平成20年度環境技術実証事業

ヒートアイランド対策技術分野

ヒートアイランド対策技術
（建築物外皮による空調負荷低減等技術）
実証試験報告書

平成21年3月

実 証 機 関：財団法人 日本塗料検査協会
環境技術開発者：アトミクス株式会社
技 術：高反射率塗料
製 品 名・型 番：アトム遮熱バリアルーブ
平成20年度環境技術実証事業
ヒートアイランド対策技術分野（建築物外皮による空調負荷低減等技術）
実証試験報告書（詳細版）

環境技術開発者：アトミクス株式会社
製品名・型番：アトム遮熱パリアルーフ

正 誤 表

<table>
<thead>
<tr>
<th>区分</th>
<th>位置</th>
<th>正</th>
<th>誤</th>
</tr>
</thead>
<tbody>
<tr>
<td>表紙</td>
<td>製品名・型番</td>
<td>アトム遮熱パリアルーフ</td>
<td>アトム遮熱パリアリーフ</td>
</tr>
</tbody>
</table>
区分：概要

ⅱページ

3. 実証試験結果 熱・光学性能測定結果

【正】

<table>
<thead>
<tr>
<th></th>
<th>黒色</th>
<th>灰色</th>
<th>白色</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>暴露前</td>
<td>暴露後</td>
<td>暴露前</td>
</tr>
<tr>
<td>日射反射率</td>
<td>近紫外および可視光域*2 (%)</td>
<td>5.8</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>近赤外域*3 (%)</td>
<td>45.0</td>
<td>40.8</td>
</tr>
<tr>
<td></td>
<td>全波長域*4 (%)</td>
<td>22.4</td>
<td>20.5</td>
</tr>
<tr>
<td>長波放射率</td>
<td>(－)</td>
<td>0.88</td>
<td>0.89</td>
</tr>
<tr>
<td>明度</td>
<td>(－)</td>
<td>2.7</td>
<td>2.6</td>
</tr>
</tbody>
</table>

【誤】

<table>
<thead>
<tr>
<th></th>
<th>黒色</th>
<th>灰色</th>
<th>白色</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>暴露前</td>
<td>暴露後</td>
<td>暴露前</td>
</tr>
<tr>
<td>日射反射率</td>
<td>近紫外および可視光域*2 (%)</td>
<td>5.7</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>近赤外域*3 (%)</td>
<td>45.1</td>
<td>40.8</td>
</tr>
<tr>
<td></td>
<td>全波長域*4 (%)</td>
<td>22.4</td>
<td>20.5</td>
</tr>
<tr>
<td>長波放射率</td>
<td>(－)</td>
<td>0.88</td>
<td>0.89</td>
</tr>
<tr>
<td>明度</td>
<td>(－)</td>
<td>2.7</td>
<td>2.6</td>
</tr>
<tr>
<td>区分</td>
<td>位置</td>
<td>正</td>
<td>誤</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>概要 3ページ</td>
<td>東京都</td>
<td>1.7℃</td>
<td>1.8℃</td>
</tr>
<tr>
<td></td>
<td>室温上昇抑制効果（夏季 14 時）</td>
<td>(45.3 ℃ → 43.6℃)</td>
<td>(45.3 ℃ → 43.5℃)</td>
</tr>
<tr>
<td>3. 実証試験結果計算結果</td>
<td>体感温度（作用温度）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v ページ</td>
<td>東京都および大阪府</td>
<td>符号（-）を追加</td>
<td>符号（-）無し</td>
</tr>
<tr>
<td>3. 実証試験結果参考項目</td>
<td>暖房負荷低減効果（冬季 1 ヶ月）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>熱量および電気料金</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>東京都および大阪府</td>
<td>符号（-）を追加</td>
<td>符号（-）無し</td>
</tr>
<tr>
<td></td>
<td>暖房負荷低減効果（冬季 11～4 月）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>熱量および電気料金</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>大阪府</td>
<td>円/年</td>
<td>円/月</td>
</tr>
<tr>
<td></td>
<td>冷房負荷低減効果（年間空調）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>電気料金</td>
<td></td>
<td></td>
</tr>
<tr>
<td>本編 13 ページ</td>
<td>熱・光学性能測定結果</td>
<td>No. 2</td>
<td>No. 3</td>
</tr>
<tr>
<td>Ⅴ. 実証試験結果と検討</td>
<td>1. 空調負荷低減性能実証項目／環境負荷・維持管理等実証項目</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 ページ</td>
<td>熱・光学性能測定結果</td>
<td>No. 1</td>
<td>No. 2</td>
</tr>
<tr>
<td>Ⅴ. 実証試験結果と検討</td>
<td>1. 空調負荷低減性能実証項目／環境負荷・維持管理等実証項目</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 ページ</td>
<td>熱・光学性能測定結果</td>
<td>No. 3</td>
<td>No. 1</td>
</tr>
<tr>
<td>Ⅴ. 実証試験結果と検討</td>
<td>1. 空調負荷低減性能実証項目／環境負荷・維持管理等実証項目</td>
<td></td>
<td></td>
</tr>
<tr>
<td>区分</td>
<td>位置</td>
<td>正</td>
<td>誤</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>本編</td>
<td>16 ページ</td>
<td>V. 実証試験結果と検討</td>
<td>2. 数値計算により算出する実証項目計算結果</td>
</tr>
<tr>
<td></td>
<td></td>
<td>東京都</td>
<td>室温上昇抑制効果（夏季 14 時）体感温度（作用温度）</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.7℃</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(45.3℃ → 43.6℃)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.8℃</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(45.3℃ → 43.5℃)</td>
</tr>
<tr>
<td>17 ページ</td>
<td>V. 実証試験結果と検討</td>
<td>2. 数値計算により算出する実証項目参考項目</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>東京都および大阪府</td>
<td>暖房負荷低減効果（冬季 1 ヶ月）熱量および電気料金</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>符号（－）を追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>東京都および大阪府</td>
<td>暖房負荷低減効果（冬季 11〜4 月）熱量および電気料金</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>符号（－）を追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td>大阪府</td>
<td>冷房負荷低減効果（年間空調）電気料金</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>円/年</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*3</td>
<td>冷暖房負荷低減効果</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>円/月</td>
</tr>
</tbody>
</table>
はじめに

環境技術実証事業は、既に適用が可能な段階にありながら、環境保全効果等について客観的な評価が行われていないために普及が進んでいない先進的環境技術について、その環境保全効果等を第三者が客観的に実証する事業を実施することにより、環境技術実証の手法・体制の確立を図るとともに、環境技術の普及を促進し、環境保全と環境産業の発展を促進することを目的とするものである。

本実証試験は、平成20年7月22日に財団法人建材試験センターと環境省水・大気環境局が策定した実証試験要領に基づいて選定された実証対象技術について、同実証試験要領に準拠して実証試験を実施することで、以下に示す環境保全効果等を客観的に実証したものである。

（実証項目）
○日射反射率
○長波放射率
○明度
○性能劣化の把握
○屋根（屋上）表面温度低下量（数値計算）
○冷房負荷低減効果（数値計算）
○室温上昇抑制効果（数値計算）
○対流顕熱量低減効果（数値計算）

本報告書は、その結果を取りまとめたものである。
- 目次 -

○ 実証試験結果の概要 ... i

○ 本 編 ... 1

 I. 実証試験の概要と目的 ... 1

 II. 実証試験参加組織と実証試験参加者の責任分掌 ... 2

 III. 実証対象技術の概要 ... 3

 (1) 実証対象技術の原理 ... 3

 (2) 実証対象技術の仕様（厚み、色など） ... 3

 IV. 実証試験の内容 ... 5

 1. 実証試験期間 .. 5

 2. 空調負荷低減性能実証項目 .. 5

 3. 環境負荷・維持管理等実証項目の実証試験 ... 12

 V. 実証試験結果と検討 ... 13

○ 付録 .. 20

 1. データの品質管理 .. 20

 2. データの管理、分析、表示 ... 20

 3. 監査 .. 20
○ 実証試験結果の概要

実証対象技術／環境技術開発者	高反射率塗料（アトム遮熱バリアルーフ）／アトミクス株式会社
実証機関	財団法人 日本塗料検査協会
実証試験期間	平成20年11月4日〜平成21年3月16日

1. 実証対象技術の概要
(原理・材質等)
赤外線の吸収率が高い顔料を使用せず、更に、赤外線の反射率が高い特殊顔料を配合することにより、高効率で赤外線を反射する塗膜を形成する。

