

環境技術実証モデル事業 酸化エチレン処理技術分野

メーカー:ムラキ 株式会社

技術名:酸化エチレン排出ガス処理装置 MEJ-101A

実証機関:東京都

実証試験結果報告書

平成15年度環境技術実証モデル事業 酸化エチレン処理技術分野 実証試験結果報告書について、平成16年6月18日付けで承認しました。

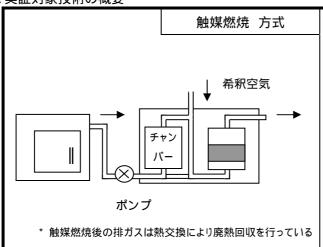
本モデル事業は、普及が進んでいない先進的環境技術について、その 環境保全効果等を第三者機関(実証機関)が客観的に実証する事業をモ デル的に実施することにより、環境技術の普及を促進し、環境保全と環 境産業の発展に資することを目的としたものです。

本報告書における技術実証の結果は、環境技術の性能を保証するものではなく、一定の条件下における環境技術の環境保全効果のデータを提供するものです。

平成 1 6 年 6 月 環 境 省

環境技術実証モデル事業 酸化エチレン処理技術分野

酸化エチレン処理技術 実証試験結果報告書


(ムラキ株式会社)

平成 16 年 3 月 31 日

東京都環境局

実証対象技術 / 環境技術開発者	酸化エチレン排出ガス処理装置 MEJ-101A / ムラキ株式会社	
実証機関	東京都	
実証試験期間	平成 15 年 12 月 16 日 ~ 平成 16 年 1 月 30 日	
本技術の目的	酸化エチレンガスを触媒により分解、無毒化。 安全面に重点を置き、停電等の事故においても安全性を保つ。	

1. 実証対象技術の概要

原理

- ・酸化エチレンガスを触媒により 二酸化炭素と水に分解してい る。
- ・ 滅菌器からの排ガスを装置内 のチャンバーにストックし、順 次エジェクター空気で希釈した 後に触媒層に導入、処理して いる。
- ・ 排ガスは熱交換により熱回収 を行っている。

2. 実証試験の概要

実証対象機器の仕様

正 X 1 3 (
項目	仕様及び処理能力	
型式	MEJ-101A	
サイズ , 重量	W 380mm × D 650mm × H 1,000 mm, 67kg	
対象滅菌器	30~100 L (20% EOG にて)	
容量	(ただし排ガス条件により異なる)	
対応できる 滅菌器種	ドライポンプ式	

実証試験条件設定

【標準酸化エチレンガス処理試験】

	濃度	流量	酸化エチレン量
設定値	24%	4.6L/min	約 2.2 g/min

【酸化エチレン滅菌器シミュレータ排ガス処理試験】

▶ パターンA

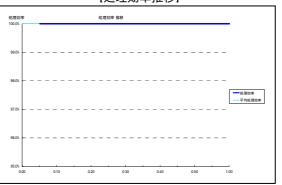
	排ガス開始	排ガス終了	エアレーション開始	洗浄終了
経過時間 (min)	5	12	29, 41, 53, 65	75

	排ガス開始	排ガス終了	洗浄終了
経過時間 (min)	9	16	97

3. 実証試験結果

排ガス処理性能実証項目

標準酸化エチレンガス処理試験


【実証対象機器入口・出口の各パラメータ実測結果】

	項目	入口	出口
	温度	21	36.5
	EOG 総量	140 g	0.30 mg
	EOG 濃度	平均 25% 最大 28%	0.04 ppm

【性能評価結果】

項目	性能評価値	
処理率	99.9% 以上	
単位時間あたり	平均 2.2 g/min	
処理量	最大 2.5 g/min	

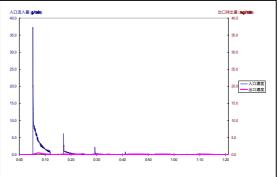
【処理効率推移】

酸化エチレン滅菌器シミュレータ排ガス処理試験

▶ パターンA

【処理時間及びチャンバー容量】

項目	設定値
処理時間	75 min
チャンバー容量	50 L


【実証対象機器入口・出口の各パラメータ実測結果】

項目	入口	出口
温度	19.3	36.6
EOG 総量	30 g	3.5 mg
EOG 平均濃度	-	0.37 ppm

【性能評価結果】

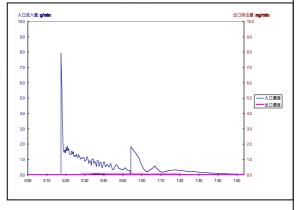
項目		性能評価値	
	処理率	99.9% 以上	

【濃度推移】

> パターンB

【処理時間及びチャンバー容量】

項目	設定値
処理時間	97 min
チャンバー容量	50 L


【実証対象機器入口・出口の各パラメータ実測結果】

	項目	入口	出口
	温度	24.5	33.3
	EOG 総量	54 g	31.7 mg
	EOG 平均濃度	-	0.13 ppm

【性能評価結果】

項目	性能評価値
処理率	99.9% 以上

【濃度推移】

環境負荷実証項目

况只归关证识日						
項目	j	ミ証結果				
CO 濃度	実証を行っていない。本実証対象機器は触媒燃焼方式であり、触媒が正常に機能していれば CO の発生はないと考えられる。					
NOx 濃度	実証を行っていない。本実証対象機器は触媒燃焼方式であり、触媒が正常 に機能していれば NOx の発生はないと考えられる。					
2次生成物	実証を行っていない。本実証対象核	機器は触媒燃焼方式であり、触媒が正常				
発生量	に機能していれば 2次生成物の発	生はないと考えられる。				
騒音 (参考値)	場目 (補工後) (パックク) L _{Aeq} [49 dB] 49 L _{Ceq} [66 dB] 66 L _{Aeq} 、L _{Ceq} ともに暗騒音より小さいため、4方向(前面、背面、右側面、左側の値を代表値として掲載。	L _{Aeq} : 人間の聴覚特性を考慮し補正した等価音圧レベル B				

