環境省
平成25年度環境技術実証事業
ヒートアイランド対策技術分野

建築物外皮による空調負荷低減等技術実証試験結果報告書
《詳細版》

平成26年3月

実証機関: 一般財団法人建材試験センター
技術: 屋根・屋上用高反射率塗料
実証申請者: n-tech 株式会社
製品名・型番: Blue on Tech AC シリーズ CC-F(クールコート-F)・BoT - AC - CC-F

環境技術実証事業
ETV 環境省

第三者機関が実証した性能を公開しています
www.env.go.jp/policy/etv
本ロゴマークは一定の基準に適合していることを認定したものではありません

本実証試験結果報告書の著作権は、環境省に属します。
数値計算に関する注意事項
ー適用したシミュレーションソフト等についてー

環境技術実証事業ヒートアイランド対策技術分野（建築物外皮による空調負荷低減等技術）では、実証試験要領に基づき、数値計算を行っている。
本事業で実施した数値計算に用いたシミュレーションソフトを以下に示す。

表 数値計算で使用したシミュレーションソフト

<table>
<thead>
<tr>
<th>年度</th>
<th>シミュレーションソフト</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成 18年度～平成 22年度</td>
<td>・LESCOM-env *1</td>
</tr>
<tr>
<td>平成 23年度～平成 25年度</td>
<td>・AE-Sim/Heat *2 ・NewHASP/ACLD *3</td>
</tr>
</tbody>
</table>

シミュレーションソフトが異なれば、同一条件で数値計算を実施しても、必ずしも同一の結果になるとは限らない。また一方で、シミュレーションソフト、数値計算で対象としている建築物モデル、及び数値計算の設定条件などを変更している場合がある。
そのため、本事業で実証された全ての実証対象技術について、それらの実証試験結果報告書を閲覧する場合、以下の点について注意を要する。
① 技術の種類や実証年度により、数値計算の諸条件に違いがあることを認識する必要がある。
② 同一の技術の種類であっても、平成 18 年度から平成 22 年度の間に実証された数値計算結果と、平成 23 年度以降に実証された数値計算結果との単純な比較は行えない。

【参考】
平成 25年度環境技術実証事業ヒートアイランド対策技術分野（建築物外皮による空調負荷低減等技術）実証試験要領*4では、数値計算に用いるシミュレーションソフトについて、以下のとおり規定している。

本編
第 4 章 実証試験の方法
2.2 数値計算で算出する実証項目の前提条件
(2) 数値計算方法（シミュレーションソフトについて）
数値計算に用いるシミュレーションソフトは、以下の条件を満たすものとする。ただし、実証対象技術の種類により、条件を満たすことが出来ない場合を除く。
・第 1 部第 4 章 2.2（6）に示す条件及び項目的算出が可能であること。
・市販または無料配布されていること。

*1：旧通産省生活産業局の住機能向上製品対策委員会で開発された多数室非定常熱負荷計算プログラム「LESCOM」注）を、実証対象技術に応じた内容に追加開発（当時東京理科大学武田仁教授による）したもの

*2：株式会社建築環境ソリューションズ

*3：一般社団法人建築設備技術者協会，“HASP（動的熱負荷計算・空調システム計算プログラム）ダウンロード” http://www.jabmee.or.jp/hasp/ (2013-03).

注）武田仁ほか、標準気象データと熱負荷計算プログラム LESCOM、第 1 版、井上書院、2005年.
○ 全体概要

1. 実証対象技術の概要
2. 実証試験の概要
 2.1 空調負荷低減等性能
 2.2 環境負荷・維持管理等性能
3. 実証試験結果
 3.1 空調負荷低減等性能及び環境負荷・維持管理等性能
 3.2 数値計算により算出する実証項目
 3.3 環境負荷・維持管理等性能【参考項目】
4. 参考情報

○ 本編

1. 実証試験の概要と目的
2. 実証試験参加組織と実証試験参加者の責任分掌
3. 実証対象技術の概要（参考情報）
4. 実証試験の内容
 4.1 実証試験期間及び試験実施場所
 4.2 空調負荷低減等性能
 4.3 環境負荷・維持管理等性能
5. 実証試験結果と検討
 5.1 空調負荷低減等性能
 5.2 環境負荷・維持管理等性能【参考項目】

○ 付録

1. データの品質管理
 1.1 測定操作の記録方法
 1.2 精度管理に関する情報
2. データの管理、分析、表示
 2.1 データ管理とその方法
 2.2 データ分析と評価
3. 監査
4. 用語の定義

○ 資料編
1. 実証対象技術の概要

建築物の屋根（屋上）に日射反射率の高い塗料を塗布する技術
※技術の特徴などの情報は、4.参考情報（概要版7ページ）を参照。

2. 実証試験の概要

2.1 空調負荷低減等性能

屋根・屋上用高反射率塗料の熱・光学特性を測定し、その結果から、下記条件における対象建築物の屋根（屋上）に屋根・屋上用高反射率塗料を塗布した場合の効果（冷房負荷低減効果等）を数値計算により算出した。数値計算は、実証対象技術の灰色の測定結果を用いて行った。なお、数値計算の基準は、灰色（N6）の一般塗料とした。ただし、実証対象技術の灰色の明度が6.0±0.2の範囲内にないものは、同じ明度の一般塗料を基準とした。一般塗料の日射反射率は、詳細版4.2.2(3)に示す推定式（詳細版編18ページ参照）により算出した。

2.1.1 数値計算における設定条件

(1) 対象建築物

工場（床面積: 1000m²、最高高さ: 10.8m、構造: S造（鉄骨造））
注）周囲の建築物等の影響による日射の遮蔽は考慮しない。
対象建築物の詳細は、詳細版編4.2.2(1)①対象建築物（詳細版編13ページ）参照。

(2) 使用気象データ

拡張アメダス気象データ標準年（1991年～2000年）（東京都及び大阪府）

(3) 空調機器設定

<table>
<thead>
<tr>
<th>建物</th>
<th>設定温度（℃）</th>
<th>稼働時間</th>
<th>冷房 COP</th>
<th>暖房 COP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>冷房</td>
<td>暖房</td>
<td></td>
<td></td>
</tr>
<tr>
<td>工場</td>
<td>28.0</td>
<td>18.0</td>
<td>平日8～17時</td>
<td>3.55</td>
</tr>
</tbody>
</table>

(4) 電力量料金単価の設定

<table>
<thead>
<tr>
<th>地域</th>
<th>建物</th>
<th>標準契約種別</th>
<th>電力量料金単価（円／kWh）</th>
</tr>
</thead>
<tbody>
<tr>
<td>東京</td>
<td>工場</td>
<td>高圧電力A</td>
<td>夏季 16.49 その他季 15.41</td>
</tr>
<tr>
<td>大阪</td>
<td></td>
<td>高圧電力BS</td>
<td>15.34</td>
</tr>
</tbody>
</table>

2.2 環境負荷・維持管理等性能

一般財団法人建材試験センター中央試験所の敷地内（埼玉県草加市）で屋外暴露試験を4ヶ月間（10月～2月）実施した。屋外暴露試験終了後、熱・光学性能の測定を行い、屋外暴露試験前後の測定値の変化を確認した。
3. 実証試験結果

3.1 空調負荷低減等性能及び環境負荷・維持管理等性能

(1) 熱・光学性能及び環境負荷・維持管理等性能試験結果*1（平均値）【実証項目】

<table>
<thead>
<tr>
<th></th>
<th>黒色</th>
<th>灰色</th>
<th>白色</th>
</tr>
</thead>
<tbody>
<tr>
<td>日射反射率</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>近紫外及び可視光域*2 (%)</td>
<td>7.8</td>
<td>24.9</td>
<td>73.5</td>
</tr>
<tr>
<td>近赤外域*3 (%)</td>
<td>44.4</td>
<td>59.6</td>
<td>75.9</td>
</tr>
<tr>
<td>全波長域*4 (%)</td>
<td>24.0</td>
<td>40.2</td>
<td>74.5</td>
</tr>
<tr>
<td>修正放射率（長波放射率）</td>
<td>0.896</td>
<td>0.896</td>
<td>0.893</td>
</tr>
<tr>
<td>明度</td>
<td>3.2</td>
<td>5.7</td>
<td>9.1</td>
</tr>
</tbody>
</table>

*1：結果は、試験結果（試験体数 n=3）の平均値である。
*2：近紫外及び可視光域の波長範囲は、300 nm〜780 nm である。
*3：近赤外域の波長範囲は、780 nm〜2500 nm である。
*4：全波長域の波長範囲は、300 nm〜2500 nm である。

