環境省
平成21年度環境技術実証事業
ヒートアイランド対策技術分野

建築物外皮による空調負荷低減等技術
実証試験結果報告書
《詳細版》
平成22年3月

実証機関：財団法人建材試験センター
技術：開口部用後付建材
環境技術開発者：タキロン株式会社
製品名・型番：ルメハイサイドライト

実証番号051-0927

環境省
環境技術実証事業
本技術及びその性能に関して、環境省等による保証・認証・認可等を謳うものではありません。
www.env.go.jp/policy/etv

本実証試験結果報告書の著作権は、環境省に属します。
<table>
<thead>
<tr>
<th>項目</th>
<th>ページ</th>
</tr>
</thead>
<tbody>
<tr>
<td>全体概要</td>
<td>1</td>
</tr>
<tr>
<td>実証対象技術の概要</td>
<td>1</td>
</tr>
<tr>
<td>実証試験の概要</td>
<td>1</td>
</tr>
<tr>
<td>空調負荷低減性能</td>
<td>1</td>
</tr>
<tr>
<td>環境負荷・維持管理等性能（参考項目）</td>
<td>1</td>
</tr>
<tr>
<td>実証試験結果</td>
<td>2</td>
</tr>
<tr>
<td>空調負荷低減性能</td>
<td>2</td>
</tr>
<tr>
<td>参考情報</td>
<td>7</td>
</tr>
<tr>
<td>本編</td>
<td>8</td>
</tr>
<tr>
<td>実証試験の概要と目的</td>
<td>8</td>
</tr>
<tr>
<td>実証試験参加組織と実証試験参加者の責任分掌</td>
<td>9</td>
</tr>
<tr>
<td>実証対象技術の概要</td>
<td>11</td>
</tr>
<tr>
<td>実証試験の内容</td>
<td>13</td>
</tr>
<tr>
<td>実証試験期間</td>
<td>13</td>
</tr>
<tr>
<td>空調負荷低減性能</td>
<td>13</td>
</tr>
<tr>
<td>環境負荷・維持管理等性能（参考項目）</td>
<td>19</td>
</tr>
<tr>
<td>実証試験結果と検討</td>
<td>20</td>
</tr>
<tr>
<td>空調負荷低減性能</td>
<td>20</td>
</tr>
<tr>
<td>付録</td>
<td>26</td>
</tr>
<tr>
<td>データの品質管理</td>
<td>26</td>
</tr>
<tr>
<td>測定操作の記録方法</td>
<td>26</td>
</tr>
<tr>
<td>精度管理に関する情報</td>
<td>26</td>
</tr>
<tr>
<td>データの管理、分析、表示</td>
<td>26</td>
</tr>
<tr>
<td>データ管理とその方法</td>
<td>26</td>
</tr>
<tr>
<td>データ分析と評価</td>
<td>26</td>
</tr>
<tr>
<td>監査</td>
<td>26</td>
</tr>
<tr>
<td>資料編</td>
<td>27</td>
</tr>
</tbody>
</table>
全体概要

実証対象技術／ルメハイサイドライト
環境技術開発者／タキロン株式会社
実証機関／財団法人建材試験センター
実証試験期間／平成21年9月16日～平成22年2月26日

1. 実証対象技術の概要
半透明、複層ポリカーボネートを開口部に用いることで内部空気層による断熱効果が得られるとともに自然光を屋内に取り入れることができます。

2. 実証試験の概要
2.1 空調負荷低減性能
開口部用後付建材の熱・光学性能及び断熱性能を測定し、その結果から、下記条件における対象建築物の開口部（南表面上部）に開口部用後付建材を取り付けた場合の効果（冷房負荷低減効果等）を数値計算により算出する。

2.1.1 数値計算における設定条件
(1) 対象建築物
工場（床面積：1000㎡、最高高さ：13.0m、構造：S造（鉄骨造））
注）周囲の建築物等の影響による日射の遮蔽は考慮しない。
対象建築物の詳細は、詳細版本編4.2.3(1)①対象建築物（詳細版本編15ページ）参照。

(2) 使用気象データ
1990年代標準年気象データ（東京都及び大阪府）

(3) 空調機器設定

<table>
<thead>
<tr>
<th>建物</th>
<th>設定温度（℃）</th>
<th>稼働時間</th>
<th>冷房COP</th>
<th>暖房COP</th>
</tr>
</thead>
<tbody>
<tr>
<td>工場</td>
<td>28.0/18.0</td>
<td>平日8～17時</td>
<td>3.55</td>
<td>3.90</td>
</tr>
</tbody>
</table>

(4) 電力量料金単価の設定

<table>
<thead>
<tr>
<th>地域</th>
<th>建物</th>
<th>標準契約種別</th>
<th>電力量料金単価（円/kWh）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>夏季</td>
</tr>
<tr>
<td>東京</td>
<td>工場</td>
<td>高圧電力 A</td>
<td>13.59</td>
</tr>
<tr>
<td>大阪</td>
<td></td>
<td>高圧電力 BS</td>
<td>12.59</td>
</tr>
</tbody>
</table>

2.2 環境負荷・維持管理等性能（参考項目）
耐候性試験機により1000時間の促進耐候性試験を行う。試験終了後、熱・光学性能の測定を行い、耐候性試験前後ににおける測定値の変化を確認する。
3. 実証試験結果

3.1 空調負荷低減性能

3.1.1. 熱・光学性能及び環境負荷・維持管理等性能

(1) 実証項目

① 試験体（構成体）の熱・光学性能試験結果※

<table>
<thead>
<tr>
<th>項目</th>
<th>算出結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>日射透過率</td>
<td>60.1</td>
</tr>
<tr>
<td>日射反射率</td>
<td>26.6</td>
</tr>
<tr>
<td>修正放射率（長波放射率）</td>
<td>0.88</td>
</tr>
<tr>
<td>遮熱係数</td>
<td>0.69</td>
</tr>
</tbody>
</table>

(2) 参考項目

① 試験体（構成体）の熱・光学性能試験結果※（平均値※2）

<table>
<thead>
<tr>
<th>項目</th>
<th>算出結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>可視光透過率</td>
<td>62.0</td>
</tr>
<tr>
<td>可視光反射率</td>
<td>27.6</td>
</tr>
</tbody>
</table>

