、難解な部分は報告書から省かれる予定であるため、選択型実験のプロファイルデザインと統計解析に関わる部分については添付資料に整理することとしたい。

2.2 適用する統計分析手法の概要および文献整理

上記 6 件のアンケート調査では、統計分析手法として選択型実験（条件付きロジットモデル）、多項ロジットモデル、順序ロジットモデル、端点解モデル、Best-Worst Scaling（MaxDiffモデル）、個人トラベルコスト法を適用している。これらの手法の詳細については、添付資料に掲載しているが、ここでは手法について簡単ではあるがレビューを行いたい。
まず、上記で示した5つの統計分析手法の中で、多項ロジットモデルと順序ロジットモデルについては、アンケート調査票で聴取した回答に適用する純粋な統計分析手法を指している。一方、選択型実験、端点解モデル、Best-Worst Scaling、個人トラベルコスト法については、アンケート調査票設計から統計分析手法を含んだ一連の分析を指している。ただし、選択型実験で推定に用いる条件付きロジットモデル、Best-Worst Scalingで用いられるMaxDiffモデルは、多項ロジットモデルと類似したモデルである。端点解モデルは用いる統計分析手法が多少異なるが、効用パラメーターを最尤法によって推定する手続きは他の統計分析手法と共通している。

本研究で用いている統計分析手法について、端点解モデルを除き、純粋な統計分析手法という観点から整理すると、一般化線形モデルやその応用的手法を用いている（Agresti, 2012; 2013; Dobson and Barnett, 2018)。アンケート調査票から得られるデータは、多くの場合カテゴリカルデータ（名義尺度や順序尺度、個人トラベルコスト法で取り扱う訪問回数は整数値）であり、それらのデータの扱いは連続変数データとは異なるものである。例えば、3つの選択肢の中からどの選択肢が選ばれたかという回答結果、あるいはある評価対象について7段階で評定された回答結果という形である。個人トラベルコスト法では整数値を応答変数としている。一般化線形モデルやその応用的手法では、これらの結果を適切に取り扱うことが可能である。

重複も取りこぼしもない（Mutually Exclusive and Collectively Exhaustive）名義尺度で定義された選択肢集合の中から、どの選択肢が選ばれるのか、またどのような回答者属性が選択に影響しているのかをモデル化しようとするのが、多項ロジットモデル（Multinomial Logit Model）である。レクリエーション研究の分野では、1980年代から幅広く用いられてきた（Stynes and Peterson, 1984）。同じような目的で、応答変数に名義尺度ではなく、順序尺度を用いたものが順序ロジットモデル（Ordered Logit Model）である。例えば、ある評価対象に対する7段階評定について、どのような回答者属性が順序付けに影響しているのかをモデル化しようとしている。

条件付きロジットモデルと多項ロジットモデルは類似したモデルであるが、多項ロジットモデルでは、説明変数が回答者の個人属性（characteristics of the chooser）であるのに対して、条件付きロジットモデルでは、説明変数が回答者に提示される選択肢属性（characteristics of choices）である点に違いがある（Agresti, 2012)。MaxDiffモデルは、条件付きロジットモデルについて、最も望ましい選択肢と最も望ましくない選択肢の効用差が最大化されるようにモデルが修正されている（Louviere et al., 2015）。純粋な統計分析手法という観点からみると、多項ロジットモデル、条件付きロジットモデル、MaxDiffモデル、順序ロジットモデルは上記のように整理できるが、実際には経済学や社会学、心理学、生態学、医学など様々な分野において、それぞれの分野における研究上の要請に応じて、統計分析手法の異なった定式化や精緻化が図られている。本研究では、主に経済学における定式化を参考にしている。多項ロジットモデルおよび個人トラベルコスト法で取り扱うポアソンモデルについては、経済学に拘わらず幅広く使われているためにAgresti (2012; 2013)を参考とし、条件付きロジットモデルについてはLouviere et al. (2000)とHensher et al. (2008)を、MaxDiffモデルについては、Louviere et al. (2015)を、順序ロジットモデルについては、Greene and Hensher (2010)を参照し、それらの書籍で扱われている統計分析手法で分析ができるように、アンケート調査票の設問について作成を行った。

2.3 アンケート調査票の作成方針および文献整理
本研究では、愛甲他（2016）で示されている調査の枠組作り（図2-1）を参照に、アンケート調査票の設計を行っている。

森岡（2007）は、自治体が毎年実施しているかなりの数の社会調査が、基礎的資料をとりあえず収集しておこうという目的意識の薄いものであることを指摘している。それに対して図2-1では、調査の動機となる目的や将来像、その下に位置するリサーチクエスチョン、それに基づいた設問項目の設計という、一連の流れを意識している。トピックの選択については、本研究申請時に定まっていたので、すでに終わっており、文献調査のやり方については、Veal（2011）やSirakaya-Turk et al.（2011）で示された方法を参考にしながら実施した。概念モデルの構築については、本研究では経済学の枠組みを用いているので、そこで考え方に基づいて研究を進めている。

アンケート調査票の作成で最も重要となるのが、リサーチクエスチョンの設定である。選択したトピックについて、先行研究のレビューや概念枠組みなどを通じて、具体化したもののがリサーチクエスチョンである。パンチ（2011）が整理しているように、リサーチクエスチョンは以下の性質を持ちが必要である。

- 明確である
- 具体的である
- 答えることが可能であり遂行可能である
- 相互関連的である
- 実質的に適切である

実質的に適切であるとは、実際に調査する価値のある興味深い問題であるかどうかということである。リサーチクエスチョンを設定する場合には、どのような統計分析手法を適用するのか検討すること
とても重要である。これらについては、上記ですでに整理を行っている。具体的なリサーチクエッションについては、上記で既に整理を行っている。（仮想評価法はアンケート調査票を使い、人々に支払意志額を直接たずねるという手法であるが、当初から批判が大きかった。このシナリオの設定や表現方法が様々な形でバイアスを引き起こすものであった。下記は仮想評価法で指摘されている代表的なバイアスである（表 2-1）。本研究では、アンケート調査票の設計（特に貨幣評価と関わりがある選択型実験の調査票設計）において、これらのバイアスの発生が生じないように十分な配慮を行っている。特にアメリカの商務省国家海洋大気管理局が整理した仮想評価法を適用する際のガイドライン（NOAA ガイドライン）を参照した（栗山他、2013）。NOAA ガイドラインは、理想的な仮想評価法の適用方法を示したものである）。

表 2-1 環境経済評価のアンケート調査票の設計で想定される様々なバイアス

<table>
<thead>
<tr>
<th>歪んだ回答を行う誘因によるもの</th>
</tr>
</thead>
<tbody>
<tr>
<td>戦略バイアス：環境サービスが供給されることはないが、表明した金額に応じて徴収額が決まるならば過小評価しようという誘因が働く。逆に徴収額は一定だが、表明した金額に応じて環境サービスの供給が決まるならば、過大表明する誘因が働く。</td>
</tr>
<tr>
<td>追従バイアス：相手に喜ばれるような回答をする（回答者が調査側にとって望ましい回答をする）。</td>
</tr>
</tbody>
</table>

評価の手がかりとなる情報によるもの

| 開始点バイアス：調査側が最初に提示した金額が回答に影響する。 |
| 範囲バイアス：支払意志額の範囲を示すると、それが回答に影響する。 |
| 関係バイアス：評価対象と他の商品やサービスとの関係を示すと、それが回答に影響する。 |
| 重要性バイアス：質問内容が評価対象の重要性を暗示すると、それが回答に影響する。 |
| 位置バイアス：開始点バイアスが評価対象の価値の順序に影響していると受け取られる。 |

シナリオの伝達ミスによるもの

① 理論的伝達ミス（提示したシナリオが経済理論的あるいは政策的に妥当でない）

② 評価対象の伝達ミス（回答者の受け取った内容が調査側の意図したものと異なる）

シンボリックバイアス：調査側が示した環境サービスとは異なる何かシンボリックなものに対して回答する。

部分全体バイアス：調査側が示した環境サービスよりも大きい、あるいは小さい環境サービスについて回答する。

地理的全体バイアス：調査側が示した環境サービスの地理的範囲よりも大きい、あるいは小さい環境サービスについて回答する。

便益部分全体バイアス：評価対象の便益の及ぶ範囲が、調査側の意図する範囲よりも大きい、あるいは小さい。
政策部分全体バイアス：調査側が意図した政策内容よりも包括的、あるいは部分的な政策内容について回答者が想定する。

調査バイアス：調査側の意図したものとは異なる。

供給可能性バイアス：評価対象の供給可能性が調査側の意図したものと異なる。

価値バイアス：支払手段の価値が調査側の意図とは異なる。

所有権設定バイアス：評価対象の所有権が調査側の意図とは異なる。

供給方法バイアス：調査対象の供給方法が調査側の意図とは異なる。

予算制約バイアス：回答者が支払うと回答すると、他の財を購入できる金額が低下することを、調査側の意図に伝えられない。

説明内容バイアス：評価対象を説明するため、事前に回答者に示す内容が回答に影響する。

推量バイアス

一般項目
サンプルサイズ：統計的に十分なサイズが必要となる。
回収率：回収率が低いと信頼性も低くなる。
個人面接：郵送方式は信頼性が低いので、個人面接方式が望ましい。電話方式も可能である。
質問者による影響のチェック：質問者がいる時とない時とを比較すべきである。
報告：サンプルの定義、サンプルサイズ、回収率、未回答項目など全てを報告しなければならない。
質問項目の事前テスト：事前に小規模なアンケートを行って質問項目をチェックすることが必要である。

調査項目（これまでの優れた仮想評価法では満たされていたもの）
控えめなアンケート設計：異常に高い金額が出ないように控えめな設計を心がける。
支払意志額：受入補償額よりも支払意志額を用いる。
住民投票方式：質問形式は住民投票方式（二肢選択形式）にすべきである。
環境政策の説明：評価しようとする環境政策を適切に説明しなければならない。
写真の事前テスト：写真による影響を調べなければならない。
他の対象についての言及：破壊されないその他の環境資源が存在することや、将来の環境資源の状態について触れることが必要である。
評価時期：環境破壊の事故から十分な時間が経過してから評価すること。
通時的平均：異なる時点で評価して平均をとることが必要である。
「答えたくない」オプション：賛成／反対だけではなく、「答えたくない」も選べるようにする。
賛成／反対のフォローアップ：なぜ賛成／反対したかをたずねること（それほど値がある、わからない、企業が払うべきなど）
クロス表の作成：所得、対象についての知識の有無、対象地までの距離などで分類してクロス表を作成すること。
回答者の理解：回答者が理解できないほど複雑な質問にならないようにすること。

目標項目（これまでの仮想評価法では満たされていなかったもの）
代替的支出の可能性：お金を支払うと回答すると、その他の財の購入に乗じるお金が減ることを認識させなければならない。
取引価値：環境保護にお金の支払行為そのものに満足する「倫理的満足」の影響を取り除くこと。
定常状態と一時的損失：自然環境は常に変動しているので、変動の範囲と定常状態を認識させなければならない。
一時的損失の現在価値：一時的に自然が破壊された後、自然回復の状態を踏まえて現在価値で評価することが必要である。
事前の承認：仮想的シナリオについて事前に承認を得ること。
信頼できる参照アンケート：いくつかのアンケート結果を比較検討して信頼性を確認する。
立証責任：回収率が低い、環境破壊の範囲を示していない、回答者が理解不能、「賛成／反対」の理由が不明などの場合、評価結果の信頼性は低いと判断される。

出典：栗山他（2013）・Arrow et al.（1993）
2.4 アンケート調査の設計
2.4.1 設問作成に向けた問題把握
大山ではトイレ問題の解決が大きな課題となっている。問題点はアンケート調査票にも示されているように以下の3点である。

- 山中トイレの設置数の不足：大山では特に頂上避難小屋トイレの利用者が多く、登山者の多い日にはトイレ待ちの渋滞ができる。
- トイレの維持管理にかかるコスト：頂上避難小屋に設置しているトイレの維持管理には、年間250万円程度の費用がかかり、加えて十数年に1度、ソーラー発電設備の更新に数千万円の費用がかかり、また、トイレの維持管理には人手が必要という意味でもコストがかかり、頂上避難小屋に設置しているトイレは水洗（一部くみ取り式）であるが、水は浄化して再利用し、処理汚泥は人力で山から下して廃棄している。近年ではボランティアの協力を得て、頂上トイレの処理汚泥などを人力で山から担ぎ下げる運動（キャリー・ダウン）も行われている。
- 山中の廃便放置の発生：近年、大山では山中のトイレがない区間に廃便が放置される問題が起きている。景観のみならず、公衆衛生や植生の踏み荒らしの観点からも課題となっている。

このような点から大山では、トイレ問題解決のために登山者にも何らかの負担（金銭的負担や不便な点をがまんして頂くこと）を検討している。その方向性は大きく分けると、携帯トイレの普及と水洗トイレの維持に対する費用負担の導入である。このようなことから、本研究では以下の2つのリサーチクエスチョンを設定することとした。

- 山頂の水洗トイレの維持や携帯トイレの普及への支持はどの程度か？山頂の水洗トイレの維持や携帯トイレの普及に対して、どの程度の属性の登山者が賛成し、また反対しているか？
- 山頂の水洗トイレの維持や携帯トイレの普及に対して、人々はどれだけの支払い意願を持っていますか？

後者のリサーチクエスチョンは、前述のように「平成30年度大山の山岳環境保全体制構築に向けた利用者アンケート調査業務」で取り扱っているものであり、同調査業務を請け負った（株）矢野経済研究所から環境省大山隠岐国立公園管理事務所に提出される成果報告書に記載される予定である。そこで、本報告書では以下の方向性を設定した。まずアンケート調査票では、携帯トイレの普及と水洗トイレの維持に対して、以下の3つの方向性があると定義して、回答者に説明を行っている。

1. 山頂の水洗トイレを維持し、携帯トイレの利用は特に促進しない
2. 山頂の水洗トイレを維持するが、携帯トイレの利用も促進する（現状維持）
3. 山頂の水洗トイレは将来に廃止し、携帯トイレを利用して頂く

最初の選択肢は、地元の登山関係者の一部の要望に沿ったもので、現在ある山頂の水洗トイレを維持し、トイレ問題は水洗トイレの利用を軸に問題の解決を図るというものである。一方、2番目の選択肢は、山頂の水洗トイレを維持するものの携帯トイレの利用も促進して、水洗トイレの利用を分散化させるものである。これは、2018年に大山で実施された携帯トイレの無料配布に即するもので、次年度については同様の無料配布は継続されていないが、回答者には現状の制度ということで説明を行っている。3番目の選択肢は、鳥取県などで水洗トイレの管理費用を支出している主体が要望している選択肢であり、最終的にはトイレ問題は携帯トイレの利用を軸に問題の解決を図るものである。
ただ、大山は学校登山でも広く利用され、また子供や登山経験の少ない（あるいは少ない）観光客も利
用していることから、3番目の選択肢を直ちに実現することは現実的ではないかもしれない。そこで、
ここでは「山頂の水洗トイレは将来的に廃止」という表現を用いることにした。考察でも触れるが、
今回のアンケート調査票の設計の反省点としては、水洗トイレと携帯トイレの具体的な折衷案を提示
できず、回答者にとっては、水洗トイレと携帯トイレの導入のどちらかを選択しなければならない調
査票設計になってしまったことである。これらについては次年度以降の調査で改善を図りたい。

2.4.2 作成する設問と統計分析との関係
このような3つの選択肢に対して、本研究では2つのアプローチで分析を試みている。1つは、3つ
の選択肢のどれを選択するのかを、多項ロジットを用いて解析するアプローチである。一般的に、こ
のような設問に対しては、クロス集計が適用されることが多い、つまり3つの選択肢についてそれぞ
れが選択された度数を、例えば性別によって分割し、性別によって度数に統計的な差があるかどうか
を調べるといった分析である。このようなクロス集計は、広く使われているので理解しやすいもので
あるが、性別といった特定の個人属性についてしか取り扱うことができない。より多くの変数との
関係性を把握するには、対数線形モデルもしくは多項ロジットモデルを用いることになる。今回選
択肢（名義）が応答変数で、個人属性が説明変数という関係が明確であることから、多項ロジットモ
デルを採用している。

多項ロジットモデルでは、回答者が複数の選択肢の中からどれか1つの選択肢を選ぶ行動をモデル
化する。このような選択のモデル化は、労働経済学や教育経済学の分野で実績があり、例えば、職業
の選択行動や進学の選択行動の把握に適用されている。ただ今回の設問は、職業の選択行動や進学の
選択行動のように、個人にとって重大な選択で日頃からよく検討が加えられている項目ではなく、か
つ個人属性が選択行動に深く関わっているものではないので（職業の選択行動や進学の選択行動のよ
うに、選択時点までに受けた教育や所得水準が選択行動に深く関わるものではなく、どのような個人
の回答者も3つの選択肢のどれも選ぶ得る）、モデルの当てはまりは十分なものではないかもしれない
い。

そこで本研究では、回答者に「あなたは上記の3つの方向性について、それぞれどう評価しますか？当てはま
る番号それぞれ1つに○をつけて下さい。」と質問し、「極めて望ましくない」から「極
めて望ましい」までの7段階で評価を得ている。これらの質問に対しては、順位ロジットモデルの
適用を想定している。順位ロジットモデルを適用する利点は、3つの選択肢に対して1つの選択とい
う、多項ロジットモデルの分析よりも、7段階という幅広い水準で評価が可能であり、得られる情報
がより多いということである。また、3つの方向性それぞれに対して評価をたずねているので、より
影響を与える個人属性を特定しやすいことも利点と言える。
一方、選択型実験の質問では、1人の回答者に対して内容を変えた質問を複数回たずねており、パ
ネルデータとしてより多くの情報量を得ている。選択型実験の結果はここでは示さないが、最終的に
は選択型実験の結果が、最も統計的な当てはまりが高いものであった。

2.4.3 選択行動や評定付けを説明する変数
アンケート調査票では、多項ロジットモデルや順位ロジットモデルの説明変数、あるいは選択型実
験において潜在クラスモデルのメンバーシップ関数に使う変数として、個人属性も含めて様々な質問
表2-3 選択行動や評定付けを説明するために聴取された内容

<table>
<thead>
<tr>
<th>選択肢</th>
<th>質問番号</th>
<th>想定</th>
</tr>
</thead>
</table>
| 大山への訪問経験 | 問1・2 | 登山経験が長い方は、携帯トイレを利用したことがあり、携帯トイレの利用に肯定的な可能性がある。逆に訪問回数が極めて多い回答者は、携帯トイレの利用に難色を示すかもしれない（山中で用を足す回数が多いため）。
| 大山への訪問目的 | 問2 | 動植物の観察に来る回答者は、自然環境への影響を気にして携帯トイレの利用により肯定的な可能性がある。
| 旅行形態 | 問5 | 個人登山者の方が、携帯トイレを利用したことがあり、携帯トイレの利用により肯定的な可能性がある。
| 大山登山の満足度 | 問7 | トイレの整備に対する満足度が低い回答者は、現状維持よりも、どちらかの対策を求めている可能性がある。
| トイレの利用有無 | 問8 | 水洗トイレを利用している回答者は、水洗トイレの維持に肯定的かもしれない。
| トイレ問題の重大性 | 問10・11 | トイレ問題について重大だと考えている回答者は、現状維持よりも、どちらかの対策を求めている可能性がある。
| 携帯トイレの利用有無 | 問12 | 携帯トイレを利用したことのない回答者は、携帯トイレの利用に否定的と考えられる。
| 携帯トイレを利用できるか | 問13・14 | 携帯トイレを利用できないとした回答者は、携帯トイレの利用に否定的と考えられる。
| 自然環境に関わる活動 | 問1 | 植物観察や写真撮影を趣味とする回答者は、自然環境への影響を気にして携帯トイレの利用により肯定的な可能性がある。
| 自然環境に対する考え方 | 問1 | 人間が自然環境に影響を与えていると考えている回答者は、自然環境への影響を気にして携帯トイレの利用により肯定的な可能性がある。

2.5 アンケート調査の概要

アンケート調査は「大山の自然環境の保全に関するアンケート調査」という名称で、2018年9月下旬から2018年11月上旬にかけて実施した。アンケート調査票を現地（阿弥陀堂横の広場及び大山寺山門前）で配布し、郵送にて回収した。「平成30年度大山の山岳環境保全体制構築に向けた利用者アンケート調査業務」で700部のアンケート調査票を準備し、本研究で300部のアンケート調査票を準備した。合計1,000部の配布に対して、2018年12月上旬時点で444部を回収（回収率44.4%）
2.6 統計分析の結果

回答者のうち、男性は 57.9%，女性は 42.1%であった。全体に占める各年代層の割合は、20 代が 8.1%，30 代が 12.6%，40 代が 23.7%，50 代が 34.5%，60 代が 16.9%，70 代以上が 3.8%であっ

た。居住地については、鳥取県に居住している回答者が 18.7%，鳥取県以外に居住している回答者が 81.3%であった。その他の単純集計値については、添付資料もしくは上記業務の成果報告書を参照さ

れたい。次に 3 つの選択肢に対する選択数と選択割合については表 2−4 の通りである。

<table>
<thead>
<tr>
<th>選択肢</th>
<th>度数</th>
<th>割合</th>
</tr>
</thead>
<tbody>
<tr>
<td>山頂の水洗トイレを維持し、携帯トイレの利用は特に促進しない</td>
<td>66</td>
<td>15.1%</td>
</tr>
<tr>
<td>山頂の水洗トイレを維持するが、携帯トイレの利用も促進する（現状維持）</td>
<td>315</td>
<td>71.9%</td>
</tr>
<tr>
<td>山頂の水洗トイレは将来的に廃止し、携帯トイレを利用して頂く</td>
<td>57</td>
<td>13.0%</td>
</tr>
</tbody>
</table>

多項ロジットモデルによる推定結果は表 2−5 に示す通りである。

<table>
<thead>
<tr>
<th>属性</th>
<th>係数</th>
<th>P 値</th>
</tr>
</thead>
<tbody>
<tr>
<td>選択肢 1: 山頂の水洗トイレを維持し、携帯トイレの利用は特に促進しない</td>
<td></td>
<td></td>
</tr>
<tr>
<td>個人旅行者であること</td>
<td>0.891</td>
<td>0.040</td>
</tr>
<tr>
<td>30 代以下であること</td>
<td>-0.627</td>
<td>0.101</td>
</tr>
<tr>
<td>定数項</td>
<td>-2.062</td>
<td>0.000</td>
</tr>
<tr>
<td>選択肢 2: （現状維持）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>山頂の水洗トイレを維持するが、携帯トイレの利用も促進する</td>
<td></td>
<td></td>
</tr>
<tr>
<td>選択肢 3: 山頂の水洗トイレは将来的に廃止し、携帯トイレを利用して頂く</td>
<td></td>
<td></td>
</tr>
<tr>
<td>個人旅行者であること</td>
<td>0.741</td>
<td>0.092</td>
</tr>
<tr>
<td>30 代以下であること</td>
<td>-0.909</td>
<td>0.101</td>
</tr>
<tr>
<td>定数項</td>
<td>-2.010</td>
<td>0.000</td>
</tr>
</tbody>
</table>