(2) 明度と日射反射率（全波長域）の関係【実証項目】

※左図は、平成20年度〜平成25年度環境技術実証事業ヒートアイランド対策技術分野（建築物外皮による空調負荷低減等技術）において実証を行った高反射率塗料と一般塗料の明度と日射反射率（全波長域）の関係を示したものである。※明度Vが10に近い白色では、一般塗料と高反射率塗料とで日射反射率に差はほぼ無い。高反射率塗料は、近赤外域での反射率を高くする技術を使用しており、白色でない、灰色あるいは黒色でも日射反射率を高くする機能を持っている。左図に示したように、白色では一般塗料と高反射率建材との間で差はないが、灰色、黑色では明らかに目視反射率に差が現れている。

（詳細は、詳細版本編27ページ【注意事項】）
ヒートアイランド対策技術分野（建築物外皮による空調負荷低減等技術）

【屋根・屋上用高反射率塗料（H25）】

Blue on Tech ACシリーズ CC-Fクールコート・BfT-AC-CC-F

n-tech 株式会社

(3) 分光反射率（波長範囲：300nm～2500nm）の特性

① 黒色

図-2 分光反射率測定結果（黑色）

② 灰色

図-3 分光反射率測定結果（灰色）

③ 白色

図-4 分光反射率測定結果（白色）
3.2 数値計算により算出する実証項目

(1) 実証項目の計算結果

【算出対象区域：工場全体（屋上表面温度低下量及び頸熱量低減効果は、屋根（屋上））】

比較対象：一般塗料

<table>
<thead>
<tr>
<th>東京都</th>
<th>大阪府</th>
</tr>
</thead>
<tbody>
<tr>
<td>屋根（屋上）表面温度低下量（夏季 14 時）</td>
<td>5.3 ℃（55.4℃→50.1℃）</td>
</tr>
<tr>
<td>自然室温</td>
<td>0.9 ℃（38.8℃→37.9℃）</td>
</tr>
<tr>
<td>体感温度</td>
<td>1.2 ℃（40.5℃→39.3℃）</td>
</tr>
<tr>
<td>冷房負荷低減効果（夏季 1ヶ月）</td>
<td>熱量：446 kWh/月 → 13,330kWh/月 3.2% 低減</td>
</tr>
<tr>
<td>電気料金</td>
<td>2,071 円低減</td>
</tr>
<tr>
<td>冷房負荷低減効果（夏季 6～9月）</td>
<td>熱量：1,326 kWh/4ヶ月 → 32,624kWh/4ヶ月 3.9% 低減</td>
</tr>
<tr>
<td>電気料金</td>
<td>6,119 円低減</td>
</tr>
<tr>
<td>昼間の対流顕熱量低減効果（夏季 1ヶ月）</td>
<td>大気への放熱を 26.0% 低減（224,588MJ/月 → 166,136MJ/月）</td>
</tr>
<tr>
<td>昼間の対流顕熱量低減効果（夏季 6～9月）</td>
<td>大気への放熱を 26.2% 低減（825,842MJ/4ヶ月 → 609,528MJ/4ヶ月）</td>
</tr>
<tr>
<td>夜間の対流顕熱量低減効果（夏季 1ヶ月）</td>
<td>大気への放熱を 2.3% 低減（-21,340MJ/月→-21,830MJ/月）</td>
</tr>
<tr>
<td>夜間の対流顕熱量低減効果（夏季 6～9月）</td>
<td>大気への放熱を 3.3% 低減（-74,854MJ/4ヶ月 → -77,357MJ/4ヶ月）</td>
</tr>
</tbody>
</table>

*1：8月の平日の直達日射量の合計が最も多い日（東京：8月 10 日，大阪：8月 18 日）の14時における対象部での屋根表面温度・室温の抑制効果
*2：冷房を行わないときの室温
*3：壁などの室内表面温度を考慮した温度（空気温度と壁などの室内表面温度との平均）
*4：夏季 1ヶ月（8月）及び夏季（6～9月）において室内温度が冷房設定温度を上回ったときに冷房が稼働した場合の冷房負荷低減効果

注1）数値計算は、モデル的な工場を想定し、各種前提条件のもとに行ったものであり、実際の導入環境とは異なる。なお、数値計算の基準は、灰色（N6）の一般塗料とした。ただし、実証対象技術の灰色の明度 V が 6.0±0.2 の範囲内にあるものは、同じ明度の一般塗料を基準とした。一般塗料の日射反射率は、詳細版第 4.2.2.3の項に示す推定式（詳細版本第 18 ページ参照）により算出した。
参考項目の計算結果

【算出対象区域：工場全体】
比較対象：一般塗料

<table>
<thead>
<tr>
<th></th>
<th>東京都</th>
<th>大阪府</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>冷房負荷低減効果*1（年間空調）</td>
<td></td>
</tr>
<tr>
<td>熱量</td>
<td>1,560 kWh/年 （35,589kWh/年 → 34,029kWh/年）</td>
<td>1,980 kWh/年 （48,973kWh/年 → 46,993kWh/年）</td>
</tr>
<tr>
<td>電気料金</td>
<td>7,134 円低減</td>
<td>8,398 円低減</td>
</tr>
<tr>
<td></td>
<td>暖房負荷低減効果*2（冬季1ヶ月）</td>
<td></td>
</tr>
<tr>
<td>熱量</td>
<td>-315 kWh/月 （16,173kWh/月 → 16,488kWh/月）</td>
<td>-254 kWh/月 （18,463kWh/月 → 18,717kWh/月）</td>
</tr>
<tr>
<td>電気料金</td>
<td>-1,245 円低減</td>
<td>-930 円低減</td>
</tr>
<tr>
<td></td>
<td>暖房負荷低減効果*2（冬季11～4月）</td>
<td></td>
</tr>
<tr>
<td>熱量</td>
<td>-1,178 kWh/6ヶ月 （67,525kWh/6ヶ月 → 68,703kWh/6ヶ月）</td>
<td>-987 kWh/6ヶ月 （68,116kWh/6ヶ月 → 69,103kWh/6ヶ月）</td>
</tr>
<tr>
<td>電気料金</td>
<td>-4,654 円低減</td>
<td>-3,613 円低減</td>
</tr>
<tr>
<td></td>
<td>冷暖房負荷低減効果*3（期間空調）</td>
<td></td>
</tr>
<tr>
<td>熱量</td>
<td>148 kWh/年 （101,475kWh/年 → 101,327kWh/年）</td>
<td>826 kWh/年 （115,511kWh/年 → 114,685kWh/年）</td>
</tr>
<tr>
<td>電気料金</td>
<td>1,465 円低減</td>
<td>4,113 円低減</td>
</tr>
</tbody>
</table>

*1: 年間を通じて室内温度が冷房設定温度を上回ったときに冷房が稼働した場合の冷房負荷低減効果
*2: 冬季1ヶ月（2月）及び冬季（11～4月）において室内温度が暖房設定温度を下回った時に暖房が稼働した場合の暖房負荷低減効果
*3: 夏季（6～9月）において室内温度が冷房設定温度を上回ったときに冷房が稼働した場合及び冬季（11～4月）において室内温度が暖房設定温度を下回った時に暖房が稼働した場合の冷暖房負荷低減効果

注1) 数値計算は、モデル的な工場を想定し、各種前提条件のもと行ったものであり、実際の導入環境とは異なる。なお、数値計算の基準は、灰色（N6）の一般塗料とした。ただし、実証対象技術の灰色の明度 Vが6.0±0.2の範囲内にないものは、同じ明度の一般塗料を基準とした。一般塗料の日射反射率は、詳細版編4.2.2.(3)に示す推定式（詳細版編18ページ参照）により算出した。
(3) (1)実証項目の計算結果及び(2)参考項目の計算結果に関する注意点

① 数値計算は、モデル的な工場を想定し、各種前提条件のもと行ったものである。実際の導入環境とは異なる。

② 熱負荷の低減効果を熱量単位（kWh）だけでなく、電気料金の低減効果（円）としても示すため、定格出力運転時における消費電力1kW当たりの冷房・暖房能力（kW）を表したCOP及び電力量料金単価を設定している。

③ 数値計算に用いている冷暖房の運転期間は、下記の通りとした。
 - 夏季 1ヶ月：8月1日～31日
 - 夏季 6～9月：6月1日～9月30日
 - 冬季 1ヶ月：2月1日～28日
 - 冬季 11～4月：11月1日～4月30日
 - 期間空調：冷房期間 6～9月及び暖房期間 11～4月
 - 年間空調：冷房期間1年間*1