運転及び維持管理実証項目

是私人の心が自己人能会自						
項目	標準酸化エチレン	シミュレータ排ガス処理試験				
	ガス処理試験	パターン A	パターン B			
	カスと生山州	(容量 50L)	(容量 50L)			
電力消費量	0.62 kWh/60min	0.81 kWh/回	1.08 kWh/回			
电刀府貝里	(135 g の EOG)	(75 min)	(96 min)			
燃料消費量	消費しない					
水消費量	消費しない					
その他反応剤消費量	消費しない					

(定性的所見)

項目	所見
機器運転・維持管理に 必要な人員数・技能	一人で操作可能。通常の運転であれば特殊な技能は必要ない。
運転及び維持管理 マニュアルの評価	操作自体が簡易であるため、通常の運転に関しては理解しやすい。 濃度の平滑化方法についても簡単にでも記載や図があればよりユーザーが理解ししやすいのではないかとも思われる。
その他 (実証対象機器の 発熱等)	本体の発熱量は少なく、作動中の装置上部を触れても問題はない程度の温度である。また排ガスも熱交換により冷却されているため、温度が低く安全である。さらに省エネモード(低濃度時)では流量が大幅に減少し、排熱は更に少なくなる。

(参考情報)

このページに示された情報は、全て環境技術開発者が自らの責任において申請した内容であり、 環境省及び実証機関は、内容に関して一切の責任を負いません。

製品データ

項目環境技術開発者 記入欄名称 / 型式酸化エチレン排ガス処理装置 / MEJ-101A製造 (販売) 企業名ムラキ株式会社TEL / FAX(03)3303 - 5988 / (03)5374 - 7817Web アドレスhttp://www.muraki.co.jpE-mailkudou@muraki.co.jpサイズ / 重量380 x 650 x 1000 (mm) 67 kg前処理、後処理の 必要性なし付帯設備希釈用エアコンプレッサーが必要対応できる滅菌 器種等の特記事項ドライポンプ式のこと
製造(販売)企業名 TEL / FAX (03)3303 - 5988 / (03)5374 - 7817 Web アドレス http://www.muraki.co.jp E-mail kudou@muraki.co.jp サイズ / 重量 380 × 650 × 1000 (mm) 67 kg 前処理、後処理の 必要性
連絡
Web アドレス
サイズ / 重量 380 × 650 × 1000 (mm) 67 kg 前処理、後処理の 必要性 なし 付帯設備 希釈用エアコンプレッサーが必要 対応できる滅菌 器種等の特記事項 ドライポンプ式のこと
サイズ / 重量 380 × 650 × 1000 (mm) 67 kg 前処理、後処理の 必要性 なし 付帯設備 希釈用エアコンプレッサーが必要 対応できる滅菌 器種等の特記事項 ドライポンプ式のこと
前処理、後処理の 必要性なし付帯設備希釈用エアコンプレッサーが必要対応できる滅菌 器種等の特記事項ドライポンプ式のこと
必要性なし付帯設備希釈用エアコンプレッサーが必要対応できる滅菌 器種等の特記事項ドライポンプ式のこと
対応できる滅菌 器種等の特記事項 ドライポンプ式のこと
器種等の特記事項
÷10 # 10
高温警報: 触媒部の温度が設定値より高くなった時は安全自動処理を行い、しばらると自然回復する。ただし長時間高温警報が続くと装置異常警報となる。 安全性 装置の何らかの故障により正常に機能しなくなった場合は自動的に停止る。この場合装置では処理ができないため排気口付近の安全を確認の上、原動作スイッチを押すことで触媒部を通らず、直接外部に排出される。
対象とするガスには酸化エチレン、二酸化炭素および空気以外の成分を含む 処理性能の持続性 能性が低く、触媒毒による劣化はおきにくいが、異常高温による触媒の劣化 ありうる。
トラブルからの 回避動作スイッチを押すことでバイパスより直接排ガスが行われる。その後事 復帰方法 回避動作スイッチを押すことで、もとの状態に戻る。
非常事態への対応 停電への対応機能装備。高濃度 EOG 流入へ対応可能。
実証対象機器寿命 設置後 10 年間
イニシャルコスト
本体価格 × 1台 1,600,
コスト概算(円) エアコンプレッサー × 1台 380,
合計 1,980,
(電力消費量は実証機 ランニングコスト
関による測定値) 1 運転あたり(A) 0.81 kWh
1運転あたり(B) 1.08 kWh
EOG100g 処理あたり 0.46 kWh

その他メーカーからの情報

特徴

初期の排ガス中の高濃度酸化エチレンガスをチャンバーで平準化低濃度の酸化エチレンガスはチャンバーを経由せずに処理省エネモードによりランニングコストを削減自動運転ユニットにより、滅菌器、ポンプの電源を監視し、自動で起動・運転