対数尤度 -257.177

結果の見方であるが、まず 2 番目の選択肢である「山頂の水洗トイレを維持するが、携帯トイレの利用も促進する（現状維持）」を基準としている。その選択肢を基準として、例えば、1 番目の選択肢「山頂の水洗トイレを維持し、携帯トイレの利用は特に促進しない」を選択することに対して、「個人旅行者であること」や「30 代以下であること」が、影響を与えているかどうかを示している。係数が正で統計的に有意であれば、そのような回答者は、2 番目の選択肢と比較して 1 番目の選択肢をより選んでいることを示している。逆に係数が負で統計的に有意であれば、2 番目の選択肢と比較して 1 番
目の選択肢をより選んでいないことを示している。

30代以下の回答者は、「山頂の水洗トイレを維持し、携帯トイレの利用は特に促進しない」を選択しない傾向がある。一方、個人旅行者は「山頂の水洗トイレを維持するが、携帯トイレの利用も促進する」を10%水準であるが、選択する傾向があると言える。ただ、添付資料の単純集計表から明らかであるが、今回のアンケート調査では、パッケージツアーを利用して訪れた利用者は0人であり、この結果は旅行形態について「その他」を選択した回答者を基準として分析していることに注意が必要である。

順序ロジットモデルによる推定結果は表2-6から表2-8に示す通りである。結果の見方であるが、トイレ問題に対する今後の対策の方向性への評定付けに対して、表2-6で言えば、「携帯トイレを問題なく利用できると思うこと」や「携帯トイレは利用できないと思うこと」が影響を与えていているかどうかを示している。係数が正で統計的に有意であれば、そのような回答者はより高い評定付けをしていていることを示している。逆に係数が負で統計的に有意であれば、より低い評定付けをしていることを示している。カットオフ（cutoff）については、添付資料を参照されたい。

表2-6 「山頂の水洗トイレを維持し、携帯トイレの利用は特に促進しない」ことに対する
順序ロジットモデルによる推定結果

<table>
<thead>
<tr>
<th>属性</th>
<th>係数</th>
<th>P値</th>
</tr>
</thead>
<tbody>
<tr>
<td>トイレの整備に対して不満であること</td>
<td>-0.132</td>
<td>0.006</td>
</tr>
<tr>
<td>大山のトイレ問題が重大であると思っていること</td>
<td>-0.324</td>
<td>0.031</td>
</tr>
<tr>
<td>携帯トイレを問題なく利用できると思うこと</td>
<td>-0.842</td>
<td>0.000</td>
</tr>
<tr>
<td>携帯トイレは利用できない思う</td>
<td>1.055</td>
<td>0.000</td>
</tr>
<tr>
<td>cutoff_1</td>
<td>-3.697</td>
<td></td>
</tr>
<tr>
<td>cutoff_2</td>
<td>-2.542</td>
<td></td>
</tr>
<tr>
<td>cutoff_3</td>
<td>-1.990</td>
<td></td>
</tr>
<tr>
<td>cutoff_4</td>
<td>-0.790</td>
<td></td>
</tr>
<tr>
<td>cutoff_5</td>
<td>-0.408</td>
<td></td>
</tr>
<tr>
<td>cutoff_6</td>
<td>0.272</td>
<td></td>
</tr>
<tr>
<td>対数尤度</td>
<td>-737.023</td>
<td></td>
</tr>
</tbody>
</table>

報告に、「山頂の水洗トイレを維持し、携帯トイレの利用は特に促進しない」という方向性に対しては、「トイレの整備に対して不満であること」「大山のトイレ問題が重大であると思っていること」 「携帯トイレを問題なく利用できると思うこと」の係数は負で統計的に有意、逆に「携帯トイレを利用できないと思う」の係数は正で統計的に有意である。携帯トイレは促進せず、水洗トイレを維持する対策であるから、後者の2つの説明変数については、特に説明がなくても素直に解釈できるであろう。一方で、前者の2つの説明変数については、以下のような解釈が可能であると考えられる。大山のトイレ問題が重大であると思っている人が、「山頂の水洗トイレを維持し、携帯トイレの利用は特に促進しない」ことを望ましくないと評価するのは、携帯トイレの利用を促進することで、水洗トイレの混雑が緩和されたり（また自分自身も携帯トイレを使うことができるようになる）、山中での粪便
放置が減ったりすることが期待できるためであると考えられる。同様に、トイレの整備に対して不満がある人が、「山頂の水洗トイレを持ち、携帯トイレの利用は特に促進しない」とことを望ましくないと評価するのは、携帯トイレの利用を促進することで、水洗トイレの混雑が緩和される（また自分自身も携帯トイレを使うことができるようになる）ことが期待できるためであると考えられる。

表2-7「山頂の水洗トイレを維持するが、携帯トイレの利用も促進する」ことに対する
順序ロジットモデルによる推定結果

<table>
<thead>
<tr>
<th>属性</th>
<th>係数</th>
<th>P値</th>
</tr>
</thead>
<tbody>
<tr>
<td>大山をこれまでに10回以上訪問したことがある</td>
<td>0.473</td>
<td>0.038</td>
</tr>
<tr>
<td>大山を昨年10回以上訪問したことがある</td>
<td>-0.311</td>
<td>0.079</td>
</tr>
<tr>
<td>携帯トイレは利用できないと思う</td>
<td>-0.768</td>
<td>0.001</td>
</tr>
<tr>
<td>cutoff_1</td>
<td>-4.120</td>
<td></td>
</tr>
<tr>
<td>cutoff_2</td>
<td>-3.662</td>
<td></td>
</tr>
<tr>
<td>cutoff_3</td>
<td>-2.965</td>
<td></td>
</tr>
<tr>
<td>cutoff_4</td>
<td>-1.515</td>
<td></td>
</tr>
<tr>
<td>cutoff_5</td>
<td>-0.635</td>
<td></td>
</tr>
<tr>
<td>cutoff_6</td>
<td>0.541</td>
<td></td>
</tr>
<tr>
<td>対数尤度</td>
<td>-666.258</td>
<td></td>
</tr>
</tbody>
</table>

次に、「山頂の水洗トイレを維持するが、携帯トイレの利用も促進する(現状維持)」という方向性に対しては、先ほど同様に「携帯トイレは利用できないと思う」の係数が負で統計的に有意であった。一方で、「大山をこれまでに10回以上訪問したことがある」の係数は正で統計的に有意、「大山を昨年10回以上訪問したことがある」の係数は負で統計的に有意であった。ある意味、矛盾した結果のようにも見えるが、「これまでに10回以上訪問」は10年であれば、毎年1回登るベースでも達成できるのに対して、「昨年10回以上訪問」は、年間10回以上であるから、後者の方がヘビーユーザーであることを意味している。リピーターでも利用頻度によって、現状維持の対策に対する評価は異なっていることが明らかとなった。

最後に、「山頂の水洗トイレを将来的に廃止し、携帯トイレを利用して頂く」という方向性に対しては、先の「山頂の水洗トイレを維持し、携帯トイレの利用は特に促進しない」と同様に「トイレの整備に対して不満であること」と「携帯トイレを問題なく利用できること」と「携帯トイレは利用できないと思う」という項目が、評定付けに影響を与えていた。しかし、先ほどとは符号は逆であり、「トイレの整備に対して不満であること」と「携帯トイレを問題なく利用できること」の係数は正で統計的に有意、逆に「携帯トイレは利用できないと思う」の係数は、負で統計的に有意であった。先の「山頂の水洗トイレを維持し、携帯トイレの利用は特に促進しない」という方向性に対する分析でも同じであったが、「携帯トイレを問題なく利用できると思うこと」と「携帯トイレは利用できないと思うこと」の係数の絶対値は、他の係数と比較しても大きなものであり（ただし、「トイレの整備に対して不満であること」などの係数は5段階評価に対する係数なので、飛び抜けて大きい訳ではない）、トイレ問題に対する今後の対策の方向性を評定する上で、重要な要因となっている。
表2-8「山頂の水洗トイレは将来的に廃止し、携帯トイレを利用して頂く」ことに対する
順序ロジットモデルによる推定結果

<table>
<thead>
<tr>
<th>属性</th>
<th>係数</th>
<th>P値</th>
</tr>
</thead>
<tbody>
<tr>
<td>トイレの整備に対して不満であること</td>
<td>0.148</td>
<td>0.002</td>
</tr>
<tr>
<td>携帯トイレを問題なく利用できること</td>
<td>1.096</td>
<td>0.000</td>
</tr>
<tr>
<td>携帯トイレは利用できないと思う</td>
<td>-1.050</td>
<td>0.000</td>
</tr>
<tr>
<td>国立公園の野生動植物は、自然環境の悪化により影響を受けていると思うこと</td>
<td>0.216</td>
<td>0.010</td>
</tr>
<tr>
<td>cutoff_1</td>
<td>0.707</td>
<td></td>
</tr>
<tr>
<td>cutoff_2</td>
<td>1.616</td>
<td></td>
</tr>
<tr>
<td>cutoff_3</td>
<td>2.167</td>
<td></td>
</tr>
<tr>
<td>cutoff_4</td>
<td>3.489</td>
<td></td>
</tr>
<tr>
<td>cutoff_5</td>
<td>3.882</td>
<td></td>
</tr>
<tr>
<td>cutoff_6</td>
<td>4.458</td>
<td></td>
</tr>
<tr>
<td>对数尤度</td>
<td>-704.755</td>
<td></td>
</tr>
</tbody>
</table>

2.7 考察
順序ロジットモデルでの結果を踏まえた上で、「携帯トイレを問題なく利用できること」と「携帯トイレは利用できないと思う」を説明変数として、多項ロジットモデルを再度適用すると、表2-9のような結果も得ることができる（モデルの当てはまりは、表2-5の結果よりは良くない）。

表2-9 多項ロジットモデルによる推定結果
（携帯トイレの利用の可否を説明変数としたもの）

<table>
<thead>
<tr>
<th>属性</th>
<th>係数</th>
<th>P値</th>
</tr>
</thead>
<tbody>
<tr>
<td>選択肢 1：山頂の水洗トイレを維持し、携帯トイレの利用は特に促進しない</td>
<td></td>
<td></td>
</tr>
<tr>
<td>携帯トイレを問題なく利用できること</td>
<td>-0.940</td>
<td>0.059</td>
</tr>
<tr>
<td>携帯トイレは利用できないと思う</td>
<td>1.149</td>
<td>0.000</td>
</tr>
<tr>
<td>定数項</td>
<td>-1.741</td>
<td>0.000</td>
</tr>
<tr>
<td>選択肢 2：（現状維持）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>山頂の水洗トイレを維持するが、携帯トイレの利用も促進する</td>
<td></td>
<td></td>
</tr>
<tr>
<td>選択肢 3：山頂の水洗トイレは将来的に廃止し、携帯トイレを利用して頂く</td>
<td></td>
<td></td>
</tr>
<tr>
<td>携帯トイレを問題なく利用できること</td>
<td>1.338</td>
<td>0.000</td>
</tr>
<tr>
<td>携帯トイレは利用できないと思う</td>
<td>-14.43</td>
<td>0.980</td>
</tr>
<tr>
<td>定数項</td>
<td>-2.132</td>
<td>0.000</td>
</tr>
<tr>
<td>対数尤度</td>
<td>-306.570</td>
<td></td>
</tr>
</tbody>
</table>
この結果が意味することは、携帯トイレを利用できないと思う人は水洗トイレを志向し、携帯トイレを利用できると思う人は携帯トイレを志向しているということである。訪問経験や自然環境に対する考え方など、選択や評定付けに影響は与えていたが（訪問経験については想定していなかったよりも複雑な影響が生じていた）、先ほど述べたように係数の絶対值を考えると、携帯トイレが利用できるかできないかが選択の重要なカギになっていると言える。

アンケート調査票の問 12 において、「あなたは携帯トイレを使ったことがありますか？」との問いに対して、「使ったことがある」が 55 名、「使ったことがない」が 383 名であり、携帯トイレを使ったことのある利用者はかなり少ない。また、問 13 において、「仮に携帯トイレが手元にあり、登山中にトイレを利用したくなった場合、公衆トイレではなく、設置されている携帯トイレブース（携帯トイレを使用するスペース）で携帯トイレを利用できると思いますか？」の問いに対して、「携帯トイレを問題なく利用できると思う」が 114 人、「公衆トイレが混んでいたら（がまんはできるが時間がかかりそうなら）携帯トイレを利用すると思う」が 252 人、「携帯トイレは利用できないと思う」が 75 人であることを考えると、現状では、混雑時の緊急避難的な利用を除き、通常利用してもらえる可能性は高いとは言えない。携帯トイレのさらなる普及向けた方策を検討することが課題であるが、そのためにはどうすれば携帯トイレを使うと思ってもらえるかが重要なポイントになると考えられる。

それでは、費用負担を行って水洗トイレを維持することは現実なのか、という問いは、二つ目のリサーチクエスチョンである。

- 山頂の水洗トイレの維持や携帯トイレの普及に対して、人々はどれだけの支払意志額を有しているのか？

ということに関わってくる。このリサーチクエスチョンに対しては、選択型実験の分析結果が回答することになる。それらについては、「平成 30 年度大山の山岳環境保全体制構築に向けた利用者アンケート調査業務」の報告書を参照されたい。

2.8 引用文献
Agresti, A (2012), Categorical Data Analysis (3rd edition), Wiley
Agresti, A (2013), Foundations of Linear and Generalized Linear Models, Wiley
愛甲哲也・庄子康・栗山浩一(2016), 『自然保護と利用のアンケート調査—公園管理・野生動物・観光のための社会調査ハンドブック』筑地書館.
Arrow, K., R. Sollow, P.R.Portney, E.E. Leamer, R. Radner, H. Schuman (1993) "Report of
NOAA panel on contingent valuation.” 58 Federal Register 4601

K. F. パンチ・川合隆男 監訳 (2005), 『社会調査入門―量的調査と質的調査の活用』慶應義塾大学出版会。

栗山浩一・庄子康・柘植隆宏 (2013), 『初心者のための環境評価入門』勁草書房。

森岡清志 編著 (2007), 『ガイドブック社会調査』日本評論社。

3 施策評価の統計分析

3.1 モバイル空間統計概要

近年、ビッグデータを用いた政策評価に関する研究が注目を集めているが、ここでは携帯電話の電波情報を用いた分析を行う。モバイル空間統計は、NTTドコモの携帯電話ネットワークを利用して作成される人口統計情報であり、2018年10月より事業化されているものである。本節の説明は、NTTドコモ(2018)を参考に行う。

ドコモの携帯電話ネットワークでは、各基地局のエリアごとに所在する携帯電話を周期的に把握している。このしくみを用いて携帯電話の台数を集計し、地域ごとにドコモの普及率を考慮・加味して人口を推計することができる。日本人では約7,600万台分、訪日外国人は約750万台のデータがあり、これは国内最大級である。モバイル空間統計では、日本全国で、特定メッシュ内における1時間ごとの人口を、24時間365日把握することができる。対象は15~79歳であり、14歳まで及び80歳以上は十分なサンプルが得られないので推計の対象外とされている。プライバシー保護対策としては、個人識別性を除去する非識別化処理、少人数を除去する秘匿処理等が行われている。これらの処理によって、個人の動向は特定されないようにになっている。

3.2 モバイル空間統計の特徴

モバイル空間統計を用いるにあたり、既存のデータ収集法との違いを把握することは重要である。まず、他のデータとの特徴を比較したものをまとめた。

<table>
<thead>
<tr>
<th>モバイル空間統計</th>
<th>GPS</th>
<th>現地アンケート</th>
<th>WEB調査</th>
<th>赤外線</th>
</tr>
</thead>
<tbody>
<tr>
<td>データ取得</td>
<td>24時間365日(電源ON)</td>
<td>24時間365日(GPS/電源ON)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>サンプル数</td>
<td>7,600万</td>
<td>50万～(数百部程)</td>
<td>(数千部程)</td>
<td>-</td>
</tr>
<tr>
<td>エリア</td>
<td>全国</td>
<td>全国</td>
<td>現地</td>
<td>全国</td>
</tr>
<tr>
<td>属性</td>
<td>性別・年代</td>
<td>性別</td>
<td>年代等</td>
<td>項目次第</td>
</tr>
<tr>
<td>訪問目的</td>
<td>×</td>
<td>×</td>
<td>×</td>
<td>-</td>
</tr>
<tr>
<td>訪問回数</td>
<td>×</td>
<td>×</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>訪問人数把握</td>
<td>△</td>
<td>△</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>信頼性</td>
<td>○</td>
<td>○</td>
<td>△</td>
<td>△</td>
</tr>
</tbody>
</table>

表3-1 モバイル空間統計と他データの比較

1）○は把握可能、△は把握可能であるが正確性に不安、×は把握不可能を表す。
モバイル空間統計とその他のデータで基本的な特徴を比較した場合、モバイル空間統計はデータ取
得期間、及びサンプル数の面で優れていることが分かる。さらに、日本国内は全国的にデータを入手
することができるため、網羅的な情報を収集することが可能である。しかし、モバイル空間統計では
人々の細かい属性を把握したり、訪問目的や訪問回数を把握したりことはできない。また、メッシ
ュ内における滞留人口を計測することは可能であるが、それが訪問者なのか、それとも単なる通過
者なのか、地元住人なのか、ということは識別できない。アンケート調査等と比べた場合には、実際
にアンケートを配布したりする手間がかからない。また、回答者によるバイアスが少ないといった利
点が考えられる。モバイル空間統計のデータはメッシュ域内の携帯電話台数に基づく顕示的なもので
あるため、信頼性は高い。

次に、モバイル空間統計データの課題をまとめたものが表3-2である。

<table>
<thead>
<tr>
<th>留意点</th>
<th>解説</th>
</tr>
</thead>
<tbody>
<tr>
<td>滞留目的</td>
<td>外部からの訪問者と現地の住人の識別ができない</td>
</tr>
<tr>
<td>若年・高齢世代の誤差</td>
<td>自身の名義で携帯電話を契約することのできない世代や、携帯電話保持者の少ない高齢者のデータが少ない</td>
</tr>
<tr>
<td>重複カウント</td>
<td>長時間滞在、他メッシュへの移動により人数が重複カウントされる</td>
</tr>
<tr>
<td>秘匿処理</td>
<td>少人数の人口が削除される</td>
</tr>
</tbody>
</table>

出典：清家(2015)をもとに作成。

モバイル空間統計では、人々がなぜその場にいるのかを把握することができない。そのため、通過
しているだけの人や、滞在している人といった区別をすることが困難である。例えば、本研究におい
ても、富士山の地元である山梨県や静岡県の人口が多く観測されているが、それが地元住民なのか、
レクリエーション目的で他の地域から訪問してきた人なのか判断することができないという問題があ
る。また、14歳以下及び80歳以上の人々がデータに含まれていないという留意点がある。14歳以
下の人は自分の名義で携帯電話を契約することができないため、データに人数が含まれない。80歳以
上の高齢者も、携帯電話を保持している人が少ないため十分なサンプルが確保できず、統計の対象外
となっている。

レクリエーション分析のように訪問人数が重要となる分析では、人数の重複カウントの問題が生じ
る。訪問者が同じメッシュ内に一定時間を超えて滞在する場合、同一人物が重複してカウントされる
こととなる。特定時間内における人口を計測する場合は問題ないが、一日の訪問者を計測するような
場合、この重複カウントがバイアスをもたらす可能性が考えられる。また、秘匿処理が与える影響も
無視できないものである。プライバシー保護を目的として実施されている秘匿処理によって、共通の
属性を有する人が、あるメッシュ内において10人以下の場合、その人数はカウントされない。例え
ば、本研究においては富士山周辺の都道府県や、都市部からの訪問者は比較的人数も多いためデータ
に反映されやすいが、九州や北海道などといった遠方や、人口の少ない都道府県からの訪問者は特定
メッシュ内における人数が少なく、データとして把握できない。そのため、訪問者数の多い特定地域の
居住者ばかりが偏って反映されることとなる。なお、モバイル空間統計では訪問者のみの人数が集
計されるため、オンサイトサンプリングの問題も発生する。

3.3 本研究データの概要

本研究で用いたデータは、NTT ドコモが提供するモバイル空間統計である。3 次メッシュ (約 1 km四方) 単位の特定日人口を、富士山及びその周辺の指定 766 エリア分把握することができる。データが得られる期間は 2016 年 7 月 1 日～9月 10 日である。

ファイルは属性の区分によって 4 種に分かれており、それぞれ特定の属性区分をもとにした指定 766 エリアにおける特定日人口データである。各ファイルの属性としては、総数 (属性区分なし)、居住地 (都道府県レベル)、居住地 (市区町村レベル)、性×年齢である。本研究においては、主に居住地 (都道府県レベル) を用いている。また、必要に応じて適宜総数 (属性区分なし) 及び居住地 (市区町村レベル) を用いて情報を補っている。データ構成は以下の表 3-3 にまとめた通りである。

<table>
<thead>
<tr>
<th>タイトル</th>
<th>内容</th>
<th>記載事項</th>
</tr>
</thead>
<tbody>
<tr>
<td>日付</td>
<td>日付コード</td>
<td>年月日</td>
</tr>
<tr>
<td>曜日</td>
<td>曜日コード</td>
<td>曜日番号</td>
</tr>
<tr>
<td>時間</td>
<td>24 区分コード</td>
<td>[0:00, 3:00, 6:00, 9:00, 12:00, 14:00, 16:00, 18:00, 21:00]</td>
</tr>
<tr>
<td>エリア</td>
<td>メッシュコード</td>
<td>1km メッシュ：8 桁コード</td>
</tr>
<tr>
<td>居住地</td>
<td>都道府県コード</td>
<td>2 桁コード</td>
</tr>
<tr>
<td></td>
<td>市町村コード</td>
<td>5 桁コード</td>
</tr>
<tr>
<td></td>
<td>区別なし</td>
<td>[-1:固定]</td>
</tr>
<tr>
<td>年代</td>
<td>年齢コード (10 歳階)</td>
<td>[15, 20, 30, 40, 50, 60, 70]</td>
</tr>
<tr>
<td></td>
<td>区別なし</td>
<td>[-1:固定]</td>
</tr>
<tr>
<td>性別</td>
<td>性別コード</td>
<td>[1：男性 2：女性]</td>
</tr>
<tr>
<td></td>
<td>区別なし</td>
<td>[-1:固定]</td>
</tr>
<tr>
<td>人口</td>
<td>エリア内人口</td>
<td>人数 [数値]</td>
</tr>
</tbody>
</table>