④ 冷房・暖房負荷低減効果の熱量の欄には、実証対象技術の使用前後の熱負荷の差および使用前後の熱負荷の総和をそれぞれ示している（使用前→使用後）。

⑤ 電気料金について、本計算では屋根・屋上用高反射率塗料の塗布による室内熱負荷の差を検討の対象としていることから、種々の仮定が必要となる経済を見積もることをせず、熱負荷の変化に伴う空調電気料金の差額のみを示している（電気料金の算出に関する考え方詳細版本編28ページ【電気料金算出に関する考え方】に示す）。

 *1: 設定温度よりも室温が高い場合に冷房運転を行う。

3.3 環境負荷・維持管理等性能【参考項目】
【付着性試験】*2*3（平均値）

<table>
<thead>
<tr>
<th>付着強さ（N/mm²）</th>
<th>屋外暴露試験前</th>
<th>屋外暴露試験後</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.9</td>
<td>0.4</td>
</tr>
</tbody>
</table>

*2: 結果は、試験結果（試験体数量n=3）の平均値である。

*3: 破壊状況は、詳細版本編5.2に詳細を示す（詳細版本編26ページ参照）。
4. 参考情報

(1)実証対象技術の概要（参考情報）及び(2)その他メーカーからの情報（参考情報）は、全て実証申請者が自らの責任において申請したものであり、環境省及び実証機関は、内容に関して一切の責任を負いません。

<table>
<thead>
<tr>
<th>項目</th>
<th>実証申請者 記入欄</th>
</tr>
</thead>
<tbody>
<tr>
<td>実証申請者</td>
<td>n-tech 株式会社</td>
</tr>
<tr>
<td>(英文表記:n-tech Co.,Ltd.)</td>
<td></td>
</tr>
<tr>
<td>技術開発企業名</td>
<td>－</td>
</tr>
<tr>
<td>実証対象製品・名称</td>
<td>Blue on Tech AC シリーズ CC-F（クールコート-F）</td>
</tr>
<tr>
<td>（英文表記:Blue on Tech AC Series CC-F(Cool Coat –F)）</td>
<td></td>
</tr>
<tr>
<td>実証対象製品・型番</td>
<td>BoT - AC - CC-F</td>
</tr>
<tr>
<td>順序予約</td>
<td>TEL 03-5823-4010</td>
</tr>
<tr>
<td>FAX</td>
<td>03-5835-3155</td>
</tr>
<tr>
<td>Web アドレス</td>
<td>http://www.bot-n-tech.com</td>
</tr>
<tr>
<td>E-mail</td>
<td>info@bot-n-tech.com</td>
</tr>
<tr>
<td>技術の特徴</td>
<td>フッ素エマルジョンに高純度の不整形シリカと複合金属イオンを配合した薄塗膜塗料で、高い日射反射率を実現するだけでなく、蓄熱量の低減を促進しヒートアイランド現象を抑制する。</td>
</tr>
<tr>
<td>対応する建築物・部位など</td>
<td>屋根・屋上など</td>
</tr>
<tr>
<td>施工上の留意点</td>
<td>・低速で充分に摺拌してから使用すること。</td>
</tr>
<tr>
<td></td>
<td>・下塗り・上塗りともに水溶系塗料の為、希釈は清水でおこなうこと。</td>
</tr>
<tr>
<td>その他設置場所等の制約条件</td>
<td>雨水や直射日光の当る場所・高温多湿の場所・潮風の当る場所・凍結の恐れのある場所での保管を避けること。</td>
</tr>
<tr>
<td>メンテナンスの必要性耐候性・製品寿命など</td>
<td>期待耐候性 15年</td>
</tr>
<tr>
<td>コスト概算</td>
<td>設計施工価格（材工共）</td>
</tr>
</tbody>
</table>

(2) その他メーカーからの情報（参考情報）
1. 実証試験の概要と目的

環境技術実証事業は、既に適用が可能な段階にありながら、環境保全効果等について客観的な評価が行われていないために普及が進んでいない先進的環境技術について、その環境保全効果等を第三者が客観的に実証する事業を実施することにより、環境技術を実証する手法・体制の確立を図るとともに、環境技術の普及を促進し、環境保全と環境産業の発展を促進することを目的とするものである。

本実証試験は、平成25年7月9日に環境省水・大気環境局総務課環境管理技術室が策定した実証試験要領*1に基づいて選定された実証対象技術について、同実証試験要領に準拠して実証試験を実施することで、以下に示す環境保全効果等を客観的に実証したものである。

【実証項目】

◆ 空調負荷低減等性能
 【熱・光学性能】
 • 日射反射率
 • 明度
 • 修正放射率（長波放射率）
 【数値計算】
 • 屋根（屋上）表面温度低下量
 • 冷房負荷低減効果
 • 室温上昇抑制効果
 • 対流顕熱量低減効果

◆ 環境負荷・維持管理等性能
 • 性能劣化の把握

2. 実証試験参加組織と実証試験参加者の責任分掌

実証試験に参加する組織は、図 2-1 に示すとおりである。また、実証試験参加者とその責任分掌は、表 2-1 に示すとおりである。

図 2-1 実証試験参加組織
表 2-1 実証試験参加者と責任分掌

<table>
<thead>
<tr>
<th>区分</th>
<th>実証試験参加機関</th>
<th>責任分掌</th>
<th>参加者</th>
</tr>
</thead>
<tbody>
<tr>
<td>実証機関</td>
<td>一般財団法人建材試験センター</td>
<td>実証試験の運営管理</td>
<td>中央試験所環境グループ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>実証対象技術の公募・審査</td>
<td>和田 暢治</td>
</tr>
<tr>
<td></td>
<td></td>
<td>技術実証委員会の設置・運営</td>
<td>萩原 伸治</td>
</tr>
<tr>
<td></td>
<td></td>
<td>品質管理システムの構築</td>
<td>田坂 太一</td>
</tr>
<tr>
<td></td>
<td></td>
<td>実証試験計画の策定</td>
<td>松原 知子</td>
</tr>
<tr>
<td></td>
<td></td>
<td>実証試験の実施・運営</td>
<td>安岡 恒</td>
</tr>
<tr>
<td></td>
<td></td>
<td>実証試験データ・情報の管理</td>
<td>馬渕 賢作</td>
</tr>
<tr>
<td></td>
<td></td>
<td>実証試験結果報告書の作成</td>
<td>材料グループ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>その他実証試験要領で定められた業務</td>
<td>鈴木 敏夫</td>
</tr>
<tr>
<td></td>
<td></td>
<td>内部監査の総括</td>
<td>志村 重顕</td>
</tr>
<tr>
<td></td>
<td></td>
<td>実証試験データの検証</td>
<td>加藤 裕樹</td>
</tr>
<tr>
<td>実証申請者</td>
<td>n-tech 株式会社</td>
<td>実証機関への必要な情報提供と協力</td>
<td>中央試験所所長</td>
</tr>
<tr>
<td></td>
<td></td>
<td>実証対象製品の準備と関連資料の提供</td>
<td>黒木 勝一</td>
</tr>
<tr>
<td></td>
<td></td>
<td>費用負担及び責任をもって実証対象製品の運搬等を実施</td>
<td>代表取締役</td>
</tr>
<tr>
<td></td>
<td></td>
<td>既存の性能データの提供</td>
<td>青木 美男</td>
</tr>
<tr>
<td></td>
<td></td>
<td>実証試験報告書の作成における協力</td>
<td></td>
</tr>
</tbody>
</table>
3. 実証対象技術の概要（参考情報）

実証対象技術の概要は、表 3-1 に示すとおりである。
3. 実証対象技術の概要に示す情報は、全て実証申請者が自らの責任において申請したものであり、環境省及び実証機関は、内容に関して一切の責任を負いません。