② 試験片（単板）※3の熱・光学性能試験結果（平均値※2）

<table>
<thead>
<tr>
<th>項目</th>
<th>測定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>耐候性試験前</td>
<td>耐候性試験後</td>
</tr>
<tr>
<td>日射透過率</td>
<td>83.3</td>
</tr>
<tr>
<td>日射反射率</td>
<td>9.5</td>
</tr>
<tr>
<td>修正放射率（長波放射率）</td>
<td>0.89</td>
</tr>
</tbody>
</table>

※1：試験体（4枚の試験片からなる構成体）は、4枚の単板ガラスからなる構成体（4重の複層ガラス）と同等の構成を持つものを見なし計算した。なお、算定に用いた結果は試験片（単板）の測定結果（平均値）とした。

※2：試験体数または試験片数3（n=3）で求めた結果の平均値を示す。

※3：試験片は、試験体（製品）から切り出して製作した単板の小片である。（製作方法は詳細版 13 ページ参照。）
③ 試験片（単板）※1の分光透過率及び分光反射率測定結果

図－1 試験片（単板）の分光透過率測定結果

※1: 試験片は、試験体（製品）から切り出して製作した単板の小片である。（製作方法は詳細書き13ページ参照。）

図－2 試験片（単板）の分光反射率測定結果

3.1.2.断熱性能※2

<table>
<thead>
<tr>
<th>項目</th>
<th>測定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>試験体厚さ (mm)</td>
<td>40</td>
</tr>
<tr>
<td>熱貫流率 (W/m²·K)</td>
<td>1.73</td>
</tr>
</tbody>
</table>

※2: 断熱性能の測定は、試験体（構成体）により行った。
### 3.1.3. 数値計算により算出する実証項目

(1) 実証项目的計算結果

<table>
<thead>
<tr>
<th>室温上昇抑制効果*1 (夏季 14 時)</th>
<th>東京都</th>
<th>大阪府</th>
</tr>
</thead>
<tbody>
<tr>
<td>自然室温*2 (冷房無し)</td>
<td>0.2 ℃ (45.3℃→ 45.1 ℃)</td>
<td>0.3 ℃ (46.9℃→ 46.6 ℃)</td>
</tr>
<tr>
<td>体感温度*3 (作用温度)</td>
<td>0.2 ℃ (45.3℃→ 45.1 ℃)</td>
<td>0.2 ℃ (46.8℃→ 46.6 ℃)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>冷房負荷低減効果*4 (夏季 1ヶ月)</th>
<th>熱量</th>
<th>東京都</th>
<th>大阪府</th>
</tr>
</thead>
<tbody>
<tr>
<td>焼量</td>
<td>957 kWh/月</td>
<td>(ガラス単板 34,893 kWh/月)</td>
<td>1,083 kWh/月 (ガラス単板 40,953 kWh/月)</td>
</tr>
<tr>
<td>電気料金</td>
<td>3,664 円/月</td>
<td>3,842 円/月</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>冷房負荷低減効果*4 (夏季 6〜9 月)</th>
<th>熱量</th>
<th>東京都</th>
<th>大阪府</th>
</tr>
</thead>
<tbody>
<tr>
<td>焼量</td>
<td>2,779 kWh/4ヶ月</td>
<td>(ガラス単板 89,417 kWh/4ヶ月)</td>
<td>3,143 kWh/4ヶ月 (ガラス単板 105,594 kWh/4ヶ月)</td>
</tr>
<tr>
<td>電気料金</td>
<td>10,477 円/4ヶ月</td>
<td>10,953 円/4ヶ月</td>
<td></td>
</tr>
</tbody>
</table>

*1: 8 月 1 日〜10 日の期間中最も日射量の多い日時における対象部での室温の抑制効果
*2: 冷房を行わないときの室温
*3: 平均放射温度 (MRT) を考慮した温度 (室温と MRT の平均)
*4: 夏季 1 ヶ月 (8 月) 及び夏季 (6 〜 9 月) において室内温度が冷房設定温度を上回ったときに冷房が稼働した場合の冷房負荷低減効果

注) 数値計算は、モデル的な工場を想定し、各種前提条件のもと行いものであり、実際の導入環境とは異なる。
## 参考項目の計算結果

<table>
<thead>
<tr>
<th></th>
<th>東京都</th>
<th>大阪府</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>工場</td>
<td>工場</td>
</tr>
<tr>
<td>冷房負荷低減効果*1</td>
<td>熱量</td>
<td>熱量</td>
</tr>
<tr>
<td>(年間空調)</td>
<td>(ガラス単板 95,171 kWh/年)</td>
<td>(ガラス単板 118,525 kWh/年)</td>
</tr>
<tr>
<td></td>
<td>4,001 kWh/年</td>
<td>4,577 kWh/年</td>
</tr>
<tr>
<td></td>
<td>4.2 % 低減</td>
<td>3.9 % 低減</td>
</tr>
<tr>
<td></td>
<td>電気料金</td>
<td>電気料金</td>
</tr>
<tr>
<td></td>
<td>14,782 円/年</td>
<td>15,614 円/年</td>
</tr>
<tr>
<td>暖房負荷低減効果*2</td>
<td>熱量</td>
<td>熱量</td>
</tr>
<tr>
<td>(冬季1ヶ月)</td>
<td>(ガラス単板 11,033 kWh/月)</td>
<td>(ガラス単板 14,471 kWh/月)</td>
</tr>
<tr>
<td></td>
<td>-146 kWh/月</td>
<td>-78 kWh/月</td>
</tr>
<tr>
<td></td>
<td>-1.3 % 低減</td>
<td>-0.5 % 低減</td>
</tr>
<tr>
<td></td>
<td>電気料金</td>
<td>電気料金</td>
</tr>
<tr>
<td></td>
<td>-467 円/月</td>
<td>-232 円/月</td>
</tr>
<tr>
<td>暖房負荷低減効果*2</td>
<td>熱量</td>
<td>熱量</td>
</tr>
<tr>
<td>(冬季 11〜4月)</td>
<td>(ガラス単板 39,721 kWh/6ヶ月)</td>
<td>(ガラス単板 46,170 kWh/6ヶ月)</td>
</tr>
<tr>
<td></td>
<td>-781 kWh/6ヶ月</td>
<td>-393 kWh/6ヶ月</td>
</tr>
<tr>
<td></td>
<td>-2.0 % 低減</td>
<td>-0.9 % 低減</td>
</tr>
<tr>
<td></td>
<td>電気料金</td>
<td>電気料金</td>
</tr>
<tr>
<td></td>
<td>-2,504 円/6ヶ月</td>
<td>-1,165 円/6ヶ月</td>
</tr>
<tr>
<td>冷暖房負荷低減効果*3</td>
<td>熱量</td>
<td>熱量</td>
</tr>
<tr>
<td>(期間空調)</td>
<td>(ガラス単板 129,138 kWh/年)</td>
<td>(ガラス単板 151,763 kWh/年)</td>
</tr>
<tr>
<td></td>
<td>1,998 kWh/年</td>
<td>2,749 kWh/年</td>
</tr>
<tr>
<td></td>
<td>1.5 % 低減</td>
<td>1.8 % 低減</td>
</tr>
<tr>
<td></td>
<td>電気料金</td>
<td>電気料金</td>
</tr>
<tr>
<td></td>
<td>7,973 円/年</td>
<td>9,788 円/年</td>
</tr>
</tbody>
</table>