2. 実証試験の概要
○ 数値計算における設定条件
高反射率塗料の熱・光学特性を測定し、その結果から、数値計算により下記条件における対象建物の屋根に高反射率塗料塗布に伴う効果（冷房負荷削減効果等）を算出する。
数値計算は、実証対象技術の灰色の測定結果を基に行った。
なお数値計算の基準は、灰色（N6）の一般塗料とした。ただし、実証対象技術の灰色の明度Vが6±1の範囲内なもののは、同じ明度の一般塗料を基準とした。

2-1. 対象建物
工場（鉄骨造、平屋建て）
・最高高さ 13.0m
・延床面積 1000.0m²
※周囲の建築物等の影響による日射の遮蔽は考慮しない。
※屋根全面に高反射率塗料を塗布した条件下で数値計算を行う。

2-2. 使用気象データ
東京・大阪 90年代標準年

2-3. 冷暖房設定

<table>
<thead>
<tr>
<th>建築物</th>
<th>冷房設定温度（℃）</th>
<th>暖房設定温度（℃）</th>
<th>棟桟時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>工場</td>
<td>28.0</td>
<td>18.0</td>
<td>平日：8〜17時</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>土日：無</td>
</tr>
</tbody>
</table>

2-4. COP（エネルギー消費効率）の設定

<table>
<thead>
<tr>
<th>建築物</th>
<th>冷房（-）</th>
<th>暖房（-）</th>
</tr>
</thead>
<tbody>
<tr>
<td>工場</td>
<td>3.55</td>
<td>3.90</td>
</tr>
</tbody>
</table>

(参照：（財）省エネルギーセンター、「省エネ性能カタログ2006年夏版」、「省エネ性能カタログ 業務用エアコン」)

2-5. 電力量料金単価の設定

<table>
<thead>
<tr>
<th>地域</th>
<th>建築物</th>
<th>標準契約種別</th>
<th>電力量料金単価（円／kWh）*1</th>
</tr>
</thead>
<tbody>
<tr>
<td>東京</td>
<td>工場</td>
<td>高圧電力A</td>
<td>13.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>高圧電力BS</td>
<td>12.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>高圧電力C</td>
<td>11.53</td>
</tr>
<tr>
<td>大阪</td>
<td>工場</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1：電力量料金単価は、消費税相当額を含んだものである。
*2：夏季…7月1日〜9月30日
*3：その他季…10月1日〜6月30日
注）燃料価格変動に依存する燃料費調整単価は0円／kWhと仮定。
3. 実証試験結果
〇 空調負荷低減性能実証項目／環境負荷・維持管理等実証項目

【熱・光学性能測定結果】*1

<table>
<thead>
<tr>
<th></th>
<th>黒色</th>
<th>灰色</th>
<th>白色</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>暴露 試験前</td>
<td>暴露 試験後</td>
<td>暴露 試験前</td>
</tr>
<tr>
<td>近紫外および可視光域*2 (%)</td>
<td>5.8</td>
<td>5.5</td>
<td>32.5</td>
</tr>
<tr>
<td>近赤外域*3 (%)</td>
<td>45.0</td>
<td>40.8</td>
<td>70.8</td>
</tr>
<tr>
<td>全波長域*4 (%)</td>
<td>22.4</td>
<td>20.5</td>
<td>48.6</td>
</tr>
<tr>
<td>長波放射率</td>
<td>(一)</td>
<td>0.88</td>
<td>0.89</td>
</tr>
<tr>
<td>明度</td>
<td>(一)</td>
<td>2.7</td>
<td>2.6</td>
</tr>
</tbody>
</table>

*1：暴露試験前の結果は、試験体数3での試験結果の平均値である。
*2：近紫外および可視光域の波長範囲は、300 nm 〜 780 nm である。
*3：近赤外域の波長範囲は、780 nm 〜 2500nm である。
*4：全波長域の波長範囲は、300 nm 〜 2500nm である。

【参考】(明度と日射反射率(全波長域)の関係)

※左図は、平成20年度環境技術実証事業ヒートアイランド対策技術（建築物外皮による空調負荷低減等技術）において実証を行った高反射率塗料と一般塗料の明度と日射反射率（全波長域）の関係を示したものである。
※明度Vが10に近い白色では、一般塗料と高反射率塗料とで日射反射率に差はほぼ無い。高反射率塗料は、近赤外域での反射率を高める技術を使用しており、白色でない、灰色あるいは黒色でも日射反射率を高くする機能を持っている。左図に示したように、白色では一般塗料と高反射性材料との間で差はないが、灰色、黒色では明らかに日射反射率に差が現れている。

(詳細：ⅶページ)
【分光反射率（波長範囲：300nm〜2500nm）の特性】

1) 黒色

図－2 分光反射率測定結果（黒色）

2) 灰色

図－3 分光反射率測定結果（灰色）

3) 白色

図－4 分光反射率測定結果（白色）

※ 暴露試験前後の番号は試験体に任意に付した番号である。暴露試験前の測定は、施工時のばらつきを考慮し、試験体数量3（n=3）として測定した。測定した試験体のうち、日射反射率が2番目に大きいものを屋外暴露試験に供した。屋外暴露による性能劣化を把握するため、暴露試験終了後に測定を行った。

※ 屋外暴露試験は、（財）建材試験センター中央試験所内（埼玉県草加市）にて行った。
○ 標準モデルに基づく数値計算により算出する実証項目／環境負荷・維持管理等実証項目
【計算結果】

<table>
<thead>
<tr>
<th></th>
<th>東京都</th>
<th>大阪府</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>工場</td>
<td></td>
</tr>
<tr>
<td>屋根（屋上）表面温度低下量（夏季 14 時）*1</td>
<td>6.7 ℃</td>
<td>6.3 ℃</td>
</tr>
<tr>
<td>（55.2℃→48.5℃）</td>
<td>（56.4℃→50.1℃）</td>
<td></td>
</tr>
<tr>
<td>室温上昇抑制効果*1</td>
<td>1.6 ℃</td>
<td>1.6 ℃</td>
</tr>
<tr>
<td>（冷房無し）</td>
<td>（45.9℃→43.7℃）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.7 ℃</td>
<td>1.7 ℃</td>
</tr>
<tr>
<td>（作用温度）</td>
<td>（45.3℃→43.6℃）</td>
<td></td>
</tr>
<tr>
<td>冷房負荷低減効果*1</td>
<td>842 kWh/月（一般塗料 34903 kWh/月）</td>
<td>1028 kWh/月（一般塗料 40965 kWh/月）</td>
</tr>
<tr>
<td>（夏季 1ヶ月）</td>
<td>2.4 % 低減</td>
<td>2.5 % 低減</td>
</tr>
<tr>
<td>電気料金</td>
<td>3224 円/月</td>
<td>3646 円/月</td>
</tr>
<tr>
<td>冷房負荷低減効果*1</td>
<td>2719 kWh/4ヶ月（一般塗料 89450 kWh/4ヶ月）</td>
<td>3277 kWh/4ヶ月（一般塗料 105634 kWh/4ヶ月）</td>
</tr>
<tr>
<td>（夏季 6~9 月）</td>
<td>3.0 % 低減</td>
<td>3.1 % 低減</td>
</tr>
<tr>
<td>電気料金</td>
<td>10203 円/4ヶ月</td>
<td>11394 円/4ヶ月</td>
</tr>
<tr>
<td>日射時対流顕熱量低減率（夏季 1ヶ月）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>大気への放熱を 33.6 % 低減</td>
<td>大気への放熱を 33.6 % 低減</td>
<td></td>
</tr>
<tr>
<td>（317132MJ→210524 MJ）</td>
<td>（387245MJ→257126 MJ）</td>
<td></td>
</tr>
<tr>
<td>日射時対流顕熱量低減率（夏季 6~9 月）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>大気への放熱を 33.3 % 低減</td>
<td>大気への放熱を 33.4 % 低減</td>
<td></td>
</tr>
<tr>
<td>（1143462MJ→762194 MJ）</td>
<td>（1345526MJ→896612 MJ）</td>
<td></td>
</tr>
<tr>
<td>夜間時対流顕熱量低減率（夏季 1ヶ月）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>大気への放熱を 62.1 % 低減</td>
<td>大気への放熱を 46.0 % 低減</td>
<td></td>
</tr>
<tr>
<td>（2657MJ→1007 MJ）</td>
<td>（5845MJ→3154 MJ）</td>
<td></td>
</tr>
<tr>
<td>夜間時対流顕熱量低減率（夏季 6~9 月）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>大気への放熱を 70.2 % 低減</td>
<td>大気への放熱を 48.7 % 低減</td>
<td></td>
</tr>
<tr>
<td>（9374MJ→2796 MJ）</td>
<td>（22936MJ→11763 MJ）</td>
<td></td>
</tr>
</tbody>
</table>