表 3-1 実証対象技術の概要（参考情報）

<table>
<thead>
<tr>
<th>項目</th>
<th>実証申請者 記入欄</th>
</tr>
</thead>
<tbody>
<tr>
<td>実証申請者</td>
<td>n-tech 株式会社 （英文表記：n-tech Co.,Ltd.）</td>
</tr>
<tr>
<td>技術開発企業名</td>
<td>－</td>
</tr>
<tr>
<td>実証対象製品・名称</td>
<td>Blue on Tech AC シリーズ CC-F(クールコート-F) （英文表記：Blue on Tech AC Series CC-F(Cool Coat –F)）</td>
</tr>
<tr>
<td>実証対象製品・型番</td>
<td>BoT - AC - CC-F</td>
</tr>
<tr>
<td>連絡先</td>
<td>TEL 03-5823-4010</td>
</tr>
<tr>
<td></td>
<td>FAX 03-5835-3155</td>
</tr>
<tr>
<td></td>
<td>Web アドレス http://www.bot-n-tech.com</td>
</tr>
<tr>
<td></td>
<td>E-mail info@bot-n-tech.com</td>
</tr>
<tr>
<td>技術の特徴</td>
<td>フッ素エマルジョンに高純度の不整形シリカと複合金属イオンを配合した薄塗膜塗料で、高い日射反射率を実現するだけでなく、蓄熱量の低減を促進しヒートアイランド現象を抑制する。</td>
</tr>
<tr>
<td>対応する 建築物・部位など</td>
<td>屋根・屋上など</td>
</tr>
<tr>
<td>施工上の留意点</td>
<td>・低速で十分に攪拌してから使用すること。</td>
</tr>
<tr>
<td></td>
<td>・下塗り・上塗りともに水溶系塗料の為、希釈は清水でおこなうこと。</td>
</tr>
<tr>
<td>その他設置場所等の制約条件</td>
<td>雨水や直射日光の当る場所・高温多湿の場所・潮風の当る場所・凍結の恐れのある場所での保管を避けすること。</td>
</tr>
<tr>
<td>メンテナンスの必要性 耐候性・製品寿命など</td>
<td>期待耐候性 15年</td>
</tr>
<tr>
<td>コスト概算</td>
<td>設計施工価格（材工共） 4,200 円 1m²あたり</td>
</tr>
</tbody>
</table>

○その他メーカーからの情報（参考情報）
4. 実証試験の内容
4.1 実証試験期間及び試験実施場所

表 4-1 実証試験期間及び試験実施場所

<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>試験体搬入</td>
<td>平成25年 9月17日</td>
</tr>
</tbody>
</table>
| 熱・光学性能測定 | 屋外暴露試験前
平成25年 9月18日～平成25年 9月25日 |
| | 屋外暴露試験後
平成26年 2月 7日～平成26年 2月17日 |
| 屋外暴露試験 | 平成25年10月1日～平成26年 2月 7日 |
| 数値計算 | 平成25年10月 4日～平成26年 1月31日 |
| 試験実施場所 | 一般財団法人建材試験センター中央試験所 |

4.2 空調負荷低減等性能
4.2.1. 熱・光学特性

(1) 日射反射率

JIS K 5602（塗膜の日射反射率の求め方）に従い、日射反射率（波長範囲：300nm～2500nm）の測定を行った。試験体の色は、製品の中で最も明度が高いものと最も明度が低いもの及び灰色（N6（無彩色、明度V=6）の3種類とし、試験体数はそれぞれ3体（n=3、合計9体）とした。また、下地はH.P金属板（黒色率測定用金属板）とし、寸法は60mm×60mmとした。なお、下地材料は実証機関が提供した。

(2) 明度

前項の測定した試験体を用い、JIS K 5600-4-4（塗料一般試験方法－第4部：塗膜の視覚特性－第4節測色（原理））及びJIS K 5600-4-5（塗料一般試験方法－第4部：塗膜の視覚特性－第5節測色（測定））に従い、明度の測定を行った。

(3) 修正放射率（長波放射率）

前項の試験体を用い、JIS R 3106（板ガラス類の透過程・反射率・放射率・日射熱取得率の試験方法）に従い、常温の熱放射の波長域の分光放射率（波長範囲：5.5μm～25μm）を測定し、垂直放射率を算定した。算定結果をもとに、JIS R 3107（板ガラス類の熱抵抗及び建築における熱貫流率の算定方法）付表1を用いて修正放射率（長波放射率）を算出した。
4.2.2. 数値計算

本項目における実証試験結果は、実証対象技術の灰色の測定結果を用いて、温熱環境シミュレーションプログラム AE-Sim/Heat*1 により算出する。また、AE-Sim/Heat への建築物モデルの入力は、建築環境シミュレーションプログラム用汎用入力インターフェイス AE-CAD を使用する。

計算条件および計算による出力項目は下記の通りとする。

(1) 計算条件

① 対象建築物

工場（床面積：1000m²、最高高さ：10.8m、構造：S 造（鉄骨造））【表 4-3、図 4-1】

- 対象建築物モデルは、平成 20 年度〜平成 22 年度環境技術実証事業ヒートアイランド対策技術分野（建築物外皮による空調負荷低減等技術）において採用した工場モデルに基づき設定した。ただし、工場モデルの最高高さを 13.0m から 10.8m に変更している。
- 対象建築物モデルの屋根断熱材は、次に示す 2 つの仕様とした。
 仕様 1 は屋根（屋上）表面温度及び室内空気温度の算出に、仕様 2 はその他の実証項目及び参考項目の算出に適用した。
 仕様 1：屋根の断熱材…グラスウール（GW（10K））、厚さ 10mm
 仕様 2：屋根の断熱材…グラスウール（GW（10K））、厚さ 50mm
- 屋根のデッキプレートの熱抵抗は、断熱材に比べて非常に小さいため、無視するものとした。
- 周囲の建築物等の影響による日射の遮蔽は考慮しない。
- 屋根（屋上）全面に屋根・屋上用高反射率塗料を塗布した条件下で数値計算を行った。
- 対象建築物に適用したガラスの熱・光学性能値を以下に示す。

<table>
<thead>
<tr>
<th>ガラス</th>
<th>日射透過率（％）</th>
<th>日射反射率（％）</th>
<th>熱貫流率（W/(m²·K)）</th>
<th>透光度係数（－）</th>
</tr>
</thead>
<tbody>
<tr>
<td>フロート板ガラス（厚さ 3mm）*2</td>
<td>85.6</td>
<td>7.7</td>
<td>6.0</td>
<td>1.00</td>
</tr>
</tbody>
</table>

*1：株式会社建築環境ソリューションズ
*2：藤井正一ほか、“8 章開口部の基準と設計” 住宅の省エネルギー基準の解説、次世代省エネルギー基準解説書編集委員会、第 2 版、財団法人建築環境・省エネルギー機構、2007, p.281.
表 4-3 想定する工場モデル

<table>
<thead>
<tr>
<th>設定条件</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>モデル建物の概要</td>
<td>・工場（図 4-1 に示す形状とする。）
・床面積：1000m²
・構造：S 造（鉄骨造）
・最高高さ：10.8m（天井高さ 9.5m）</td>
</tr>
<tr>
<td>実証項目の対象となる部分</td>
<td>・工場全体</td>
</tr>
<tr>
<td>備考</td>
<td>・工場モデルの詳細は、詳細版資料編 31～33 ページに示す。</td>
</tr>
</tbody>
</table>

図 4-1 計算用工場モデル（平面図）
② 気象条件設定及び冷暖房設定

表 4-4 気象条件の設定

<table>
<thead>
<tr>
<th>設定条件</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>地域</td>
<td>・東京都、大阪府</td>
</tr>
<tr>
<td>気象データ</td>
<td>・拡張アメダス気象データ（株式会社気象データシステム）標準年（1991～2000年）</td>
</tr>
</tbody>
</table>

表 4-5 冷暖房設定

<table>
<thead>
<tr>
<th>建物</th>
<th>設定温度（℃）</th>
<th>稼働時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>冷房</td>
<td>暖房</td>
<td></td>
</tr>
<tr>
<td>工場</td>
<td>28.0</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td>平日 8～17時</td>
<td></td>
</tr>
</tbody>
</table>

③ 室内における発熱量の設定

表 4-6 発熱量の設定条件

<table>
<thead>
<tr>
<th>建物</th>
<th>設定条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>工場</td>
<td>照明：15W/m²（照明点灯時間：8時～17時）</td>
</tr>
<tr>
<td></td>
<td>人体：0.1人/m²</td>
</tr>
<tr>
<td></td>
<td>機器：25W/m²（機器使用時間：8時～17時）</td>
</tr>
</tbody>
</table>

④ COP（Coefficient of Performance：エネルギー消費効率）の設定

表 4-7 COP の設定*1

<table>
<thead>
<tr>
<th>建物</th>
<th>冷房 COP</th>
<th>暖房 COP</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>工場</td>
<td>3.55</td>
<td>3.90</td>
<td>冷房能力14.0kWクラス・4方向カセット型</td>
</tr>
</tbody>
</table>

*1：財団法人省エネルギーセンター．省エネ性能カタログ．業務用エアコン版．2006年3月．2006．
ヒートアイランド対策技術分野（建築物外皮による空調負荷低減等技術）【屋根・屋上用高反射率塗料（H25）】
Blue on Tech AC シリーズ CC-FクールコートF・BT-AC-CC-F
n-tech 株式会社