*1: 年間を通じ室内温度が冷房設定温度を上回ったときに冷房が稼働した場合の冷房負荷低減効果

*2: 冬季1ヶ月（2月）及び冬季（11〜4月）において室内温度が暖房設定温度を下回ったときに暖房が稼働した場合の暖房負荷低減効果

*3: 夏季（6〜9月）において室内温度が冷房設定温度を上回ったときに冷房が稼働した場合及び冬季（11〜4月）において室内温度が暖房設定温度を下回ったときに暖房が稼働した場合の冷暖房負荷低減効果

注）数値計算は、モデル的な工場を想定し、各種前提条件のもと行ったものであり、実際の導入環境とは異なる。
(3) (1)実証項目の計算結果及び(2)参考項目の計算結果に関する注意点

① 数値計算は、モデル的な工場を想定し、各種前提条件のもとに行ったものであり、実際の導入環境とは異なる。

② 熱負荷の低減効果を熱量単位(kWh)だけでなく、電気料金の低減効果（円）としても示すため、定格出力運転時における消費電力1kW当たりの冷房・暖房能力（kW）を表したCOP及び電力量料金単価を設定している。

③ 数値計算において設定した冷暖房の運転期間は、下記の通りとした。

<table>
<thead>
<tr>
<th>季節</th>
<th>運転期間</th>
<th>冷房期間</th>
<th>暖房期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>夏季</td>
<td>8月1日～10日の期間中最も日射量の多い日の14時</td>
<td>6月1日～9月30日</td>
<td>11月～4月</td>
</tr>
<tr>
<td>夏季</td>
<td>8月1日～31日</td>
<td>8月1日～28日</td>
<td>1年間</td>
</tr>
<tr>
<td>冬季</td>
<td>2月1日～28日</td>
<td>6月1日～9月30日</td>
<td>1年間*1</td>
</tr>
</tbody>
</table>

*1：設定温度よりも室温が高い場合に冷房運転を行う。

④ 日射が遮蔽され、室内が暗くなることに伴う、照明による熱負荷の増加は考慮していない。

⑤ 冷房・暖房負荷低減効果の熱量の欄にある「ガラス単板〇〇kWh/△△」とは、開口部用後付建材を取り付けていない状態（開口部にガラス単板のみが入っている状態）において、日射・電気機器等により室内に加えられる熱負荷の一定期間における総和を示している。

⑥ 電気料金について、本計算では開口部用後付建材の施工による室内熱負荷の差を検討の対象としていることから、種々の仮定が必要となる総額を見積もることをせず、熱負荷の変化に伴う空調電気料金の差額のみを示している。
4. 参考情報

(1) 実証対象技術の概要（参考情報）及び(2)その他メーカーからの情報（参考情報）は、全て環境技術開発者が自らの責任において申請したものであり、環境省及び実証機関は、内容に関して一切の責任を負いません。

<table>
<thead>
<tr>
<th>項目</th>
<th>環境技術開発者 記入欄</th>
</tr>
</thead>
<tbody>
<tr>
<td>環境技術開発者</td>
<td>タキロン株式会社</td>
</tr>
<tr>
<td>技術開発企業名</td>
<td>タキロン株式会社</td>
</tr>
<tr>
<td>実証対象製品・名称</td>
<td>ルメハイサイドライト</td>
</tr>
<tr>
<td>実証対象製品・型番</td>
<td>一</td>
</tr>
<tr>
<td>TEL</td>
<td>03-6711-3722</td>
</tr>
<tr>
<td>FAX</td>
<td>03-6711-3742</td>
</tr>
<tr>
<td>Web アドレス</td>
<td><a href="http://www.takiron.co.jp/">http://www.takiron.co.jp/</a></td>
</tr>
<tr>
<td>E-mail</td>
<td><a href="mailto:m-iga@takiron.co.jp">m-iga@takiron.co.jp</a></td>
</tr>
<tr>
<td>ヒートアイランド対策技術の原理</td>
<td>半透明、複層ポリカーボネートを開口部に用いることで内部空気層による断熱効果が得られるとともに自然光を屋内に取り入れることができる。</td>
</tr>
<tr>
<td>技術の特徴</td>
<td>ペアガラスより高い断熱性能を持ち、且つ直射光による熱を和らげる効果を持つ。割れにくい特性上、大型採光面の形成に最適。</td>
</tr>
<tr>
<td>対応する建築物・窓など</td>
<td>建築物開口部とされる部位。</td>
</tr>
<tr>
<td>設置条件</td>
<td>開口部と外壁との取合い及び、耐風圧に対応するための鋼材設計と負圧金具設置。</td>
</tr>
<tr>
<td>その他設置場所等の制約条件</td>
<td>建築基準法上、防火性能に適合しない場所では使用不可。</td>
</tr>
<tr>
<td>耐候性・製品寿命など</td>
<td>一</td>
</tr>
<tr>
<td>サイズ（採光寸法）</td>
<td>W3000×H2000</td>
</tr>
<tr>
<td>取付け工事費、運賃その他取合い部品等</td>
<td>297,000 円</td>
</tr>
</tbody>
</table>

【備考】
上記価格は採光面材、サッシの設計価格。
取付け工事費、運賃その他取合い部品等は含まれない。

(2) その他メーカーからの情報（参考情報）

【製品構成】 複層ポリカーボネート（ルメウォール）、負圧金具及び専用サッシ枠
○ 本編

1. 実証試験の概要と目的

環境技術実証事業は、既に適用が可能な段階にありながら、環境保全効果等について客観的な評価が行われていないために普及が進んでいない先進的環境技術について、その環境保全効果等を第三者が客観的に実証する事業を実施することにより、環境技術を実証する手法・体制確立を図るとともに、環境技術の普及を促進し、環境保全と環境産業の発展を促進することを目的とするものである。