出典：モバイル空間統計データをもとに作成。

カラムは、日時、曜日、時間 (0:00, 3:00, 6:00, 9:00, 12:00, 14:00, 16:00, 18:00, 21:00)、3 次メッシュ番号、居住地 (都道府県別 or 市町村別 or 区別なし)、年代 (15, 20, 30, 40, 50, 60, 70 or 区別なし)、性別 (男性, 女性 or 区別なし) から構成される。

秘匿処理では、同じ属性を有する人が一定の時間において特定メッシュ内に 10 人以上ないければ削除される仕組みとなっている。そのため、属性区分によっては、秘匿される人数も変動することには注意が必要である。ファイルごとのデータ数と人口の総計は表 4 にまとめると。

63
表 3-4 ファイル別データ概要

<table>
<thead>
<tr>
<th>ファイル</th>
<th>データ数(個)</th>
<th>人口計(人)</th>
<th>人口平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>総数(属性区分なし)</td>
<td>453,616</td>
<td>64,672,938</td>
<td>142.57</td>
</tr>
<tr>
<td>居住地(都道府県レベル)</td>
<td>849,554</td>
<td>56,827,512</td>
<td>66.89</td>
</tr>
<tr>
<td>居住地(市区町村レベル)</td>
<td>672,295</td>
<td>43,616,972</td>
<td>64.88</td>
</tr>
<tr>
<td>性×年齢</td>
<td>1,400,715</td>
<td>45,359,191</td>
<td>32.38</td>
</tr>
</tbody>
</table>

出典：モバイル空間統計データをもとに作成。

表 3-4から、属性を細かく区分するほど、基本的にデータ数は増加する一方で、秘匿処理のために人口計は減少することが分かる。居住地(市区町村レベル)のデータ数、及び人口計が少ないのは、市区町村レベルに属性を細分化すると、秘匿処理の影響が非常に大きくなるためであると考えられる。また、メッシュあたりの人口平均も少なくなる。

頂上付近の 6 メッシュ（メッシュコード: 53380528, 53380529, 53380538, 53380539, 53380548, 53380549）において、性×年齢データをまとめたものが表 3-5である。

表 3-5 性別と年齢

<table>
<thead>
<tr>
<th>年齢</th>
<th>男性(人)</th>
<th>女性(人)</th>
<th>計(人)</th>
<th>構成比(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 歳~</td>
<td>5,442</td>
<td>4,086</td>
<td>9,528</td>
<td>12.1</td>
</tr>
<tr>
<td>20 代~</td>
<td>12,112</td>
<td>4,153</td>
<td>16,265</td>
<td>20.6</td>
</tr>
<tr>
<td>30 代~</td>
<td>9,979</td>
<td>2,978</td>
<td>12,957</td>
<td>16.4</td>
</tr>
<tr>
<td>40 代~</td>
<td>10,257</td>
<td>3,985</td>
<td>14,242</td>
<td>18.0</td>
</tr>
<tr>
<td>50 代~</td>
<td>4,806</td>
<td>2,371</td>
<td>7,177</td>
<td>9.1</td>
</tr>
<tr>
<td>60 代~</td>
<td>3,050</td>
<td>3,657</td>
<td>6,707</td>
<td>8.5</td>
</tr>
<tr>
<td>70 代~</td>
<td>569</td>
<td>11,580</td>
<td>12,149</td>
<td>15.4</td>
</tr>
<tr>
<td>計</td>
<td>46,215</td>
<td>32,810</td>
<td>79,025</td>
<td>100</td>
</tr>
<tr>
<td>構成比(%)</td>
<td>58.5</td>
<td>41.5</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

出典：モバイル空間統計データをもとに作成。

富士山山頂のメッシュであることに、年代及び男女比率等を考慮すると、特に 70 代女性の人数が実態とはかけ離れている可能性が想定される。日本交通公社(2017)が 2016 年に 5 回に渡り実施したアンケート調査結果では、無回答を除くと男性が 1,086 人(79.3%), 女性が 284 人(20.7%)となっている。表 3-5 の結果では、男性 58.5%, 女性 41.5%となっている。表 3-5 の結果から、70 代を外して再計算すると、男性 68.3%, 女性 21.7%である。

また、日本交通公社(2017)の年代別の調査結果を表 3-6 にまとめる。
<table>
<thead>
<tr>
<th>年齢帯</th>
<th>人数(人)</th>
<th>構成比(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10代~</td>
<td>22</td>
<td>1.6</td>
</tr>
<tr>
<td>20代~</td>
<td>378</td>
<td>27.8</td>
</tr>
<tr>
<td>30代~</td>
<td>384</td>
<td>28.2</td>
</tr>
<tr>
<td>40代~</td>
<td>357</td>
<td>26.2</td>
</tr>
<tr>
<td>50代~</td>
<td>154</td>
<td>11.3</td>
</tr>
<tr>
<td>60代~</td>
<td>53</td>
<td>3.9</td>
</tr>
<tr>
<td>70代~</td>
<td>10</td>
<td>0.7</td>
</tr>
<tr>
<td>80代~</td>
<td>3</td>
<td>0.2</td>
</tr>
<tr>
<td>計</td>
<td>1,361</td>
<td>100.0</td>
</tr>
</tbody>
</table>

出典：日本交通公社(2017)をもとに作成。日本交通公社(2017)と比較し、モバイル空間統計の結果は10代、60代、70代の比率が高まっている。

次に、総数(属性区分なし)のファイルを用いて、各ルート、及び頂上の時間帯ごとの人数についてまとめた。まず、各ルート上における8合目のメッシュを用いて、ルート別かつ時間帯別の人数についてまとめた。ただし、吉田ルートと須走ルートは8合目が同一メッシュに含まれるため、両ルートを合計した値を用いている。また、頂上のメッシュの人数もまとめた。その結果が次表3-7である。

<table>
<thead>
<tr>
<th>時間(時)</th>
<th>吉田・須走(人)</th>
<th>御殿場(人)</th>
<th>富士宮(人)</th>
<th>頂上(人)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>62.2</td>
<td>71.3</td>
<td>69.0</td>
<td>54.5</td>
</tr>
<tr>
<td>300</td>
<td>55.3</td>
<td>72.2</td>
<td>67.3</td>
<td>94.8</td>
</tr>
<tr>
<td>600</td>
<td>66.6</td>
<td>73.2</td>
<td>74.0</td>
<td>162.0</td>
</tr>
<tr>
<td>900</td>
<td>84.5</td>
<td>92.6</td>
<td>81.8</td>
<td>103.4</td>
</tr>
<tr>
<td>1200</td>
<td>88.9</td>
<td>96.6</td>
<td>85.8</td>
<td>104.4</td>
</tr>
<tr>
<td>1400</td>
<td>91.8</td>
<td>96.9</td>
<td>85.5</td>
<td>93.2</td>
</tr>
<tr>
<td>1600</td>
<td>86.2</td>
<td>93.5</td>
<td>82.3</td>
<td>68.7</td>
</tr>
<tr>
<td>1800</td>
<td>74.0</td>
<td>84.6</td>
<td>73.1</td>
<td>62.0</td>
</tr>
<tr>
<td>2100</td>
<td>66.3</td>
<td>75.1</td>
<td>70.2</td>
<td>54.8</td>
</tr>
<tr>
<td>計</td>
<td>676.0</td>
<td>755.9</td>
<td>689.0</td>
<td>797.8</td>
</tr>
</tbody>
</table>

出典：モバイル空間統計データをもとに作成。表3-7の結果より、各ルート8合目においては12時～14時ごろに人数のピークを迎えていること
が分かる。富士宮ルートに関しては、他のルートよりも若干ピーク人数を迎える時間帯が早いため、富士宮ルートは、0時ごろである。また、頂上については、各ルートの8合目とはピーク時間が異なり、6時ごろとなっていることが分かる。これは、ご来光を見る目的の人々が多いためであると推測される。0時ごろが最も人数が少ない時間帯である。

次に、平日と週末・祝日の時間帯ごとの人数についてまとめたものが、表3-8, 表3-9である。

表3-8 平日ルート別・時間別平均人数

<table>
<thead>
<tr>
<th>時間(時)</th>
<th>吉田・須走(人)</th>
<th>御殿場(人)</th>
<th>富士宮(人)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>58.0</td>
<td>68.3</td>
<td>68.5</td>
</tr>
<tr>
<td>300</td>
<td>52.3</td>
<td>70.0</td>
<td>66.2</td>
</tr>
<tr>
<td>600</td>
<td>62.6</td>
<td>70.8</td>
<td>72.4</td>
</tr>
<tr>
<td>900</td>
<td>78.0</td>
<td>93.0</td>
<td>80.6</td>
</tr>
<tr>
<td>1200</td>
<td>83.0</td>
<td>95.6</td>
<td>83.9</td>
</tr>
<tr>
<td>1400</td>
<td>84.9</td>
<td>96.0</td>
<td>82.6</td>
</tr>
<tr>
<td>1600</td>
<td>79.7</td>
<td>91.6</td>
<td>80.6</td>
</tr>
<tr>
<td>1800</td>
<td>71.3</td>
<td>83.0</td>
<td>72.0</td>
</tr>
<tr>
<td>2100</td>
<td>62.8</td>
<td>73.3</td>
<td>69.5</td>
</tr>
<tr>
<td>計</td>
<td>632.4</td>
<td>741.8</td>
<td>676.2</td>
</tr>
</tbody>
</table>

出典：モバイル空間統計データをもとに作成。

表3-9 週末及び祝日ルート別・時間別平均人数

<table>
<thead>
<tr>
<th>時間(時)</th>
<th>吉田・須走(人)</th>
<th>御殿場(人)</th>
<th>富士宮(人)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>80.5</td>
<td>77.5</td>
<td>70.0</td>
</tr>
<tr>
<td>300</td>
<td>69.9</td>
<td>76.8</td>
<td>69.9</td>
</tr>
<tr>
<td>600</td>
<td>85.1</td>
<td>78.3</td>
<td>77.4</td>
</tr>
<tr>
<td>900</td>
<td>111.1</td>
<td>91.7</td>
<td>84.5</td>
</tr>
<tr>
<td>1200</td>
<td>114.9</td>
<td>98.6</td>
<td>89.8</td>
</tr>
<tr>
<td>1400</td>
<td>120.3</td>
<td>99.0</td>
<td>91.5</td>
</tr>
<tr>
<td>1600</td>
<td>113.1</td>
<td>97.4</td>
<td>85.9</td>
</tr>
<tr>
<td>1800</td>
<td>90.8</td>
<td>87.9</td>
<td>75.7</td>
</tr>
<tr>
<td>2100</td>
<td>83.5</td>
<td>78.9</td>
<td>71.8</td>
</tr>
<tr>
<td>計</td>
<td>869.0</td>
<td>786.0</td>
<td>716.4</td>
</tr>
</tbody>
</table>

出典：モバイル空間統計データをもとに作成。

表3-8, 表3-9の結果より、全体的に週末及び祝日の方が、平日と比べて人数が多いことが分かる。時間帯ごとの人数の変動としては、平日、週末・休日ともに全体のデータと似た傾向にあるが、富士
宮ルートの人数のピークが、週末・祝日の方が平日よりも少し遅い時間となっている。

3.4 赤外線カウンターデータとの比較

モバイル空間統計データの信頼性を検証するために、赤外線カウンターデータの結果と比較する必要がある。赤外線カウンターは、環境省が正確な登山者数の把握を目的として、2004年より4つの登山道の各8合目付近に設置しているものである。赤外線カウンターの前を人が通ると赤外線反射を利用してカウントされ、通行の方向から登山者と下山者の数をそれぞれ把握することができる。そのため、機器のトラブル等が無い限り、正確な人数の把握が可能となる。これにより、8合目以上の登山者数実数調査が行われている。

方法としては、回帰分析を用いる。被説明変数は、環境省の各日ごと赤外線カウンターデータ人数とする。説明変数は、モバイル空間統計において、赤外線カウンターの含まれる地域メッシュにおいて各日ごとに集計した人数とする。回帰分析は各登山道ごとに行う。ただし、吉田ルートと須走ルートは赤外線カウンター設置場所が同一のメッシュ内に存在しているため、合算して計算を行う。

環境省(2018)の赤外線カウンターデータとモバイル空間統計データをもとにして推定した結果が以下の表3-10～表3-12である。

表3-10 吉田・須走ルート回帰分析結果

<table>
<thead>
<tr>
<th>赤外線人数</th>
<th>係数</th>
<th>t値</th>
<th>p値</th>
</tr>
</thead>
<tbody>
<tr>
<td>定数項</td>
<td>3964.22***</td>
<td>-6.50</td>
<td>0.000</td>
</tr>
<tr>
<td>モバイル人数</td>
<td>9.965***</td>
<td>11.17</td>
<td>0.000</td>
</tr>
<tr>
<td>修正済み R2</td>
<td>0.729</td>
<td></td>
<td></td>
</tr>
<tr>
<td>観測数</td>
<td>47</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：***は1%水準で有意を意味する。

これより、吉田・須走ルートの登山者数において、環境省の赤外線カウンターデータで計測した日ごと人数を、モバイル空間統計データの日ごと人数によって説明できることか分かる。

表3-11 御殿場ルート回帰分析結果

<table>
<thead>
<tr>
<th>赤外線人数</th>
<th>係数</th>
<th>t値</th>
<th>p値</th>
</tr>
</thead>
<tbody>
<tr>
<td>定数項</td>
<td>612.433***</td>
<td>-4.79</td>
<td>0.000</td>
</tr>
<tr>
<td>モバイル人数</td>
<td>1.113***</td>
<td>6.68</td>
<td>0.000</td>
</tr>
<tr>
<td>修正済み R2</td>
<td>0.398</td>
<td></td>
<td></td>
</tr>
<tr>
<td>観測数</td>
<td>67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注：***は1%水準で有意を意味する。

これより、御殿場ルートの登山者数において、環境省の赤外線カウンターデータで計測した日ごと人数を、モバイル空間統計データの日ごと人数によって説明できることか分かる。
<table>
<thead>
<tr>
<th>表 3-12 富士宮ルート回帰分析結果</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>定数項</td>
</tr>
<tr>
<td>モバイル人数</td>
</tr>
<tr>
<td>補正 R2</td>
</tr>
<tr>
<td>観測数</td>
</tr>
</tbody>
</table>

注：***は 1%水準で有意を意味する。

これより、富士宮ルートの登山者数において、環境省の赤外線カウンターデータで計測した日ごと人数を、モバイル空間統計データの日ごと人数によって説明できることが分かる。

以上の結果より、モバイル空間統計データは、各ルートにおける富士山登山者数の傾向を反映するデータとして信頼性を有すると言える。

3.5 ゾーントラベルコスト法による推定

3.5.1 旅費計算方針

本節及び次節ではトラベルコスト法を用いた分析を示す。本項で、その際に用いた旅行費用の算出法について述べる。

居住地から富士山までの交通手段は、北海道、四国、九州からの訪問者は航空機と自動車を利用すると想定し、本州からの訪問者は自動車のみの利用を想定した。北海道、四国、北部九州（福岡、佐賀、長崎、大分）、南部九州（熊本、宮崎、鹿児島）、沖縄についてはハブ空港をそれぞれ設定し、そこからの発着を想定した。それぞれのハブ空港は、新千歳、松山、福岡、鹿児島、那覇であり、それぞれの地域で最も国内線旅客数が多い空港である。旅費の計算は、自動車の移動費（ガソリン代、高速料金）、航空機利用料金、機会費用（自動車移動時間、航空機移動時間及び空港所要時間、登山時間）、入山料を必要に応じて足し合わせている。ガソリン代に関しては、総務省（2016）より、2016年7月〜9月における静岡県のガソリン販売平均価格126円/ℓを利用した。燃費に関しては、国土交通省（2016）より、平成26年度ガソリン乗用車のJC08モード燃費平均21.7km/ℓを用いた。

自動車を用いた移動における距離、高速道路利用料金、及び移動時間の算出には、ナビタイム（https://www.navitime.co.jp）というサイトを用いた。航空機を用いた料金は、ANA（2016）の往復運賃料金表より、7月〜9月のピーク料金を用いた。航空機の所要時間算出はスカイスキャナー（https://www.skyscanner.jp）というサイトを用いた。また、空港での所要時間は往復で2時間としている。航空機を利用する場合、ゾーン内のハブ空港から羽田空港までの利用を想定する。居住地からハブ空港まで、及び羽田空港から各登山道の五合目までは、自動車利用を想定している。なお、日本交通公社（2017）の調査より、5人以下の人数で登山するグループの平均人数が平均2.66人であるため、自動車利用の場合の移動費は2.66で除した値を用いている。機会費用としては、総務省統計局の平成28年賃金構造基本統計調査より、各都道府県ごとに男女平均の時給を求めた。機会費用の計上方法には諸説あるが、Cesario（1976）が推奨する方法に従い、賃金率の3分の1を計上した。また、登山時間

68
については、富士登山オフィシャルサイト（http://www.fujisan-climb.jp/trails/index.html）を参考にし、五合目以降の往復登山時間を求めた。吉田ルートは10時間、須走ルートは9時間、御殿場ルートは10時間、富士宮ルートは8時間としている。

3.5.2 ゾーントラベルコスト法による推定結果
ゾーントラベルコスト法では、レクリエーションサイトまでの旅行費用に応じて、訪問者の居住地をいくつかのゾーンに分割する。本研究では、環境省の平成22年度富士山登山者アンケート調査で行われているゾーン区分に従い、全国を10のゾーンに分割した。

出発地点は、日本交通公社（2017）の訪問者アンケート調査の結果に従い、ゾーン内で最も訪問者が多い都道府県としている。ただし、北海道・東北地方は、東北地方内で最も訪問者が多い都道府県としている。ゾーントラベルコスト法における登山道は、最も登山者数の多い吉田ルートとし、目的地は吉田ルートの五合目付近である富士スバルライン新五合目に設定している。

各ゾーンの人口は、2016年の総務省統計局の都道府県、男女別人口及び人口性比のデータより求めた。推定には、次節の離散選択トラベルコスト法も含めてStataCorp社のStata14.2を用いて行った。旅費、各ゾーン利用者数、各ゾーン人口をもとに、各ゾーンの訪問率を算出したものが表13である。元データ人口は、モバイル空間統計において、富士山頂上周辺の6メッシュ（53380528, 53380538, 53380539, 53380548, 53380549）の人口を足し合わせて算出した。

しかし、モバイル空間統計データは、秘匿処理の影響が大きいという課題がある。そのため、静岡や山梨といった富士山の地元地域や、都市部のように訪問人数が少ない地域しかデータに反映されないという課題がある。そこで、人数の補正を行う必要がある。まず、日本交通公社（2017）の調査結果をもとに、都道府県ごとの人数の割合を補正する必要がある。本研究においては、東京の人数を基準とし、全都道府県の割合を日本交通公社の調査結果と同様になるように計算を実施している。そののち、

モバイル空間統計データファイルのうち、総数（属性区分なし）と居住地（都道府県レベル）の各頂上付近6メッシュの人数を比較した。結果として、静岡、山梨を除いた場合、居住地（都道府県レベル）の人数は総数（属性区分なし）のうち43.4%しか反映していないため、これを秘匿処理の影響とし、0.434で人数を除している。さらに、NTTドコモを保有している登山者以外の人数を加えるため、携帯電話各社のシェアの割合を総務省の調査結果（http://www.soumu.go.jp/main_content/000508722.pdf）より求めた。これより、NTTドコモのシェアは42.3％とし、0.423で人数を除している。これらの、都道府県割合及びNTTドコモのシェアを考慮したものを補正後人口とする。
ゾーンごとの旅費と訪問率

<table>
<thead>
<tr>
<th>ボーグ</th>
<th>出発地</th>
<th>旅費(円)</th>
<th>ボーグ人口(人)</th>
<th>元データ人口(人)</th>
<th>補正後人口(人)</th>
<th>元データ訪問率(10^{-3})</th>
<th>補正後訪問率(10^{-3})</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道・東北</td>
<td>福島</td>
<td>21055.18</td>
<td>14267</td>
<td>10</td>
<td>5,043</td>
<td>0.00007</td>
<td>0.0353</td>
</tr>
<tr>
<td>東京</td>
<td>東京</td>
<td>16024.8</td>
<td>13624</td>
<td>14,633</td>
<td>39,878</td>
<td>0.107</td>
<td>0.293</td>
</tr>
<tr>
<td>神奈川</td>
<td>神奈川</td>
<td>16021.33</td>
<td>9145</td>
<td>12,505</td>
<td>30,522</td>
<td>0.137</td>
<td>0.334</td>
</tr>
<tr>
<td>関東</td>
<td>埼玉</td>
<td>15048.37</td>
<td>20363</td>
<td>3,065</td>
<td>38,485</td>
<td>0.015</td>
<td>0.189</td>
</tr>
<tr>
<td>山梨</td>
<td>山梨</td>
<td>10513.79</td>
<td>830</td>
<td>43,449</td>
<td>2,455</td>
<td>5.235</td>
<td>0.296</td>
</tr>
<tr>
<td>静岡</td>
<td>静岡</td>
<td>14190.24</td>
<td>3688</td>
<td>107,776</td>
<td>22,162</td>
<td>2.922</td>
<td>0.6</td>
</tr>
<tr>
<td>中部</td>
<td>愛知</td>
<td>20959.49</td>
<td>16897</td>
<td>1,158</td>
<td>25,347</td>
<td>0.00685</td>
<td>0.15</td>
</tr>
<tr>
<td>近畿</td>
<td>大阪</td>
<td>27949.18</td>
<td>20681</td>
<td>532</td>
<td>29,461</td>
<td>0.00257</td>
<td>0.142</td>
</tr>
<tr>
<td>中国・四国</td>
<td>広島</td>
<td>34711.65</td>
<td>11224</td>
<td>37</td>
<td>6,104</td>
<td>0.00033</td>
<td>0.0544</td>
</tr>
<tr>
<td>九州・沖縄</td>
<td>福岡</td>
<td>54366.98</td>
<td>14405</td>
<td>24</td>
<td>4,048</td>
<td>0.000167</td>
<td>0.0281</td>
</tr>
</tbody>
</table>

出典: モバイル空間統計で日本交通公社(2017), 総務省統計局(2016)をもとに作成。

表3-13の結果をもとに元データ人口を用いた結果が表14, 補正後人口を用いた結果が表15である。

表3-14 元データ人口による推定結果

<table>
<thead>
<tr>
<th>訪問率の対数値</th>
<th>係数</th>
<th>t 値</th>
<th>p 値</th>
</tr>
</thead>
<tbody>
<tr>
<td>旅費定数項</td>
<td>-0.93×10^{-4} **</td>
<td>2.905</td>
<td>0.020</td>
</tr>
<tr>
<td>重決定 R2</td>
<td>0.513</td>
<td>2.048</td>
<td>0.075</td>
</tr>
<tr>
<td>補正 R2</td>
<td>0.453</td>
<td></td>
<td></td>
</tr>
<tr>
<td>標準誤差</td>
<td>1.259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>観測数</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