*1: 8月1日～10日の期間中最も日射量の多い日時における、対象部での屋根面・室温の抑制効果
*2: 冷房を行わないときの室温
*3: 放射温度を考慮した温度で、室温と、室内周壁等の平均放射温度の平均温度
*4: 夏季1ヶ月（8月）及び夏季（6〜9月）において室内温度が冷房設定温度を上回った時に冷房が稼働した場合の冷房负荷低減効果

注）数値計算は標準問題をもとに実施しており、実際の導入環境とは異なる。また、数値計算の基準には、灰色（N6）の一般塗料を用いた。ただし、実証対象技術の灰色の明度Vが6±1の範囲内にないものは、同じ明度の一般塗料を基準とした。
<table>
<thead>
<tr>
<th>項目</th>
<th>東京都</th>
<th>大阪府</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>熱量</td>
<td>熱量</td>
</tr>
<tr>
<td>冷房負荷低減効果*1</td>
<td>3726 kWh/年（一般塗料 95217 kWh/年） 3.9% 低減</td>
<td>4646 kWh/年（一般塗料 118583 kWh/年） 3.9% 低減</td>
</tr>
<tr>
<td></td>
<td>電気料金 5273 円/年</td>
<td>電気料金 11069 円/年</td>
</tr>
<tr>
<td>暖房負荷低減効果*2</td>
<td>-993 kWh/月（一般塗料 11028 kWh/月） -0% 低減</td>
<td>-429 kWh/月（一般塗料 14466 kWh/月） -3% 低減</td>
</tr>
<tr>
<td></td>
<td>電気料金 -3186 円/月</td>
<td>電気料金 -1270 円/月</td>
</tr>
<tr>
<td>冷暖房負荷低減効果*3</td>
<td>-2594 kWh/6ヶ月（一般塗料 39706 kWh/6ヶ月）-6.5% 低減</td>
<td>-1613 kWh/6ヶ月（一般塗料 46155 kWh/6ヶ月）-3.5% 低減</td>
</tr>
<tr>
<td></td>
<td>電気料金 -8322 円/6ヶ月</td>
<td>電気料金 -4770 円/6ヶ月</td>
</tr>
</tbody>
</table>

*1: 年間を通じて室内温度が冷房設定温度を上回った時に冷房が稼働した場合の冷房負荷低減効果。
*2: 冬季1ヶ月（2月）及び冬季（11〜4月）において室内温度が暖房設定温度を下回った時に暖房が稼働した場合の暖房負荷低減効果
*3: 夏季（6〜9月）において室内温度が冷房設定温度を上回った時に冷房が稼働し、冬季（11〜4月）において室内温度が暖房設定温度を下回った時に暖房が稼働した場合の冷暖房負荷低減効果
【計算結果・参考項目に共通する注意点】

1. 計算結果及び参考項目は、モデル的な工場を想定し、各種前提のもと数値計算したものである。

2. 計算結果・参考項目において設定した冷暖房の運転期間は、下記の通りとした。
 - 夏季 14 時: 8月1日～10日の期間中最も日射量の多い日の14時
 - 夏季 1ヶ月: 8月1日～31日
 - 夏季 6〜9月: 6月1日〜9月30日
 - 冬季 1ヶ月: 2月1日〜28日
 - 間間空調: 冷房期間 6〜9月及び暖房期間 11〜4月
 - 年間空調: 冷房期間1年間*
 *: 設定温度よりも室温が高い場合に冷房運転を行う。

3. 冷房、暖房負荷低減効果の熱量の欄にある「一般塗料 ○○kWh/△△」とは、一般塗料を塗布した状態において、日射・電気機器等により室内に加えられる熱負荷の一定期間における総和を示している。

4. 電気料金について、本計算では高反射率塗料の塗布による室内熱負荷の差を検討の対象としていることから、種々の仮定が必要となる総額を見積もることをせず、熱負荷の変化に伴う空調電気料金の差額のみを示している。

5. 数値計算は標準問題をもとに実施しており、実際の導入環境とは異なる。

○ 環境負荷・維持管理等実証項目の確認試験（参考）
【付着性】

<table>
<thead>
<tr>
<th></th>
<th>暴露試験前</th>
<th>暴露試験後</th>
</tr>
</thead>
<tbody>
<tr>
<td>付着強さ（N/mm²）</td>
<td>0.6</td>
<td>0.7</td>
</tr>
</tbody>
</table>

*1: 結果は、試験体数量3での試験結果の平均値である。
*2: 破壊状況は、本編に詳細を示す。
【注意事項】
材料の明度Vと日射反射率ρeとは相関があり、一般的には明度が高いほど日射反射率も高くなる。材料表面の明度は、0〜10の範囲の数字で表される（理想的な白が10、理想的な黒が0とされる*1）。明度が10に近付くほど可視光線の反射率が高くなり、その表面は白く見える。日射光は、大まかに言うと、紫外線、可視光線および近赤外線から成るが、このうち可視光線域のエネルギーが約半分を占める。このため、明度が高くなるほど（白くなるほど）可視光線域のエネルギーを多く反射するために、日射反射率が高くなる。また、一般的に白色は、近赤外線の反射率も高くなる傾向がある。これにより、近赤外線域のエネルギーも反射するために、日射反射率がより高くなる。

上記の原因により、明度が10に近い白色では、一般塗料と高反射率建材とで日射反射率に差は無くなる。[関係は、図-1明度と日射反射率の関係（内部参照）に示す]
一般的な高反射率建材は、近赤外線域での反射率を高くする技術を使用しており、灰色あるいは黒色のように、白色ではなくても、日射反射率を高くする機能を持っている。図-1に示したように、白色では一般塗料と高反射率建材との間で、日射反射率の差は大きくないが、灰色および黒色では、同じ明度において日射反射率の差は明確に現れている。
これらのことから、高反射率建材の比較を、白色ではなく灰色（N6（無彩色、明度V=6））に着色したもので行うことで、高反射率建材の性能を実証している。
しかし、申請技術の中には高反射率防水シートのように明度を自由に調整できない材料や、明度を調整しきれなかった塗料があった。これらの技術の比較は、高反射性能だけでなく色の違い（特に明度）による差が生じてしまう結果となる。この色の違いによる差を極力排除するため、指定した明度（V=6）と大きく差がある技術（V>7或いはV<5）においては、同様の明度を持つ一般塗料との比較を行うものとした。従って、申請技術同士を比較する場合、明度がV=6±1の範囲外の技術同士の比較は行えない。そのため、各実証対象技術の結果を評価する際には、注意が必要である。

*1: JIS Z 8721（色の表示方法－三属性による表示）
注）明度は、マンセル表色系の表示方法による値である。
このページに示された情報は、全て環境技術開発者が自らの責任において申請した内容であり、環境省および実証機関は、内容に関して一切の責任を負いません。

<table>
<thead>
<tr>
<th>項目</th>
<th>環境技術開発者 記入欄</th>
</tr>
</thead>
<tbody>
<tr>
<td>製品名・型番</td>
<td>アトム遮熱パリアルーフ</td>
</tr>
<tr>
<td>製造(販売)企業名</td>
<td>アトミクス株式会社</td>
</tr>
<tr>
<td>TEL/FAX</td>
<td>TEL: 0480-65-9634 FAX: 0480-65-7146</td>
</tr>
<tr>
<td>Web アドレス</td>
<td>http://www.atomix.co.jp</td>
</tr>
<tr>
<td>E-mail</td>
<td>sh-matsuura@atomix.co.jp</td>
</tr>
<tr>
<td>高反射率塗料全厚</td>
<td>約 160μm</td>
</tr>
</tbody>
</table>

| 対応する建築物・施設など | | |
|-----------------|-----------------|
| 施工上の留意点 | |
| 気温が5℃以下、降雨、降雪、降霧、湿潤（80％以上）、高温時及びその恐れがある場合には、塗装を遅らせる。
| 下地が濡れている場合は、充分乾燥させてから次の工程に着手する。
| 収穫時には皮膚・粘膜・目などに入らないよう注意する。
| 股を用いて計量し、電動撹拌機を用いて混合する。
| 可使時間（ポットライフ）に充分注意して塗装する。
| 火気、高温物の付近での使用は避け、電気のスパークにも注意する。
| 希釈には合成シンナーNo.50を使用する。
| その他設置場所等の制約条件 | |
| スプレー塗装する場合は、周囲の養生を充分行ってから塗装する。