本実証試験は、平成21年6月18日に財団法人建材試験センターと環境省水・大気環境局が策定した実証試験要領（第2版）*1に基づいて選定された実証対象技術について、同実証試験要領に準拠して実証試験を実施することで、以下に示す環境保全効果等を客観的に実証したものである。

【実証項目】
◆ 空調負荷低減性能
   【熱・光学性能】
   • 日射透過率及び日射反射率
   • 修正放射率（長波放射率）
   • 遮へい係数
   【断熱性能】
   • 熱貫流率
   【数値計算】
   • 冷房負荷低減効果
   • 室温上昇抑制効果
◆ 環境負荷・維持管理等性能
   • 性能劣化の把握（参考項目）

2. 実証試験参加組織と実証試験参加者の責任分掌

実証試験に参加する組織は、図 2-1 に示すとおりである。また、実証試験参加者とその責任分掌は、表 2-1 に示すとおりである。

図 2-1 実証試験参加組織
### 表 2-1 実証試験参加者と責任分掌

<table>
<thead>
<tr>
<th>区分</th>
<th>実証試験参加機関</th>
<th>責任分掌</th>
<th>参加者</th>
</tr>
</thead>
<tbody>
<tr>
<td>実証機関</td>
<td>財団法人建材試験センター</td>
<td>実証試験の運営管理</td>
<td>中央試験所環境グループ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>実証対象技術の公募・審査</td>
<td>藤本 哲夫</td>
</tr>
<tr>
<td></td>
<td></td>
<td>技術実証委員会の設置・運営</td>
<td>萩原 伸治</td>
</tr>
<tr>
<td></td>
<td></td>
<td>品質管理システムの構築</td>
<td>田坂 太一</td>
</tr>
<tr>
<td></td>
<td></td>
<td>実証試験計画の策定</td>
<td>松原 知子</td>
</tr>
<tr>
<td></td>
<td></td>
<td>実証試験の実施・運用</td>
<td>庄司 秀雄</td>
</tr>
<tr>
<td></td>
<td></td>
<td>実証試験データ・情報の管理</td>
<td>経営企画部</td>
</tr>
<tr>
<td></td>
<td></td>
<td>実証試験結果報告書の作成</td>
<td>調査研究課</td>
</tr>
<tr>
<td></td>
<td></td>
<td>その他実証試験要領で定められた業務</td>
<td>川上 修</td>
</tr>
<tr>
<td></td>
<td></td>
<td>内部監査の総括</td>
<td>菊地 裕介</td>
</tr>
<tr>
<td></td>
<td></td>
<td>実証試験データの検証</td>
<td>村上 哲也</td>
</tr>
<tr>
<td>環境技術開発者</td>
<td>タキロン株式会社</td>
<td>実証機関への必要な情報提供と協力</td>
<td>伊賀 正浩</td>
</tr>
<tr>
<td></td>
<td></td>
<td>実証対象製品の準備と関連資料の提供</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>費用負担及び責任をもって実証対象製品の運搬等を実施</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>既存の性能データの提供</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>実証試験報告書の作成における協力</td>
<td></td>
</tr>
</tbody>
</table>
3. 実証対象技術の概要

実証対象技術の概要は、表 3-1 に示すとおりである。

このページ及び次ページに示された情報は、全て環境技術開発者が自らの責任において申請した内容であり、環境省及び実証機関は、内容に関して一切の責任を負いません。

<table>
<thead>
<tr>
<th>項目</th>
<th>環境技術開発者 記入欄</th>
</tr>
</thead>
<tbody>
<tr>
<td>環境技術開発者</td>
<td>タキロン株式会社</td>
</tr>
<tr>
<td>技術開発企業名</td>
<td>タキロン株式会社</td>
</tr>
<tr>
<td>実証対象製品・名称</td>
<td>ルメハイサイドライト</td>
</tr>
<tr>
<td>実証対象製品・型番</td>
<td>－</td>
</tr>
<tr>
<td>連絡先</td>
<td>－</td>
</tr>
<tr>
<td>TEL</td>
<td>03-6711-3722</td>
</tr>
<tr>
<td>FAX</td>
<td>03-6711-3742</td>
</tr>
<tr>
<td>Web アドレス</td>
<td><a href="http://www.takiron.co.jp/">http://www.takiron.co.jp/</a></td>
</tr>
<tr>
<td>E-mail</td>
<td><a href="mailto:m-iga@takiron.co.jp">m-iga@takiron.co.jp</a></td>
</tr>
<tr>
<td>ヒートアイランド対策技術の原理</td>
<td>半透明、複層ポリカーボネートを開口部に用いることで内部空気層による断熱効果が得られるとともに自然光を屋内に取り入れることができる。</td>
</tr>
<tr>
<td>技術の特徴</td>
<td>ペアガラスより高い断熱性能を持ち、且つ直射光による熱を和らげる効果を持つ。割れにくい特性上、大型採光面の形成に最適。</td>
</tr>
<tr>
<td>対応する建築物・窓など</td>
<td>建築物開口部とされる部位。</td>
</tr>
<tr>
<td>設置条件</td>
<td>開口部と外壁との取合い及び、耐風圧に対応するための断熱設計と負圧金具設置。</td>
</tr>
<tr>
<td>その他設置場所等の制約条件</td>
<td>建築基準法上、防火性能に適合しない場所では使用不可。</td>
</tr>
<tr>
<td>メンテナンスの必要性・耐候性・製品寿命など</td>
<td>－</td>
</tr>
<tr>
<td>コスト概算</td>
<td>サイズ(採光寸法)W3000×H2000 ： 297,000 円 1 窓あたり</td>
</tr>
</tbody>
</table>

【備考】
上記価格は採光面材、サッシの設計価格。
取付け工事費、運賃その他取合い部品等は含まれない。
〇その他メーカーからの情報（参考情報）

【製品構成】複層ポリカーボネート（ルメウォール）、負圧金具及び専用サッシ枠
4. 実証試験の内容

4.1 実証試験期間

(1) 試験体搬入
平成21年 9月15日

(2) 熱・光学性能測定
平成21年 9月16日～平成21年10月7日

(3) 促進耐候性試験
平成21年10月16日～平成22年2月15日

(4) LESCOM-envによる数値計算
平成21年10月19日～平成22年2月26日

4.2 空調負荷低減性能

4.2.1. 熱・光学性能測定

(1) 日射透過率及び日射反射率

JIS R 3106（板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法）に準拠し、試験体から切り出した試験片の熱・光学性能試験結果を元に日射透過率及び日射反射率を算出した。〔波長範囲：300nm～2500nm〕