出典: モバイル空間統計をもとに作成。
注: **は5%水準, * は10%水準でそれぞれ有意を意味する。

表3-14の推定結果をもとに富士山を1回訪問することに対する平均支払意志額は10,758円と算出された。
表 3-15 補正後人口による推定結果

<table>
<thead>
<tr>
<th>取引率の対数値</th>
<th>係数</th>
<th>t 値</th>
<th>p 値</th>
</tr>
</thead>
<tbody>
<tr>
<td>旅行費</td>
<td>-0.27×10^{-4}</td>
<td>3.56</td>
<td>0.007</td>
</tr>
<tr>
<td>定数項</td>
<td>-2.229</td>
<td>11.40</td>
<td>0.000</td>
</tr>
<tr>
<td>重決定 R2</td>
<td>0.613</td>
<td></td>
<td></td>
</tr>
<tr>
<td>補正 R2</td>
<td>0.565</td>
<td></td>
<td></td>
</tr>
<tr>
<td>標準誤差</td>
<td>0.293</td>
<td></td>
<td></td>
</tr>
<tr>
<td>観測数</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

出典：モバイル空間統計をもとに作成。
注：***は1%水準で有意を意味する。

表 3-15 より、富士山を 1 回訪問することに対する平均支払意志額は 37,661 円と算出された。

表 3-14 と表 3-15 の結果を比較した結果、補正後人口を用いた結果の方がより有意な結果となっている。このことから、元データでは秘匿処理の影響が大きく、実態を正しく反映していない可能性が考えられる。よって、富士山を一回訪問することの一人当たり消費者余剰は、表 3-15 の結果を用いて 37,661 円とする。

3.6 考察

分析結果をまとめると以下のようになる。第一に、モバイル空間統計のデータと環境省の赤外線カウンターデータを比較した結果、モバイル空間統計は、各ルートごとの日々の訪問人数を反映するデータとして信頼性を有すると言える。また、富士山登山者を対象としてトラベルコスト法による調査を実施すると、ゾートトラベルコスト法では 1 回当たりの訪問で得られる消費者余剰は 37,661 円と推定された。

本研究において、モバイル空間統計を用いた環境評価の可能性について論じる上で、従来の調査手法に対する 2 点の利点が明らかとなった。1 点目としては、時間ごとの人の流れを把握できる点である。24 時間体制で、メッシュ単位の時間による人口変動を把握することができるため、従来のアンケート手法などでは調査できない期間・時間帯についても人口動態を計測できるのは大きな強みであろうと言える。2 点目としては、従来の環境評価手法を生かすことのできる点である。例えば、調査を実施する上でサンプル数を集めることは多大な労力を有するが、モバイル空間統計では非常に膨大な情報量があるため、サンプル数に困ることはない。庄子（2003）では、交通経済学の分野において、国内で都市の交通手段選択の分析手法で離散選択トラベルコスト法が盛んに用いられているのに対し、レクリエーションサイトでは利用者数の把握が行われていないため、離散選択トラベルコスト法の適用が困難であることが述べられている。この課題に対しても、大規模データを用いれば利用人数を把握することができ、離散選択トラベルコスト法の手法を適用できることが分かる。

本研究においては、モバイル空間統計を用いた実証分析を試みたが、いずれも他の統計データやアンケートデータ等と併用して用いることが必要であった。入山料の議論等を行う際においても、モバ
イル空間統計のみではなく、他のデータとの組み合わせにより、さらなる強固な結果が得られるものであると考える。

引用文献
相原健郎 (2017) 「ビッグデータを用いた観光動態把握とその活用：動体データで訪日外客の動きをとらえる」『情報管理』59(11), 743-754。
相尚寿 (2014) 「観光研究への位置情報ビッグデータ展開の可能性」『観光科学研究』第7号, 11-19頁。
愛甲哲也, 川口恵典 (2013)「大雪山国立公園トムラウシ山における登山者のルート選択要因」『ランドスケープ研究』第76巻第5号, 703-706頁。
愛甲哲也, 五木田玲子 (2016)「国立公園における利用者モニタリング調査の実態および課題と自然保護官の意識」『ランドスケープ研究 (オンライン論文集)』第9号, 1-6頁。
栗山浩一・大野栄治 (2002)「ボランティア活動による環境保全有益の評価」『環境工学研究論文集』第39巻, 143-151頁。
土木学会 (1996)『非集計行動モデルの理論と実際』土木学会。
栗山浩一 (1998)「環境の価値と評価手法—CVMによる経済評価」北海道大学図書刊行会。
栗山浩一・庄子康 (2005)「環境と観光の経済評価—国立公園の維持と管理」勁草書房。
栗山浩一・柘植隆宏・庄子康 (2013)「初心者のための環境評価入門」勤草書房。
栗山浩一 (2015)「データに基づいた富士山入山料の多角的分析」『観光文化』第226号, 15-18頁。
松原徳和 (2017) 「モバイル空間統計による動態人口把握: 観光防災, 帰宅困難者対策の観点から」『情報管理』第60巻第7号, 493-501頁。

72
4 施策評価分析

自然地域における施策には、利用促進を目的とするものや、自然環境保全を目的とするものなど様々なものが含まれる。従来は、こうした自然環境施策に必要な費用は税金によって国民が負担してきたが、近年は自然公園の利用者がその費用の一部を負担することに関心が集まっている。ここでは、近年注目を集めている入域料を取り上げる。そして、西表島を対象に入域料を実施したときの地域への影響を分析し、施策の影響を評価する。

4.1 入域料について

入域料とは、国立公園や国定公園、景勝地などの自然環境を保全する目的で、観光客や入場者などから、地方公共団体が徴収する金額のことである。徴収した入域料は、登山道の整備やごみやし尿の処理、動植物の保護への費用として使われる。吉田(2015)によると、自然公園地域は一般的にアクセスルートが多様であり、非排除性と非競合性のある公共財的性質を有し、クラブ財のような課金が困難なことも多い。入口にゲートを設置しやすい施設等においては日本でも有料の場所が多いが、排除性を確保しにくく、所有権が複数の主体にまたがることの多い自然公園地域での入域料導入は容易ではない。そのような状況の中で、2014年6月に制定された地域自然資産法によって、都道府県又は市町村が、地域自然環境保全等事業などの活動によって地域社会の健全な発展を推し進めることになる。

吉田(2015)によると、入域料徴収は環境税と補助金のポリシー・ミックスによる二重の配当と同様の効果が期待される。入域料が高くなるほど一般的に入域需要は減少し、入域者数は少なくなる。そして、需要量（入域者数）と価格（入域料金）を掛けた金額が収入となる。入域料を徴収すると、入域者数を制御することによる混雑緩和と入域料金収入による生態系保全等の費用確保が可能になる。

日本では、富士山、屋久島、知床、白神山地、伊吹山、伊是名島などで入域料、入山料、協力金などとして観光客や入場者に金額を徴収している。その中でも、富士山における入山料の事例について触れる。前述したように、一般的に入域料を導入することで入域者数を制御することによる混雑緩和と入域料金収入による生態系保全等の費用確保が可能になる。富士山では、富士山の環境保全や登山者の安全対策、富士山の普遍的価値の情報提供を目的として、2014年から入山料（富士山保全協力金）の導入が開始された。富士山の入山料は、登山者に対して1000円を任意で払ってもらう仕組みである。栗山(2013)によると、富士山における入山料導入に関する課題として、二点挙げられる。一点目は、地方自治体による試験導入の結果を基に、入山料の徴収は任意であっても登山者の80%が支払うと予想されていたが、実際の徴収率は50%程度であり、予想を大きく下回った。二点目は、富士山の登山者数と旅費を使って統計的に分析を行うトラベルコスト法によると、入山料が1000円の場合、入山者の抑制効果は、わずか4%にすぎないことがわかった。この二つの課題は、登山者に対する需要分析が行われずに、入山料の設定が行われなかったことが原因であると指摘されている。

また、吉田(2015)は、「観光客に使途や入域料の徴収目的を伝える重要性」を指摘している。武・飯田(2016)は「ガイドが観光客に入域料の効果」を伝えることが、観光客の支払い意思額、支払意思行動や貢献実感度に繋がると述べられている。いずれの論文においても、入域料の使途の認知の重要
4.2 西表島について

4.2.1 概要

西表島は、東京からは南西へ約2,100km、沖縄本島からは460kmの距離に位置し、北緯24°、東経123°に位置する八重山諸島にある島である。住所は沖縄県八重山郡竹富町に属し、沖縄本島の南西に位置する島である。島の面積は約284㎢、周囲は約130kmであり、沖縄県に属する島の中では沖縄本島について2番目に大きい面積をもち、八重山諸島の中では最大の面積をもつ。西表島には空港がないため、八重山諸島の主島である石垣島に飛行機で渡った後、石垣島の離島ターミナルに移動する必要がある。石垣島の離島ターミナルでは、各離島への船便が出ているため、高速船もしくはフェリーで約40分間移動し、西表島に着くことができる。西表島には、上原港と大原港の2つの港が存在し、石垣島の離島ターミナルからは、高速船もしくはフェリーが存在する。

島の約90%が亜熱帯の原生林に覆われていて、イリオモテヤマネコやカンムリワシ、セマルハコガメなどの15の国指定天然記念物を有する自然環境が豊かな島である。西表島には大小合わせて約40の川が流れている、その多くは河口付近にマングローブを有する。特に、仲間川は日本一のマングローブ流域面積を誇る川で、日本全体のマングローブ流域面積の約4分の1を占める。また、流域一帯のマングローブ林は「仲間川天然保護区域」として国の天然記念物に指定されている貴重な場所である。西表島には貴重な自然を有することから、1972年に島全体が国立公園に指定されている。周辺の海では約400種を超えるサンゴと豊かな海洋生物が生息し、石垣島と西表島の間を形成する日本最大の広大なサンゴ礁域として国立公園に指定されている。環境省（2016）によると「国立公園は、次の世代も、私たちと同じ感動を味わい楽しむことができるよう、すぐれた自然を守り、後世に伝えていくところ」である。また、「そのために、国が指定し、保護し、管理し、役割を担っている」と定めている。南西諸島に属する地域で、西表島の他に国立公園に指定されているのは、屋久島国立公園や奄美群島国立公園、やんばる国立公園などである。

島の気候は亜熱帯海洋性気候に属し、年間の平均気温は23℃である。人口は約2,600人で14の集落が島の周辺部に点在している。産業は、観光業を中心に、稲作、さとうきび、パイナップルなどの農業や牛などの畜産や漁業が盛んである。

八重山町によると、西表島へ訪れる観光客数は2017年において、約31万5,300人を記録した。主な観光地としては、仲間川や、星砂の浜、ビナサイラの滝などである。また、西表島から水牛車でも海を渡って到着することができ、周囲2km未満の小さな島である由布島も人気の観光地であり、ツアーバー含むことも多い。

西表島には日本最南端の路線バスが走っており、島内の移動手段は、主に路線バスかタクシーである。
4.2.2 西表島の現状及び課題

2018年5月、奄美大島、德之島、沖縄北部及び西表島を対象とした地域は、世界自然遺産登録における諮問機関であるICUNによる推薦書の根本的な見直しを求める「登録延期」の勧告を受けた。登録延期の理由としては、推薦した地域の設定そのものに関してや、観光客の増加への対策の実施や動植物の生息状況の変化を把握するための「モニタリング」の仕組みの必要性を指摘された。2020年の夏に再度世界自然遺産登録を目指す地域の一つである西表島としては、ガイド認定の問題や動植物、ヤマネコの保護、入域客の規制の見直しが必要である。

ここでは、世界自然遺産登録と一見無関係に思われる「ガイドに関する課題」について詳しく触れることである。環境省（2016）によると、平成26年度の環境省による調査では、西表島内のエコツアーガイドの事業者は67事業者、ガイド数は136人が把握されていて、過去10年間で約2倍に増加している。新たに参入しエコツアーガイドは、カヌー組合への参加と自主ルール順守が必要なヒナイ川などの従来から利用されていたフィールドを避け、他の人があまり利用していない小河川やより内陸部のフィールド、夜間や早朝等の時間を利用する傾向がある。そうした傾向により、近年エコツアーガイドが無秩序に拡散・増加し、ヒナイ川、仲間川以外ではエコツアーに関する利用ルールが設定されていない。無秩序な利用による自然環境への影響や事故の発生が懸念されていることに加え、エコツアーガイドが狩猟区域に侵入することにより、事故が発生する可能性も懸念されている。

また、西表島を管理する竹富町役場に聞き取り調査を行った際、西表島の現状として、ガイドを自
ら名乗ることにより、ガイドとして把握している人数のガイド数が発生していることが問題視されている。ガイドが西表島における一定のフィールドに多く存在し、ガイドの数が西表島の多く存在する観光地に均一化されていないことも問題視されていた。

以上の現状を踏まえて、エコツアーフィールドとしてのルールの設定や、ガイドの認定・登録や、ガイドの教育や、数の均一化や、観光客への適切な情報提供についての改善の必要がある。

4.3 分析手法と推定結果

4.3.1 調査概要

本研究で使用するデータは現地で実施したアンケート調査により入手した。西表島に訪れる予定の観光客を対象にアンケートを行った。2018年8月23日（木）〜28日（火）の6日間、石垣島の離島ターミナルの待合室において実施した。その場もしくは、西表島に向かう船の中においてアンケート票の記入をお願いし、西表島外から訪れた観光客434人から回答を得た。そのうち、有効回答数は310であった。

質問内容をまとめたものは表4-1である。大きく分けて「今回の旅行について」、「観光客の観光に対する考え方」、「観光客の知識」、「入域料を導入した仮想的な状況について」、「個人属性」を聞いた。その中で、本研究では問23の「居住地」及び問12の「望ましい入域料の使用用途について」の項目のデータを中心に分析を行った。実際に使用したアンケートは添付資料として記載した。

<table>
<thead>
<tr>
<th>大まかな分類</th>
<th>質問番号</th>
<th>質問内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>今回の旅行について</td>
<td>問1</td>
<td>訪問回数（過去1年間）</td>
</tr>
<tr>
<td></td>
<td>問2</td>
<td>訪問回数（過去5年間）</td>
</tr>
<tr>
<td></td>
<td>問3</td>
<td>離島への訪問</td>
</tr>
<tr>
<td></td>
<td>問4</td>
<td>宿泊の有無</td>
</tr>
<tr>
<td></td>
<td>問5</td>
<td>旅行形態</td>
</tr>
<tr>
<td></td>
<td>問6</td>
<td>ツアーの参加数</td>
</tr>
<tr>
<td></td>
<td>問7</td>
<td>グループ人数</td>
</tr>
<tr>
<td></td>
<td>問8</td>
<td>グループ構成</td>
</tr>
<tr>
<td></td>
<td>問9</td>
<td>訪問動機</td>
</tr>
<tr>
<td></td>
<td>問10</td>
<td>訪問予定地</td>
</tr>
<tr>
<td>観光客の考え方</td>
<td>問11</td>
<td>旅行や自然に関する考え方</td>
</tr>
<tr>
<td>入域料を導入した仮想的な状況について</td>
<td>問12</td>
<td>望ましい入域料の使用用途</td>
</tr>
<tr>
<td></td>
<td>問13</td>
<td>望ましい使用用途の組み合わせ（1回目）</td>
</tr>
<tr>
<td></td>
<td>問14</td>
<td>望ましい使用用途の組み合わせ（2回目）</td>
</tr>
<tr>
<td></td>
<td>問15</td>
<td>望ましい使用用途の組み合わせ（3回目）</td>
</tr>
<tr>
<td></td>
<td>問16</td>
<td>望ましい使用用途の組み合わせ（4回目）</td>
</tr>
<tr>
<td>観光客の知識</td>
<td>問17</td>
<td>竹富島での入城料についての知識の有無</td>
</tr>
<tr>
<td></td>
<td>問18</td>
<td>西表島が国立公園であることの知識の有無</td>
</tr>
<tr>
<td></td>
<td>問19</td>
<td>世界自然遺産登録を目指すことの知識の有無</td>
</tr>
<tr>
<td>個人属性</td>
<td>問20</td>
<td>性別</td>
</tr>
<tr>
<td></td>
<td>問21</td>
<td>年齢</td>
</tr>
</tbody>
</table>

表4-1 アンケート質問内容
4.3.2 ゾーントラベルコスト法による分析
ゾーントラベルコスト法では、観光客のレクリエーション需要曲線を推定するために問 23 の観光客の居住地の集計結果を用いた。ゾーントラベルコスト法ではレクリエーション需要曲線を推定する過程において、地域ごとの訪問率を求める必要がある。地域区分については総務省統計局資料を参考にした。都道府県別の人口については総務省資料を参考にした。以上のデータと各都道府県の往復旅費をもとに、地方別の 1000 人あたりの訪問率を求めた。結果表 4-2 の通りである。

<table>
<thead>
<tr>
<th>地方</th>
<th>往復旅費（円）</th>
<th>回答者数（人）</th>
<th>比率</th>
<th>訪問者数（人）</th>
<th>人口（千人）</th>
<th>1000人あたりの訪問者率</th>
<th>訪問者率対数</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道・東北</td>
<td>60,012</td>
<td>6</td>
<td>0.0194</td>
<td>6,102</td>
<td>14,267</td>
<td>0.428</td>
<td>-0.849</td>
</tr>
<tr>
<td>北関東</td>
<td>63,379</td>
<td>13</td>
<td>0.0419</td>
<td>13,222</td>
<td>6,928</td>
<td>1.91</td>
<td>0.646</td>
</tr>
<tr>
<td>南関東</td>
<td>47,485</td>
<td>158</td>
<td>0.510</td>
<td>160,698</td>
<td>36,470</td>
<td>4.41</td>
<td>1.48</td>
</tr>
<tr>
<td>北陸</td>
<td>77,800</td>
<td>3</td>
<td>0.00968</td>
<td>3,051</td>
<td>5,292</td>
<td>0.577</td>
<td>-0.551</td>
</tr>
<tr>
<td>甲信</td>
<td>51,100</td>
<td>1</td>
<td>0.00323</td>
<td>1,017</td>
<td>2,953</td>
<td>0.344</td>
<td>-1.07</td>
</tr>
<tr>
<td>東海</td>
<td>65,199</td>
<td>22</td>
<td>0.0710</td>
<td>22,376</td>
<td>15,183</td>
<td>1.47</td>
<td>0.388</td>
</tr>
<tr>
<td>近畿</td>
<td>42,160</td>
<td>69</td>
<td>0.223</td>
<td>70,178</td>
<td>20,775</td>
<td>3.38</td>
<td>1.22</td>
</tr>
<tr>
<td>中国・四国</td>
<td>59,825</td>
<td>9</td>
<td>0.0290</td>
<td>9,154</td>
<td>11,297</td>
<td>0.810</td>
<td>-0.210</td>
</tr>
<tr>
<td>九州</td>
<td>43,151</td>
<td>12</td>
<td>0.0387</td>
<td>12,205</td>
<td>13,069</td>
<td>0.934</td>
<td>-0.0684</td>
</tr>
<tr>
<td>沖縄</td>
<td>22,200</td>
<td>17</td>
<td>0.0548</td>
<td>17,290</td>
<td>1,472</td>
<td>11.7</td>
<td>2.46</td>
</tr>
</tbody>
</table>

（出典）分析結果より作成。

1000人あたりの訪問者率が最も高かったのは沖縄県で 11.7 であった。沖縄県以外の地方において、1000人あたりの訪問者率が最も高かったのは南関東地方で 4.41 であった。ついで近畿地方で 3.38 であった。

1000人あたりの訪問者率と旅行費用の関係は図 4-2 の通りである。図 4-2 より、旅行費用が高くなると人口 1000人あたりの訪問者率が低くなる。これはトラベルコスト法の概念と一致している。
図4-2 人口1000人あたりの訪問者率と旅行費用の散布図
(出典)分析結果より作成。

次に、表4-2の訪問者率対数と旅行費用の関係を求める。人口1000人あたりの訪問者率と旅行費用が図4-2のような対数関数の近似曲線が得られる。よって訪問者率対数と往復旅費は$y = \text{訪問者率対数} = a + bx$と近似されると推定できる。この近似式を推定するために回帰分析を行った。回帰分析を行った結果は表4-3の通りである。

表4-3 回帰分析結果

<table>
<thead>
<tr>
<th></th>
<th>係数</th>
<th>標準誤差</th>
<th>t</th>
<th>P-値</th>
<th>下限 95%</th>
<th>上限 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>切片</td>
<td>2.989988**</td>
<td>0.069092</td>
<td>2.796755</td>
<td>0.023314</td>
<td>0.524658</td>
<td>5.455318</td>
</tr>
<tr>
<td>旅行費用</td>
<td>-0.49778**</td>
<td>0.193584</td>
<td>-2.57139</td>
<td>0.033056</td>
<td>-0.94418</td>
<td>-0.05137</td>
</tr>
</tbody>
</table>

(出典)分析結果より作成。

(注)***は1%水準、**は5%水準、*は10%水準で係数が有意であることを示す。

表4-3の結果より、「切片」と「旅行費用」の推定係数は5%水準で有意である。よって訪問者率対数と往復旅費の関係は、$y = \text{訪問者率対数} = a + bx$と近似されると以下の近似式として推定される。

$$
y = 2.989988 - 0.49778x \quad (4-1)
$$

式(4-1)を図示すると図4-3のようになる。
訪問者率対数と往復旅費の関係

ここで，\(y = \) 訪問者率対数，\(x = \) 旅行費用とすると，式(4-1)のように表すことができる。よって，\(y' = \) 訪問者率，\(x' = \) 旅行費用とし，式(4-1)を変形すると次の式(4-2)として表すことができる。

\[
y' = \exp(2.989988 - 0.49778x')
\] (4-2)

式(4-2)より \(y' = \exp(2.989988 - 0.49778(x' + \frac{c}{10000})) \) (4-3)

西表島への平均旅行費用は5.2683万円であることより，式(5-2)に \(x' = 5.2683 \) を代入すると，\(y' = 1.4442 \) である。よって西表島への訪問者率は1.4442である。西表島への入域料を \(c \) 円導入すると仮定する。\(y' = \) 訪問者率，\(x' = \) 旅行費用とし，式(4-3)として表すことができる。

\[
y' = \exp(2.989988 - 0.49778(x' + \frac{c}{10000}))
\] (4-3)

表4-4 入域料の金額と西表島への訪問者率の関係

<table>
<thead>
<tr>
<th>入域料</th>
<th>金額</th>
<th>訪問者率</th>
<th>減少率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100円</td>
<td>300円</td>
<td>500円</td>
</tr>
<tr>
<td>訪問者率</td>
<td>1.4370</td>
<td>1.4228</td>
<td>1.4087</td>
</tr>
<tr>
<td>減少率</td>
<td>0.497%</td>
<td>1.48%</td>
<td>2.46%</td>
</tr>
</tbody>
</table>

(出典)分析結果より作成。
図 4-4 入域料の金額による訪問者率の変化
（出典）分析結果より作成。

入域料の導入による人数抑制効果と費用捻出効果の結果は以下の表 4-5 の通りである。費用捻出効果の金額を算出する過程において、観光客数のデータが必要である。八重山町によると、西表島へ訪れる観光客数は 2017 年において、約 31 万 5,300 人であるので、このデータを用いて費用捻出効果による金額を算出した。