メンテナンスの必要性・耐候性・製品寿命など

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 下塗り材のアトムエポガードプライマーとの組み合わせにより、長期の耐食性に優れた塗膜を形成する。
| 一般屋根用塗料を2回塗りした場合と同等の膜厚を1回塗りで得ることができる。
| 弱溶剤のため旧塗膜を浸しにくく、塗り替え易い。
| 酸性雨から屋根を守る。
| 超低汚染剤を添加することにより、塗膜表面の汚染が抑制され、遮音的に反射効果の高さが長期にわたり保たれる。
| 淡彩色のみではなく、ナイスブルー、ニューブラウンといった濃色も取り扱っている。

コスト概算

| | 金属屋根仕様 | |
|-----------------|-----------------|
| 設計施工価格 (材料のみ) | |
| 下塗り | ¥358 1㎡ |
| 上塗り | ¥493 1㎡ |
| 合計 | ¥851 1㎡ |
| 設計施工価格 (材料のみ) | スレート屋根仕様 | |
| 下塗り | ¥233 1㎡ |
| 中塗り | ¥233 1㎡ |
| 上塗り | ¥493 1㎡ |
| 合計 | ¥959 1㎡ |
○ その他メーカーからの情報
Ⅰ. 実証試験の概要と目的

環境技術実証事業は、既に適用が可能な段階にありながら、環境保全効果等について客観的な評価が行われていないために普及が進んでいない先進的環境技術について、その環境保全効果等を第三者が客観的に実証する事業を実施することにより、環境技術実証の手法・体制の確立を図るとともに、環境技術の普及を促進し、環境保全と環境産業の発展を促進することを目的とするものである。

本実証試験は、平成20年7月22日に財団法人建材試験センターと環境省水・大気環境局が策定した実証試験要領に基づいて選定された実証対象技術について、同実証試験要領に準拠して実証試験を実施することで、以下に示す環境保全効果等を客観的に実証したものである。

（実証項目）
〇日射反射率
〇長波放射率
〇明度
〇性能劣化の把握
〇屋根（屋上）表面温度低下量（数値計算）
〇冷房負荷低減効果（数値計算）
〇室温上昇抑制効果（数値計算）
〇対流顕熱量低減効果（数値計算）
実証試験に参加する組織は、図2-1に示すとおりである。また、実証試験参加者とその責任分掌は、表2-1に示すとおりである。

![図2-1 実証試験参加組織]

表2-1 実証試験参加者の責任分掌

<table>
<thead>
<tr>
<th>区分</th>
<th>実証試験参加機関</th>
<th>責任分掌</th>
<th>参加者</th>
</tr>
</thead>
<tbody>
<tr>
<td>実証機関</td>
<td>(財)日本塗料検査協会東支部 検査部</td>
<td>実証試験の運営管理、実証対象技術の公募・審査、技術実証委員会の設置・運営、品質管理システムの構築、実証試験計画の策定、実証試験の実施・運営、実証試験データ・情報の管理、実証試験結果報告書の作成、その他実証試験要領で定められた業務</td>
<td>小川 進、清水 亮作、河村 マリ、比留川伸司、関島 竜太、西岡 祐</td>
</tr>
<tr>
<td>(財) 日本塗料検査協会管理部</td>
<td>内部監査の総括、実証試験データの検証</td>
<td></td>
<td>田原 芳雄</td>
</tr>
<tr>
<td>環境技術開発者</td>
<td>アトミクス(株)</td>
<td>実証機関への必要な情報提供と協力、実証対象製品の準備と関連資料の提供、費用負担および責任をもって実証対象製品の運搬等を実施、既存の性能データの提供、実証試験報告書の作成における協力</td>
<td>松浦 茂</td>
</tr>
</tbody>
</table>
III. 実証対象技術の概要
（1）実証対象技術の原理
赤外線の吸収率が高い顔料を使用せず、更に、赤外線の反射率が高い特殊顔料を配合することにより、高効率で赤外線を反射する塗膜を形成する。

（2）実証対象技術の仕様
○ 製品データ

<table>
<thead>
<tr>
<th>項目</th>
<th>環境技術開発者 記入欄</th>
</tr>
</thead>
<tbody>
<tr>
<td>製品名・型番</td>
<td>アトム遮熱バリアルーフ</td>
</tr>
<tr>
<td>製造(販売)企業名</td>
<td>アトミクス株式会社</td>
</tr>
<tr>
<td>物質</td>
<td>TEL/FAX</td>
</tr>
<tr>
<td>Web アドレス</td>
<td>http://www.atomix.co.jp</td>
</tr>
<tr>
<td>E-mail</td>
<td>sh-matsuura@atomix.co.jp</td>
</tr>
</tbody>
</table>

| 高反射率塗料全厚 | 約 160μm |
| 対応する建築物・窓など | 工場、倉庫、学校、店舗等 |

| 施工上の留意点 | | | | | |
| · 気温が 5℃以下、降雨、降雪、高温（80%以上）高温時には、塗装を避ける。 |
| · 下地が汚れている場合は、充分に乾燥させてから次の工程に着手する。 |
| · 取扱い時には皮膚・粘膜・目などに入らないよう注意する。 |
| · 秤を用いて計量し、電動撹拌機を用いて混合する。 |
| · 可溶時間（ポットライフ）に充分注意して塗装する。 |
| · 火気、高温物の付近での使用は避け、電気のスパークにも注意する。 |
| · 希釈には合成シンナーNo.50を使用する。 |
| その他設置場所等の制約条件 | 部屋 | | | | |
| · スプレー塗装する場合は、周囲の養生を充分に行ってから塗装する。 |

| メンテナンスの必要性耐候性・製品寿命など | | | | | |
| · メンテナンスの必要性無し |
| · 促進耐候性（サンシャインウエザオメーター 2669時間） |
| | | | | | |
| · 60°光沢保持率＝92%，色差△E＝1.1 |
| · 製品寿命：10年 |

<p>| 技術上の特徴 | | | | | |
| · 下塗り材のアトムエポガードプライマーとの組み合わせにより、長期の耐食性に優れた塗膜を形成する。 |
| · 一般屋根用塗料を2回塗りした場合と同等の膜厚を1回塗りで得ることができる。 |
| · 防水塗料のため旧塗膜を浸しにくく、塗り替えに最適。 |
| · 肉持ち感のある光沢仕上げの塗膜を形成する。 |
| · 耐薬品性が高く、酸性雨から屋根を守る。 |
| · 超低汚染剤を添加することにより、塗膜表面の汚染が抑制され、赤外線の反射効果の高さが長期間保たれる。 |
| · 淡彩色のみではなく、ナイスブルー、ニューブラウンといった濃色も取り揃えている。 |</p>
<table>
<thead>
<tr>
<th>項目</th>
<th>イニシャルコスト</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>環境技術開発者 記入欄</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>合計</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>合計</td>
</tr>
</tbody>
</table>

○ その他メーカーからの情報
Ⅳ．実証試験の内容

（1）試験体搬入
　～2008年11月7日

（2）光学特性測定
　2008年11月4日～11月14日

（3）屋外暴露試験
　2008年11月4日～2009年3月16日（左記期間中の4ヶ月）

（4）LESCOM-env による数値計算
　2008年11月17日～2009年2月17日

空調負荷低減性能実証項目

2-1. 空調負荷低減性能実証項目

（1）日射反射率
　JIS K 5602（塗膜の日射反射率の求め方）に従い、日射反射率（波長範囲：300nm～2500nm）の測定を行う。試験体の色は、製品の中で最も明度が高いものと最も明度が低いものおよび灰色*1（N6（無彩色、明度 V=6）の3種類とし、試験体数はそれぞれ3体（n=3、合計9体）とする。また、下地はH.P金属板（遮蔽率測定用金属板）とし、寸法は60mm×60mmとする。なお、下地材料は実証機関が提供する。