このとき試験体は、4枚の試験片からなる構成体とした。試験体の日射透過率及び日射反射率は、4枚の単板ガラスからなる構成体（4重の複層ガラス）と同等の構成を持つものと見なして算出した。

試験片の断面図及び試験片の切り出し位置を図4-1に示す。なお、試験片数量は3（n=3）とし、測定結果の平均値を用いて試験体の結果を算出した。

更に、参考項目として、試験体の可視光透過率及び可視光反射率を算出した。

図4-1 試験体断面図及び試験片の切り出し位置
(2) 修正放射率（長波放射率）
(1)の試験片を用い、JIS R 3106（板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法）に準拠して測定して修正放射率（長波放射率）を算出した。[波長範囲: 5.5μm〜25μm]

(3) 遮へい係数
(1)及び(2)で求めた結果を用い、JIS R 3106に準拠して日射熱取得率を算出した。算出した結果を用いて、下記の式により遮へい係数を算出した。

\[ S = \frac{\eta}{\eta_0} \] 

ここで、\( \eta \)：実証対象技術の日射熱取得率  
\( \eta_0 \)：厚さ3mmのフロート板ガラスの日射熱取得率（=0.88*）

*1：坂本雄三ほか、“3章 住宅の省エネルギー性能の評価方法”、住宅の省エネルギー基準の解説、次世代省エネルギー基準解説書編集委員会、第3版、財団法人建築環境・省エネルギー機構、2009、p.136。

4.2.2. 断熱性能測定
断熱性能測定は、JIS A 1420（建築用構成材の断熱性測定方法—校正熱箱法及び保護熱箱法）附属書Bに従い熱貫流率の測定を行った。試験体は、製品と同じ状態（厚さ40mm）で、寸法900mm×900mmのものとした。なお、試験体数量は1（n=1）とした。

【用語の定義】
- 日射透過率
  日射（波長範囲: 300nm〜2500nm）の透過光の光束と入射光の光束の比。
- 日射反射率
  日射（波長範囲: 300nm〜2500nm）の反射光の光束と入射光の光束の比。
- 放射率
  空間に放射する熱放射の放射束の、同じ温度の黒体が放射する熱放射の放射束に対する比。
- 平均放射温度（MRT: Mean Radiant Temperature）
  人体が周囲の壁面などで受ける放射熱量と同量の放射熱量を射出する黒体の一定の温度のこと（人体に対する熱放射の影響を考慮した体感指標）。
- 遮へい係数
  開口部に入射した日射が、実証対象技術に一度吸収された後に入射面の反対側に再放射される分を含んで通過する割合（通過分および再放射分の和=日射熱取得率）を、厚さ3mmのフロート板ガラスだけの場合の割合を1として表した比率。
- 熱貫流率
  物体を介した両側の空気温度差が1℃のとき、面積1m²当たり単位時間に通過する熱量。
4.2.3. 数値計算

本項目における実証試験結果は、レスポンス・ファクター法に基づく非定常熱負荷計算プログラム「LESCOM-env」により算出する。

「LESCOM-env」とは、旧通産省生活産業局の住機能向上製品対策委員会で開発された多数室非定常熱負荷計算プログラム「LESCOM」を、実証対象技術に応じた内容に追加開発（東京理科大学武田仁教授による）したものである。

計算条件及び計算による出力項目は下記の通りとする。

(1) 計算条件
① 対象建築物
工場（床面積: 1000m²、最高高さ: 13.0m、構造: S 造（鉄骨造））[表 4-1、図 4-2]

- 周囲の建築物等の影響による日射の遮蔽は考慮しない。
- 南側立面の上部に位置する開口部全面に開口部用後付建材を取り付けた条件で数値計算を行う。

表 4-1 想定する工場モデル

<table>
<thead>
<tr>
<th>設定条件</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>モデル建物の概要</td>
<td>・工場（図 4-2 に示す形状とする。）</td>
</tr>
<tr>
<td></td>
<td>・床面積: 1000m²</td>
</tr>
<tr>
<td></td>
<td>・構造: S 造（鉄骨造）</td>
</tr>
<tr>
<td></td>
<td>・最高高さ: 13.0m</td>
</tr>
<tr>
<td>実証項目の対象となる部分</td>
<td>・工場全体</td>
</tr>
<tr>
<td>備考</td>
<td>・工場モデルの詳細は、詳細版資料編 27～29 ページに示す。</td>
</tr>
</tbody>
</table>

図 4-2 計算用工場モデル（平面図）
② 気象条件設定及び冷暖房設定

表4-2 気象条件の設定

<table>
<thead>
<tr>
<th>設定条件</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>地域</td>
<td>東京都、大阪府</td>
</tr>
<tr>
<td>気象データ</td>
<td>1990年代標準年気象データ*1</td>
</tr>
</tbody>
</table>

*1: 武田仁ほか.「第1章 気象データ I 熱負荷基準標準気象データ」. 標準気象データと熱負荷計算プログラムLESCOM. 第1版, 井上書院, 2005年, p7－25.

表4-3 冷暖房設定

<table>
<thead>
<tr>
<th>建築物</th>
<th>設定温度（℃）</th>
<th>稼働時間</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>冷房</td>
<td>暖房</td>
</tr>
<tr>
<td>工場</td>
<td>28.0</td>
<td>18.0</td>
</tr>
</tbody>
</table>

③ COP（Coefficient of Performance：エネルギー消費効率）の設定

表4-4 COPの設定

<table>
<thead>
<tr>
<th>建築物</th>
<th>冷房 COP</th>
<th>暖房 COP</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>工場</td>
<td>3.55</td>
<td>3.90</td>
<td>冷房能力14.0kWクラス・4方向カセット型</td>
</tr>
</tbody>
</table>

*1: 財団法人省エネルギーセンター. 省エネ性能カタログ・業務用エアコン版・2006年3月. 2006. を参考に設定した。
④ 電力量料金単価

表 4-5 電力量料金単価の設定値

<table>
<thead>
<tr>
<th>地域</th>
<th>建築物</th>
<th>標準契約種別</th>
<th>電力量料金単価（円／kWh）*1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>夏季*2</td>
</tr>
<tr>
<td>東京</td>
<td>工場</td>
<td>高圧電力 A</td>
<td>13.59</td>
</tr>
<tr>
<td>大阪</td>
<td></td>
<td>高圧電力 BS</td>
<td>12.59</td>
</tr>
</tbody>
</table>