八重山毎日新聞（2018）によると、竹富町では 2019 年の 4 月から 300 円の入域料を導入予定である。西表島においても同額の 300 円の入域料を徴収すると仮定すると、人数抑制効果は 4,674 人（1.48%）であり、費用捻出効果は 9,319 万円である。1000 円の入域料を徴収すると仮定すると、人数抑制効果は 15,311 人（4.86%）であり、費用捻出効果は 2 億 9,999 万円である。

<table>
<thead>
<tr>
<th>金額</th>
<th>人数抑制効果</th>
<th>費用捻出効果</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 円</td>
<td>1,566 人（0.497%）</td>
<td>3,137 万円</td>
</tr>
<tr>
<td>300 円</td>
<td>4,674 人（1.48%）</td>
<td>9,319 万円</td>
</tr>
<tr>
<td>500 円</td>
<td>7,751 人（2.46%）</td>
<td>1 億 5,377 万円</td>
</tr>
<tr>
<td>1000 円</td>
<td>15,311 人（4.86%）</td>
<td>2 億 9,999 万円</td>
</tr>
<tr>
<td>3000 円</td>
<td>43,738 人（13.9%）</td>
<td>8 億 1,469 万円</td>
</tr>
<tr>
<td>5000 円</td>
<td>69,471 人（22.0%）</td>
<td>12 億 2,914 万円</td>
</tr>
<tr>
<td>10000 円</td>
<td>123,636 人（39.2%）</td>
<td>19 億 1,664 万円</td>
</tr>
</tbody>
</table>

（出典）分析結果より作成。
4.3.3 多項ロジット・モデルによる分析

観光客が希望する入域料の使用用途と観光客の個人属性や観光動向との関係を、重回帰分析を用いて分析する。本研究では、多項ロジット・モデルを用いた。入域料の使用用途については、「観光環境の整備」、「ツアーガイドの質の向上」、「海に住む生物の保護」、「森に住む生物の保護」の4つの選択肢を提示した。それぞれの選択肢についての回答者数は、順に60人、10人、102人、138人であった。多項ロジット・モデルでは、基準となる選択肢を決定する必要がある。以下のすべての重回帰分析では、回答者数の最も少ない「ツアーガイドの質の向上」の選択肢を基準として分析を行った。

まず、個人属性と希望する入城料の使用用途の関係を分析した。説明変数は性別、年齢、職業の回答データを使用した。また、性別については女性=1、男性=0とするダミー変数をつくった。職業については会社員=1、会社員以外=0とするダミー変数をつくった。個人属性と観光客が希望する入城料の使用用途の関係の結果は表4-6の通りである。

<table>
<thead>
<tr>
<th></th>
<th>観光環境の整備</th>
<th>海に住む生物の保護</th>
<th>森に住む生物の保護</th>
</tr>
</thead>
<tbody>
<tr>
<td>性別</td>
<td>1.5771 *</td>
<td>1.7976 **</td>
<td>1.5505 *</td>
</tr>
<tr>
<td></td>
<td>(0.062)</td>
<td>(0.030)</td>
<td>(0.059)</td>
</tr>
<tr>
<td>年齢</td>
<td>0.1254</td>
<td>0.2687</td>
<td>0.4092</td>
</tr>
<tr>
<td></td>
<td>(0.693)</td>
<td>(0.381)</td>
<td>(0.892)</td>
</tr>
<tr>
<td>職業</td>
<td>1.8892 **</td>
<td>1.9459 **</td>
<td>1.9732 **</td>
</tr>
<tr>
<td></td>
<td>(0.028)</td>
<td>(0.021)</td>
<td>(0.018)</td>
</tr>
<tr>
<td>_cons</td>
<td>-0.0631</td>
<td>-0.2108</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>(0.961)</td>
<td>(0.866)</td>
<td>(0.383)</td>
</tr>
</tbody>
</table>

Log likelihood = -348.52106
Pseudo R2 = 0.0263

（出典）分析結果より作成。

（注）***は 1% 水準、**は 5% 水準、*は 10% 水準で推定係数が有意であることを示す。
（注）数値は推定係数、（）内は P 値。
（注）ツアーガイドの質の向上を 0 と基準化した。

性別の推定係数については、「観光環境の整備」では 10% 水準で有意、「海に住む生物の保護」では 5% 水準で有意、「森に住む生物の保護」では 10% 水準で有意であった。職業については、「観光環境の整備」、「海に住む生物の保護」、「森に住む生物の保護」において 5% 水準で有意であった。

次に観光動向と希望する入城料の使用用途の関係を分析した。説明変数は過去1年間の訪問回数、訪問動機、訪問予定場所の回答データを使用した。また、過去1年間の訪問回数については、2回以上=1、1回（初めて）=0 とするダミー変数をつくった。訪問予定場所は滝と川の2つのダミー変数をつくった。滝のダミー変数では、選択肢にある3つの滝のうちいずれか1つ以上選択=1、選択肢にある3つの滝をいずれも選択しない=0 とした。川のダミー変数では、選択肢にある2つの川のうちいずれか1つ以上選択=1、選択肢にある2つの川をいずれも選択しない=0 とした。観光動向と観光客が希望する入城料の使用用途の関係の結果は表4-7の通りである。
表 4-7 観光動向と観光客が希望する入域料の使用用途の関係

<table>
<thead>
<tr>
<th></th>
<th>観光環境の整備</th>
<th>海に住む生物の保護</th>
<th>森に住む生物の保護</th>
</tr>
</thead>
<tbody>
<tr>
<td>過去１年間の訪問回数</td>
<td>-2.4848 *</td>
<td>-2.4423 *</td>
<td>-3.0969 **</td>
</tr>
<tr>
<td></td>
<td>(0.071)</td>
<td>(0.065)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>訪問動機（森）</td>
<td>-2.4775</td>
<td>-0.0695</td>
<td>0.5521</td>
</tr>
<tr>
<td></td>
<td>(0.776)</td>
<td>(0.932)</td>
<td>(0.504)</td>
</tr>
<tr>
<td>訪問動機（海）</td>
<td>-0.6080</td>
<td>-0.1412</td>
<td>-0.6319</td>
</tr>
<tr>
<td></td>
<td>(0.411)</td>
<td>(0.841)</td>
<td>(0.365)</td>
</tr>
<tr>
<td>訪問動機（その他）</td>
<td>-1.8639 *</td>
<td>-0.9066</td>
<td>-0.8241</td>
</tr>
<tr>
<td></td>
<td>(0.097)</td>
<td>(0.354)</td>
<td>(0.395)</td>
</tr>
<tr>
<td>訪問予定場所（滝）</td>
<td>0.8484</td>
<td>0.9240</td>
<td>0.7690</td>
</tr>
<tr>
<td></td>
<td>(0.314)</td>
<td>(0.263)</td>
<td>(0.348)</td>
</tr>
<tr>
<td>訪問予定場所（川）</td>
<td>0.0506</td>
<td>0.1007</td>
<td>0.4258</td>
</tr>
<tr>
<td></td>
<td>(0.943)</td>
<td>(0.883)</td>
<td>(0.528)</td>
</tr>
<tr>
<td>定数項</td>
<td>12.9072</td>
<td>14.0058</td>
<td>14.0059</td>
</tr>
<tr>
<td></td>
<td>(0.977)</td>
<td>(0.975)</td>
<td>(0.005)</td>
</tr>
</tbody>
</table>

Log likelihood = -347.95121
Pseudo R² = 0.0279

（出典）分析結果より作成。
（注）***は1%水準、**は5%水準、*は10%水準で推定係数が有意であることを示す。
（注）数値は推定係数、()内はP値。
（注）ツアーガイドの質の向上を0と基準化した。

過去１年間の訪問回数については、「観光環境の整備」では10%水準で有意、「海に住む生物の保護」では0%水準で有意、「森に住む生物の保護」では5%水準で有意であった。訪問動機については、「観光環境の整備」では10%水準で有意であった。

次に、観光客の観光に対する考え方と使用用途の関係を分析した。説明変数は旅行や自然に対する観光客の考え方の回答データを用いた。観光客の観光に対する考え方と観光客が希望する入城料の使用用途の関係の結果は表 4-8 の通りである。「旅行中に積極的にその地域の自然や歴史文化について学びたい」については、「観光環境の整備」では10%水準で有意であった。
表4.8 観光客の観光に対する考え方と希望する入域料の使用用途の関係

<table>
<thead>
<tr>
<th></th>
<th>観光環境の整備</th>
<th>海に住む生物の保護</th>
<th>森に住む生物の保護</th>
</tr>
</thead>
<tbody>
<tr>
<td>自然や歴史文化</td>
<td>-1.0540 *</td>
<td>-0.5779</td>
<td>-0.8597</td>
</tr>
<tr>
<td>を学びたい</td>
<td>(0.051)</td>
<td>(0.280)</td>
<td>(0.105)</td>
</tr>
<tr>
<td>ツアーエへの参加</td>
<td>-0.0163</td>
<td>0.0676</td>
<td>-0.0026</td>
</tr>
<tr>
<td></td>
<td>(0.956)</td>
<td>(0.815)</td>
<td>(0.993)</td>
</tr>
<tr>
<td>目的地を</td>
<td>0.4836</td>
<td>0.1909</td>
<td>0.3635</td>
</tr>
<tr>
<td>よく調べる</td>
<td>(0.236)</td>
<td>(0.629)</td>
<td>(0.354)</td>
</tr>
<tr>
<td>国立公園の利用</td>
<td>-0.0088</td>
<td>-0.1188</td>
<td>0.1273</td>
</tr>
<tr>
<td></td>
<td>(0.979)</td>
<td>(0.716)</td>
<td>(0.694)</td>
</tr>
<tr>
<td>自然環境の悪化</td>
<td>-0.3319</td>
<td>-0.1127</td>
<td>-0.2894</td>
</tr>
<tr>
<td></td>
<td>(0.621)</td>
<td>(0.865)</td>
<td>(0.661)</td>
</tr>
<tr>
<td>自然環境に配慮</td>
<td>-0.3925</td>
<td>-0.7994</td>
<td>-0.5819</td>
</tr>
<tr>
<td></td>
<td>(0.471)</td>
<td>(0.131)</td>
<td>(0.269)</td>
</tr>
<tr>
<td>定数項</td>
<td>7.7622 **</td>
<td>7.4753 **</td>
<td>8.4460 **</td>
</tr>
<tr>
<td></td>
<td>(0.041)</td>
<td>(0.047)</td>
<td>(0.024)</td>
</tr>
</tbody>
</table>

Log likelihood = -347.69837
Pseudo R2 = 0.0286

（出典）分析結果より作成。
（注）***は1%水準、**は5%水準、*は10%水準で推定係数が有意であることを示す。
（注）数値は推定係数、()内はP値。
（注）ツアーガイドの質の向上を0と基準化した。

4.4 考察

世界自然遺産の登録による観光客の増加は地域経済を活性化させる一方で、観光客の過剰利用による環境負荷が懸念される。本研究では観光客の増加に伴う、環境の悪化などの事態に対する対策として、西表島における入域料の導入を想定した。本章では、ゾートラベルコスト法や多項ロジット・モデルを用いた重回帰分析の結果から、入域料の想定についての考察を加える。

ゾートラベルコスト法を用いた推定結果のまとめは表4-9の通りである。入域料を導入することで、人数抑制効果と費用捻出効果の2つの効果が見込まれる。西表島において、300円の入域料を導入したと仮定すると、人数抑制効果は4,674人で1.48％の減少が見込まれ、費用捻出効果は9,319万円が見込まれる。500円の入域料を導入したと仮定すると、人数抑制効果は7,751人で2.46％の減少が見込まれ、費用捻出効果は1億5,377万円が見込まれる。500円の入域料を導入したと仮定すると、人数抑制効果は15,311人で4.86％の減少が見込まれ、費用捻出効果は2億9,999万円が見込まれる。以上の結果より、竹富島で導入予定である入域料の金額は同額の300円の徴収では、人数抑制効果はわずか1.48％にすぎない。
アントワープスyonからいわゆる観光客が訪れていて、旅行費用は平均で52683万円である。このことより観光客は西表島に5万円以上の価値をもつと考えていることになるので、入場料として300円が徴収されたとしても、多くの観光客は西表島への訪問を中止せず、入場料と旅行費用を加えた金額を支払って西表島に訪れると考えられる。よって、300円という金額の入場料では人数抑制効果はほとんど期待できない。また、費用捻出効果に関しては、入場料が300円の場合、9319万円が見込まれる。筆者が竹富町役場で聞き取り調査を行って得た回答として、入場料の徴収方法は石垣島からの船代に上乗せもしくはツアーのガイド料に上乗せする方法である。船代に上乗せする方法では、船に乗る観光客全員から入場料を徴収することができるが、ツアーのガイド料に上乗せする方法ではツアーに参加する観光客からのみ入場料を徴収することになる。アンケート結果より、ツアーの参加率は39.7%であり、そのうちの77.9%の観光客がツアーの参加数は1種類である。よって費用捻出効果は9319万円より小さくなる可能性がある。

次に、多項ロジットモデルによる重回帰分析の推定結果から得られた見解を述べる。観光客が希望する入場料として「ツアーの質の向上」ではなく、「観光環境の整備」、「海に住む生物の保護」、「森に住む生物の保護」を選択する確率に、「性別が女性であること」と「職業が会社員であること」が正の影響を与えることが分かった。これは、女性や会社員は観光中の利便性や快適さを求め、観光先の場所特有の自然を重視する傾向がある可能性があると考えた。また、観光客が希望する入場料として「ツアーの質の向上」ではなく、「観光環境の整備」、「海に住む生物の保護」、「森に住む生物の保護」を選択する確率に、「過去1年間の訪問回数が2回以上であること」が負の影響を与えることが分かった。これは、過去1年間以内に西表島でツアーに参加し、ツアーの現状を認識した観光客が、観光客が希望する入場料として「観光環境の整備」、「海に住む生物の保護」、「森に住む生物の保護」ではな
く、「ツアーの質の向上」を選択肢した傾向がある可能性があると考えた。さらに、観光客が希望する入場料として「ツアーの質の向上」ではなく、「観光環境の整備」を選択する傾向に、「訪問動機としてその他を選択肢したこと」は負の影響を、「旅行中は積極的にその地域の自然や歴史文化について学びたいと考えるという度合いが大きいほど」正の影響を与えることが分かった。これは訪問動機としてその他を選択する観光客は、観光中の中便性や快適さよりも、ツアーの現状を理解しているため、もしくは観光中の満足感を重視する傾向がある可能性があり、「観光環境の整備」より「ツアーの質の向上」を選択した傾向がある可能性があると考えた。旅行中は積極的にその地域の自然や歴史文化について学びたいと考える観光客は、自然環境や歴史を学ぶための施設を希望する観光客が多く、「ツアーの質の向上」より「観光環境の整備」を選択した傾向がある可能性があると考えられる。

引用文献
・沖縄 西表島の総合情報サイト（2017）「西表島観光案内」
https://www.iriomote.com/web/spot/（2018年10月30日参照）。
・加藤広太郎（2014）「奄美大島におけるエコツアーの選好分析」京都大学農学部食料環境経済学科卒業論文。
・環境省（2016）「西表島世界遺産だより」
・北村行伸（2009）『ミクロ計量経済学入門』日本評論社。
・栗山浩一・柘植隆宏・庄司康（2013）『初心者のための環境評価入門』勁草書房。
・竹富町（2017）「平成29年竹富町入域観光客数（月別）」
https://www.town.taketomi.lg.jp/administration/toukei/kankonyuiki/1531508986/（2018年10月30日参照）。
・武正憲、飯田晶子（2016）「自然観光地における観光者の環境負担金に対する支払意思と貢献実感の関係」『ランドスケープ研究』79（5），495-500。
・森田果（2017）『実証分析入門』日本評論社。
・八重山毎日新聞（2018）「西表、推薦取り下げ決定 世界自然遺産」
http://www.y-mainichi.co.jp/news/33591/（2018年10月30日参照）。
・吉田謙太郎（2015）「日本の世界自然遺産及び富士山への入域料に関する支払意思額と規定要因」『環境情報科学 学術研究論文集』29，201-206。

本章については金岡武蔵氏（京都大学）および炭谷祥乃氏（京都大学）の協力を得た。
結論

（1）今年度の研究成果

本研究の目的は、自然環境を利用した地域活性化の取組を推進し、自然環境施策に対する資源（資金、労力等）の動員を加速するための自然環境施策を明らかにすることにある。今年度の研究内容は以下のとおりである。

第一に、現地調査の分析に関しては、屋久島の観光客を対象に現地アンケート調査を実施し、環境保全協力金に対する観光客の意向を分析した。屋久島では、9割近くの観光客が環境保全協力金を支払っており、しかも9割近くが環境保全協力金の強制化に賛成していることが判明した。このように屋久島では、環境保全協力金が観光客に受け入れられているが、この要因を分析するために、環境保全協力金に対して観光客がどのような使途を望んでいるかをベスト・ワースト・スケーリング（BWS）により分析した。その結果、屋久島の観光客が望む使途の優先順位は「トイレの管理」「登山道の修繕」「し尿搬出」「山岳パトロール」「避難小屋の修繕」「案内板の設置」「混雑の緩和」の順であることが明らかになった。

現在の屋久島の環境保全協力金が山岳トイレ対策を主たる目的に実施されていることから、この分析結果は、現在の環境保全協力金の使途が観光客の望む使途と整合的であることを意味する。つまり、屋久島の環境保全協力金が観光客に受け入れられている要因としては、協力金の使途が観光客の望む使途と整合的であることが考えられる。このことは、入山料・入域料などの利用者負担制度は、徴収した料金を利用者の望む使途に応じて使用することが重要であることを示唆している。

第二に、施策評価の調査票設計に関しては、本年度は以下に示す6つのアンケート調査を実施している。

＜本度実施したWEBアンケート調査＞
- 国立公園の選好および西表島における費用負担に関する意識調査
- 自然保護地域における費用負担（協力金や入域料など）に関する意識調査

＜本年度実施した現地アンケート調査＞
- 大山の環境整備に関する利用者アンケート調査
- 西表島の観光動向に関するアンケート調査
- 屋久島への旅行と協力金に関するアンケート調査
- 屋久島への旅行と山岳地帯利用に関するアンケート調査

本年度に実施した調査はそれぞれが独立しているものではなく、互いに関連したものであるため、地域別にどのような意図の下で、どのような調査票設計を行っているのかについて整理を行った。いずれの調査においても、調査票設計時にはバイアスが生じないための対策が不可欠であることが示された。

また調査票設計の手順を確認するため、大山の環境整備に関する利用者アンケート調査のデータをもとに分析を行った。現地での課題を調査票に反映するために環境省大山隠岐国立公園管理事務所の担当者と連携し、調査票設計を行った。現地では山岳トイレ対策が課題となっていたことから、山頂の水洗トイレの維持や携帯トイレの普及に対して登山者がどのように支持しているのかを明らかにする
ことをリサーチクエスチョンとして設定して調査票設計を行った。そして多項ロジットモデルにより推定した結果、水洗トイレか携帯トイレかという二択一の現状では、携帯トイレを利用できないと思う人が多いことが判明した。携帯トイレの普及を図るためには、例えば、携帯トイレを使用すれば費用負担を（一部）免除するなどの新たな仕組みを考える必要があるだろう。

第三に、施策評価の統計分析については、ビッグデータを用いた施策提案の分析手法について検討を行った。NTT ドコモの携帯電話ネットワークを利用したモバイル空間統計のデータが自然環境施策の評価に対して適用できるかを分析するため、富士山を対象に実証研究を行った。

富士山では、登山者を対象とした現地アンケート調査や赤外線カウンターによる登山者数調査が行われている。しかし、現地アンケート調査は特定期間のみ実施されるため、調査時期によるバイアスが生じやすい。赤外線カウンターは登山者数を把握できるものの、登山者の居住地などの属性が把握できないため施策評価分析は難しい。これに対して、モバイル空間統計は、すべての期間を通じて去登山者数を把握できるため調査時期によるバイアスが生じない。また登山者の居住地情報も利用できるため、トラベルコスト法による施策評価分析が可能である。

ビッグデータを用いた実証分析の結果、モバイル空間統計は、個人情報保護のため人数が少ない地域の情報が秘匿されるため、モバイル空間統計のみの分析は秘匿によるバイアスが生じることが示された。そこで、現地アンケート調査や赤外線カウンターなどの他の情報とモバイル空間統計のデータを組み合わせて分析する手法の改良を行った。その結果、ゾーントラベルコスト法では富士山の訪問価値は訪問一回あたり 37,661 円と推定された。また離散選択モデルの分析結果では、混雑を 1%改善することができば訪問者一人当たり 141 円であった。

第四に、施策評価分析では、自然環境施策の中で近年注目を集める入城料の効果について分析を行った。入城料の効果を分析するため、西表島を対象に実証研究を行った。西表島の観光客を対象とした現地アンケート調査を実施し、ゾーントラベルコスト法および多項ロジットモデルによる分析を実施した。

入城料を導入することで、人数抑制効果と費用捻出効果の 2つの効果が見込まれる。竹富島で導入予定である入城料の金額と同額の 300 円の入城料を西表島で導入した場合、人数抑制効果はわずか 1.48%にすぎないが、9,319万円の費用捻出効果が期待できることが判明した。また入城料の使途に対しては、海や森にすむ生物の保護を求める意見が多く、観光環境の整備やツアーガイドの質の向上を求める意見は少なかったが、使途に対する意見は観光客の性別、職業、過去の訪問回数、訪問動機、観光に対する考え方によって異なることが示された。

(2) 環境政策への貢献

本年度の環境政策への貢献には以下のものが含まれる。

第一に、国立公園等の自然環境施策においてその費用の一部を利用者が負担する入城料制度への関心が高まっているが、現地調査の分析により入城料を導入する際には訪問者の望む使途との整合性が重要であることが示された。屋久島では、山岳トイレ対策に入城料が導入されているが、訪問者も入城料を山岳トイレ対策に用いることを望んでおり、整合的であることから、任意であるにも関わらず 9割近い高い徴収率が実現されており、強制徴収に対しても同意が得られている。もしも、入城料の使途が訪問者の望むものと異なっていたり、あるいは入城料の使途が明確化されていない場合は、これほど高い支持は得られなかったであろう。このことば、自然環境施策として入城料を導入する際
訪問者が入域料に対してどのような使途を求めているのかを事前に把握することが重要であることを意味しており、訪問者を対象とした現地アンケート調査を事前に実施することの重要性を示している。

第二に、自然環境施策の効果を分析するためには利用者などを対象としたアンケート調査が不可欠だが、自然環境を対象としたアンケート調査で注意すべき点を整理したことである。本年度は調査票設計における留意点を示すとともに、実際に実施したアンケート調査を対象に調査票設計の手順を示すとともに、調査票設計の信頼性を検証するための手順を示した。こうした成果は、今後、行政担当者がアンケート調査を実施する際に役立つであろう。