⑤ 電力量料金単価

表 4-8 電力量料金単価の設定値

<table>
<thead>
<tr>
<th>地域</th>
<th>建物</th>
<th>標準契約種別</th>
<th>夏季*1</th>
<th>その他季*3</th>
</tr>
</thead>
<tbody>
<tr>
<td>東京</td>
<td>工場</td>
<td>高圧電力 A</td>
<td>16.49</td>
<td>15.41</td>
</tr>
<tr>
<td>大阪</td>
<td></td>
<td>高圧電力 BS</td>
<td>15.34</td>
<td>14.28</td>
</tr>
</tbody>
</table>

注）燃料価格変動に依存する燃料費調整単価は 0 円／kWh と仮定。

⑥ 実証項目・参考項目の設定期間

表 4-9 数値計算による実証項目・参考項目の設定期間について

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>設定期間</th>
</tr>
</thead>
</table>
| 実証項目 | 屋根（屋上）表面温度低下量 | 夏季 14 時 東京：8月 10 日の 14 時
昼間の対流顕熱量低減効果 | 夏季 6-9 月 6 月 1 日～9 月 30 日 |
| | 冷房負荷低減効果 | 夏季 1 ヶ月 8 月 1 日～8 月 31 日
昼間の対流顕熱量低減効果 | 夏季 6-9 月 6 月 1 日～9 月 30 日の 6 時～17 時 |
| | 冷房負荷低減効果 | 夏季 6-9 月 6 月 1 日～9 月 30 日の 18 時～5 時 |
| 参考項目 | 冷房負荷低減効果 | 年間空調 1 年間 |
| | 暖房負荷低減効果 | 冬季 1 ヶ月 2 月 1 日～2 月 28 日
冬季 11～4 月 11 月 1 日～4 月 30 日 |
| 冷暖房負荷低減効果 | 期間空調*4 冷房期間 6～9 月（6 月 1 日～9 月 30 日）及び暖房期間 11～4 月（11 月 1 日～4 月 30 日） |

*1：電力量料金単価は、消費税相当額を含んだものである。
*2：夏季：7月 1 日～9 月 30 日
*3：その他季：10 月 1 日～6 月 30 日
*4：（社）日本冷凍空調工業会. JRA 4046-2004（ルームエアコンディショナの期間消費電力量算出基準），2004.
(2) 出力項目
本実証試験では、工場を対象として計算を行った。
数値計算により算出する各実証項目・参考項目は、屋根・屋上用高反射率塗料と一般塗料の差分量として求めた。
各項目において、熱負荷の低減効果の熱量単位 (kWh) から電力量料金単位 (円) への換算は、以下の式により行った。

$$\Delta E = \frac{\Delta Q}{COP} \times A \qquad \cdots (1)$$

ここで、\(\Delta E \): 熱負荷の低減効果 [電力量料金] (円)
\(\Delta Q \): 熱負荷の低減効果 [熱量] (kWh)
COP: 冷房 COP または暖房 COP (ー)
A: 電力料金の従量単価 (円/kWh)

表 4-10 数値計算による出力リスト

<table>
<thead>
<tr>
<th>対応する項目</th>
<th>名称*1</th>
<th>出力単位</th>
<th>対応する部分</th>
</tr>
</thead>
<tbody>
<tr>
<td>実証項目</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>屋根（屋上）表面温度低下量</td>
<td>夏季 14 時</td>
<td>℃</td>
<td>屋根表面</td>
</tr>
<tr>
<td>室温上昇抑制効果 (自然室温・体感温度)</td>
<td>夏季 14 時</td>
<td>℃</td>
<td>工場内</td>
</tr>
<tr>
<td>冷房負荷低減効果</td>
<td>夏季 1 ケ月</td>
<td>kWh/月</td>
<td>建物全体</td>
</tr>
<tr>
<td></td>
<td>夏季 6〜9 月</td>
<td>kWh/4 ケ月</td>
<td></td>
</tr>
<tr>
<td>昼間の対流顕熱量低減効果 (6 時〜17 時)</td>
<td>夏季 1 ケ月</td>
<td>MJ</td>
<td>屋根表面</td>
</tr>
<tr>
<td></td>
<td>夏季 6〜9 月</td>
<td>MJ</td>
<td></td>
</tr>
<tr>
<td>夜間の対流顕熱量低減効果 (18 時〜5 時)</td>
<td>夏季 1 ケ月</td>
<td>MJ</td>
<td>屋根表面</td>
</tr>
<tr>
<td></td>
<td>夏季 6〜9 月</td>
<td>MJ</td>
<td></td>
</tr>
<tr>
<td>参考項目</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>冷房負荷低減効果</td>
<td>年間空調</td>
<td>kWh/年</td>
<td>建物全体</td>
</tr>
<tr>
<td>暖房負荷低減効果</td>
<td>冬季 1 ケ月</td>
<td>kWh/月</td>
<td>建物全体</td>
</tr>
<tr>
<td></td>
<td>冬季 11〜4 月</td>
<td>kWh/6 ケ月</td>
<td></td>
</tr>
<tr>
<td>冷暖房負荷低減効果</td>
<td>期間空調</td>
<td>kWh/年</td>
<td>建物全体</td>
</tr>
</tbody>
</table>

*1: 表 4-9 に示す設定期間に対応する名称
(3) 数値計算の基準値

実証対象技術のヒートアイランド対策としての効果を検討するため、比較対象とする基準を設定した。屋根・屋上用高反射率塗料の場合、明度と日射反射率の関係上、明度が高くなるほど日射反射率が高くなる。そのため、実証対象技術の灰色塗料が規定の明度（V=6.0±0.2）に該当するものは明度V=6の日射反射率を、また該当しないものについては同一明度の日射反射率を、基準とした。実証対象技術と同一明度の日射反射率の基準は、以下に示す式により算出した。

\[
\rho_e = 0.9 \times \left(\frac{10 \times V + 16}{116} \right)^3 \times 100 \]

ここに、\(\rho_e \) ：日射反射率（％）

\(V \) ：明度（一）

4.3 環境負荷・維持管理等性能

4.3.1. 反射性能の保持率【実証項目】

詳細版本編 4.2.1 熱・光学特性（詳細版本編 12 ページ）で測定を行った試験体を、一般財団法人建材試験センター中央試験所内の屋外に水準に設置して、4ヶ月間（10月～2月）の暴露を行った後、再度詳細版本編 4.2.1.熱・光学特性の測定を行った。

暴露試験前後の実証対象技術の熱・光学性能試験結果から、屋外暴露4ヶ月後の反射性能の保持能力を以下に示す式で求めた。

\[
R_{\rho}(4\text{months}) = \frac{\rho_1}{\rho_0} \times 100 \quad \text{（％）} \]

\[
R_{V}(4\text{months}) = \frac{V_1}{V_0} \times 100 \quad \text{（％）} \]

\[
R_{\varepsilon}(4\text{months}) = \frac{\varepsilon_1}{\varepsilon_0} \times 100 \quad \text{（％）} \]

ここに、\(R_{\rho}(4\text{months}) \)、\(R_{V}(4\text{months}) \)、\(R_{\varepsilon}(4\text{months}) \)：

屋外暴露試験4ヶ月後における反射性能の保持率（％）

（以下、反射性能の保持率という）

\(\rho_0 \)、\(V_0 \)、\(\varepsilon_0 \)：屋外暴露試験4ヶ月後における反射性能値（平均値）（％）

\(\rho_1 \)、\(V_1 \)、\(\varepsilon_1 \)：屋外暴露試験前の反射性能値（平均値）（％）

\(\rho \) ：日射反射率

\(V \) ：明度

\(\varepsilon \) ：修正放射率

注記 反射性能の保持率は、JIS K5675（屋根用高日射反射率塗料）3.6 に規定される日射反射率保持率（\(\rho_k \））と同義ではない（屋外暴露試験の方法が異なる）。
4.3.2. 付着性の変化の把握【参考項目】

JIS A 6909（建築用仕上塗材）7.9 付着強さ試験 に準拠し、付着強さの測定を行った。試験体は6体製作し、屋外暴露試験前の測定用に3体、屋外暴露試験後の測定用に3体とした。試験体の色は、詳細版本編4.2.1.熱・光学特性（詳細版本編12ページ）で調整した製品中最も明度が低いもの1種類とした。下地は JIS A 5430（繊維強化セメント板）に規定するフレキシブル板（スレート）とし、寸法は70mm×70mmとし、下地材料は実証機関が提供した。