*1：電力量料金単価は、消費税相当額を含んだものである。
*2：夏季：7月1日～9月30日
*3：その他季：10月1日～6月30日
注）燃料価格変動に依存する燃料費調整単価は0円／kWhと仮定。

⑤ 実証項目・参考項目の設定期間

表 4-6 数値計算による実証項目・参考項目の設定期間について

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>設定期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>実証項目</td>
<td>室温上昇抑制効果</td>
<td>夏季14時 8月1日～10日の期間中最も日射量多い日の14時</td>
</tr>
<tr>
<td></td>
<td>冷房負荷低減効果</td>
<td>夏季1ヶ月8月1日～8月31日</td>
</tr>
<tr>
<td></td>
<td>夏季6～9月</td>
<td>6月1日～9月30日</td>
</tr>
<tr>
<td>参考項目</td>
<td>冷房負荷低減効果</td>
<td>年間空調 1年間</td>
</tr>
<tr>
<td></td>
<td>暖房負荷低減効果</td>
<td>冬季1ヶ月2月1日～2月28日</td>
</tr>
<tr>
<td></td>
<td>冬季11～4月</td>
<td>11月1日～4月30日</td>
</tr>
<tr>
<td></td>
<td>冷暖房負荷低減効果</td>
<td>期間空調*1 冷房期間6～9月（6月1日～9月30日）及び暖房期間11～4月（11月1日～4月30日）</td>
</tr>
</tbody>
</table>

*1：冷暖房期間は、JRA 4046（ルームエアコンディショナの期間消費電力量算出基準）*2を参考に設定した。
(2) 出力項目

本実証試験では、工場を対象として計算を行う。

数値計算により算出する各実証項目・参考項目は、開口部用後付建材を工場モデルの南側上部の窓に取り付けた状態と開口部用後付建材を取り付けない状態（ガラス単板のみの状態）との差分量として求める。

各項目において、熱負荷の低減効果の熱量単位（kWh）から電力量料金単位（円）への換算は、以下の式により行った。

\[
\Delta E = \Delta Q \times \frac{A}{\text{COP}} \]

ここに、\( \Delta E \)：熱負荷の低減効果〔電力量料金〕（\( \Delta E \)（円））

\( \Delta Q \)：熱負荷の低減効果〔熱量〕（kWh）

\( \text{COP} \)：冷房 COP または暖房 COP（一）

\( A \)：電力料金の従量単価（円/kWh）

表 4-7 LESCO-env による出力リスト

<table>
<thead>
<tr>
<th>対応する項目</th>
<th>名称*1</th>
<th>出力単位</th>
<th>対応する部分</th>
</tr>
</thead>
<tbody>
<tr>
<td>実証項目</td>
<td>室温上昇抑制効果（自然室温・体感温度）</td>
<td>夏季 14 時</td>
<td>℃</td>
</tr>
<tr>
<td>冷房負荷低減効果</td>
<td>夏季 1 ヶ月</td>
<td>kWh/月</td>
<td>円/月</td>
</tr>
<tr>
<td></td>
<td>夏季 6～9 月</td>
<td>kWh/4 ヶ月</td>
<td>円/4 ヶ月</td>
</tr>
<tr>
<td></td>
<td>参考項目</td>
<td>冷房負荷低減効果</td>
<td>年間空調</td>
</tr>
<tr>
<td></td>
<td>冬季 1 ヶ月</td>
<td>kWh/月</td>
<td>円/月</td>
</tr>
<tr>
<td></td>
<td>冬季 11～4 月</td>
<td>kWh/6 ヶ月</td>
<td></td>
</tr>
<tr>
<td></td>
<td>冷暖房負荷低減効果</td>
<td>期間空調</td>
<td>kWh/年</td>
</tr>
</tbody>
</table>

*1：表 4-6 に示す設定期間に対応する名称
【用語の定義】

- 冷房負荷低減効果
  実証対象技術による冷房負荷の低減効果
- 室温上昇抑制効果
  実証対象技術による室温の上昇抑制効果
- 暖房負荷低減効果
  実証対象技術による暖房負荷の低減効果
- 冷暖房負荷削減効果
  実証対象技術による冷房負荷・暖房負荷の低減効果

4.3 環境負荷・維持管理等性能（参考項目）

4.2.1.熱・光学性能の(1)及び(2)の試験片（詳細版本編 13〜14 ページ）を用いて、JIS A 5759:2008（建築窓ガラス用フィルム）6.9 耐候性試験に準拠し、サンシャインカーボンアーク灯式の耐候性試験機により 1000 時間の促進耐候性試験を行う。耐候性試験終了後、耐候性試験前後の变化を確認するために、再度 4.2.1.熱・光学性能の(1)、(2)及び(3)の試験を行った。
5. 実証試験結果と検討

5.1 空調負荷低減性能
5.1.1 熱・光学性能試験結果及び環境負荷・維持管理性能

(1) 実証項目

① 試験体（構成体）*1の熱・光学性能試験結果

<table>
<thead>
<tr>
<th>項目</th>
<th>算出結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>日射透過率 (% )</td>
<td>60.1</td>
</tr>
<tr>
<td>日射反射率 (% )</td>
<td>26.6</td>
</tr>
<tr>
<td>修正放射率 (長波放射率) (―)</td>
<td>0.88</td>
</tr>
<tr>
<td>遮へい係数 (―)</td>
<td>0.69</td>
</tr>
</tbody>
</table>

*1：試験体（4枚の試験片からなる構成体）は、4枚の単板ガラスからなる構成体（4重の複層ガラス）と同等の構成を持つものと見なして算出した。なお、算定に用いた結果は試験片（単板）の測定結果（平均値）とした。

(2) 参考項目

① 試験体（構成体）*1の熱・光学性能試験結果

<table>
<thead>
<tr>
<th>項目</th>
<th>算出結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>可視光透過率 (% )</td>
<td>62.0</td>
</tr>
<tr>
<td>可視光反射率 (% )</td>
<td>27.6</td>
</tr>
</tbody>
</table>

*1：試験体（4枚の試験片からなる構成体）は、4枚の単板ガラスからなる構成体（4重の複層ガラス）と同等の構成を持つものと見なして算出した。なお、算定に用いた結果は試験片（単板）の測定結果（平均値）とした。