第三に、ビッグデータを用いた統計分析の可能性を示したことである。これまで国立公園などの自然環境施策では、現地アンケート調査や赤外線カウンターにより観光客の動向を把握することが行われてきた。しかし、現地アンケート調査は調査時期によるバイアスの影響を受けやすい。赤外線カウンターは人数を把握できるものの居住地などの属性が把握できないため施策評価分析は困難である。これに対して本研究では、携帯電話の電波情報を既存のデータを併用することで、施策評価の分析が可能となることを示した。今後、ビッグデータの活用が広がることが期待されてい るが、本研究の成果は、行政担当者がビッグデータを活用する際に役立つものと思われる。

第四に、自然環境施策の中で近年注目を集める入域料の効果を示したことである。入域料の効果には、人数抑制効果と費用捻出効果があるが、本研究は西表島を対象に実証研究を行い、この両方の効果を評価するための手順を示している。現在、多くの地域で入域料の導入が検討されているが、本研究の成果は、入域料の導入を検討する上で非常に役立つものと考えられる。
III. 添付資料
1. 分析手法について
トラベルコスト法

1. 手法の概要
トラベルコスト法は、人々のレクリエーション行動を観察することでレクリエーションの価値を評価する方法である（栗山他、2013；柘植他、2011；柘植、2018）。トラベルコスト法には、特定のサイトのレクリエーション需要を分析するシングルサイトモデル、複数のサイト間での訪問地選択を分析するサイト選択モデル、それら両者を同時に扱うことができるクーンタッカーモデルの3つのタイプがあるが、ここでは本年度の研究で使用するシングルサイトモデルについて説明する。

旅行費用が高いほど訪問回数（訪問率）は小さくなるため、縦軸に旅行費用、横軸に訪問回数（訪問率）をとると、両者の関係を表すレクリエーション需要曲線は右下がりに描かれる（図1）。ここで、例えば、旅行費用がp_1、訪問回数がゼロになる旅行費用であるチョークプライスp_cだとすると、消費者余剰は三角形p_1Ap_cとなる。このように、レクリエーション需要曲線が推定できれば、それに基づいて計算される消費者余剰によって、個人がレクリエーションから得る便益を評価することができる。これがシングルサイトモデルの基本的なアイディアである。

シングルサイトモデルは、分析に使用するデータによって、ゾーントラベルコスト法と個人トラベルコスト法に分類される。

![図1 レクリエーション需要曲線](image)

2. 推定方法
2.1 ゾーントラベルコスト法
ゾーントラベルコスト法では、サイトまでの旅行費用に応じていくつかのゾーンを設定する。そして、各ゾーン内の人口に占める各ゾーン内の訪問者数の割合として各ゾーンの訪問率を求め、それぞれのゾーンからの訪問に要する旅行費用との関係を統計的に分析することで、以下のようなレクリエーション需要曲線を推定する。

\[V_{zone}/N_{zone} = f(p_{zone}, z_{zone}) \] （1）

ただし、\(V_{zone} \) はあるゾーンからの訪問者数、\(N_{zone} \) はそのゾーンの人口、\(p_{zone} \) はそのゾーンからの旅行費用、\(z_{zone} \) はそのゾーン内の人口の個人属性の平均値を表す。このレクリエーション需要曲線に基づいて、各ゾーンの消費者余剰を求める。実際の分析では、訪問率の対数値を被説明変数とした片対数型と呼ばれる関数形を用いて推定が行われることが多い。このレクリエーション需要曲線が片対数型の場合、訪問1回当たりの消費者余剰は「-1／旅行費用の係数」として求めることができる。また、この訪問1回当たりの消費者余剰にサイトの年間訪問者数をかければ、このサイトの年間のレクリエーション価値を算出することができる。

ゾーントラベルコスト法は、訪問回数のデータではなく、訪問者数のデータを用いるため、個人がある期間中に1回しか訪問しないようなサイトの分析にも用いることができる。しかし、個人単位のデータではなく、ゾーンごとの訪問率やゾーンごとの旅行費用といったゾーン単位のデータを使用するため、レクリエーション行動は個人差が大きいにも関わらず、年齢、性別、所得などの個人属性のデータを用いた個人単位の分析を行うことができない。これに対して、次に説明する個人トラベルコスト法は、個人単位のデータを使用したより詳細な分析が可能である。このため、個人トラベルコスト法が適用可能なサイト（＝個人にある期間中に複数回訪問するようなサイト）については、個人トラベルコスト法が用いられることも多い。

2.2 個人トラベルコスト法

個人トラベルコスト法では、個人単位のデータを用いてレクリエーション需要曲線を推定する。ある期間中の個人\(n \)のサイト\(i \)への訪問回数を\(x_{ni} \)、サイト\(i \)への旅行費用を\(p_{ni} \)、代替的なサイト\(j \)への旅行費用を\(p_{nj} \)、所得を\(M_n \)、年齢や性別などの個人属性のベクトルを\(z_n \)とすると、レクリエーション需要曲線は以下のようによらわされる。

\[x_{ni} = f(p_{ni}, p_{nj}, M_n, z_n) \] （2）

ここで、旅行費用が\(p_{n1} \)の場合の消費者余剰\(CS_{n1} \)は以下のように表示される。ただし、\(p_{nc} \)はチョークプライスを表す。

\[CS_{n1} = \int p_{nc} f(p_{ni}, p_{nj}, M_n, z_n) dp_i \] （3）
訪問回数のデータは非負の整数となるため、レクリエーション需要曲線の推定にはカウントモデルが用いられる（Shaw, 1988; Haab and McConnell, 2002）。代表的なモデルが、以下のポアソン回帰である。

\[Pr(x_{ni}) = \frac{\exp(-\lambda_{ni})x_{ni}^{x_{ni}}}{x_{ni}!} \]

ただし、\(Pr(x_{ni}) \)はある期間中に個人 \(n \)がサイト \(i \)を \(x \)回訪問する確率を表す。\(\lambda_{ni} \)は個人 \(n \)のサイト \(i \)への訪問回数の期待値を表し、\(p_{ni} \), \(p_{nj} \), \(M_n \), \(z_n \)などの関数として、\(\lambda_{ni} = \exp(\beta_p p_{ni} + \beta_p p_{nj} + \beta_M M_n + \beta_z z_n) \)のように表される。右辺を指数関数とするのは、確率が非負となるようにするためである。パラメータは最尤法によって推定される。

推定されたパラメータを用いることで、個人 \(n \)の期間中の消費者余剰 \(CS_{ni} \)は以下のように求められる。

\[CS_{ni} = -\frac{\lambda_{ni}}{\beta_p} \]

訪問回数や、旅行費用の計算に使用する居住地の情報など、分析に必要なデータをサイトでのアンケート調査（オンサイトサンプリング）により入手した場合には、「切断（truncation）」や「内生的層化（endogenous stratification）」の問題が発生する（Shaw, 1988）。前者は、回答者が訪問者に限定されるため、全員の訪問回数が1以上となることを意味し、後者は、訪問回数が多い人ほどサンプルに含まれやすいことを意味する。これらの問題に対して、Shaw (1988) は、ポアソン回帰の推定式を以下のように修正することで、バイアスのない推定値が得られることを示した（Shaw, 1988; Haab and McConnell, 2002）。

\[Pr(x_{ni}) = \frac{\exp(-\lambda_{ni})x_{ni}^{x_{ni}-1}}{(x_{ni}-1)!} \]

ベスト・ワースト・スケーリング（BWS）

1. 手法の概要

ベスト・ワースト・スケーリング（BWS）は、回答者に複数の選択肢を提示し、その中から最も高く評価するもの（“best”）と最も低く評価するもの（“worst”）を1つずつ選択してもらうことを繰り返すことで、回答者の選好を把握する方法である（Louviere et al., 2015）。

BWS の回答からは多くの情報が得られる（Louviere et al., 2015; Tsuge et al 2014; 柘植他, 2016）。例えば、回答者が4つの選択肢の中で最も高く評価するものとして選択肢1を、最も低く評価するものとして選択肢4を選択したとする。このとき、1）選択肢1は選択肢2より評価が高
い、2）選択肢1は選択肢3より評価が高い、3）選択肢1は選択肢4より評価が高い、4）選択肢2は選択肢4より評価が高い、5）選択肢3は選択肢4より評価が高い、といった5つのペアの相対的関係がわかる。4つの選択肢の間には6つのペア（選択肢1と選択肢2、選択肢1と選択肢3、選択肢1と選択肢4、選択肢2と選択肢3、選択肢2と選択肢4、選択肢3と選択肢4）が存在するが、このうち、5つのペアの相対的な関係が明らかになっている。BWSでは、このような豊富な情報に基づき、回答者の選好を明らかにすることができる。

BWSには、Case 1からCase 3の3つのタイプがある（Louviere et al., 2015）。Case 1は、複数の項目を回答者に提示し、その中から最も高く評価するものと最も低く評価するものを1つずつ選択してもらう形式であり、object caseとも呼ばれる。Case 2は、属性の組み合わせで表されるプロファイルを回答者に1つ提示し、最も高く評価する属性と最も低く評価する属性を1つずつ選択してもらう形式であり、profile caseとも呼ばれる。Case 3は、属性の組み合わせで表されるプロファイルを回答者に複数提示し、最も高く評価するプロファイルと最も低く評価するプロファイルを1つずつ選択してもらう形式であり、multi-profile caseとも呼ばれる（図2）。ここでは本年度の研究で使用するCase 1について説明する。

Case 1のBWSは、評定尺度（rating scale）やランキング（ranking）と比較して以下のようないくつかの利点がある（Auger et al., 2007; Cohen 2009; Louviere et al., 2015; Lusk and Briggeman 2009; Tsuge et al 2014; 柘植他, 2016）。第一に、すべての選択肢に点数を付ける評定尺度や、すべての選択肢を順位づけるランキングと比較して、Case 1のBWSでは最も高く評価するものと最も低く評価するものという「極端な選択肢」を2つ選択するだけであるため、回答が比較的容易である。第二に、評定尺度では、回答者はすべての選択肢に同じ点数を付けることが可能であるため、選択肢間で評価に差がつかないことがあるが、Case 1のBWSでは、最も高く評価するものと最も低く評価するものを選択しなければならないため、選択肢間で評価により明確に差がつくる傾向がある。第三に、評定尺度では、人によって点数付け方に違いがあるが、Case 1のBWSではすべての回答者が同様に最も高く評価するものと最も低く評価するものを選択するため、そのような問題は生じない。第四に、ランキングでは選択肢間の順位がわかるだけであるのに対して、Case 1のBWSでは選択肢間の順位とそれぞれに対する評価の程度がわかるため、より多くの情報が得られる。これらの利点から、近年Case 1のBWSは、マーケティングをはじめとした様々な分野で広く用いられている。BWSについて、より詳しくはLouviere et al. (2015)を参照されたい。
Case 1 (object case)
例：最も訪問したいと思うものと最も訪問したいと思わないものを 1 つずつ選択してください。

<table>
<thead>
<tr>
<th>最も訪問したいと思う</th>
<th>最も訪問したいと思わない</th>
</tr>
</thead>
<tbody>
<tr>
<td>大雪山</td>
<td></td>
</tr>
<tr>
<td>阿寒岳</td>
<td></td>
</tr>
<tr>
<td>利尻岳</td>
<td></td>
</tr>
<tr>
<td>藻岩山</td>
<td></td>
</tr>
</tbody>
</table>

Case 2 (profile case)
例：最も望ましいと思う属性と最も望ましくないと思う属性を 1 つずつ選択してください。

<table>
<thead>
<tr>
<th></th>
<th>森林公園の整備計画</th>
<th>最も望ましい</th>
<th>最も望ましくない</th>
</tr>
</thead>
<tbody>
<tr>
<td>面積</td>
<td>100ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ハイキングコース</td>
<td>500m増加</td>
<td></td>
<td></td>
</tr>
<tr>
<td>生息する生物</td>
<td>5種類増加</td>
<td></td>
<td></td>
</tr>
<tr>
<td>負担額</td>
<td>1,000 円</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Case 3 (multi-profile case)
例：最も望ましいと思う選択肢と最も望ましくないと思う選択肢を 1 つずつ選択してください。

<table>
<thead>
<tr>
<th>森林公園の整備計画</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>現状</th>
</tr>
</thead>
<tbody>
<tr>
<td>面積</td>
<td>200ha</td>
<td>300ha</td>
<td></td>
<td>現状</td>
</tr>
<tr>
<td>ハイキングコース</td>
<td>1000m増加</td>
<td>2000m増加</td>
<td></td>
<td></td>
</tr>
<tr>
<td>生息する生物</td>
<td>10種類増加</td>
<td>1種類増加</td>
<td></td>
<td></td>
</tr>
<tr>
<td>負担額</td>
<td>3,000 円</td>
<td>5,000 円</td>
<td>0 円</td>
<td></td>
</tr>
</tbody>
</table>

最も望ましいと思う選択肢（ ）最も望ましくないと思う選択肢（ ）

図 2 BWS の質問形式

2. 調査票の設計
多くの研究が、釣合い型不完備ブロック計画 (Balanced incomplete block designs: BIBDs) を用いて回答者に提示する選択肢の組み合わせ（選択セット）を作成している。BIBDs を用いれば、すべての選択セットを通じて、各選択肢が同じ回数だけ登場し、かつ、各選択肢と他のそれぞれの選択肢の組
み合わせが同じ回数だけ登場する（Louviere et al., 2015）。
例えば、7つの選択肢を用いる場合には、7項目用のBIBDを用いる。図3は、7項目用のBIBDと、それを用いて作成された7個の選択セットを表している。7個の選択セットは、BIBDの1から7の数字をそれぞれの選択肢に置き換えることで作成される。すべての選択セットを通じて、それぞれの選択肢が3回ずつ登場し、それぞれの選択肢とその他のそれぞれの選択肢の組み合わせが1回ずつ登場していることが確認できる。

(1)	2	6	4
(2)	1	4	5
(3)	4	7	3
(4)	3	2	1
(5)	7	5	2
(6)	6	1	7
(7)	5	3	6

→

(1)	利尻岳	後方羊蹄山	大雪山
(2)	礼文岳	大雪山	藻岩山
(3)	大雪山	恵山	阿寒岳
(4)	阿寒岳	利尻岳	礼文岳
(5)	恵山	藻岩山	利尻岳
(6)	後方羊蹄山	礼文岳	恵山
(7)	藻岩山	阿寒岳	後方羊蹄山

図3 BIBDを用いた選択セットの作成例

3. 推定方法
3.1 計数法
Case 1のBWSの分析方法には、加減乗除のみで“BW score”とよばれる評価得点を求める計数法（counting analysis）と、計量経済学的な推定を行う方法がある（Louviere et al., 2015; Marley and Louviere, 2005）。
計数法では、選択肢ごとに、「最も高く評価する（“best”）」に選ばれた回数であるTotal bestと「最も低く評価する（“worst”）」に選ばれた回数であるTotal worstを数え、前者から後者を引くことで、各選択肢のBW scoreが求められる。式で表すと以下の通りである。

\[BWscore_i = Total\ best_i - Total\ worst_i \] (7)

ただし、BWscore_iは選択肢iのBW score、Total best_iは選択肢iのTotal best、Total worst_iは選択肢iのTotal worstを表す。BW scoreは、各選択肢に対する評価の高さを表す。このように、計数法は統計分析に関する専門的な知識を必要としないが、計数法により求められたBW scoreは、次に説明するmax-diffモデルによる推定値の精度の高い似似値であることが示されている（Marley and Louviere, 2005）。

3.2 Max-diffモデル
計量経済学的な推定には様々な方法がある（Louviere et al., 2015; Marley and Louviere, 2005），ここでは基本的な推定方法として、maximum-difference（max-diff）モデルを紹介する。
max-diff モデルは Finn and Louviere (1992) により導入されて以降、多くの研究で用いられている。

Max-diff model では、回答者は選択セットに含まれる選択肢の、ありうるすべてのペアについて効用の差を検討し、効用の差が最大になるペアを“best”と“worst”として選択すると仮定される、このため、通常の条件付きロジットモデルでは、回答者が選択した選択肢が選択結果として分析に用いられるのに対して、max-diff モデルでは、回答者が“best”と“worst”に選んだ選択肢のペアが選択結果として分析に用いられる。ここから、max-diff モデルは、条件付きロジットモデルの拡張と考えることができる。

選択セットに J 個の選択肢が含まれる場合、回答者が選択可能な“best”と“worst”のペアは J(J-1)/2 個存在する。例えば、各選択セットに 4 つの選択肢が含まれる場合 (J=4)、選択可能な“best”と“worst”のペアは 2(4*3)/2=12 個存在することになる。

\(V_i\) を選択肢 \(i\) の効用とすると、以下で表される Difference は、選択肢 \(i\) と選択肢 \(j\) の効用の差を表す。

\[
\text{Difference}_j = V_i - V_j + \epsilon_{ij}
\]

ただし、\(\epsilon_{ij}\) は誤差項を表す。回答者が選択肢 \(i\) と選択肢 \(j\) を \(J\) の選択肢の中から“best”と“worst”に選択する確率は、選択肢 \(i\) と選択肢 \(j\) の効用の差が、選択セットにおける他のありうるすべてのペアの効用の差よりも大きい確率として以下のように表わされる。

\[
P_j = \Pr\{\text{Difference}_j > \text{Difference}_j\}
= \Pr\{(V_i - V_j) - (V_k - V_l) > \epsilon_{ij} - \epsilon_{kl}\}
\]

ここで、\(\epsilon_{ij}\) が第 1 種極値分布（ガンベル分布）に従うと仮定すると、条件付きロジットモデルが導出される（McFadden, 1974）。回答者が \(J\) の選択肢の中から選択肢 \(i\) を“best”、選択肢 \(j\) を“worst”に選択する確率は、以下のように表される（Lusk and Briggeman, 2009）。

\[
P(i \text{ is chosen as best and } j \text{ is chosen as worst}) = \frac{\exp(V_i - V_j)}{\sum_{k=1}^{J-1} \sum_{l=1}^{J-1} \exp(V_k - V_l) - J}
\]

効用 \(V_i\) のパラメータは、最尤法により推定される（Train 2009）。

選択型実験

1. 手法の概要

選択型実験は、回答者に対して複数の選択肢を提示し、最も望ましいと思うものを選択してもらう。
ことを利用することで、選択肢を構成する各属性の価値を評価する方法である（栗山他, 2013；栄植, 2018）。最も望ましいと思うものを1つ選択するという回答形式が市場での購買行動に近いため回答しやすいといわれている（栗山他, 2013）。選択型実験は、アンケートを用いて人々に環境に対する選好を直接尋ねる表現選好法の一種であるため、非利用価値も評価することができる。

各属性の価値が評価できれば、それらに基づき様々な代替案の価値を評価することができる。例えば、森林公園の整備に関する代替案を検討する際に、整備されるハイキングコース1単位当たりの価値と、生息する生物種1単位当たりの価値がそれぞれ明らかであれば、それらに基づきハイキングコースの整備の程度と生息する生物種の増加の程度が異なる様々な代替案の価値を求め、比較することができる。このように、選択型実験では、様々な代替案の比較検討に役立つ結果が得られる。

2. 調査票の作成

属性が多くなると回答者の負担が増えるため、属性の数は6個以内を目途にする。属性として取り上げるもの以外の特徴は、すべての選択肢で同じと仮定すればよい。環境評価の分野では、支払意志額（willingness to pay: WTP）の推計が可能となるよう、金銭に関する属性を含めるのが一般的である。

各属性が取り得る具体的な内容や値を水準と呼び、属性の束として表現される選択肢をプロファイルと呼ぶ。各属性の水準を組み合わせてプロファイルを作成するが、この際、その組み合わせ方を工夫することが重要である。最も一般的に用いられるプロファイルの作成方法は、直交配列を用いる直交配列法である。直交配列法では、図4に示す通り、直交配列の各列にそれぞれ1つずつの任意の属性を割り当て、各列の数字をその列に割り当てられた属性の水準に読み替える。直交配列を用いることで、調査に用いるプロファイルの数を大幅に減らすことができる。たとえば、表1に示すように属性数が4、水準数が5の場合、それらの組み合わせは625（=5^4）存在するが、直交配列を用いれば、図4に示す通り、調査に用いる必要があるプロファイルを25に削減することができる。また、直交配列を用いることで、属性間の相関を排除することができるため、多重共線性の発生を回避し、各属性の価値を独立に推定することが可能となる。

近年は、さらに洗練された方法として、推定によって得られるフィッシャー情報行列の逆行列の行列式を最小化するように選択型実験の質問を作成するD効率性などの方法も用いられている（Huber and Zwerina, 1996）。
表 1 属性と水準の例（庄子他，2005 より）

<table>
<thead>
<tr>
<th>属性</th>
<th>水準</th>
</tr>
</thead>
<tbody>
<tr>
<td>湿原景観の回復（%）</td>
<td>0</td>
</tr>
<tr>
<td>湿原植生の回復（%）</td>
<td>0</td>
</tr>
<tr>
<td>最大利用者数（人/日）</td>
<td>50</td>
</tr>
<tr>
<td>利用料金（円）</td>
<td>500</td>
</tr>
</tbody>
</table>

図 4 直交配列への割り付けの例
3. 推定方法
3.1 条件付きロジットモデル

選択型実験では、回答者の効用関数にランダム効用モデルを想定し、回答者の回答行動をランダム効用モデルのもとでの効用最大化行動とみなす。

回答者 \(n \) が選択肢 \(i \) を選択したときの効用 \(U_{ni} \) は、確定項 \(V_{ni} \) と誤差項 \(\varepsilon_{ni} \) の和として以下のように表される。

\[
U_{ni} = V_{ni} + \varepsilon_{ni} \quad (11)
\]

回答者 \(n \) は、選択セット \(C \) の中で最大の効用が得られる選択肢を選択すると考えられるため、回答者 \(n \) が選択セット \(C \) から選択肢 \(i \) を選択する確率 \(P_{ni} \) は、\(U_{ni} \) が他のいずれの選択肢を選択した場合の効用 \(U_{nj} \) よりも大きくなくなる確率として以下のように表わされる。

\[
P_{ni} = \Pr \left(U_{ni} > U_{nj} \quad \forall j \in C, j \neq i \right)
= \Pr \left(V_{ni} - V_{nj} > \varepsilon_{nj} - \varepsilon_{ni} \quad \forall j \in C, j \neq i \right) \quad (12)
\]

ここで、誤差項が独立で同一なガンベル分布 (第一種極値分布) に従うと仮定すると、回答者 \(n \) が選択セット \(C \) から選択肢 \(i \) を選択する確率 \(P_{ni} \) は以下の条件付きロジットモデルで表される (McFadden, 1974).

\[
P_{ni} = \frac{\exp(\mu V_{ni})}{\sum_{j \in C} \exp(\mu V_{nj})} \quad (13)
\]