- 目次 -

1	. 実証試験の概要と目的	1
	1.1 対象技術	1
	1.2 実証試験の概要と目的	1
2	. 実証試験参加組織と実証試験参加者の責任分掌	2
	2.1 実証試験への参加組織	2
	2.2 実証試験の実施に関する実施体制 (実証機関)	3
	2.3 実証試験の実施に関する実施体制(実証機関)	4
3	. 実証対象技術および実証対象機器の特性と説明	5
	3.1 処理原理	5
	3.2 実証対象機器名および製品データ	6
4	. 実証対象試験日程および実施場所	7
	4.1 試験期間	7
	4.2 実証試験の実施場所	7
5	. 実証試験条件	9
	5.1 酸化エチレン処理実証試験条件	9
	5.2 酸化エチレン処理実証項目	12
	5.3 その他環境負荷実証項目の実証試験	13
	5.4 運転および維持管理	14
	5.4 操作記録	14
6	. 実証試験結果と検討結果	18
	6.1 排ガス処理性能試験結果	18
	6.2 環境負荷実証項目実証試験結果	26
	6.3 運転および維持管理実証項目	26
7	. 参考	28
	7.1 標準作業手順(酸化エチレンの測定分析)	
	7.2 記録表	

1.実証試験の概要と目的

1.1 対象技術

本実証試験要領の対象となる酸化エチレン排ガス処理技術とは、医療機関や製薬 工場等で使用されている酸化エチレン滅菌装置(容量 50~200L 程度)からの排ガス を、燃焼、酸化触媒反応、加水反応等の方法により適切に処理する、後付けでの設 置が可能な技術(装置等)のことを指す。

1.2 実証試験の概要と目的

本実証試験は、酸化エチレン処理技術実証試験要領において対象となる酸化エチレン排ガス処理技術を実証し、その結果を評価するものである。本実証試験では、 実証試験計画書に基づき、実証の対象となる機器について、以下の各項目について 試験を行った。

(実証項目)

- 環境技術開発者が定める技術仕様の範囲での、実際の使用状況下における環境 保全効果
- 運転に必要なエネルギー、消耗品及びコスト
- 適正な運用が可能となるための運転環境
- 運転及び維持管理にかかる労力

2. 実証試験参加組織と実証試験参加者の責任分掌

2.1 実証試験に参加する組織は、図2-1に示すとおりである。

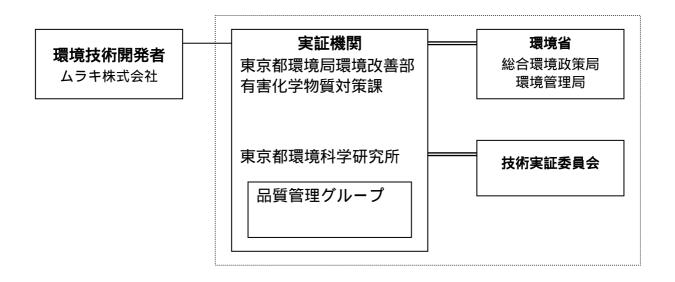


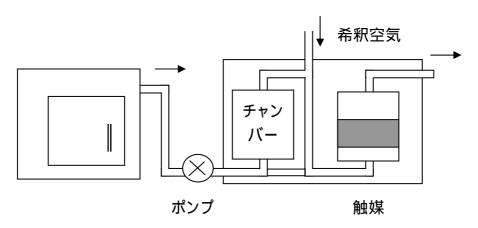
図2-1 実証試験参加組織

2.2 実証試験の実施に関する実施体制(環境技術開発者)は表2 - 1に示すとおりである。

表 2 - 1:実証試験の実施に関する実施体制(環境技術開発者)

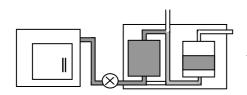
	実証試験の実施に関する 施体制(環境技術開発者)	ムラ	5キ株式会社	
	所属部署名		役職	氏名
責任者	市場開発部		部長	安藤 幸夫
	市場開発部		技術顧問	矢田部 利彰
	市場開発部		課長	工藤 健一
	市場開発部		課長	高垣 克己

2.3 実証試験の実施に関する実施体制(実証機関)は表2 2に示すとおりである。

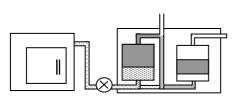

表2-2:実証試験の実施に関する実施体制(実証機関)

実証試験の実施に関する実施体制(実証機関)			東京都環境科学研究所 応用研究部、分析研究部		
所属部署名	役職	氏名		実証試験の実施に係る 経歴、資格等の特記事項	担当
応用 研究部	部長	占部武生		博士 (工学)	実証試験の実施に 関する責任者
応用 研究部	主任研究員	辰市	祐久	技術士(環境)	実証試験の実施
応用 研究部	副参事 研究員	中浦久雄		技術士(環境)	実証試験の実施
応用 研究部	研究員	樋口	雅人		実証試験の実施
分析研究部	部長	佐々木祐子		環境省ダイオキシ受注資格 審査委員 全環研精度管理委員 博士(薬学)	データの検証・実 証試験の監査に関 する責任者
分析 研究部	研究員	星	純也	環境計量士(濃度)	データの検証・実 証試験の監査

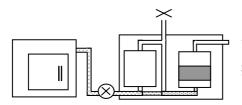
3. 実証対象技術および実証対象機器の特性と説明


3.1 処理原理

本実証対象技術は触媒により酸化エチレンガスを二酸化炭素と水に分解し、無毒化している。滅菌器からの排出ガスを装置内のチャンバーにストックし順次エジェクター空気で 希釈したのちに触媒槽に導入、処理している。