② 試験片（単板）*1の熱・光学性能試験結果

<table>
<thead>
<tr>
<th>項目</th>
<th>測定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>耐候性試験前</td>
</tr>
<tr>
<td></td>
<td>No.1 No.2 No.3</td>
</tr>
<tr>
<td>日射透過率 (% )</td>
<td>83.3 83.1 83.6</td>
</tr>
<tr>
<td>日射反射率 (% )</td>
<td>9.6 9.2 9.7 9.5</td>
</tr>
<tr>
<td>修正放射率 （長波放射率） (―)</td>
<td>0.89 0.89 0.89 0.89</td>
</tr>
</tbody>
</table>

*1：試験片は、試験体（製品）から切り出して製作した単板の小片である。（製作方法は詳細版本編13ページ参照。）
③ 試験片（単板）*1の分光透過率及び分光反射率測定結果

![試験片（単板）の分光透過率測定結果](image1)

![試験片（単板）の分光反射率測定結果](image2)

※1: 試験片は、試験体（製品）から切り出して製作した単板の一片である。（製作方法は詳細
版本編13ページ参照。）

5.1.2. 断熱性能※2

<table>
<thead>
<tr>
<th>項目</th>
<th>測定結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>試験体厚さ（mm）</td>
<td>40</td>
</tr>
<tr>
<td>熱貫流率（W/m²·K）</td>
<td>1.73</td>
</tr>
</tbody>
</table>

※2: 断熱性能の測定は、試験体（構成体）により行った。
5.1.3. 空調負荷低減性能（数値計算）

(1) 実証項目の計算結果

<table>
<thead>
<tr>
<th></th>
<th>東京都</th>
<th>大阪府</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>室温上昇抑制効果</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>（夏季 14 時）</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>自然室温*2 (冷房無し)</td>
<td>0.2 ℃</td>
<td>0.3 ℃</td>
</tr>
<tr>
<td>(45.3℃→ 45.1 ℃)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>体感温度*3 (作用温度)</td>
<td>0.2 ℃</td>
<td>0.2 ℃</td>
</tr>
<tr>
<td>(45.3℃→ 45.1 ℃)</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>冷房負荷低減効果</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>（夏季 1ヶ月）</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>熱量</td>
<td>957 kWh/月</td>
<td>1,083 kWh/月</td>
</tr>
<tr>
<td>(ガラス単板 34,893 kWh/月)</td>
<td></td>
<td>(ガラス単板 40,953 kWh/月)</td>
</tr>
<tr>
<td>2.7 % 低減</td>
<td></td>
<td></td>
</tr>
<tr>
<td>電気料金</td>
<td>3,664 円/月</td>
<td>3,842 円/月</td>
</tr>
<tr>
<td><strong>冷房負荷低減効果</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>（夏季 6~9 月）</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>熱量</td>
<td>2,779 kWh/4 ヶ月</td>
<td>3,143 kWh/4 ヶ月</td>
</tr>
<tr>
<td>(ガラス単板 89,417 kWh/4 ヶ月)</td>
<td></td>
<td>(ガラス単板 105,594 kWh/4 ヶ月)</td>
</tr>
<tr>
<td>3.1 % 低減</td>
<td></td>
<td></td>
</tr>
<tr>
<td>電気料金</td>
<td>10,477 円/4 ヶ月</td>
<td>10,953 円/4 ヶ月</td>
</tr>
</tbody>
</table>

*1：8月1日〜10日の期間中最も日射量の多い日時における対象部室温の抑制効果
*2：冷房を行わないときの室温
*3：平均放射温度（MRT）を考慮した温度（室温と MRT の平均）
*4：夏季 1ヶ月（8月）及び夏季（6〜9月）において室内温度が冷房設定温度を上回ったときに冷房が稼働した場合の冷房負荷低減効果

注）数値計算は、モデル的な工場を想定し、各種前提条件のもとに行ったものであり、実際の入環境とは異なる。
(2) 参考項目の計算結果

<table>
<thead>
<tr>
<th></th>
<th>東京都</th>
<th>大阪府</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>熱量</td>
<td>熱量</td>
</tr>
<tr>
<td>冷房負荷低減効果*1 (年間空調)</td>
<td>4,001 kWh/年</td>
<td>4,577 kWh/年</td>
</tr>
<tr>
<td>（ガラス単板 95,171 kWh/年）</td>
<td>4.2 % 低減</td>
<td>3.9 % 低減</td>
</tr>
<tr>
<td>電気料金</td>
<td>14,782 円/年</td>
<td>15,614 円/年</td>
</tr>
<tr>
<td>暖房負荷低減効果*2 (冬季1ヶ月)</td>
<td>-146 kWh/月</td>
<td>-78 kWh/月</td>
</tr>
<tr>
<td>（ガラス単板 11,033 kWh/月）</td>
<td>-1.3 % 低減</td>
<td>-0.5 % 低減</td>
</tr>
<tr>
<td>電気料金</td>
<td>-467 円/月</td>
<td>-232 円/月</td>
</tr>
<tr>
<td>暖房負荷低減効果*2 (冬季 11〜4月)</td>
<td>-781 kWh/6ヶ月</td>
<td>-393 kWh/6ヶ月</td>
</tr>
<tr>
<td>（ガラス単板 39,721 kWh/6ヶ月）</td>
<td>-2.0 % 低減</td>
<td>-0.9 % 低減</td>
</tr>
<tr>
<td>電気料金</td>
<td>-2,504 円/6ヶ月</td>
<td>-1,165 円/6ヶ月</td>
</tr>
<tr>
<td>冷暖房負荷低減効果*3 (期間空調)</td>
<td>1,998 kWh/年</td>
<td>2,749 kWh/年</td>
</tr>
<tr>
<td>（ガラス単板 129,138 kWh/年）</td>
<td>1.5 % 低減</td>
<td>1.8 % 低減</td>
</tr>
<tr>
<td>電気料金</td>
<td>7,973 円/年</td>
<td>9,788 円/年</td>
</tr>
</tbody>
</table>