屋外暴露試験後の測定用の試験体3体を一般財団法人建材試験センター中央試験所内の屋外に水平に設置し、4ヶ月間（10月〜2月）の暴露試験を行った。屋外暴露試験終了後、付着強さ測定を行い、屋外暴露試験前後の付着性能の変化を確認した。
5. 実証試験結果と検討

5.1 空調負荷低減等性能

5.1.1. 熱・光学性能及び環境負荷・維持管理等性能

(1) 熱・光学性能及び環境負荷・維持管理等性能【実証項目】

<table>
<thead>
<tr>
<th></th>
<th>屋外暴露試験前</th>
<th>屋外暴露試験後</th>
<th>保持率 (%)*4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.1</td>
<td>No.2</td>
<td>No.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>日射反射率</th>
<th>近紫外及び可視光域1 (%)</th>
<th>近赤外域2 (%)</th>
<th>全波長域3 (%)</th>
<th>修正放射率（長波放射率）</th>
<th>明度</th>
</tr>
</thead>
<tbody>
<tr>
<td>① 黒色</td>
<td></td>
<td></td>
<td></td>
<td>(一) 0.893 0.902 0.893 0.896</td>
<td>(一) 3.2 3.2 3.2 3.2</td>
</tr>
<tr>
<td></td>
<td>7.8 7.8 7.9 7.8</td>
<td>9.2 9.5 8.8 9.2</td>
<td>117.9</td>
<td>0.902 0.912 0.912 0.909</td>
<td>109.4</td>
</tr>
<tr>
<td>② 灰色</td>
<td>24.8 25.0 24.9 24.9</td>
<td>24.2 24.0 23.7 24.0</td>
<td>96.4</td>
<td>0.893 0.884 0.884 0.887</td>
<td>101.0</td>
</tr>
<tr>
<td>③ 白色</td>
<td>73.6 73.5 73.3 73.5</td>
<td>62.6 58.6 62.7 61.3</td>
<td>83.4</td>
<td>0.884 0.884 0.884 0.884</td>
<td>92.3</td>
</tr>
</tbody>
</table>

*1: 近紫外及び可視光域の波長範囲は、300 nm〜780nm である。
*2: 近赤外域の波長範囲は、780 nm〜2500nm である。
*3: 全波長域の波長範囲は、300 nm〜2500nm である。
*4: 反射性能の保持率は、詳細版本編 4.3.1（詳細版本編 18 ページ）に示す式により算出した。
ヒートアイランド対策技術分野（建築物外皮による空調負荷低減等技術） 【屋根・屋上用高反射率塗料（H25）】
Blue on Tech ACシリーズ CC-F（クールコートF）・BiT-AC-CC-F
n-tech 株式会社

(2) 明度と日射反射率（全波長域）の関係【実証項目】

※左図は、平成20年度～平成25年度環境技術実証事業ヒートアイランド対策技術分野（建築物外皮による空調負荷低減等技術）において実証を行った高反射率塗料と一般塗料の明度と日射反射率（全波長域）の関係を示したものである。
※明度Vが10に近い白色では、一般塗料と高反射率塗料とで日射反射率に差はほとんど無い。高反射率塗料は、近赤外域での反射率を高くする技術を使用しており、白色でない、灰色あるいは黒色でも日射反射率を高くする機能を持っている。左図に示したように、白色では一般塗料と高反射率塗料との間で差はないが、灰色、黒色では明らかに日射反射率に差が現れている。
（詳細は、詳細版27ページ【注意事項】）
(3) 分光反射率（波長範囲：300nm～2500nm）の特性

① 黒色

図 5-2 分光反射率測定結果（黒色）

② 灰色

図 5-3 分光反射率測定結果（灰色）

③ 白色

図 5-4 分光反射率測定結果（白色）
5.1.2. 空調負荷低減等性能（数値計算）

(1) 実証項目の計算結果

【算出対象区域：工場全体（屋上表面温度低下量及び顕熱量低減効果は、屋根（屋上））】
比較対象：一般塗料

<table>
<thead>
<tr>
<th></th>
<th>東京都</th>
<th>大阪府</th>
</tr>
</thead>
<tbody>
<tr>
<td>屋根（屋上）表面温度低下量（夏季14時）*1</td>
<td>5.3℃</td>
<td>5.5℃</td>
</tr>
<tr>
<td></td>
<td>(55.4℃→50.1℃)</td>
<td>(54.9℃→49.4℃)</td>
</tr>
<tr>
<td>室温上昇抑制効果（夏季14時）*2</td>
<td>自然室温：0.9℃</td>
<td>自然室温：0.9℃</td>
</tr>
<tr>
<td></td>
<td>(38.8℃→37.9℃)</td>
<td>(36.8℃→35.9℃)</td>
</tr>
<tr>
<td>体感温度（夏季14時）*3</td>
<td>1.2℃</td>
<td>1.2℃</td>
</tr>
<tr>
<td></td>
<td>(40.5℃→39.3℃)</td>
<td>(38.7℃→37.5℃)</td>
</tr>
<tr>
<td>冷房負荷低減効果（夏季1ヶ月）*4</td>
<td>熱量：446kWh/月</td>
<td>574kWh/月</td>
</tr>
<tr>
<td></td>
<td>(13,776kWh/月→13,330kWh/月)</td>
<td>(18,823kWh/月→18,249kWh/月)</td>
</tr>
<tr>
<td></td>
<td>3.2%低減</td>
<td>3.0%低減</td>
</tr>
<tr>
<td>電気料金</td>
<td>2,071円低減</td>
<td>2,481円低減</td>
</tr>
<tr>
<td>冷房負荷低減効果（夏季6~9月）*4</td>
<td>熱量：1,326kWh/4ヶ月</td>
<td>1,813kWh/4ヶ月</td>
</tr>
<tr>
<td></td>
<td>(33,950kWh/4ヶ月→32,624kWh/4ヶ月)</td>
<td>(47,395kWh/4ヶ月→45,582kWh/4ヶ月)</td>
</tr>
<tr>
<td></td>
<td>3.9%低減</td>
<td>3.8%低減</td>
</tr>
<tr>
<td>電気料金</td>
<td>6,119円低減</td>
<td>7,726円低減</td>
</tr>
<tr>
<td>昼間の対流顕熱低減効果（夏季1ヶ月）*5</td>
<td>大気への放熱を26.0%低減</td>
<td>大気への放熱を26.1%低減</td>
</tr>
<tr>
<td>昼間の対流顕熱低減効果（夏季6~9月）*5</td>
<td>大気への放熱を26.2%低減</td>
<td>大気への放熱を26.2%低減</td>
</tr>
<tr>
<td></td>
<td>(825,842MJ/4ヶ月→609,528MJ/4ヶ月)</td>
<td>(957,239MJ/4ヶ月→706,741MJ/4ヶ月)</td>
</tr>
<tr>
<td>夜間の対流顕熱低減効果（夏季1ヶ月）*5</td>
<td>大気への放熱を2.3%低減</td>
<td>大気への放熱を4.3%低減</td>
</tr>
<tr>
<td>夜間の対流顕熱低減効果（夏季6~9月）*5</td>
<td>大気への放熱を3.3%低減</td>
<td>大気への放熱を5.0%低減</td>
</tr>
<tr>
<td></td>
<td>(-74,854MJ/4ヶ月→-77,357MJ/4ヶ月)</td>
<td>(-81,857MJ/4ヶ月→-85,923MJ/4ヶ月)</td>
</tr>
</tbody>
</table>

*1: 8月の平日で直達日射量の和が最も多くなった日（東京：8月10日，大阪：8月18日）の14時における対象部での屋上表面温度・室温の抑制効果
*2: 冷房を行わないときの室温
*3: 壁などの室内表面温度を考慮した温度（空気温度と壁などの室内表面温度との平均）
*4: 夏季1ヶ月（8月）及び夏季（6~9月）において室内温度が冷房設定温度を上回ったときに冷房が稼働した場合の冷房負荷低減効果

注1）数値計算は、モデル的な工場を想定し、各種前提条件のもとに行ったものであり、実際の導入環境とは異なる。なお、数値計算の基準は、灰色（No）の一般塗料とした。ただし、実証対象技術の灰色の明度Vが6.0±0.2の範囲内にないものは、同じ明度の一般塗料を基準とした。一般塗料の日射反射率は、詳細版注4.2.2.(3)に示す推定式（詳細版注18ページ参照）により算出した。
(2) 参考項目の計算結果
【算出対象区域：工場全体】
比較対象：一般塗料