特徴


- ・ 初期の排ガス中の高濃度酸化エチレンガスをチャンバーで平準化。
- ・ 低濃度の酸化エチレンガスはチャンバーを経由せずに処理。
- ・ 触媒後の排ガスは熱交換により廃熱回収を行っている。
- ・ 省エネモードによりランニングコストを削減。
- ・ 自動運転ユニットにより滅菌器、ポンプの電源を監視し、自動で起動・運転

高濃度時:減圧したチャンバー内にガスをストックし、空気で希釈を行いながら触媒で処理。

低濃度時:滅菌器からの排出ガスは全てをチャン バー内に取り込まず、余剰分は直接空気と希釈を行いながら触媒で処理。この段階ではチャンバーから の高濃度ガスと滅菌器からの低濃度ガスが平行して 処理する。

省エネモード:滅菌器からの排出ガスが十分に低下した段階(約1時間後)で希釈用空気を止め、直接触媒で処理を行う。ガス流量が1/10程度に減少するため消費電力が低下する。

3.2 実証対象機器名および製品データ

実証対象機器のデータについて

項目			記入欄	
実証対象機器名		機器名	酸化エチレン排出ガス処理装置 (酸化触媒方式)	
型番		氏 目	MEJ-101A	
製造	(販売) 企業名	ムラキ株式会社	
		TEL	(03) 3303 - 5988	
連絡先		Web アドレス	http:// <u>www.muraki.co.jp</u>	
建紀元		E-mail	kudou@muraki.co.jp	
		FAX	(03) 5374 - 7817	
		W (mm)	380	
サイズ		D (mm)	650	
		H (mm)	1,000	
Ī	重量 (kg)	67	
対象源	遠菌器	容量 (L)	100 (20% EOG にて)但し排ガス条件により異なる	
接続滅菌器 の制約条件	機器運転に必要な 通信機能 対応できる滅菌器の		なし あり 但し、排出駆動ポンプの動作監視および電源状況 の監視あり。	
	形状等の制約条件		特になし	
	対応できる滅菌器種 等の特記事項		ドライポンプ式のこと	
前処理、後処理の必要性		理の必要性	なし あり	
付帯設備		殳備	なし あり 希釈用エアーコンプレッサーが必要	
実証対象機器寿命			設置後10年間	

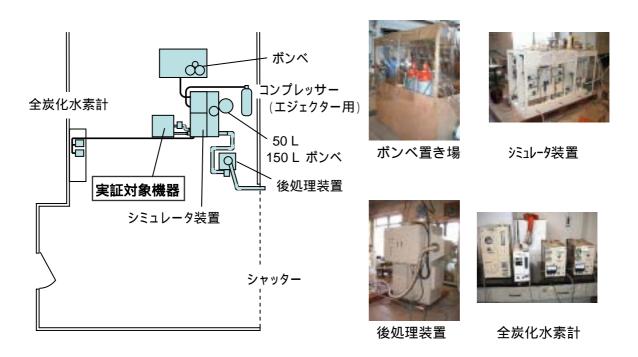
(環境技術開発者 提出資料)

以下の項目については別添資料参照

取扱説明書

- ・ 実証対象機器の設定方法、立ち上げ方法
- ・ 運転方法、通常の維持管理
- ・ トラブルシューティング

4. 実証対象試験日程および実施場所


4.1 試験期間

平成 15 年 12 月 16 日~12 月 23 日、平成 16 年 1 月 30 日

4.2 実証試験の実施場所

東京都環境科学研究所 中防庁舎 1F 実験場 東京都江東区青海2丁目地先

(1) 装置等の配置を以下に示す。

(2) 装置等の説明

ボンベ置き場:20%および95%酸化エチレンボンベの転倒、ガス漏れ等に対し危険がないように木枠で囲いをしている。さらに作業をする際には内部をファンで吸引し、2階窓より排気することで陰圧に保っている。

シミュレータ装置:滅菌器を模した装置でタンク、配管および制御コンピュータからなる装置。コンピュータにより時間またはタンク圧力により電磁弁の開閉を制御し、試験を行っている。

コンプレサー:酸化エチレン滅菌器シミュレータ排ガス処理試験(パターンB)において使用するエジェクター用の圧縮空気供給器

後処理装置:実証対象機器に不良があり、処理ができない場合やタンク内に残留したガスを処理する際に使用する。実証対象機器よりも処理能力が高い処理装置を設

置している。

全炭化水素計:入口および出口濃度を連続で測定するために使用。試験条件によって入口側は空気による希釈を行っている。

5. 実証試験条件

5.1 酸化エチレン処理実証試験条件

以下の実証試験について実証対象機器の性能を試験した。

- ・ 標準酸化エチレンガス処理試験
- ・ 酸化エチレン滅菌器シミュレータ排ガス処理試験 (パターン A 5 0 L)
- ・ 酸化エチレン滅菌器シミュレータ排ガス処理試験 (パターン B 5 0 L)

(1) 標準酸化エチレンガス処理試験

標準酸化エチレンガス処理試験は、空気により適宜希釈した酸化エチレンガスを 一定の流量で1時間実証対象機器に導入し、処理後排ガス中の酸化エチレン濃度等 の排ガス処理性能実証項目及び環境負荷実証項目を測定する試験である。濃度、流 量の設定は以下の表4 1のとおりである。