（2）長波放射率
　前項の試験体を用い、JIS R 3106（板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法）に従い、長波放射率（波長範囲：2.5μm～25μm）の測定を行う。

（3）明度
　前項の測定した試験体を用い、JIS K 5600-4-4 [塗料一般試験方法－第4部：塗膜の視覚特性－第4節測色（原理）]およびJIS K 5600-4-5 [塗料一般試験方法－第4部：塗膜の視覚特性－第5節測色（測定）]に従い、明度の測定を行う。
2-2. 数値計算により算出する実証項目

本項目における実証結果は、レスポンス・ファクター法に基づく非定常熱負荷計算プログラム「LESCOM-env」により算出する。

「LESCOM-env」とは、旧通産省生活産業局の住機能向上製品対策委員会で開発された多数室非定常熱負荷計算プログラム「LESCOM」に、フィルム貼付開口部等を追加開発（東京理科大学武田仁教授による）したものである。

計算条件および計算による出力項目は下記の通りとする。

【計算条件】

1. 対象建物

・工場（床面積1000m²）

【仕様1】断熱材（グラスウール:GW（10K））厚さ50mm

【仕様2】断熱材（グラスウール:GW（10K））厚さ10mm

・屋根のデッキプレートの熱抵抗は、断熱材に比べて非常に小さいため、無視するものとした。

・周囲の建築物等の影響による日射の遮蔽は考慮しない。

・屋根全面に高反射率塗料を塗布した条件下で数値計算を行う。
表4-1 想定するモデル的な工場（断熱仕様 t50 又は t10）

<table>
<thead>
<tr>
<th>設定条件</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>モデル建物の概要</td>
<td>・鉄骨造、平屋建て
・最高高さ 13.0m
・延床面積 1000.0m²</td>
</tr>
<tr>
<td>屋根</td>
<td>・t0.6 ガルバリウム鋼板＋GW（10K（t50 又は t10））、アルミガラスクロス（t0.13mm）貼り）
・屋根の色：灰色
・水勾配 1/50</td>
</tr>
<tr>
<td>外壁</td>
<td>・t0.6 ガルバリウム鋼板＋t12.5 耐水 PB＋GW（10K（t50））、アルミガラスクロス（t0.13mm）貼り）＋t8.0 けい酸カルシウム板
・外壁の色：灰色</td>
</tr>
<tr>
<td>内壁</td>
<td>・t8.0 けい酸カルシウム板 VE塗装</td>
</tr>
<tr>
<td>窓</td>
<td>・アルミサッシ（二重サッシ、t6.8 網入磨きガラス単板入り）</td>
</tr>
<tr>
<td>床</td>
<td>・コンクリート直均し
・t1.2 エポキシ樹脂系塗装</td>
</tr>
</tbody>
</table>

【注意】
断熱材厚さ 10mm（t10）の仕様での計算は、表面温度および室内空気温度についてのみ行い、断熱材厚さ 50mm（t50）の仕様での計算は、これら以外の項目（冷房負荷低減効果等）について行う。

【備考】
GW：グラスウール
PB：パーティクルボード

図3-1 モデル的な工場（断熱仕様）の平面図
② 使用気象データ
東京・大阪 90 年代標準年

③ 冷暖房設定
冷暖房設定温度および稼働時間については、（財）建材試験センター技術実証委員会承認の下設定した。

表 4-2 冷暖房設定

<table>
<thead>
<tr>
<th>建築物</th>
<th>冷房設定温度（℃）</th>
<th>暖房設定温度（℃）</th>
<th>稼働時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>工場</td>
<td>28.0</td>
<td>18.0</td>
<td>平日：8～17時</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>土日：なし</td>
</tr>
</tbody>
</table>

④ COP（Coefficient of Performance：エネルギー消費効率）
熱負荷の低減効果を熱量単位（kWh）だけでなく、電気料金の低減効果（円）としても示すため、定格出力運転時における消費電力 1kW 当たりの冷房・暖房能力（kW）を表した COP および電力量料金単価を設定する。
（財）省エネルギーセンターの「省エネ性能カタログ」より、表 4-4 の条件下において冷房期間や暖房期間毎に算出された COP の平均値（表 4-3）を適用。

表 4-3 COP の設定

<table>
<thead>
<tr>
<th>建築物</th>
<th>冷房（－）</th>
<th>暖房（－）</th>
</tr>
</thead>
<tbody>
<tr>
<td>工場</td>
<td>3.55</td>
<td>3.90</td>
</tr>
</tbody>
</table>

注：（財）省エネルギーセンター「省エネ性能カタログ 業務用エアコン」より、冷房能力 14.0kW クラス 4 方向カセット型の業務エアコンが 8 基あると想定、各メーカーのカタログ値を参考に設定。

表 4-4 期間 COP の算出条件

<table>
<thead>
<tr>
<th>項目</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>外気温度</td>
<td>東京をモデルとしている。</td>
</tr>
<tr>
<td>冷房時</td>
<td>乾球温度 35℃</td>
</tr>
<tr>
<td>暖房時</td>
<td>乾球温度 7℃（湿球温度 6℃）</td>
</tr>
<tr>
<td>室内設定温度</td>
<td>冷房時 乾球温度 27℃（湿球温度 19℃）</td>
</tr>
<tr>
<td>暖房時</td>
<td>乾球温度 20℃</td>
</tr>
<tr>
<td>期間</td>
<td>冷房 3.6ヶ月間（6月 2 日～9月 21 日）</td>
</tr>
<tr>
<td>暖房</td>
<td>5.5ヶ月間（10月 28 日～4月 14 日）</td>
</tr>
<tr>
<td>使用時間</td>
<td>6：00～24：00 の 18 時間</td>
</tr>
</tbody>
</table>

参照 1：省エネ性能カタログ 2006 年夏版（2. エアコン）
参照 2：オフィス・店舗向けエアコンの省エネ性能 2006 春（省エネ性能一覧表の見方）
⑤ 電力量料金単価
東京電力、関西電力に標準的な契約条件等を確認し、下記の通り電力量料金単価を設定した。

表4-5 電力量料金単価の設定値

<table>
<thead>
<tr>
<th>地域</th>
<th>建物</th>
<th>標準契約種別</th>
<th>電力量料金単価（円／kWh）*1</th>
</tr>
</thead>
<tbody>
<tr>
<td>東京</td>
<td>工場</td>
<td>高圧電力 A</td>
<td>13.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>高圧電力 BS</td>
<td>12.59</td>
</tr>
<tr>
<td>大阪</td>
<td></td>
<td>高圧電力</td>
<td>12.59</td>
</tr>
</tbody>
</table>

*1：電力量料金単価は、消費税相当額を含んだものである。
*2：夏季…7月1日～9月30日
*3：その他季…10月1日～6月30日
注）燃料価格変動に依存する燃費調整単価は0円／kWhと仮定。

【電力料金算出に係る基本的な考え方】
電力料金は、主に基本料金等と電力量料金の和（消費税も掛かる）。高反射率塗料による空調負荷低減効果を算出する上で、契約内容等の条件を固定すると、基本料金等は高反射率塗料と一般塗料塗布前後で一定となり、日射遮蔽による影響を受けるのは空調負荷量に依存する電力量料金のみになる。
電力量料金は電力量料金単価と燃料費調整単価（石油等の燃料価格変動に依存）で構成されているが、燃料費調整単価は電力量料金単価と比較して十分小さいため、電力量料金は電力量料金単価で代用することとする。
工場の電力量料金単価については、標準的な契約電力は500kW未満であることを考慮し、この条件に適合した工場で平日の昼間に電気の使用が多い場合の契約を適用（夏季とその他季で電力量料金が異なる）。

⑥ 実証項目・参考項目の設定期間
実証項目・参考項目の設定期間は下記の通りとする。

表4-6 数値計算による実証項目・参考項目の設定期間について

<table>
<thead>
<tr>
<th>項目</th>
<th>名称</th>
<th>設定期間</th>
</tr>
</thead>
<tbody>
<tr>
<td>実証項目</td>
<td>冷房負荷低減効果</td>
<td>夏季1ヶ月</td>
</tr>
<tr>
<td></td>
<td>表面温度低下量</td>
<td>夏季1ヶ月</td>
</tr>
<tr>
<td></td>
<td>室温上昇抑制効果</td>
<td>東京1ヶ月</td>
</tr>
<tr>
<td></td>
<td>冷房負荷低減効果</td>
<td>夏季1ヶ月</td>
</tr>
<tr>
<td></td>
<td>日射時の対流顕熱量低減効果</td>
<td>夏季1ヶ月</td>
</tr>
<tr>
<td></td>
<td>夜間時の対流顕熱量低減効果</td>
<td>夏季1ヶ月</td>
</tr>
<tr>
<td>参考項目</td>
<td>冷房負荷低減効果</td>
<td>冬季1ヶ月</td>
</tr>
<tr>
<td></td>
<td>暖房負荷低減効果</td>
<td>冬季11〜4月</td>
</tr>
<tr>
<td></td>
<td>冷暖房負荷低減効果</td>
<td>期間空調</td>
</tr>
</tbody>
</table>