ただし、\(\mu \) はスケールパラメータであり、通常は 1 に基準化される。確定項 \(V_{ni} \) のパラメータは最尤法により推定される。

確定項 \(V_{ni} \) のパラメータが推定されれば、それらを用いて各属性に対する限界支払意志額 (marginal willingness to pay: MWTP) を算出することができる。確定項 \(V_{ni} \) に線形を仮定すると、以下のように表される。

\[
V_{ni} = \beta_q q_i + \beta_p p_i \quad (14)
\]

ただし、\(q_i \) はプロファイル \(i \) の属性のベクトル、\(\beta_q \) はそのパラメータのベクトル、\(p \) はプロファイル \(i \) の価格、\(\beta_p \) はそのパラメータを表す。ここで、式 (14) を全微分し、効用水準は不変、かつ、属性 1 と負担額 \(p \) 以外の属性は変化しないと仮定すると、属性 1 に対する MWTP は以下のように求められる。
順序ロジットモデルと多項ロジットモデル

被説明変数が離散変数の場合に用いられる推定モデルには、選択型実験の推定に用いた条件付きロジットモデルの他に、順序ロジットモデルや多項ロジットモデルがある（Greene and Hensher, 2010; 山本, 2015）。

順序ロジットモデルは、順序付けられた 3 つ以上の選択肢が存在する場合に用いられる。例えば、今年度の研究では、大山の登山者に対して、大山のトイレ問題への今後の対策の方向性として、「山頂の水洗トイレを維持し、携帯トイレの利用を特に促進しない」、「山頂の水洗トイレを維持するが、携帯トイレの利用も促進する（現状維持）」、「山頂の水洗トイレは将来的に廃止し、携帯トイレを利用して頂く」の 3 つを示し、それぞれについて、「極めて望ましくない(1)」から「極めて望ましい(7)」までの 7 段階で評価してもらった。このような質問への回答は、7の条件に当てはまるため、この質問への回答を被説明変数とした分析には順序ロジットモデルが適する。

一方、多項ロジットモデルは、順序付けられていない 3 つ以上の選択肢が存在する場合に用いられる。今年度の研究では、大山の登山者に対して、大山のトイレ問題への今後の対策の方向性として上記の 3 つを示し、どれが望ましいと思うかを質問しているが、このような質問は、7の条件に当てはまるため、この質問への回答を被説明変数とした分析には、多項ロジットモデルが適する。条件付きロジットモデルと多項ロジットモデルは類似したモデルであるが、多項ロジットモデルでは、説明変数が回答者の個人属性であるのに対して、条件付きロジットモデルでは、説明変数が回答者に提示される選択肢属性である点に違いがある（Agresti, 2012）。

順序ロジットモデル、多項ロジットモデルとともに、質問への回答などの形で観察することができる「観察変数」は、直接的に観察することができない「潜在変数」により決まると言定し、観察変数に基づき、潜在変数を推定する。ここでは、潜在変数として効用を仮定した場合を想定して説明を行う。

上記の 7 段階評価のケースを想定すると、順序ロジットモデルでは、回答者の回答行動は以下のようモデル化される。

\[
\text{rating}_{ni} = 1 \text{ if } -\infty < U_{ni} \leq \mu_{n1}, \\
\text{rating}_{ni} = 2 \text{ if } \mu_{n1} < U_{ni} \leq \mu_{n2}, \\
\text{rating}_{ni} = 3 \text{ if } \mu_{n2} < U_{ni} \leq \mu_{n3}, \\
\text{rating}_{ni} = 4 \text{ if } \mu_{n3} < U_{ni} \leq \mu_{n4}, \\
\text{rating}_{ni} = 5 \text{ if } \mu_{n4} < U_{ni} \leq \mu_{n5}, \\
\text{rating}_{ni} = 6 \text{ if } \mu_{n5} < U_{ni} \leq \mu_{n6}, \\
\text{rating}_{ni} = 7 \text{ if } \mu_{n6} < U_{ni} < \infty.
\]
ここで，U_{ni}は個人nが選択肢iから得る効用を表す。また，μ_{n1}からμ_{n6}は，効用がどの水準を超えると観測値である回答が変化するかを表す閾値であり，カットオフと呼ばれる。この式は，個人nが選択肢iから得る効用の値によって，個人nの選択肢iに対する評定が変化することを表す。ここで，効用関数には，以下のような線形が仮定されることが多い。

$$U_{ni} = \beta_q q_i + \epsilon_{ni}$$ \hspace{1cm} (17)

ただし，q_iは効用に影響する要因のベクトル，β_qはそのパラメータのベクトル，ϵ_{ni}は誤差項を表す。

一方，上記の3択問題のケースを想定すると，多項ロジットモデルでは，回答者の回答行動は以下のようにモデル化される。

$$choice_n = \begin{cases} 1 & \text{if } U_{n1} > U_{n2}, \ U_{n1} > U_{n3} \\ 2 & \text{if } U_{n2} > U_{n1}, \ U_{n2} > U_{n3} \\ 3 & \text{if } U_{n3} > U_{n1}, \ U_{n3} > U_{n2} \end{cases}$$ \hspace{1cm} (18)

ここで，効用関数には，以下のような線形が仮定されることが多い。

$$U_{ni} = \beta_q q_i + \epsilon_{ni}$$ \hspace{1cm} (19)

多項ロジットモデルでは，効用関数のパラメータが選択肢ごとに異なるため，選択する選択肢によって潜在変数である効用の値が変化する。したがって，この式は，回答者が最も大きな効用が得られる選択肢を選択することを表す。

いずれのモデルでも，効用関数のパラメータは，最尤法により推定される。推定された係数は，それぞれの変数が潜在変数に及ぼす影響を表す。順序ロジットモデルの推定結果は，カットオフを除き，条件付きロジットモデルの推定結果と同様に解釈できる。これに対して，多項ロジットモデルでは，選択肢ごとに係数が推定される点が異なる。また，それらの係数は，基準となる選択肢の係数との差として推定されるので，基準となる選択肢については係数が示されない点に注意が必要である。

参考文献

101

栗山浩一・柘植隆宏・庄子康 (2013). 『初心者のための環境評価入門』勁草書房.

柘植隆宏 (2018)「農地と森林の生態系サービスの経済評価手法」『統計数理』(掲載予定).

柘植隆宏・庄子康・愛甲哲也・栗山浩一 (2016)「ベスト・ワースト・スケーリングによる知床国立公園の魅力の定量評価」『甲南経済学論集』56(3・4), pp. 59-78.

山本勲 (2015)『実証分析のための計量経済学』中央経済社.
屋久島への旅行と協力金に関するアンケート

この調査は、屋久島に来られた皆様のご旅行と「世界自然遺産屋久島山岳部環境保全協力金」について把握するために実施しております。回答用紙が表裏合わせて４ページございます。回答結果は集計されたものを用い、学術研究のみに使用します。また、個別の回答内容や個人情報が公表されることはございません。どうぞよろしくお願い致します。

京都大学農学部・森林経済政策学分野４年生・阪上高義

問１．あなたは今回の訪問を含めて過去5年間（2013年10月～2018年9月）に、屋久島を何回訪れたことがありますか？当てはまる番号1つに〇をつけてください。

1．1回 2．2回 3．3回 4．4回 5．5回 6．6回以上（具体的に___回）

問２．今回の屋久島への訪問動機について、当てはまる番号すべてに〇をつけてください。

1．山や森林を楽しむため（登山、トレッキング、森林散策、キャンプなど）
2．海や川を楽しむため（ダイビング、カヌー体験、海水浴、沢登りなど）
3．野生動物と出会うため
4．歴史・文化を体験するため
5．その他（具体的に：______________________________）

問３．今回の旅行で山岳地帯（縄文杉、白谷雲水峡、ヤクスギランド等）を訪れましたか？当てはまる番号1つに〇をつけてください。

1．訪れた 2．訪れていない ➡次のページ問７へお進みください

※以下、問４～問６では、山岳地帯に訪れたと回答された方のみ、山岳地帯での行動についてお答えください。今回のご旅行で複数回山岳地帯を訪れた方は、最初に訪れたルートについてお答えください。

問４．訪れたルートの入山口はどこですか？当てはまる番号1つに〇をつけてください。

1．白谷雲水峡 2．ヤクスギランド 3．荒川登山口 4．淀川登山口
5．その他（_________________________）

問５．訪れたルートの下山口はどこですか？当てはまる番号1つに〇をつけてください。

1．白谷雲水峡 2．ヤクスギランド 3．荒川登山口 4．淀川登山口
5．その他（_________________________）
問6．以下の避難小屋で宿泊をしましたか？当てはまる番号すべてに〇をつけてください。

1．白谷小屋 2．新高塚小屋 3．淀川小屋 4．石塚小屋 5．鹿之沢小屋
6．宿泊していない

次の設問から、世界自然遺産屋久島山岳部環境保全協力金についてお聞きします。
「世界自然遺産屋久島山岳部環境保全協力金」は、山岳部の自然環境を将来に渡って保全するために、荒川登山口でのバスチケットに付帯する方法や、淀川登山口、白谷雲水峡からの入山者を対象に任意で日帰り1,000円、山中泊2,000円の納入をお願いしています。

問7．あなたは今回、「世界自然遺産屋久島山岳部環境保全協力金」を支払いましたか？当てはまる番号1つに〇をつけてください。

1．支払った 2．支払わなかった 3．分からない

問8．「世界自然遺産屋久島山岳部環境保全協力金」が金額や使途は現状と同じで、強制的に徴収される入山料に変更され、協力金が強制徴収となることについて、あなたは、賛成ですか、それとも反対ですか？当てはまる番号1つに〇をつけてください。

賛成

・賛成を選択した理由は何ですか？当てはまる番号1つに〇をつけてください。

1．入山者全員が平等に支払う方が良いと思うから
2．屋久島の自然環境が現状よりも良くなると思うから
3．より多くの協力金を集められると思うから
4．その他（具体的に：__________）

反対

・反対を選択した理由は何ですか？当てはまる番号1つに〇をつけてください。

1．支払うかどうかの選択の自由があった方が良いと思うから
2．自然環境の保全のために支払うという動機が薄れてしまうから
3．入山料の金額が適当ではないから
4．入山料の使途が適当ではないから
5．その他（具体的に：__________）

「世界自然遺産屋久島山岳部環境保全協力金」の使途として、以下の設問では、仮に7つの用途が考えられているとします。

1．し尿搬出	自然環境を保全するための山岳部のトイレからし尿の運び出し
2．トイレの管理	適切な登山のための山岳トイレ、携帯トイレブースの維持管理・修繕
3．登山道の修繕	安全、適切な登山のための登山道及び木道の簡易な修繕
4．避難小屋の修繕	安全、適切な避難のための避難小屋の修繕
5．案内板の設置	道迷いを防ぎ、登山者の安全を守るための案内板の設置
6．山岳パトロール	山岳地帯の価値を損なわないためのマナー・利用ルールの啓発
7．混雑の緩和	山岳地帯の混雑緩和のためのマイカー規制
問9. 以下では、上記の協力金の使用目的として検討されている使途の組み合わせを4回（1回目〜4回目）お見せします。あなたが協力金を支払うときに、「最も優先して欲しい」使途と「最も優先して欲しくない」使途を1つずつ選び、それぞれの設問で当てはまる項目1つずつに〇をつけてください。

1回目「最も優先して欲しい」使途と「最も優先して欲しくない」使途を1つずつ選び、それぞれ当てはまる1つの項目に〇をつけてください。

<table>
<thead>
<tr>
<th>「最も優先して欲しい」使途</th>
<th>協力金の使途</th>
<th>「最も優先して欲しくない」使途</th>
</tr>
</thead>
<tbody>
<tr>
<td>() し尿搬出</td>
<td>()</td>
<td>() トイレの管理</td>
</tr>
<tr>
<td>() トイレの管理</td>
<td>()</td>
<td>() 避難小屋の修繕</td>
</tr>
<tr>
<td>() 避難小屋の修繕</td>
<td>()</td>
<td>() 山岳パトロール</td>
</tr>
</tbody>
</table>

当てはまる項目1つに〇

2回目「最も優先して欲しい」使途と「最も優先して欲しくない」使途を1つずつ選び、それぞれ当てはまる1つの項目に〇をつけてください。

<table>
<thead>
<tr>
<th>「最も優先して欲しい」使途</th>
<th>協力金の使途</th>
<th>「最も優先して欲しくない」使途</th>
</tr>
</thead>
<tbody>
<tr>
<td>() 登山道の修繕</td>
<td>()</td>
<td>() し尿搬出</td>
</tr>
<tr>
<td>() し尿搬出</td>
<td>()</td>
<td>() 案内板の設置</td>
</tr>
<tr>
<td>() 案内板の設置</td>
<td>()</td>
<td>() 避難小屋の修繕</td>
</tr>
</tbody>
</table>

当てはまる項目1つに〇

3回目「最も優先して欲しい」使途と「最も優先して欲しくない」使途を1つずつ選び、それぞれ当てはまる1つの項目に〇をつけてください。

<table>
<thead>
<tr>
<th>「最も優先して欲しい」使途</th>
<th>協力金の使途</th>
<th>「最も優先して欲しくない」使途</th>
</tr>
</thead>
<tbody>
<tr>
<td>() 混雑の緩和</td>
<td>()</td>
<td>() 避難小屋の修繕</td>
</tr>
<tr>
<td>() 避難小屋の修繕</td>
<td>()</td>
<td>() トイレの管理</td>
</tr>
<tr>
<td>() トイレの管理</td>
<td>()</td>
<td>() 案内板の設置</td>
</tr>
</tbody>
</table>

当てはまる項目1つに〇
「最も優先して欲しい」使途と「最も優先して欲しくない」使途を1つずつ選び、それぞれ当てはまる1つに〇をつけてください。

<table>
<thead>
<tr>
<th>「最も優先して欲しい」使途</th>
<th>協力金の使途</th>
<th>「最も優先して欲しくない」使途</th>
</tr>
</thead>
<tbody>
<tr>
<td>()</td>
<td>混雑の緩和</td>
<td>()</td>
</tr>
<tr>
<td>()</td>
<td>山岳パトロール</td>
<td>()</td>
</tr>
<tr>
<td>()</td>
<td>案内板の設置</td>
<td>()</td>
</tr>
<tr>
<td>()</td>
<td>登山道の修繕</td>
<td>()</td>
</tr>
</tbody>
</table>

当てはまる項目1つに〇

問10. 旅行や自然に対するあなたの考え方について、それぞれ当てはまる番号1つに〇をつけてください。

日頃から登山をすることが多い	1.	2.	3.	4.	5.
または旅行することが多い	1.	2.	3.	4.	5.
人間が手を加えた自然環境よりも手付かずの自然環境に価値があると思う	1.	2.	3.	4.	5.
自分は常に自然環境に配慮して行動している	1.	2.	3.	4.	5.

問11. あなたの性別について当てはまる番号1つに〇をつけてください。

1. 男性 2. 女性

問12. あなたの年齢について当てはまる番号1つに〇をつけてください。

1. 10代 2. 20代 3. 30代 4. 40代 5. 50代 6. 60代 7. 70代以上

問13. あなたのお住まいの都道府県をご記入ください。

都道府県

問14. 差支えなければ、あなたのご家庭の年収（年金を含みます）について、当てはまる番号1つに〇をつけてください（この項目は社会経済的な統計分析を行うためのものです）。

1. 200万円以下 2. 200万円台 3. 300万円台 4. 400万円台
5. 500万円台 6. 600万円台 7. 700万円台 8. 800万円台
9. 900万円台 10. 1,000万円以上（具体的に：_______万円台）

アンケートは以上です。長時間にわたりご協力ありがとうございました。
大山の環境整備に関する利用者アンケート調査結果
（単純集計）

作成：北海道大学農学部　岡野瑞樹

★ 調査期間：2018年9月下旬から2018年11月上旬
★ 配布部数：1,000部
★ 各設問の回答数の合計が一致しないのは欠損値（無回答など）による

この調査は大山に来られた皆様に、自然環境の保全やトイレ問題の解決に関するご意見を伺うことを目的に実施しております。回答用紙は8ページございます。皆様のご回答をできる限り有効に分析するため、最後までお答え下さいますよう、ご協力をお願い致します。また、このアンケート調査への回答は統計的に処理されるため、個人の回答が公表されるようなことはございません。どうぞよろしくお願い致します。

問1 今まで大山登山に何回訪れたことがありますか？当てはまる番号1つに○をつけて下さい。

1. 一回（はじめて）(179) 2. 二回(56) 3. 三回(35) 4. 四回(21) 5. 五回(30)
6. 六回(10) 7. 七回(19) 8. 八回以上（具体的に回程度）(82)

問2 問1で大山登山に複数回訪れたことのある方にお伺いします（はじめて大山に訪れた方は、この設問は飛ばして問3にお進み下さい）。昨年一年間（2017年1～12月）で、大山登山に何回訪れましたか？当てはまる番号1つに○をつけて下さい。

0. 0回(94) 1. 一回(80) 2. 二回(28) 3. 三回(26) 4. 四回(3) 5. 五回(6)
6. 六回(2) 7. 七回(5) 8. 八回以上（具体的に回程度）(17)

問3 （すべての方がお答え下さい）今回、あなたが大山を訪れた目的について、当てはまる番号それぞれ1つに○をつけて下さい。

| 全くそう思わわない ← どちらとも言えない → とてもそう思う |
|-------------------|-----------------|-----------------|
| 自然の景色・風景を眺める | 8 | 3 | 1 | 9 | 33 | 96 | 291 |
| 自然の中で野生の植物を見る | 13 | 23 | 21 | 78 | 120 | 90 | 87 |
| 自然の中で野生の動物を見る | 60 | 52 | 62 | 153 | 60 | 17 | 21 |
| 自然の中で体験や活動を行う | 27 | 26 | 39 | 102 | 60 | 77 | 94 |
| 自分の体力や技術を試す | 18 | 10 | 24 | 49 | 84 | 104 | 147 |
| 自然の中で自分だけの時間を楽しむ | 46 | 32 | 31 | 98 | 69 | 58 | 97 |
| 友達や家族と一緒に過ごす | 35 | 19 | 15 | 34 | 47 | 93 | 188 |
| 日ごろの疲れを癒す | 26 | 14 | 24 | 78 | 88 | 79 | 125 |
問4 今回の旅行中に大山以外にどうぞ訪れていましたか（または訪れる予定ですか）？当てはまる番号すべてに○をつけて下さい。

1. 大山寺・大神山神社奥宮(173)	2. 桧水高原(37)	3. 奥大山・鏡ヶ成(37)	
4. 蒜山高原(66)	5. 皆生温泉(56)	6. 水木しげるロード・記念館(44)	
7. 鳥取砂丘(43)	8. 隠岐諸島(1)	9. 三徹山(17)	10. 日御碕・出雲大社(30)
11. その他（_________________）(67)			

問5 今回のどのような旅行形態で大山を訪れましたか？当てはまる番号1つに○をつけて下さい。

| 1. 個人旅行(342) | 2. パッケージツアー（団体旅行）(0) | 3. その他(95) |

問6 現在訪れている地域が『大山隠岐国立公園』の一部だと知っていましたか？当てはまる番号1つに○をつけて下さい。

| 1. 知っていた(326) | 2. 知らなかった(114) |

問7 今回の大山の訪問について、どのくらい満足されましたがか？それぞれの項目について、当てはまる番号それぞれ1つに○をつけて下さい。

<table>
<thead>
<tr>
<th></th>
<th>極めて不満</th>
<th>どちらとも言えない</th>
<th>極めて満足</th>
</tr>
</thead>
<tbody>
<tr>
<td>登山道までのアクセス</td>
<td>(0) (8) (12) (50) (72) (128) (165)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>登山道の整備</td>
<td>(7) (17) (26) (54) (73) (148) (115)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>案内標識の整備</td>
<td>(12) (30) (32) (67) (80) (119) (99)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>登山口周辺の施設の整備</td>
<td>(1) (15) (22) (65) (79) (145) (112)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>トイレの整備</td>
<td>(50) (54) (53) (90) (60) (68) (63)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ここからは大山のトイレ問題について皆様にお伺いします。お答えしづらい問題ではありますが、今後の管理のためにどうかお答えをお願い致します。
まずは大山のトイレ問題について簡単にご説明致します。

大山には年間8万人を超える登山者が訪れています。それぞれの登山口付近には公衆トイレがあり、山中に頂上避難小屋と元谷避難小屋にトイレがあります。このトイレには現在、3つの問題が起こっています。

● 山中のトイレ設置数の不足：大山では特に頂上避難小屋トイレの利用者が多く、登山者の多い日にはトイレ待ちの渋滞ができてしまいます。

● トイレの維持管理にかかるコスト：頂上避難小屋に設置しているトイレの維持管理には、年間250万円程度の費用がかかります。加えて十数年に一度、ソーラー発電設備の更新に数千万円の費用がかかります。また、トイレの維持管理には人手が必要という意味でもコストがかかっています。頂上避難小屋に設置しているトイレは水洗（一部くみ取り式）ですが、水は浄化して再利用し、処理汚泥は人力で山から下して廃棄しています。近年ではボランティアの協力を得て、山頂トイレの処理汚泥などを人力で山から担ぎ下げる運動（キャリー・ダウン）も行われています。

● 山中での糞便放置の発生：近年、大山では山中のトイレがない区間に糞便が放置される問題が起きています。景観のみならず、公衆衛生や植生の踏み荒らしの観点からも課題となっています。

問8 あなたは今回、大山でトイレを利用されましたか？利用された方は、利用されたトイレすべてに○をつけて下さい。

1. トイレは利用していない(70)
2. 大山頂上避難小屋（トイレ）(169)
3. 大山頂上避難小屋（携帯トイレブース）(6)
4. 六合目避難小屋（携帯トイレブース）(14)
5. 元谷避難小屋(3)
6. 下山駐車場(12)
7. 南光河原駐車場(8)
8. 大神山神社(25)
9. 大山寺参道(18)
10. 大山参道市場(16)
11. 大山ナショナルパークセンター(88)
12. 博労座駐車場（県立大山駐車場）(37)
13. その他の施設内トイレ(34)

問9 あなたは、上記のような大山のトイレ問題について知っていましたか？当てはまる番号1つに○をつけて下さい。

1. 知っていた(89)
2. 聞いたことがある(103)
3. 知らなかった(251)

問10 あなたは、上記のような大山のトイレ問題がどのくらい重大な問題であると思いますか？当てはまる番号1つに○をつけて下さい。

1. 問題とは思わない(1)
2. ほとんど重大でない(2)
3. あまり重大でない(18)
4. やや重大である(181)
5. 極めて重大である(238)
問11 大山のトイレ問題に含まれる三つの問題について、それぞれどのくらい重大な問題であると思いますか？当てはまる番号それぞれ1つに○をつけて下さい。