表4-1:標準酸化エチレン試験の設定

実証試験項目	濃度(%)	流量 (L/min)	酸化エチレン 量(g/min)
標準酸化エチレン ガス試験	24%	4.6	約 2.2

(2) 酸化エチレン滅菌器シミュレータ排ガス処理試験(パターン A 5 0 L) 処理対象ガスは 20%酸化エチレン/ CO_2 ガスを使用し、チャンバー内の酸化エチレンガス濃度が約 700 mg/L になるよう調整する。

排気装置には環境技術開発者が用意するドライポンプを利用する。排出パターンの設定は以下の表4 - 2のとおりである。

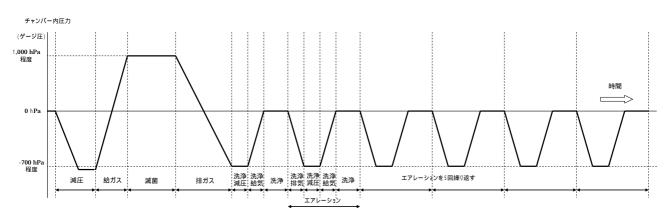


図4-1:排出パターンの概要

表 4 - 2:排出パターンの設定

			, 311 🖂 , 1, ,		
工程		時間(分)	チャンバー 入口弁	チャンバー 出口弁	備考
給ガス		5	開	閉	+ 100 kPa
滅菌		5	閉	閉	
排ガス		7	閉	開	- 70 kPa
洗浄減圧			閉	閉	
洗浄給気		5	開	閉	
洗浄			閉	閉	
	洗浄排ガス	5	閉	開	
エアレー	洗浄減圧		閉	閉	5 回反復
ション	洗浄給気	7	開	閉	プ四区板
	洗浄		閉	閉	

(3) 酸化エチレン滅菌器シミュレータ排ガス処理試験(パターン B 50L) 処理対象ガスは95~100%酸化エチレンガスを使用し、チャンバー内の酸化エチレンガス濃度が約900mg/Lになるよう調整する。排気装置には、エアエジェクターを用いる。排出パターンの設定は以下の表4-3のとおりである。

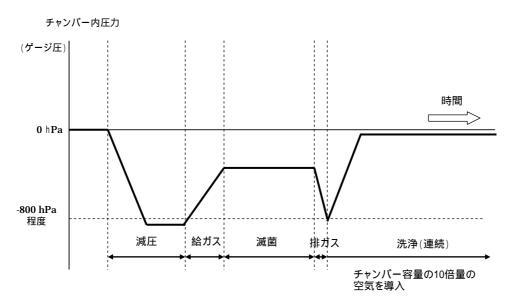


図4 2:排出パターンの概要

表 4 - 3:排出パターンの概要

工程	時間(分)	チャンバー 入口弁	チャンバ <i>ー</i> 出口弁	備考
給ガス	0	閉	閉	
滅菌	8	閉	閉	
排ガス	7	閉	開	
洗浄(連続)	60	開	開	連続換気

5.2 酸化エチレン処理実証項目

酸化エチレン処理実証試験において測定を行う項目は以下の表4-4のとおりである。

表 4 - 4:酸化エチレン処理実証項目

試験項目	方法
酸化エチレン 濃度	実証対象機器の入口ダクトにおける酸化エチレン濃度は、連続全炭化水素計測装置で測定する。 出口ダクトにおける酸化エチレン濃度は、連続全炭化水素計測装置による測定と、固相捕集 - 溶媒抽出 - ガスクロマトグラフ質量分析法による測定を行う。 固相捕集 - 溶媒抽出 - ガスクロマトグラフ質量分析法については、「有害大気汚染物質測定方法マニュアル(酸化エチレン)(環境庁大気保全局大気規制課 平成 11 年 3 月)を参考とする。
処理効率推移	処理効率推移は、実証対象機器の入口及び出口ダクトにおける酸化エチレン 濃度から求める。出口濃度は、連続全炭化水素計測装置によるデータを用いる。
処理率 (移動収支)	処理率は、実証対象機器の入口及び出口ダクトにおける酸化エチレン濃度及び流量から求める。出口濃度はガスクロマトグラフ質量分析法によるデータを 用いる。

(1) 試料採取方法および採取に用いる機器・分析方法・分析機器

・測定全般について

実証対象機器の入口および出口と実証機関が用意した測定装置への接続は環境技術者が行うものとし、測定およびガス採取は実証機関が行った。

・連続全炭化水素計による測定における試料採取

測定装置の入口および出口側より試料採取管を挿入し、連続炭化水素計に導入し、 入口および出口濃度の測定を行った。入口濃度が高濃度で全炭化水素計の測定範囲 外になる場合はマスフローコントローラを用いて希釈を行った。またタンク内圧力 が低く連続によるサンプリングが困難である場合、バッグ等にサンプリングするバッチ方式により測定した。

・固相捕集-溶媒抽出-ガスクロマトグラフ質量分析法による測定

試料採取管を実証対象機器の出口側測定部に挿入し、間接採取用容器、ポンプを 用いて排ガス処理を開始した時より実験終了まで定速にて試料をバッグに採取した。 その後、捕集管に適量を通気させ捕集した。なお、試料の濃度が高濃度であり、捕 集管の捕集可能な範囲外になる場合は注射器等を用いて希釈を行った。 採取した試料はトルエン/アセトニトリルで抽出し、GC/MS により分析を行った。 なお、捕集管はグラファイトカーボン系吸着剤に臭化水素酸を含浸させ、乾燥後 二層に充填したものを使用した(SPELCO OLBO-78)。酸化エチレンは吸着剤内で 誘導化され 2-ブロモエタノールとして捕集される。