*1: 年間を通じ室内温度が冷房設定温度を上回ったときに冷房が稼働した場合の冷房負荷低減効果。
*2: 冬季1ヶ月（2月）及び冬季（11〜4月）において室内温度が暖房設定温度を下回ったときに暖房が稼働した場合の暖房負荷低減効果。
*3: 夏季（6〜9月）において室内温度が冷房設定温度を上回ったときに冷房が稼働した場合及び冬季（11〜4月）において室内温度が暖房設定温度を下回ったときに暖房が稼働した場合の冷暖房負荷低減効果。
注）数値計算は、モデル的な工場を想定し、各種前提条件のもとに行ったものであり、実際の導入環境とは異なる。
(3) 実証項目の計算結果の及び参考項目の計算結果に関する注意点

① 数値計算は、モデル的な工場を想定し、各種前提条件のもと行ったものであり、実際の導入環境とは異なる。

② 熱負荷の低減効果を熱量単位(kWh)だけでなく、電気料金の低減効果(円)としても示すため、定格出力運転時における消費電力1kW当たりの冷房・暖房能力(kW)を表したCOP及び電力量料金単価を設定している。

③ 数値計算において設定した冷暖房の運転期間は、下記の通りとした。

- 夏季 14時: 8月1日～10日の期間中最も日射量の多い日の14時
- 夏季1ヶ月: 8月1日～31日
- 夏季6～9月: 6月1日～9月30日
- 冬季1ヶ月: 2月1日～28日
- 期間空調: 冷房期間6～9月及び暖房期間11～4月
- 年間空調: 冷房期間1年間*1

*1: 設定温度より室温が高い場合に冷房運転を行う。

④ 日射が遮蔽され、室内が暗くなることに伴う、照明による熱負荷の増加は考慮していない。

⑤ 冷房・暖房負荷低減効果の熱量の欄にある「ガラス単板〇〇kWh/△△」とは、開口部用後付建材を取り付けていない状態（開口部にガラス単板のみが入っている状態）において、日射・電気機器等により室内に加えられる熱負荷の一定期間における総和を示している。

⑥ 電気料金について、本計算では開口部用後付建材の取付けによる室内熱負荷の差を検討の対象としていることから、種々の仮定が必要となる総額を見積もることをせず、熱負荷の変化に伴う空調電気料金の差額のみを示している。（電気料金の算出に関する考え方は詳細版第25ページ【電気料金算出に関する考え方】に示す）。
【電気料金算出に関する考え方】
電力料金は、主に基本料金等と電力量料金で構成されている。開口部用後付建材を取り付けることによる空調負荷低減効果を算出する上で、契約内容等の条件を固定すると、基本料金等は開口部用後付建材の取付け前後で一定となり、日射遮蔽による影響を受けるのは空調負荷量に依存する電力量料金のみになる。
電力量料金は電力量料金単価と燃料費調整単価（石油等の燃料価格変動に依存）で構成されているが、燃料費調整単価は電力量料金単価と比較して十分小さいため、電力量料金は電力量料金単価のみで算出することとした。
工場の電力量料金単価については、小〜中規模の工場で契約電力を500kW未満とすることを想定し、この条件に適合し、かつ、平日の昼間に電気の使用が多い場合の契約（夏季とその他季で電力量料金が異なる）を適用した。

《引用文献》
- 東京電力株式会社.電気需給約款〔特定規模需要（高圧）〕.2009,121p.
付録

1. データの品質管理

本実証試験を実施にあたり、データの品質管理は、財団法人建材試験センターが定める品質マニュアルに従って管理した。

1.1 測定操作の記録方法

記録用紙は、財団法人建材試験センター規程による試験データシート、実測値を記録するコンピュータープリントアウト及び実証試験要領に規定した成績書とした。

1.2 精度管理に関する情報


2. データの管理、分析、表示

2.1 データ管理とその方法

本実証試験から得られる以下のデータは、財団法人建材試験センターが定める品質マニュアルにしたがって管理するものとした。データの種類は次のとおりである。

- 空調負荷低減性能のデータ
- 環境負荷・維持管理等性能のデータ

2.2 データ分析と評価

本実証試験で得られたデータについては、必要に応じ統計分析の処理を実施するとともに、使用した数式を実証試験結果報告書に記載する。

実証項目の測定結果の分析・表示方法は以下のとおりである。

(1) 空調負荷低減性能のデータ
- 日射透過率及び日射反射率、修正放射率（長波放射率）、遮熱係数、熱貫流率、冷房負荷低減効果、室温上昇抑制効果

(2) 環境負荷、維持管理等性能（参考項目）のデータ
- 性能劣化の把握

3. 監査

本実証試験で得られたデータの品質監査は、財団法人建材試験センターが定める品質マニュアルに従って行うものとする。実証試験が適切に実施されていることを確認するために実証試験の期間中に内部監査を実施した。

この内部監査は、本実証試験から独立している財団法人建材試験センター中央試験所長を内部監査員として任命し実施した。
資料編

付表 1 計算用工場モデルの詳細情報（屋根・壁・床・開口部）

<table>
<thead>
<tr>
<th>設定条件</th>
<th>構成</th>
</tr>
</thead>
<tbody>
<tr>
<td>屋根</td>
<td>屋外側 ガルバリウム鋼板（0.6mm）</td>
</tr>
<tr>
<td></td>
<td>↓ GW*1（50mm）</td>
</tr>
<tr>
<td></td>
<td>屋内側 鋼板（0.8mm）</td>
</tr>
<tr>
<td></td>
<td>・水勾配 1/50</td>
</tr>
<tr>
<td>外壁</td>
<td>屋外側 ガルバリウム鋼板（0.6mm）</td>
</tr>
<tr>
<td></td>
<td>↓ PB*2（12.5 mm）</td>
</tr>
<tr>
<td></td>
<td>GW（50mm）</td>
</tr>
<tr>
<td></td>
<td>屋内側 けい酸カルシウム板塩化ビニル樹脂エナメル塗装（厚さ 8.0 mm）</td>
</tr>
<tr>
<td>床</td>
<td>・コンクリート直均し</td>
</tr>
<tr>
<td></td>
<td>・エポキシ樹脂系塗装（厚さ 1.2 mm）</td>
</tr>
<tr>
<td>窓</td>
<td>・アルミサッシ（一重サッシ、網入り磨きガラス単板（厚さ 6.8 mm）入り）</td>
</tr>
</tbody>
</table>

*1：GW：グラスウール 10K 品アルミガラスクロス（厚さ 0.13mm）貼り
*2：PB：耐水パーティクルボード

注）計算用工場モデルは、東京理科大学武田研究室により考案されたものである。
付図 1 計算用工場モデル（南側及び北側立面上図）

付図 2 計算用工場モデル（東側及び西側立面上図）

付図 3 屋根の形状（断面）