<table>
<thead>
<tr>
<th></th>
<th>東京都工場</th>
<th>大阪府工場</th>
</tr>
</thead>
<tbody>
<tr>
<td>冷房負荷低減効果</td>
<td>4.4 % 低減</td>
<td>4.0 % 低減</td>
</tr>
<tr>
<td>(年間空調)</td>
<td>(35,589kWh/年 → 34,029kWh/年)</td>
<td>(48,973kWh/年 → 46,993kWh/年)</td>
</tr>
<tr>
<td>電気料金</td>
<td>7,134 円低減</td>
<td>8,398 円低減</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>東京都工場</th>
<th>大阪府工場</th>
</tr>
</thead>
<tbody>
<tr>
<td>暖房負荷低減効果</td>
<td>-1.9 % 低減</td>
<td>-1.4 % 低減</td>
</tr>
<tr>
<td>(冬季1ヶ月)</td>
<td>(16,173kWh/月 → 16,488kWh/月)</td>
<td>(18,463kWh/月 → 18,717kWh/月)</td>
</tr>
<tr>
<td>電気料金</td>
<td>-1,245 円低減</td>
<td>-930 円低減</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>東京都工場</th>
<th>大阪府工場</th>
</tr>
</thead>
<tbody>
<tr>
<td>暖房負荷低減効果</td>
<td>-1.7 % 低減</td>
<td>-1.4 % 低減</td>
</tr>
<tr>
<td>(冬季11～4月)</td>
<td>(67,525kWh/6ヶ月 → 68,703kWh/6ヶ月)</td>
<td>(68,116kWh/6ヶ月 → 69,103kWh/6ヶ月)</td>
</tr>
<tr>
<td>電気料金</td>
<td>-4,654 円低減</td>
<td>-3,613 円低減</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>東京都工場</th>
<th>大阪府工場</th>
</tr>
</thead>
<tbody>
<tr>
<td>冷暖房負荷低減効果</td>
<td>0.1 % 低減</td>
<td>0.7 % 低減</td>
</tr>
<tr>
<td>(期間空調)</td>
<td>(101,475kWh/年 → 101,327kWh/年)</td>
<td>(115,511kWh/年 → 114,685kWh/年)</td>
</tr>
<tr>
<td>電気料金</td>
<td>1,465 円低減</td>
<td>4,113 円低減</td>
</tr>
</tbody>
</table>

*1: 冷房負荷低減効果は年間を通じて室内温度が冷房設定温度を上回ったときに冷房が稼働した場合の冷房負荷低減効果
*2: 冬季1ヶ月（2月）及び冬季（11～4月）において室内温度が暖房設定温度を下回った時に暖房が稼働した場合の暖房負荷低減効果
*3: 夏季（6～9月）において室内温度が冷房設定温度を上回ったときに冷房が稼働した場合及び冬季（11～4月）において室内温度が暖房設定温度を下回ったときに暖房が稼働した場合の冷暖房負荷低減効果

注1: 数値計算は、モデル的な工場を想定し、各種前提条件のもとに行ったものであり、実際の導入環境とは異なる。なお、数値計算の基準は、灰色（N6）の一般塗料とした。ただし、実証対象技術の灰色の明度 V が 6.0±0.2 の範囲内になるものは、同じ明度の一般塗料を基準とした。一般塗料の日射反射率は、詳細版本編 4.2.2.(3)に示す推定式（詳細版本編18ページ参照）により算出した。
ヒートアイランド対策技術分野（建築物外皮による空調負荷低減等技術）【屋根・屋上用高反射率塗料（H25）】
Blue on Tech ACシリーズ CC-F(クールコートF)・Bot-AC-CC-F
n-tech 株式会社

(3) (1)実証項目の計算結果及び(2)参考項目の計算結果に関する注意点

① 数値計算は、モデル的な工場を想定し、各種前提条件のもと行ったものである。実際の導入環境とは異なる。

② 熱負荷の低減効果を熱量単位（kWh）だけでなく、電気料金の低減効果（円）としても示すため、定格出力運転時の消費電力1kW当たりの冷房・暖房能力（kW）を表したCOP及び電力量料金単価を設定している。

③ 数値計算において設定した冷暖房の運転期間は、下記の通りとした。
 • 夏季14時：東京；8月10日の14時、大阪；8月18日の14時
 • 夏季1ヶ月：8月1日～31日
 • 夏季6～9月：6月1日～9月30日
 • 冬季1ヶ月：2月1日～28日
 • 冬季11～4月：11月1日～4月30日
 • 期間空調：冷房期間6～9月及び暖房期間11～4月
 • 年間空調：冷房期間1年間*1

④ 冷房・暖房負荷低減効果の熱量の欄には、実証対象技術の使用前後の熱負荷の差および使用前後の熱負荷の総和をそれぞれ示している（使用前→使用後）。

⑤ 電気料金について、本計算では屋根・屋上用高反射率塗料の塗布による室内熱負荷の差を検討の対象としていることから、種々の仮定が必要となる総額を見積もることをせず、熱負荷の変化に伴う空調電気料金の差額のみを示している（電気料金の算出に関する考え方は詳細版第28ページ【電気料金算出に関する考え方】に示す）。

*1：設定温度よりも室温が高い場合に冷房運転を行う。
5.2 環境負荷・維持管理等性能【参考項目】
【付着性試験】

<table>
<thead>
<tr>
<th>付着強さ (N/mm²)</th>
<th>No.1</th>
<th>No.2</th>
<th>No.3</th>
<th>平均</th>
<th>No.4</th>
<th>No.5</th>
<th>No.6</th>
<th>平均</th>
</tr>
</thead>
<tbody>
<tr>
<td>付着強さ (N/mm²)</td>
<td>0.84</td>
<td>0.89</td>
<td>0.84</td>
<td>0.9</td>
<td>0.47</td>
<td>0.43</td>
<td>0.42</td>
<td>0.4</td>
</tr>
<tr>
<td>破壊状況*¹ (一)</td>
<td>A:70 B:30</td>
<td>A:60 B:40</td>
<td>A:70 B:30</td>
<td>一</td>
<td>A:50 B:30</td>
<td>A:60 B:40</td>
<td>A:70 B:30</td>
<td>一</td>
</tr>
</tbody>
</table>

注）付着性試験は、試験片の垂直な方向に対するはがれ又は破れに必要な最小張力を測定することにより付着強さを評価するものである。その結果は、最も弱い境界面（界面破壊）又は最も弱い構成要素（凝集破壊）の破壊に対する最小の抵抗力を示す（ただし、界面破壊と凝集破壊が同時に生じる場合もある）。なお、試験結果は、試験する塗膜系の機械的性質だけでなく、素地の性質及び調整、塗料の塗装方法、塗膜の乾燥状態、温度、湿度及びその他の要因により影響される。*２
本試験は、屋根・屋上用高反射率塗料の屋外暴露試験前後における付着性の変化を参考として確認するものである。

*¹：破壊状況の記号は以下による。
A：基板（スレート板）の破壊
B：塗膜部の破壊
数値：破壊百分率面積

*²：JIS K 5600-5-7:1999（塗料一般試験方法－第5部:塗膜の機械的性質－第7節:付着性（プルオフ法））
ヒートアイランド対策技術分野（建築物外皮による空調負荷低減等技術）【屋根・屋上用高反射率塗料（H25）】

Blue on Tech ACシリーズ CC-F（クールコート-F）・BoT-AC-CC-F

n-tech 株式会社

【注意事項】

材料の明度 \(V \) と日射反射率 \(\rho \) とは相関があり、一般的には明度が高いほど日射反射率も高くなる。材料表面の明度は、0～10 の範囲の数字で表される（理想的な白が 10、理想的な黒が 0 とされる*1）。明度が 10 に近付くほど可視光線の反射率が高くなり、その表面は白く見える。日射光は、大まかに言うと、紫外線、可視光線及び近赤外線から成るが、このうち可視光線域のエネルギーが約半分を占める。このため、明度が高くなるほど（白くなるほど）可視光線域のエネルギーを多く反射するため、日射反射率が高くなる。また、一般的に白色は、近赤外線の反射率も高くなる傾向がある。これにより、近赤外線域のエネルギーも反射するために、日射反射率がより高くなる。

上記の原因により、明度が 10 に近い白色では、一般塗料と屋根・屋上用高反射率塗料とで日射反射率に差は無くなる（関係は、詳細版本編 21 ページの図 5-1 に示す。）。