(2) 試料の搬入・保存方法

現地で分析を行わない固相捕集 - 溶媒抽出 - ガスクロマトグラフ質量分析法による測定における試料は捕集管に捕集後、捕集管の両端を密栓およびアルミ箔等で遮光し、密閉容器にて実験室に持ち帰った後、直ちに冷蔵保存を行った。

(3) 分析スケジュール

固相捕集 - 溶媒抽出 - ガスクロマトグラフ質量分析法による分析は試料の採取より速やかに行う。

(4) 試料採取機器の校正頻度

連続全炭化水素計は毎測定前に標準酸化エチレンガスにより校正を行った。

質量分析計のチューニングは検量線作成時毎に、かつ事前に質量校正用標準物質 "PFTBA"(ペルフルオロトリプチルアミン 設定質量数:69,219,502)を導入し、MS の質量校正用プログラム等によりマスパターンおよび分解能(質量数(m/z)=18~300程度の範囲で1質量単位(amu)以上)等の校正を行うと共に、装置の感度等の基本的なチェックを行った。このチューニングは測定開始前および連続測定中に応答が異常であると思われる場合に行い、チューニング後は必ず検量線を作成し直し、連続測定中の場合は必要に応じて試料の再測定を行う。この際、チューニング結果

5.3 その他環境負荷実証項目の実証試験

を記録して保管した。

酸化エチレン処理実証試験において測定を行うその他環境負荷実証項目は以下の表4-5のとおりである。

試験項目方法高さ 1.2 m、距離 1 m、4方向で運転時および停止時おいて
LAeq および LCeq の測定を数値が安定するまで(1分)行う。

表4-5:酸化エチレン処理実証項目

騒音は実証対象機器が運転および停止している状態で測定を行った。

5.4 運転および維持管理

(1) 使用資源

・電気使用量

電流計により一回の運転あたりの電力使用量を測定した。各実証試験の開始前および終了後に記録を行い、差分より使用電力量を求めた。

(2) 運転および維持管理性能

運転および維持管理性能に関する以下の項目について環境技術開発者から提出された技術仕様書等より評価を行った。

- ・実証対象機器の運転・維持管理に必要な人員数と技能
- ・実証対象機器の安全性
- ・非常事態への対応
- ・処理性能の持続性
- ・トラブルからの復帰方法
- ・運転及び維持管理マニュアルの評価

5.5 操作記録

以下の内容について操作記録を行い、確認を取った。

(1) 実証試験内容記録表

実証試験を行う際に "EOG ガスサンプリングデータシート"(EOG:F- -1) に記録を行い、確認を取った。

(2) 捕集材使用状況記録表

実証試験において用いた捕集管 (ORBO-78) のロットおよび残数の管理のために "試薬 (捕集材) 使用状況"(EOG: F - - 2) に記録を行い、確認を取った。

(3) GC/MS 作業工程記録表

実証試験において用いた捕集管の抽出・分析に関して"EOG GC/MS 作業工程表" (EOG: F -)に作業工程を記録し、確認を取った。

EOG ガスサンプリングデータシート

測定年月日		/	1					
環境技術開発者	:	,	,	-	測	標準	酸化エチレン 濃度	
対象技術	:				定条	パターンA	チャンバ・	一容量
測定者	:				余件			
					' '	パターンB	5 0 L	1 5 0 l

確認

測定開始時刻	:
測定終了時刻	;

			<u> 圧力(</u> kPa)
行程		時刻	設定 実涯	ĮJ
排気	開始	: :		
	終了	: :		
ガス給気	開始	: :		
	終了	: :		
滅菌	開始	: :		
	終了	: :		
排ガス	開始	: :		
	終了	: :		
洗浄減圧	開始	: :		
	終了	: :		
洗浄給気	開始	: :		
	終了	: :		
洗浄	開始	: :		
	終了	: :		
エアレーション	開始	: :		
	終了	: :		

流入ガス	希釈比率						
入口部	試料流量	<u>=</u>			ml/n	nin	
	空気流量				ml/n	nin	
	希釈倍数	ל					
	炭化水素詞	† N	10.				
		標	準	ガス	濃厚	ŧ.	時刻
	ゼロ確認						:
	校正						:

流入ガス	炭化水素詞	† No.		
出口部		標準ガス	濃度	時刻
	ゼロ確認			:
	校正			:

測定開始時電力量	kWh	: (排ガス開始時)
測定終了時電力量	kWh	: (5回目エアレーション終了時)

固相捕集 - 溶媒抽出 - ガスクロマトグラフ質量分析法用 捕集管採取記録

捕集管 No.	開始時刻	終了時刻	開始時	終了時	ガスメータ	読み取り値	漏れ
		#彡] H43公J	温度()	" 温度()	温度()	開始時(L)	終了時(L)
		:					
		:					
	•	:					
		:					
	1	:				•	