*1：冷暖房期間は、(社)日本冷凍空調工業規格JRA4046（ルームエアコンディショナの期間消費電力量算出基準）を参考に設定した。
出力項目
本実証試験では、工場を対象として計算を行う。
数値計算により算出する各実証項目・参考項目は、高反射率塗料の塗布の有無による差分量として求める。

<table>
<thead>
<tr>
<th>対応する項目</th>
<th>名称*1</th>
<th>出力単位</th>
<th>対応する部分</th>
</tr>
</thead>
<tbody>
<tr>
<td>実証項目</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>屋根（屋上）表面温度低下量</td>
<td>夏季 14 時</td>
<td>℃</td>
<td>屋根中央部分</td>
</tr>
<tr>
<td>室温上昇抑制効果（自然室温・体感温度）</td>
<td>夏季 14 時</td>
<td>℃</td>
<td>工場内</td>
</tr>
<tr>
<td>冷房負荷低減効果</td>
<td>夏季 1ヶ月</td>
<td>kWh/月</td>
<td>建物全体</td>
</tr>
<tr>
<td></td>
<td>夏季 6〜9月</td>
<td>kWh/4ヶ月</td>
<td>建物全体</td>
</tr>
<tr>
<td>日射時の対流顕熱量低減効果（6時〜17時）</td>
<td>夏季 1ヶ月</td>
<td>MJ</td>
<td>屋根表面</td>
</tr>
<tr>
<td></td>
<td>夏季 6〜9月</td>
<td>MJ</td>
<td>屋根表面</td>
</tr>
<tr>
<td>夜間時の対流顕熱量低減効果（18時〜5時）</td>
<td>夏季 1ヶ月</td>
<td>MJ</td>
<td>屋根表面</td>
</tr>
<tr>
<td></td>
<td>夏季 6〜9月</td>
<td>MJ</td>
<td>屋根表面</td>
</tr>
<tr>
<td>参考項目</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>冷房負荷低減効果</td>
<td>年間空調</td>
<td>kWh/年</td>
<td>建物全体</td>
</tr>
<tr>
<td></td>
<td></td>
<td>円/年</td>
<td></td>
</tr>
<tr>
<td>暖房負荷低減効果</td>
<td>冬季 1ヶ月</td>
<td>kWh/月</td>
<td>建物全体</td>
</tr>
<tr>
<td></td>
<td>冬季 11〜4月</td>
<td>kWh/6ヶ月</td>
<td>建物全体</td>
</tr>
<tr>
<td>冷暖房負荷低減効果</td>
<td>期間空調</td>
<td>kWh/4ヶ月</td>
<td>建物全体</td>
</tr>
</tbody>
</table>

*1：表4-6の設定期間に対応する名称
実証試験項目および参考項目

2-1. (1), (2)で測定した日射反射率と長波放射率を用いて熱負荷計算プログラム「LESCOM-env」により、下記に示す項目について、数值計算を行う。

（1）屋根（屋上）表面温度低下量
夏季（8月1日〜10日の期間中最も日射量の多い日の14時）における高反射率塗料の塗布による屋根表面温度の低下量について、数値計算により算出する。

（2）室温上昇抑制効果
夏季（8月1日〜10日の期間中最も日射量の多い日の14時）における高反射率塗料の塗布による室温の上昇抑制効果について、数値計算により算出する。

（3）冷房負荷低減効果
高反射率塗料の塗布による夏季1ヶ月（8月）、夏季6〜9月（6月1日〜9月30日）における冷房負荷の低減効果について、数値計算により算出する。

（4）日射時の対流顕熱量低減効果
高反射率塗料の塗布による夏季1ヶ月の6時〜17時（8月）、夏季6〜9月の6時〜17時（6月1日〜9月30日）における屋根表面から外気への対流による顕熱移動量の低減効果について、数値計算により算出する。

（5）夜間時の対流顕熱量低減効果
高反射率塗料の塗布による夏季1ヶ月の18時〜5時（8月）、夏季6〜9月の18時〜5時（6月1日〜9月30日）における屋根表面から外気への対流による顕熱移動量の低減効果について、数値計算により算出する。

（6）冷房負荷低減効果【参考項目】
冷房期間を1年間とした場合の高反射率塗料の塗布による冷房負荷の低減効果の合計について、数値計算により参考項目として算出する。

（7）暖房負荷低減効果【参考項目】
高反射率塗料の塗布による冬季1ヶ月（2月）および冬季11〜4月（11月1日〜4月30日）における暖房負荷の低減効果について、数値計算により参考項目として算出する。

（8）冷暖房負荷削減効果【参考項目】
期間空調（冷房期間6〜9月および暖房期間11〜4月）をした場合の、高反射率塗料の塗布による冷房負荷・暖房負荷の低減効果の合計について、数値計算により参考項目として算出する。
なお、各項目において、熱負荷の低減効果の熱量単位 (kWh) から電力量料金単位 (円) への換算は、以下の式により行った。

\[\Delta E = \frac{\Delta Q}{\text{COP}} \times A \]

ここに、\(\Delta E \)：熱負荷の低減効果 [電力量料金] (\(\Delta E \) (円))
\(\Delta Q \)：熱負荷の低減効果 [熱量] (kWh)
\(\text{COP} \)：冷房 COP または暖房 COP (ー)
\(A \)：電力量料金の従量単価 (円/kWh)

3. 環境負荷・維持管理等実証項目の実証試験
(1) 性能劣化の把握
2-1. (1) ～ (3) で測定を行った 3 色（各色 3 体、計 9 体）の試験体のうち、各色につき 1 枚（計 3 体）の試験体を選定し、（財）建材試験センター中央試験所内の屋外に水平に設置して、4 ヶ月間（11 月～3 月）の暴露を行った後、再度 2-1. (1) ～ (3) の測定を行う。
なお、暴露用試験体は、各色 3 体の試験体の中から日射反射率が 2 番目に高いものを 1 体ずつ選定する。

4. 環境負荷・維持管理等確認項目の確認試験（参考）
(1) 付着性
JIS A 6909（建築用仕上塗材）に従い、付着強さの測定を行う。試験体の色は 2 ～ 1.
(1) で調整した製品中最も明度が低いもの 1 種類とし、試験体は 6 体製作する。このうち測定を行う試験体数は 3 体（\(n = 3 \) とする。下地は JIS A 5430（繊維強化セメント板）に規定するフレキシブル板（スレート）とし、寸法は 70mm×70mm とし、下地材料は実証機関が提供する。

(2) 付着性の変化の把握
4. (1) で用意した試験体 3 体（付着強さ測定が未実施のもの）を（財）建材試験センター中央試験所内の屋外に水平に設置し、4 ヶ月間（11 月～3 月）の暴露を行った後、(1) の測定を行う。
V. 実証試験結果と検討
1. 空調負荷低減性能実証項目／環境負荷・維持管理等実証項目
【熱・光学性能測定結果】

1) 黒色

<table>
<thead>
<tr>
<th>日射反射率</th>
<th>暴露試験前</th>
<th>暴露試験後</th>
<th>反射性能の保持率（%） *4</th>
</tr>
</thead>
<tbody>
<tr>
<td>近紫外および可視光域*1 (%)</td>
<td>No.1</td>
<td>No.2</td>
<td>No.3</td>
</tr>
<tr>
<td>近赤外域*2 (%)</td>
<td>5.8</td>
<td>5.7</td>
<td>5.7</td>
</tr>
<tr>
<td>全波長域*3 (%)</td>
<td>45.0</td>
<td>45.1</td>
<td>44.9</td>
</tr>
<tr>
<td>長波放射率</td>
<td>22.4</td>
<td>22.4</td>
<td>22.4</td>
</tr>
<tr>
<td>明度</td>
<td>0.88</td>
<td>0.88</td>
<td>0.89</td>
</tr>
</tbody>
</table>