一般的な屋根・屋上用高反射率塗料は、近赤外線域での反射率を高くする技術を使用しており、灰色あるいは黒色のように、白色でなくても、日射反射率を高くする機能を持っている。図 5-1 に示したように、白色では一般塗料と屋根・屋上用高反射率塗料との間で、日射反射率の差は大きくなりが、灰色及び黒色では、同じ明度において日射反射率の差は明確に現れている。

これらのことから、屋根・屋上用高反射率塗料の実証項目の一つである数値計算は、白色ではなく灰色で行っている。ただし、灰色の中でも明度が異なると基準とする日射反射率も異なることから、基準とする日射反射率は実証対象技術の明度毎に求める必要がある。そのため、実証対象技術の灰色塗料が規定の明度（\(V=6.0 \pm 0.2 \)）に該当するものは明度 \(V=6 \) の日射反射率を、また該当しないものについてはそれぞれの明度の日射反射率を、4.2.2(3)（詳細版本編 18 ページ）に示す式により求め数値計算の基準を算出することとした。

なお、実証対象技術のみでなく、明度が異なる塗料の性能について一律に評価及び比較等を行う際には、注意が必要である。

*1：JIS Z 8721（色の表示方法－三属性による表示）
注）明度は、マンセル表色系の表示方法による値である。
【電気料金算出に関する考え方】

電力料金は、主に基本料金等と電力量料金で構成されている。屋根・屋上用高反射率塗料を塗布することによる空調負荷低減効果を算出する上での、契約内容等の条件を固定すると、基本料金等は屋根・屋上用高反射率塗料の塗布前後で一定であり、日射遮蔽による影響を受けるのは空調負荷に依存する電力量料金のみになる。

電力量料金は電力量料金単価と燃料費調整単価（石油等の燃料価格変動に依存）で構成されているが、燃料費調整単価は電力量料金単価と比較して十分小さいため、電力量料金は電力量料金単価のみで算出することとした。

工場の電力量料金単価については、小〜中規模の工場で契約電力を500kW未満を想定し、この条件に適合し、かつ、平日の昼間に電気の使用が多い場合の契約（夏季とその他季節で電力量料金が異なる）を適用した。

《引用文献》

- 東京電力．電気需給約款 [特定規模需要（高圧）] ，2012．
 http://www.tepco.co.jp/e-rates/custom/shiryou/yakkan/pdf/240901jukyuk00nj.pdf（参照 2013-05-14）
- 関西電力．“高圧（契約電力500kW未満）のお客さま”，
 http://www.kepco.co.jp/business/yakkan/high/500kw_less.html
付録

1. データの品質管理

本実証試験を実施にあたり、データの品質管理は、一般財団法人建材試験センター中央試験所が定める品質マニュアルに従って管理した。

1.1 測定操作の記録方法

記録用紙は、一般財団法人建材試験センター規程による試験データシート、実測値を記録するコンピュータープリントアウト及び実証試験要領に規定した成績書とした。

1.2 精度管理に関する情報

2. データの管理、分析、表示

2.1 データ管理とその方法

本実証試験から得られる以下のデータは、一般財団法人建材試験センターが定める品質マニュアルに従って管理するものとした。データの種類は次のとおりである。

- 空調負荷低減等性能のデータ
- 環境負荷、維持管理等性能のデータ

2.2 データ分析と評価

本実証試験で得られたデータについては、必要に応じ統計分析の処理を実施するとともに、使用した数式を実証試験結果報告書に記載する。

実証項目の測定結果の分析・表示方法は以下のとおりである。

(1) 空調負荷低減等性能のデータ

- 日射反射率、明度、修正放射率（長波放射率）、屋根（屋上）表面温度低下量、冷房負荷低減効果、室温上昇抑制効果、対流顕熱量低減効果

(2) 環境負荷、維持管理等性能のデータ

- 性能劣化の把握

3. 監査

本実証試験で得られたデータの品質監査は、一般財団法人建材試験センターが定める品質マニュアルに従って行うものとする。実証試験が適切に実施されていることを確認するために実証試験の期間中に内部監査を実施した。

この内部監査は、本実証試験から独立している一般財団法人建材試験センター中央試験所長を内部監査員として任命し実施した。
4. 用語の定義

- 日射反射率
 日射（波長範囲：300nm〜2500nm）の反射の放射束と入射の放射束の比。
- 明度（マンセルバリュー）
 無彩色（色みのない色）のうち、黒（V=0）から白（V=10）までの明るさを感覚的に等しい段階に分けて表示したもの。
- 放射率
 空間に放射する熱放射の放射束の、同じ温度の黒体が放射する熱放射の放射束に対する比。
- 冷房負荷低減効果
 実証対象技術による冷房負荷の低減効果
- 室温上昇抑制効果
 実証対象技術による室内温の上昇抑制効果
- 屋根（屋上）表面温度低下量
 夏季における実証対象技術による屋根（屋上）表面温度の低下量
- 自然室温
 冷暖房を行わないときの室温
- 体感温度
 突然などの室内表面温度を考慮した温度（空気温度と突っなどの室内表面温度との平均）
- 暖房負荷低減効果
 実証対象技術による暖房負荷の低減効果
- 冷暖房負荷削減効果
 実証対象技術による冷房負荷・暖房負荷の低減効果
- 対流顕熱量低減効果
 実証対象技術による屋根表面から外気への対流による顕熱移動量の低減効果
- 付着性*1
 塗膜が下地に付着して離れにくい性質。
- 付着強さ*1
 乾燥した塗膜と素地との間の付着力の総和。

*1: JIS K 5500:2000（塗料用語）
ヒートアイランド対策技術分野（建築物外皮による空調負荷低減等技術） 【屋根・屋上用高反射率塗料（H25）】
Blue on Tech AC SERIES CC-Fクールコート-F・Bot-AC-CC-F
n-tech 株式会社

○ 資料編

付表 1 計算用工場モデルの詳細情報（屋根・壁・床・開口部）

<table>
<thead>
<tr>
<th>設定条件</th>
<th>構成</th>
</tr>
</thead>
<tbody>
<tr>
<td>屋根</td>
<td></td>
</tr>
<tr>
<td>屋外側</td>
<td>ガルバリウム鋼板（0.6mm）</td>
</tr>
<tr>
<td>🔷</td>
<td>グラスウール 10K 品*1</td>
</tr>
<tr>
<td>屋内側</td>
<td>鋼板（0.8mm）</td>
</tr>
<tr>
<td>外壁</td>
<td></td>
</tr>
<tr>
<td>屋外側</td>
<td>ガルバリウム鋼板（0.6mm）</td>
</tr>
<tr>
<td>🔷</td>
<td>パーティクルボード（12.5mm）</td>
</tr>
<tr>
<td></td>
<td>グラスウール 10K 品（50mm）</td>
</tr>
<tr>
<td>屋内側</td>
<td>けい酸カルシウム板（厚さ 8.0mm）</td>
</tr>
<tr>
<td>床</td>
<td></td>
</tr>
<tr>
<td></td>
<td>コンクリート直均し</td>
</tr>
<tr>
<td>窓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>アルミサッシ（一重サッシ、フロート板ガラス（厚さ 6mm）入り）</td>
</tr>
</tbody>
</table>

*1：対象建築物モデルの屋根断熱材は、次に示す 2 つの仕様とした。
仕様 1 は屋根（屋上）表面温度及び室内空気温度の算出に、仕様 2 はその他の実証項目及び参考項目の算出に適用した。

仕様 1：屋根の断熱材…グラスウール [GW（10K）]、厚さ 10mm
仕様 2：屋根の断熱材…グラスウール [GW（10K）]、厚さ 50mm

注）対象建築物モデルは、平成 20 年度～平成 22 年度環境技術実証事業ヒートアイランド対策技術分野（建築物外皮による空調負荷低減等技術）において採用した工場モデルに基づき設定した。ただし、工場モデルの最高高さを 13.0m から 10.8m に変更している。
ヒートアイランド対策技術分野（建築物外皮による空調負荷低減等技術）【屋根・屋上用高反射率塗料（H25）】
Blueon TechACシリーズ CC-Fクールコート・F・Bt・AC・CC-F
n-tech 株式会社

付図1 計算用工場モデル（南側立面図）
単位：mm

付図2 計算用工場モデル（東側立面図）
単位：mm

付図3 屋根の形状（断面）
ヒートアイランド対策技術分野（建築物外皮による空調負荷低減等技術）
【屋根・屋上用高反射率塗料（H25）】
Blue on Tech AC シリーズ CC-CLF（クールコート-F）・Bot-AC-CC-F

付図 4 計算用工場モデル（矩計図）