EOG: サンプリング記録用シート F- -2

試薬(捕集材)使用状況

名称	数量	ロット
ORBO-78		

No.	月日	時刻	担当者	環境技術開発者	備考	確認
	/	:				
	/					
	/	:				
	/	:				
	/	:				
	/	:				
	/					
	/					
	/	:				
	1					
	/					
	/					
	/					
	1					
	/					
	1					
	/					
	/					
	/					
	/					
	/					
	/					
	/					
	/					
	/					
	/					
	/					
	/					
	/					
	1					
	/	•				
	/	:				
	/					
	/					
	/	•				
	/	:				
	/	;				
	/	•				
	/	:				
	/	•		- 16 -		
	/					

EOG:GC-MS作業工程表 F-

EOG GC-MS作業工程表

測定年月日:	試料採取者:			
環境技術開発者名	捕集管No.:			
対象機器:	試験条件:	標準	Α	В

溶媒抽出

抽出溶媒	実施日	実施者
トルエン・アセトニトリル	/	

炭酸ナトリウム添加

添加量	抽出開始時刻	抽出終了時刻	実施者
mg	/ , :	/ , :	

内標準添加

	内標準添加					_	確認
	内標準種類	内標準濃度	添加量	実施日	実施者		
Г	2-プロモエタノール d4	0.1 μg/μL	1 μ L	/			

GC/MS

GC/MS					確認
分離カラムの種類	注入量	File Name	実施日	実施者	
	1 μ L		/		

結果

内標準	対象
(2-プロモエタノール d4)	(2-プロモエタノール)

6.実証試験結果と検討結果

- 6.1 排ガス処理性能試験結果
 - (1) 標準酸化エチレンガス処理試験
 - ・標準酸化エチレンガス供給方法

20%酸化エチレンガスを 150 L タンク内に供給し、エジェクターにより一定量を吸引することで実証対象機器に導入した (図 5 - 1)。 濃度は実証対象機器に導入する前段で全炭化水素計にて測定を行った。

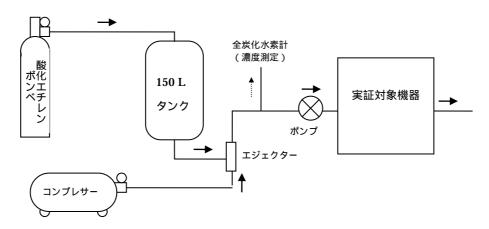


図5-1 標準酸化エチレンガス供給方法

試験条件および試験結果について表5-1に示す

表 5 - 1 標準酸化エチレンガス試験条件および結果

	項	目	単位	測定値
		処理時間	min	60
試験	酉	俊化エチレン ガス濃度	%	平均 24.6 最大 27.6
条件	温度			21
	流入ガス	流入ガス流量		4.6
	総流入量 (酸化エチレン)		g	135
		俊化エチレン Ÿ均排出濃度	ppm	0.04 (捕集管 GC/MS 法)
試験	単	単位時間あたり 処理量		平均処理量 2.2 最大処理量 2.5
結果	温度			36.5
	排出ガス	流量	Nm ³ /min	0.064
	総排出量(酸化エチレン)		mg	0.30
	処理	率(移動収支)	%	99.9 以上

処理時間:酸化エチレンガス供給量が安定した後、60分間を試験時間とした。

酸化エチレンガス濃度:全炭化水素計にて連続で測定した供給酸化エチレンガスの濃度。

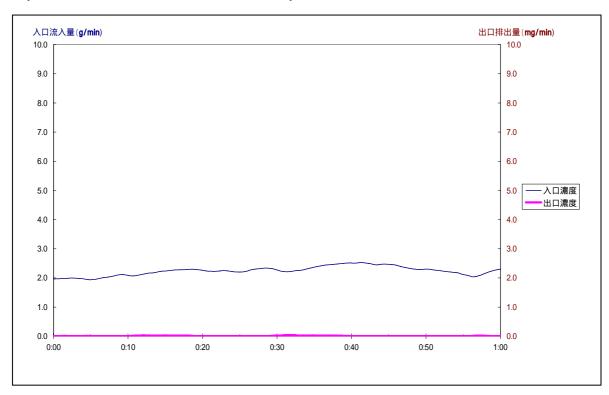
流入ガス:温度はK熱電対、流量はフローメータを使用。総流入量は処理装置に導入された酸化 エチレンガスの総重量を濃度、流量、温度より算出した。

流入量(g)=
$$\sum_{60分}$$
 濃度(%)×流量(L/min) \times 44: 酸化エチレン分子量 \times 273.15 + 温度(\times))/ \times 273.15

酸化エチレン平均排出濃度:処理装置からの排ガスを一定量(0.5 L/min)で処理時間の間、ポンプによりバッグに採取し、捕集管に適量通気させ、GC/MSにより濃度を決定した。

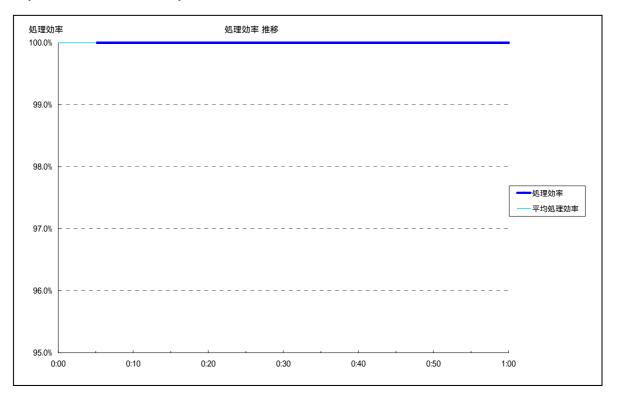
単位時間あたり処理量:流入および流出ガスの炭化水素計により測定した酸化エチレンガス濃度 より、酸化エチレン処理量を算出した。