2) 灰色

<table>
<thead>
<tr>
<th>日射反射率</th>
<th>暴露試験前</th>
<th>暴露試験後</th>
<th>反射性能の保持率（%） *4</th>
</tr>
</thead>
<tbody>
<tr>
<td>近紫外および可視光域*1 (%)</td>
<td>No.1</td>
<td>No.2</td>
<td>No.3</td>
</tr>
<tr>
<td>近赤外域*2 (%)</td>
<td>32.6</td>
<td>32.6</td>
<td>32.3</td>
</tr>
<tr>
<td>全波長域*3 (%)</td>
<td>70.8</td>
<td>70.8</td>
<td>70.8</td>
</tr>
<tr>
<td>長波放射率</td>
<td>48.7</td>
<td>48.7</td>
<td>48.5</td>
</tr>
<tr>
<td>明度</td>
<td>6.3</td>
<td>6.3</td>
<td>6.3</td>
</tr>
</tbody>
</table>

3) 白色

<table>
<thead>
<tr>
<th>日射反射率</th>
<th>暴露試験前</th>
<th>暴露試験後</th>
<th>反射性能の保持率（%） *4</th>
</tr>
</thead>
<tbody>
<tr>
<td>近紫外および可視光域*1 (%)</td>
<td>No.1</td>
<td>No.2</td>
<td>No.3</td>
</tr>
<tr>
<td>近赤外域*2 (%)</td>
<td>89.5</td>
<td>89.9</td>
<td>89.9</td>
</tr>
<tr>
<td>全波長域*3 (%)</td>
<td>84.1</td>
<td>85.4</td>
<td>85.3</td>
</tr>
<tr>
<td>長波放射率</td>
<td>86.8</td>
<td>87.5</td>
<td>87.5</td>
</tr>
<tr>
<td>明度</td>
<td>0.87</td>
<td>0.87</td>
<td>0.87</td>
</tr>
</tbody>
</table>

*1: 近紫外および可視光域の波長範囲は、300 nm～780nm である。
*2: 近赤外域の波長範囲は、780 nm～2500nm である。
*3: 全波長域の波長範囲は、300 nm～2500nm である。
*4: 反射性能の保持率は、（暴露試験後の値／暴露試験前の平均値）×100（%）で示す。
【分光反射率（波長範囲: 300nm～2500nm）の特性】

1) 黒色

図5-1 分光反射率測定結果（黒色）

2) 灰色

図5-2 分光反射率測定結果（灰色）

3) 白色

図5-3 分光反射率測定結果（白色）

※ 暴露試験前後の番号は試験体に任意に付した番号である。暴露試験前の測定は、施工時のばらつきを考慮し、試験体数3（n=3）として測定した。測定した試験体のうち、日射反射率が2番目に大きいものを屋外暴露試験に供した。屋外暴露による性能劣化を把握するため、暴露試験終了後に測定を行った。
※ 暴露試験は、（財）建材試験センター中央試験所内（埼玉県草加市）にて行った。
【参考】(明度と日射反射率（全波長域）の関係)

※左図は、平成20年度環境技術実証事業ヒートアイランド対策技術（建築物外皮による空調負荷低減等技術）において実証を行った高反射率塗料と一般塗料の明度と日射反射率（全波長域）の関係を示したものである。
※図5-4明度と日射反射率（全波長域）の関係

図5-4 明度と日射反射率（全波長域）の関係

※図中の凡例：一般塗料（近似曲線）は、社団法人日本塗料工業会における測定データを元に、近似式を算出したものである。
2. 数値計算により算出する実証項目

【計算結果】

<table>
<thead>
<tr>
<th></th>
<th>東京都</th>
<th>大阪府</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>屋根(屋上)表面温度低下量(夏季14時)*1</td>
<td>6.7 ℃</td>
<td>6.3 ℃</td>
</tr>
<tr>
<td>(55.2℃→48.5 ℃)</td>
<td>(56.4℃→50.1 ℃)</td>
<td></td>
</tr>
<tr>
<td>室温上昇抑制効果*2(夏季14時)</td>
<td>1.6 ℃</td>
<td>1.6 ℃</td>
</tr>
<tr>
<td>(45.3℃→43.7 ℃)</td>
<td>(46.9℃→45.3 ℃)</td>
<td></td>
</tr>
<tr>
<td>体感温度*3(作用温度)</td>
<td>1.7 ℃</td>
<td>1.7 ℃</td>
</tr>
<tr>
<td>(45.3℃→43.6 ℃)</td>
<td>(46.8℃→45.1 ℃)</td>
<td></td>
</tr>
<tr>
<td>冷房負荷低減効果*4(夏季1ヶ月)</td>
<td>842 kWh/月</td>
<td>1028 kWh/月</td>
</tr>
<tr>
<td>熱量(一般塗料34903 kWh/月)</td>
<td>2.4 %低減</td>
<td>2.5 %低減</td>
</tr>
<tr>
<td>電気料金</td>
<td>3224 円/月</td>
<td>3646 円/月</td>
</tr>
<tr>
<td>冷房負荷低減効果*4(夏季6~9月)</td>
<td>2719 kWh/4ヶ月</td>
<td>3277 kWh/4ヶ月</td>
</tr>
<tr>
<td>熱量(一般塗料89450 kWh/4ヶ月)</td>
<td>3.0 %低減</td>
<td>3.1 %低減</td>
</tr>
<tr>
<td>電気料金</td>
<td>10203 円/4ヶ月</td>
<td>11394 円/4ヶ月</td>
</tr>
<tr>
<td>日射時の対流顕熱量低減率(夏季1ヶ月)</td>
<td>大気への放熱を33.6 %低減</td>
<td>大気への放熱を33.6 %低減</td>
</tr>
<tr>
<td>(317132MJ→210524 MJ)</td>
<td>(387245MJ→257126 MJ)</td>
<td></td>
</tr>
<tr>
<td>日射時の対流顕熱量低減率(夏季6~9月)</td>
<td>大気への放熱を33.3 %低減</td>
<td>大気への放熱を33.4 %低減</td>
</tr>
<tr>
<td>(1143462MJ→762194 MJ)</td>
<td>(1345526MJ→996612 MJ)</td>
<td></td>
</tr>
<tr>
<td>夜間時の対流顕熱量低減率(夏季1ヶ月)</td>
<td>大気への放熱を62.1 %低減</td>
<td>大気への放熱を46.0 %低減</td>
</tr>
<tr>
<td>(2657MJ→1007 MJ)</td>
<td>(5845MJ→3154 MJ)</td>
<td></td>
</tr>
<tr>
<td>夜間時の対流顕熱量低減率(夏季6~9月)</td>
<td>大気への放熱を70.2 %低減</td>
<td>大気への放熱を48.7 %低減</td>
</tr>
<tr>
<td>(9374MJ→2796 MJ)</td>
<td>(22936MJ→11763 MJ)</td>
<td></td>
</tr>
</tbody>
</table>

*1：8月1日～10日の期間中最も日射量の多い日時における、対象部の屋根面・室温の抑制効果
*2：冷房を行わないときの室温
*3：放射温度を考慮した温度で、室温と、室内壁等の平均放射温度の平均温度
*4：夏季1ヶ月（8月）及び夏季（6～9月）において室内温度が冷房設定温度を上回った時に冷房が稼働
した場合の冷房負荷低減効果

注）数値計算は標準問題をもとに实施しており、実際の導入環境とは異なる。また、数値計算の基準には、
灰色(N6)の一般塗料を用いた。ただし、基準対象技術の灰色の明度Vが6±1の範囲外ものは、
同じ明度の一般塗料を基準とした。
【参考項目】