<table>
<thead>
<tr>
<th>問題</th>
<th>ほとんど重大でない</th>
<th>↔</th>
<th>極めて重大</th>
</tr>
</thead>
<tbody>
<tr>
<td>山中のトイレ設置数の不足</td>
<td>(18) (23) (31) (58) (81) (102) (129)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>トイレの維持管理にかかるコスト</td>
<td>(1) (5) (7) (21) (66) (129) (213)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>山中での糞便放置の発生</td>
<td>(1) (1) (4) (16) (44) (101) (273)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

◇◆◇◆◇◆◇◆◇
トイレ問題の解決のため、大山では携帯トイレ（登山者が持ち歩ける携帯式の簡易トイレ）の利用推進と、それを利用する場所である携帯トイレブースの試行設置を行っています。

問12 あなたは携帯トイレを使ったことがありますか？当てはまる番号1つに○をつけて下さい。

1. 使ったことがある (55)
2. 使ったことがない (383)
3. わからない (5)

問13 大山では今年、携帯トイレを無料で使える試みを行っています。仮に携帯トイレが手元にあり、登山中にトイレを利用したくなった場合、公衆トイレではなく、設置されている携帯トイレブース（携帯トイレを使用するスペース）で携帯トイレを利用しては思いませんか？当てはまる番号1つに○をつけて下さい。

1. 携帯トイレを問題なく利用できると思う (114)
2. 公衆トイレが混んでいたら（がまんはできるが時間がかかるなら）、携帯トイレを利用すると思う (252)
3. 携帯トイレは利用できないと思う (75)

問14 問13で「混んでいたら利用すると思う」「携帯トイレは利用できないと思う」と回答された方にお伺いします（「利用できると思う」と回答された方はすぐに次の説明にお進み下さい）。利用できないと思う理由は何ですか？当てはまる番号すべてに○をつけて下さい。

1. 携帯トイレを使用したことがないので、うまく使えるか不安である (219)
2. 使用済の携帯トイレの持ち運びに不安がある (207)
ここからは現在検討されている、大山のトイレ問題への今後の対策について
簡単にご説明致します。

行政としてはトイレ問題を解決したいと考えています。しかしながら、限られた予算の中で、登山者という限られた人々に提供するためのトイレに大きな予算を割くことには理解が得られずなくなっています。そのため、登山者も含め多くの負担（金銭的負担や不便な点を含むとして頂くこと）をお願いすることも検討しています。これに関して現在、三つの方向性が考えられています。

1. 山頂の水洗トイレを維持し、携帯トイレの利用は特に促進しない
2. 山頂の水洗トイレを維持するが、携帯トイレの利用も促進する（現状維持）
3. 山頂の水洗トイレは将来的に廃止し、携帯トイレを利用して頂く

皆さまが、どのような負担であれば許容できるのか、あるいはできないのかを踏まえた上で、今後の方向性を決めたいと考えています。

問15（すべての方がお答え下さい）あなたは上記の三つの方向性について、一つ選ぶとしたら、どれが望ましいと思いますか？当てはまる番号1つに○をつけて下さい。

<table>
<thead>
<tr>
<th>極めて望ましくない ← どちらとも言えな い → 極めて望ましい</th>
</tr>
</thead>
<tbody>
<tr>
<td>山頂の水洗トイレを維持し、携帯トイレの利用は特に促進しない (66)</td>
</tr>
<tr>
<td>山頂の水洗トイレを維持するが、携帯トイレの利用も促進する（現状維持） (315)</td>
</tr>
<tr>
<td>山頂の水洗トイレは将来的に廃止し、携帯トイレを利用して頂く (57)</td>
</tr>
</tbody>
</table>

問16 あなたは上記の三つの方向性について、それぞれをどう評価しますか？当てはまる番号それぞれ1つに○をつけて下さい。

問17 仮に山頂の水洗トイレが廃止され、携帯トイレだけしか利用できないようになったとします。あなたはどう思いますか？当てはまる番号1つに○をつけて下さい。

<table>
<thead>
<tr>
<th>極めて望ましくない ← どちらとも言えないうち → 極めて望ましい</th>
</tr>
</thead>
<tbody>
<tr>
<td>山頂の水洗トイレを維持し、携帯トイレの利用は特に促進しない</td>
</tr>
<tr>
<td>山頂の水洗トイレを維持するが、携帯トイレの利用も促進する</td>
</tr>
<tr>
<td>山頂の水洗トイレは将来的に廃止し、携帯トイレを利用して頂く</td>
</tr>
</tbody>
</table>

| 携帯トイレを使用できるので、特に問題はない (75) |
| 携帯トイレを使用することに抵抗はあるが、ルールであればそれに従う (304) |
| 携帯トイレを使用することは難しいので、目的地を変更する（大山に行かない） (55) |
トイレ問題の解決に向けた方向性も重要ですが、実際に対策を行う際には「金銭的負担はどれくらいなのか？」といった疑問や、「使用済み携帯トイレを現場に置いていけるなら協力できる」「トイレ問題も良いが、外来種の駆除や登山道の補修もしてほしい」といった、様々な具体的な意見が予想されます。

そこで、トイレ問題だけに限らず、大山での様々な問題を解決する仮の「対策案」について皆さんに評価をして頂きます。対策案では「山頂トイレの運用」「携帯トイレの処理」「植生保護の推進」「登山道の補修」の4つの観点を検討とします。

1. 山頂トイレの運用：山頂の水洗トイレをこれまで通り維持するか、山頂の水洗トイレはすべて撤去し、携帯トイレの利用のみに切り替えるか
2. 携帯トイレの処理：使用済みの携帯トイレを登山口まで持ち帰るか、あるいは携帯トイレブースの周辺の回収ボックスに置いていけるか
3. 植生保護の推進：高山植物の保護や外来種駆除の活動をより推し進めるかどうか
4. 登山道の補修：登山道の補修をより推し進めるかどうか

これらの対策を進めるためにお願いする負担金は、登山口にゲートを設けて、そこですべての方から毎回の入山時に集めると仮定します。以下では、これら対策案をいくつか組み合わせてお見せしますので、対策案の中で一番望ましいものを選択して頂きます。

問18 あなたは下記の対策案のうち、どれが一番望ましいと思いますか、当てはまる番号1つに〇をつけて下さい。一番右側の選択肢は、何も対策を行わず、現状を維持する選択肢です。

<table>
<thead>
<tr>
<th>対策案1</th>
<th>対策案2</th>
<th>対策なし（現状維持）</th>
</tr>
</thead>
<tbody>
<tr>
<td>山頂トイレの運用</td>
<td>ない（撤去）</td>
<td>ある（水洗）</td>
</tr>
<tr>
<td>携帯トイレの処理</td>
<td>置いていける</td>
<td>登山口へ持ち帰り</td>
</tr>
<tr>
<td>植生保護の推進</td>
<td>現状維持</td>
<td>より推進する</td>
</tr>
<tr>
<td>登山道の補修</td>
<td>現状維持</td>
<td>より推進する</td>
</tr>
<tr>
<td>登山者の負担金</td>
<td>1,000 円</td>
<td>3,000 円</td>
</tr>
</tbody>
</table>

一番望ましい番号1つに〇→

問19（省略）
問20（省略）

※ 問18-20の分析結果は、本紙〇〇-〇〇ページの「〇〇〇〇」の項目に記載されています。
問21 あなたの自然に関連する行動について、当てはまる番号すべてに○をつけて下さい。

1. アウトドアでの活動（キャンプなど）によく出かける(221)
2. 自然環境に関するテレビを良く見る(217)
3. 花や植物を見たり、育てたりすることに興味がある(165)
4. 自然環境の観察や保全の団体に加入している(12)
5. 花の写真や風景の写真をよく撮影する(179)
6. 上記の中にあてはまるものはない(53)

問22 大山のような国立公園あるは自然環境に対する以下の考え方について、あなたは同意しますか？当てはまる番号それぞれ1つに○をつけて下さい。

<table>
<thead>
<tr>
<th></th>
<th>全くそう思わない</th>
<th>どちらとも言えない</th>
<th>とてもそう思う</th>
</tr>
</thead>
<tbody>
<tr>
<td>自然環境の保全は重要である</td>
<td>(1) (1) (0) (4) (18) (99) (313)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>子供や孫など将来世代の人々のために自然環境を保全すべきである</td>
<td>(2) (1) (0) (8) (20) (101) (304)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>自分はいつも自然環境に配慮して行動している</td>
<td>(2) (3) (7) (87) (142) (116) (78)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>自然環境の保全は経済成長よりも重要である</td>
<td>(1) (2) (15) (144) (96) (88) (89)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>国立公園は自分にとって身近な存在である</td>
<td>(8) (15) (34) (125) (81) (97) (76)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>いままでに訪問したことがない国立公園にも将来訪問したいと思う</td>
<td>(3) (8) (11) (55) (85) (115) (156)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>観光客の増加によって国立公園の自然環境が悪化していると思う</td>
<td>(3) (5) (8) (71) (93) (121) (134)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>国立公園の野生動植物は、自然環境の悪化により影響を受けていると思う</td>
<td>(1) (4) (3) (59) (100) (143) (126)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>国立公園の自然環境を改善するためのボランティアに参加したいと思う</td>
<td>(16) (16) (40) (146) (125) (61) (32)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>人間が再生した自然環境よりも手付かずの自然環境に価値がある</td>
<td>(10) (17) (28) (140) (68) (70) (101)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>国立公園によって貴重な自然環境が保全されていると思う</td>
<td>(2) (6) (12) (60) (117) (139) (99)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>国立公園は将来にわたって維持されるべきだと思う</td>
<td>(2) (0) (3) (14) (52) (113) (252)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
問23 あなたの性別について、当てはまる番号１つに○をつけて下さい。
1. 男性(256) 2. 女性(186) 3. その他(0)

問24 あなたの年齢について、当てはまる番号１つに○をつけて下さい。
1. 10代(1) 2. 20代(36) 3. 30代(56) 4. 40代(105) 5. 50代(153) 6. 60代(75) 7. 70代以上(17)

問25 あなたのお住まいはどちらですか？当てはまる番号１つに○をつけて下さい。
1. 鳥取県（市・町・村）(83) 2. 鳥取県以外（都・道・府・県）(360)

問26 あなたのご職業について、当てはまる番号すべてに○をつけて下さい。
1. 会社員(230) 2. 公務員(55) 3. 団体職員(13) 4. 自営業(36) 5. パート(34) 6. 主婦/主夫(32) 7. 年金生活(30) 8. 学生(8) 9. その他（）(15)

問27 差し支えございませんでしたら、あなたのご家庭の年収（年金も含む）について、当てはまる番号１つに○をつけて下さい（この項目は社会経済的な統計分析に用います）。
1. 200万円以下(22) 2. 201-400万円(99) 3. 401-600万円(111) 4. 601-800万円(54) 5. 801-1,000万円(62) 6. 1,001-1,200万円(29) 7. 1,201-1,400万円(10) 8. 1,401-1,600万円(9) 9. 1,601-1,800万円(2) 10. 1,801万円以上（具体的に万円程度）(14)

◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆
これで本アンケートは終了です。長い間ご協力ありがとうございました。
大山の管理に関し、ご意見等がございましたら以下にご自由にお書き下さい。
沖縄県西表島の観光動向に関するアンケート

このアンケートは西表島を訪れる皆様の観光動向の調査を目的にしております。回答用紙が両面3ページあります。回答結果は集計されたものを使用し学術的な目的以外には使用いたしません。お答えいただいた回答内容や、個人情報が公表されることはありません。

京都大学大学院農学研究科・金岡武蔵

問1. あなたは今回の訪問を含めて、過去1年間（2017年9月～2018年8月）で西表島を何回訪れましたか。当てはまる番号1つに○をつけてください。

<table>
<thead>
<tr>
<th>回数</th>
<th>1. 1回(初めて)</th>
<th>2. 2回</th>
<th>3. 3回</th>
<th>4. 4回</th>
<th>5. 5回以上(具体的に____回)</th>
</tr>
</thead>
</table>

問2. あなたは今回の訪問を含めて、過去5年間（2013年9月～2018年8月）で西表島を何回訪れましたか。当てはまる番号1つに○をつけてください。

<table>
<thead>
<tr>
<th>回数</th>
<th>1. 1回(初めて)</th>
<th>2. 2回</th>
<th>3. 3回</th>
<th>4. 4回</th>
<th>5. 5回以上(具体的に____回)</th>
</tr>
</thead>
</table>

問3. あなたは今回の訪問で八重山諸島のうちどの離島を訪れる予定ですか。当てはまる番号すべてに○をつけてください。

1. 石垣島 2. 竹富島 3. 西表島 4. 由布島 5. 小浜島 6. 黒島 7. 鳥間島
8. 波照間島 9. 新城島 10. 加屋真島 11. その他(具体的に__________)

問4. 今回の西表島での宿泊の予定について、当てはまる番号1つに○をつけてください。

1. 西表島での宿泊 2. 石垣島からの日帰り 3. その他(具体的に__________)

問5. 今回の西表島での主たる旅行形態について、当てはまる番号1つに○をつけてください。

1. 個人の旅行 2. ツアーへの参加 3. その他(具体的に__________)

問6. 問5で「2. ツアーの参加」をお選びいただいた方にお伺いします。あなたは今回の西表島でのご旅行で、何種類のツアーに参加する予定ですか。当てはまる番号1つに○をつけてください。

1. 1種類 2. 2種類 3. 3種類 4. それ以上(具体的に____回)

問7. 今回のご旅行はあなたを含めて、何名で来られましたか。当てはまる番号1つに○をつけてください。

1. 1人 2. 2人 3. 3人 4. 4人 5. 5人以上(具体的に：____名)

問8. 今回のご旅行は、どのようなグループでこられましたか。当てはまる番号1つに○をつけてください。

1. おひとり 2. ご家族 3. 彼氏や彼女 4. 友人や知人 5. 地域や職場の仲間
6. その他(具体的に__________________)
問9. 今回の西表島への訪問動機について、当てはまる番号すべてに〇をつけてください。
1. 西表島の森を中心とする自然を楽しむため
 （仲間川クルーズ、由布島・浦内川クルーズ、マングローブカヌーなど）
2. 西表島の海を中心とする自然を楽しむため（シュノーケル、ダイビング、星砂の浜など）
3. その他（具体的に__）

問10. 今回の西表島の観光で訪問する予定の場所について、当てはまる番号すべてに〇をつけてください。
1. ピナイサーラの滝 2. マリユドの滝 3. カンピレーの滝 4. 仲間川 5. 浦内川
6. 星砂の浜 7. 由布島 8. その他（具体的に__）

問11. 旅行や自然に対するあなたの考え方にについて、当てはまる番号それぞれ1つに〇をつけてください。

<table>
<thead>
<tr>
<th></th>
<th>全くそう思わない<→どちらとも言えない<→とてもそう思う</th>
</tr>
</thead>
<tbody>
<tr>
<td>旅行中は積極的にその地域の自然や歴史文化について学びたい</td>
<td>1. 2. 3. 4. 5.</td>
</tr>
<tr>
<td>旅行中は積極的にツアーに参加したい</td>
<td>1. 2. 3. 4. 5.</td>
</tr>
<tr>
<td>旅行に行く前は、目的地についてよく調べる</td>
<td>1. 2. 3. 4. 5.</td>
</tr>
<tr>
<td>国立公園を積極的に利用している</td>
<td>1. 2. 3. 4. 5.</td>
</tr>
<tr>
<td>無秩序な観光客が増加すれば自然環境が悪化すると思う</td>
<td>1. 2. 3. 4. 5.</td>
</tr>
<tr>
<td>自分はいつも自然環境に配慮して行動している</td>
<td>1. 2. 3. 4. 5.</td>
</tr>
</tbody>
</table>
現在、西表島では、入域料の導入を今後検討していいく可能性があります。入域料は特定の場所を訪れる観光客の方に支払いをお願いしている料金です。西表島では利用者の増加により、無秩序な利用による自然環境への影響やロードキル（自動車と動物との事故）への懸念等が生じています。入域料が導入された場合は、これらの課題への対策に充てられる費用となります。具体的な使い道として以下のようものが挙げられます。

<table>
<thead>
<tr>
<th>分類</th>
<th>使い道</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>観光の質の向上</td>
<td>1. 観光環境の整備</td>
<td>快適な観光のために、利用拠点での駐車場整備やロードパークでのトイレの設置、自然環境を案内する施設整備などを行います</td>
</tr>
<tr>
<td></td>
<td>2. ツアーガイドの質の向上</td>
<td>質の高いガイドツアーを促進するために、ツアーガイドの講習やガイドラインの作成を行います</td>
</tr>
<tr>
<td>動植物の保護</td>
<td>3. 海に住む生物の保護</td>
<td>生息地である海岸清掃や、オニヒトデの駆除活動などの動植物の保護を行います</td>
</tr>
<tr>
<td></td>
<td>4. 森に住む生物の保護</td>
<td>ロードキルにより対する標識設置や傷ついた動物の保護、外来種（本来その地域に生息しない生物）の駆除を行います</td>
</tr>
</tbody>
</table>

問12. 上記の4種類の経費の中から入域料の使い道として、あなたにとって最も望ましいものはどれですか。当てはまる番号1つに○をつけてください。

1. 観光環境の整備 2. ツアーガイドの質の向上
3. 海に住む生物の保護 4. 森に住む生物の保護

あなたの入域料の徴収されることとなった西表島で、ガイド付きのツアーに1回参加すると仮定してください。現在、西表島ではガイド料もしくは船の代金に上乗せする形での入域料の徴収が考えられています。今回は、ガイド料に上乗せする形で入域料が徴収されたとします。例えば、ガイド付のツアー代が12,000円、入域料が300円の時、あなたは12,300円支払うことになります。
次問13～16では、下の回答例のように、西表島の入域料として支払う料金と使い道の仮想的な組み合わせを提示します。組み合わせは各問で異なり、それぞれ2つに「この中から選べない」を加えた3つの選択肢を提示します。あなたが最も望ましいと考える使い道と徴収料金の組み合わせを1つ選び番号1つに○をつけてください。

あなたにとって選択肢①が最も望ましい組み合わせの場合

<table>
<thead>
<tr>
<th>選択肢①</th>
<th>選択肢②</th>
<th>選択肢③</th>
</tr>
</thead>
</table>
| 観光の質の向上 | 観光環境の整備 | この中から
| 動植物の保護 | 現状維持 | 選べない |
| 徴収料金 | 森に住む生物の保護 | |
| 500円 | 300円 | |

最も望ましい番号に○⇒

問13.1回目下記の組み合わせの中で、あなたが最も望ましいと考える使い道と徴収料金の組み合わせを1つ選び番号1つに○をつけてください。

<table>
<thead>
<tr>
<th>選択肢①</th>
<th>選択肢②</th>
<th>選択肢③</th>
</tr>
</thead>
</table>
| 観光の質の向上 | 観光環境の整備 | この中から
| 動植物の保護 | 現状維持 | 選べない |
| 徴収料金 | 森に住む生物の保護 | |
| 100円 | 500円 | |

最も望ましい番号に○⇒

問14.2回目下記の組み合わせの中で、あなたが最も望ましいと考える使い道と徴収料金の組み合わせを1つ選び番号1つに○をつけてください。

<table>
<thead>
<tr>
<th>選択肢①</th>
<th>選択肢②</th>
<th>選択肢③</th>
</tr>
</thead>
</table>
| 観光の質の向上 | ツアーガイドの質の向上 | この中から
| 動植物の保護 | 現状維持 | 選べない |
| 徴収料金 | 海に住む生物の保護 | |
| 1,000円 | 100円 | |

最も望ましい番号に○⇒
問15.下記の組み合わせの中で、あなたが最も望ましいと考える使い道と徴収料金の組み合わせを
1つ選び番号1つに○をつけてください。

<table>
<thead>
<tr>
<th>選択肢①</th>
<th>選択肢②</th>
<th>選択肢③</th>
</tr>
</thead>
<tbody>
<tr>
<td>観光の質の向上</td>
<td>観光環境の整備</td>
<td>現状維持</td>
</tr>
<tr>
<td>運動植物の保護</td>
<td>現状維持</td>
<td>森に住む生物の保護</td>
</tr>
<tr>
<td>徴収料金</td>
<td>500円</td>
<td>100円</td>
</tr>
</tbody>
</table>

最も望ましい番号に○⇒
1 2 3

問16.下記の組み合わせの中で、あなたが最も望ましいと考える使い道と徴収料金の組み合わせを
1つ選び番号1つに○をつけてください。

<table>
<thead>
<tr>
<th>選択肢①</th>
<th>選択肢②</th>
<th>選択肢③</th>
</tr>
</thead>
<tbody>
<tr>
<td>観光の質の向上</td>
<td>観光環境の整備</td>
<td>ツアーガイドの質の向上</td>
</tr>
<tr>
<td>運動植物の保護</td>
<td>森に住む生物の保護</td>
<td>海に住む生物の保護</td>
</tr>
<tr>
<td>徴収料金</td>
<td>500円</td>
<td>100円</td>
</tr>
</tbody>
</table>

最も望ましい番号に○⇒
1 2 3

次の設問からは西表島、竹富島についてお伺いします。

問17. あなたは2019年4月から沖縄県竹富島で300円の入域料を徴収する検討が進められていることをご存知ですか。当てはまる番号1つに○をつけてください。
1. 観光前から知っていた 2. 観光中に知った 3. 知らなかった

問18. あなたは西表島が国立公園に指定されていることをご存知ですか。当てはまる番号1つに○をつけてください。
1. 観光前から知っていた 2. 観光中に知った 3. 知らなかった

問19. あなたは西表島を含む『奄美大島、徳之島、沖縄島北部及び西表島』が世界自然遺産登録を目指していることをご存知ですか。当てはまる番号1つに○をつけてください。
1. 観光前から知っていた 2. 観光中に知った 3. 知らなかった
最後にあなた自身について伺います

問20. あなたの性別について当てはまる番号1つに○をつけてください。

1. 男性 2. 女性

問21. あなたの年齢について当てはまる番号1つに○をつけてください。

1. 10代 2. 20代 3. 30代 4. 40代 5. 50代 6. 60代 7. 70代以上

問22. あなたのご職業について当てはまる番号1つに○をつけてください。

1. 公務員 2. 会社員 3. 団体職員 4. 自営業 5. 農林水産業 6. 主婦・主夫
7. パート 8. 学生 9. 年金生活 10. その他（具体的に__________）

問23. あなたがお住まいの都道府県についてご記入ください。

________都道府県

問24. あなたのご家庭の年収（年金も含む）についてお答えください。当てはまる番号1つに○をつけてください。（この項目は社会経済的な統計分析を行うためのものです。）

1. 200万円未満 2. 200万円台 3. 300万円台 4. 400万円台 5. 500万円台
6. 600万円台 7. 700万円台 8. 800万円台 9. 900万円台 10. 1,000万円以上

問25. 西表島に関するご意見やアンケートに対してのコメントなどをご自由にご記入ください。

アンケートは以上です。ご協力ありがとうございました。このアンケートは石垣島の離島ターミナルか西表島の上原港もしくは大原港で回収させていただきます。