<table>
<thead>
<tr>
<th></th>
<th>東京都</th>
<th>大阪府</th>
</tr>
</thead>
<tbody>
<tr>
<td>冷房負荷低減効果</td>
<td>3726 kWh/年</td>
<td>4846 kWh/年</td>
</tr>
<tr>
<td>(年間空調)</td>
<td>(一般塗料</td>
<td>(一般塗料</td>
</tr>
<tr>
<td></td>
<td>95217 kWh/年)</td>
<td>118583 kWh/年)</td>
</tr>
<tr>
<td></td>
<td>3.9% 低減</td>
<td>3.9% 低減</td>
</tr>
<tr>
<td>電気料金</td>
<td>5273 円/年</td>
<td>11069 円/年</td>
</tr>
<tr>
<td>暖房負荷低減効果</td>
<td>-993 kWh/月</td>
<td>-429 kWh/月</td>
</tr>
<tr>
<td>(冬季1ヶ月)</td>
<td>(一般塗料</td>
<td>(一般塗料</td>
</tr>
<tr>
<td></td>
<td>11028 kWh/月)</td>
<td>14466 kWh/月)</td>
</tr>
<tr>
<td></td>
<td>-9.0% 低減</td>
<td>-3.0% 低減</td>
</tr>
<tr>
<td>電気料金</td>
<td>-3186 円/月</td>
<td>-1270 円/月</td>
</tr>
<tr>
<td>暖房負荷低減効果</td>
<td>-2594 kWh/6ヶ月</td>
<td>-1613 kWh/6ヶ月</td>
</tr>
<tr>
<td>(冬季11～4月)</td>
<td>(一般塗料</td>
<td>(一般塗料</td>
</tr>
<tr>
<td></td>
<td>39706 kWh/6ヶ月)</td>
<td>46155 kWh/6ヶ月)</td>
</tr>
<tr>
<td></td>
<td>-6.5% 低減</td>
<td>-3.5% 低減</td>
</tr>
<tr>
<td>電気料金</td>
<td>-8322 円/6ヶ月)</td>
<td>-4770 円/6ヶ月)</td>
</tr>
<tr>
<td>冷暖房負荷低減効果</td>
<td>124 kWh/年</td>
<td>1663 kWh/年</td>
</tr>
<tr>
<td>(期間空調)</td>
<td>(一般塗料</td>
<td>(一般塗料</td>
</tr>
<tr>
<td></td>
<td>129156 kWh/年)</td>
<td>151789 kWh/年)</td>
</tr>
<tr>
<td></td>
<td>0.1% 低減</td>
<td>1.1% 低減</td>
</tr>
<tr>
<td>電気料金</td>
<td>1881 円/年</td>
<td>6623 円/年</td>
</tr>
</tbody>
</table>

*1：年間を通じ室内温度が冷房設定温度を上回った時に冷房が稼働した場合の冷房負荷低減効果。

*2：冬季1ヶ月（2月）及び冬季（11～4月）において室内温度が暖房設定温度を下回った時に暖房が稼働した場合の暖房負荷低減効果。

*3：夏季（6～9月）において室内温度が冷房設定温度を上回った時に冷房が稼働し、冬季（11～4月）において室内温度が暖房設定温度を下回った時に暖房が稼働した場合の冷暖房負荷低減効果。
【計算結果・参考項目に共通する注意点】
1. 計算結果及び参考項目は、モデル的な工場を想定し、各種前提のもとで数値計算したものである。
2. 計算結果・参考項目において設定した冷暖房の運転期間は、下記の通りとした。
 - 夏季1ヶ月：8月1日〜9月30日
 - 冬季1ヶ月：2月1日〜2月28日
 - 期間空調：冷房期間6〜9月及び暖房期間11〜4月
 - 年間空調：冷房期間1年間
 *：設定温度よりも室温が高い場合に冷房運転を行う。
3. 冷房・暖房負荷低減効果の熱量の欄にある「一般塗料 ○○kWh/△△」とは、一般塗料を塗布した状態において、日射・電気機器等により室内に加えられる熱負荷の一定期間における総和を示している。
4. 電気料金について、本計算では日射遮蔽フィルムの有無による室内熱負荷の差を検討の対象としていることから、種々の仮定が必要となる総額を見積もることをせず、熱負荷の変化に伴う空調電気料金の差額のみを示している。
5. 数値計算は標準問題をもとに実施しており、実際の導入環境とは異なる。

〇 環境負荷・維持管理等実証項目の確認試験（参考）
【付着性】

<table>
<thead>
<tr>
<th></th>
<th>暴露試験前</th>
<th></th>
<th>暴露試験後</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.1</td>
<td>No.2</td>
<td>No.3</td>
<td>平均</td>
<td>No.4</td>
<td>No.5</td>
<td>No.6</td>
<td>平均</td>
</tr>
<tr>
<td>付着強さ（N/mm²）</td>
<td>0.5</td>
<td>0.7</td>
<td>0.7</td>
<td>0.6</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>破壊状況*1（－）</td>
<td>A:100</td>
<td>A:100</td>
<td>A:100</td>
<td>－</td>
<td>A:100</td>
<td>A:100</td>
<td>A:100</td>
<td>－</td>
</tr>
</tbody>
</table>

*1：破壊状況の記号は以下による。

- A：基板破壊
- AB：基板と塗膜の界面破断
- B(G)：塗膜内の凝集破壊
- B(K)：塗膜と塗膜間の界面破断
- BC：ジグと塗膜の界面破断
- 数値：破壊百分率面積
【注意事項】
材料の明度 V と日射反射率 ρ_e とは相関があり、一般的には明度が高いほど日射反射率も高くなる。材料表面の明度は、0〜10 の範囲の数字で表される（理想的な白が 10、理想的な黒が 0 とされる*1）。明度が 10 に近づくほど可視光線の反射率が高くなり、その表面は白く見える。日射光は、大まかに言うと、紫外線、可視光線および近赤外線から成るが、このうち可視光線のエネルギーが約半分を占める。このため、明度が高くなるほど（白くなるほど）日射反射率も高くなる。さらに、白色は一般的に近赤外線の反射率も高くなる傾向があり、従って日射反射率も高くなる。図 明度と日射反射率の関係（15 ページ参照）に示すように明度が 10 に近い白色では、一般塗料と高反射性材料とで日射反射率に差は無くなる。一般的な高反射性材料は、近赤外域での反射率を高くする技術を使用しており、このため灰色あるいは黒色のように白色ではなくても日射反射率を高くする機能を持っている。別添図に示したように、白色では一般塗料と高反射性材料との間で差はないが、灰色、黒色では明らかに日射反射率に差が現れている。これらのことから、今回の実証では高反射性材料に関しては、白色ではなく灰色（N6（無彩色、明度 $V=6$）に着色したもの）を比较の対象とすることで、高反射性材料の性能を実証している。しかし、申請技術の中には高反射率防水シートのように明度を自由に調整できない材料や、塗料でも明度を調整しきれなかったものがあり、これらは、高反射性能だけではなく色の違いによる差が生じてしまう結果となる。
このため、色の違いによる差を極力排除するため、指定した明度（$V=6$）と大きく差がある技術（$V>7$ または $V<5$）に関しては同様の明度を持つ一般塗料との比較を行った。従って、申請技術同士を比較する場合、明度が $V=6 \pm 1$ の範囲外の技術同士の比較は行えないため、結果の評価に注意が必要である。

*1: JIS Z 8721（色の表示方法 - 三属性による表示）
注）明度は、マンセル表色系の表示方法による值である。
付録

1. データの品質管理

本実証試験を実施にあたり、データの品質管理は、（財）日本塗料検査協会が定める品質マニュアルに従って管理した。

（1）測定操作の記録方法

記録用紙は、（財）日本塗料検査協会規程による試験データシート、実測値を記録するコンピュータープリントアウトおよび実証試験要領に規定した成績書とした。

（2）精度管理に関する情報

2. データの管理、分析、表示

（1）データ管理とその方法

本実証試験から得られる以下のデータは、（財）日本塗料検査協会が定める品質マニュアルにしたがって管理するものとする。データの種類は次のとおりである。

・空調負荷低減性能項目のデータ
・環境負荷、維持管理等実証項目のデータ

（2）データ分析と評価

実証項目の測定結果の分析・表示方法は以下のとおりである。

1）空調負荷低減性能項目のデータ

・日射反射率、長波放射率、明度、屋根（屋上）表面温度低下、室温上昇抑制効果、冷房負荷低減効果、日射時の対流顕熱量低減効果、夜間時の対流顕熱量低減効果

2）環境負荷、維持管理等実証項目のデータ

・性能劣化の把握

3. 監査

本実証試験で得られたデータの品質監査は、（財）日本塗料検査協会が定める品質マニュアルに従って行うものとする。実証試験が適切に実施されていることを確認するために実証試験の期間中に内部監査を実施した。

この内部監査は、本実証試験から独立している（財）日本塗料検査協会管理部部長を内部監査員として任命し実施した。

20