排出ガス:温度はK熱電対を使用。流量は熱線風速計にて流速を測定。総流入量は処理装置に排出された酸化エチレンガスの総重量を平均排出濃度、流量、温度より算出した。


流入量(mg)=

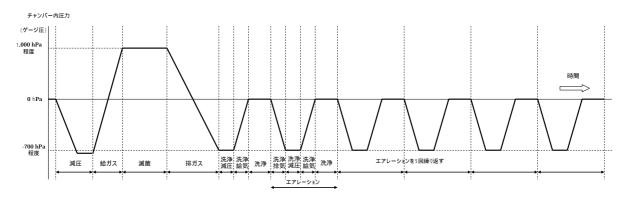
濃度(ppm)×流量(L/min)

$$22.4 \times \frac{(273.15 + 温度())}{273.15} \times 44 \times 60 \text{(min)} \quad 44: 酸化エチレン分子量$$

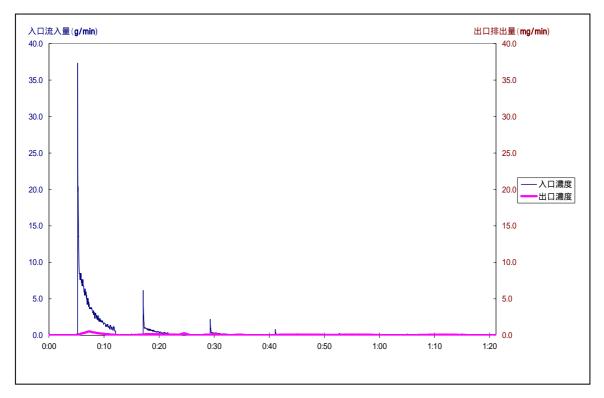

処理率:総流入量および総排出量より処理率を算出した。

処理率(%) =
$$\left(1 - \frac{\text{総排出量(mg)}}{\text{総流入量(g)} \times 1000}\right) \times 100$$

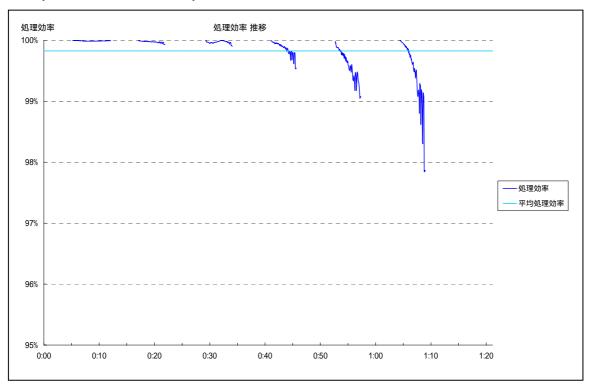
(酸化エチレンガス排出濃度推移チャート)


(処理効率推移チャート)

(2) 酸化エチレン滅菌器シミュレータ排ガス処理試験(パターン A 50L)


	項目			単位	測定値	
	処理時間		処理時間		min	75
	チャ	ンバー容量		L	50	
			温度		19.3	
試験 条件		汝昌	排ガス時	L/min	平均 10.5 最大 105	
7.11	流入ガス	流量	洗浄 排ガス時	L/min	平均 6.2 最大 65	
	(酸)		総流入量 (エチレン)	g	30	
	酸化エチ	ジェチレン平均排出濃度 (エチレン平均排出濃度)		ppm	0.37 (捕集管 GC/MS法)	
±₩E♠		温度 排出ガス 流量			36.6	
試験 結果	排出ガス			Nm³/min	0.063	
MIX	111-11/2/		注排出量 ベエチレン)	mg	3.54	
	処理率	(移動	収支)	%	99.9 以上	

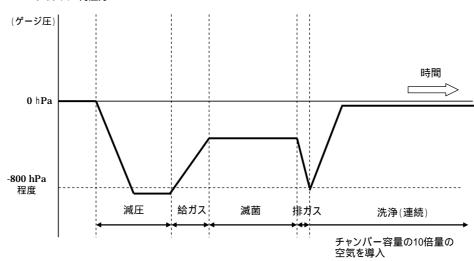
(排出パターン)



工和	Ē	時間(分)
減日	Ē	1
給ガ	ス	3
滅菌		1
排ガ	ス	7
洗浄洞	或圧	2
洗浄約	気	2
洗汽	P	1
	洗浄排ガス	5
エアレーション	洗浄減圧	2
	洗浄給気	4
	洗浄	1

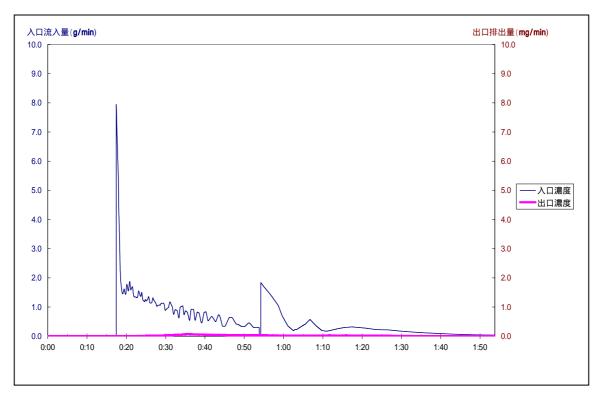
(濃度推移チャート)

(処理効率推移チャート)

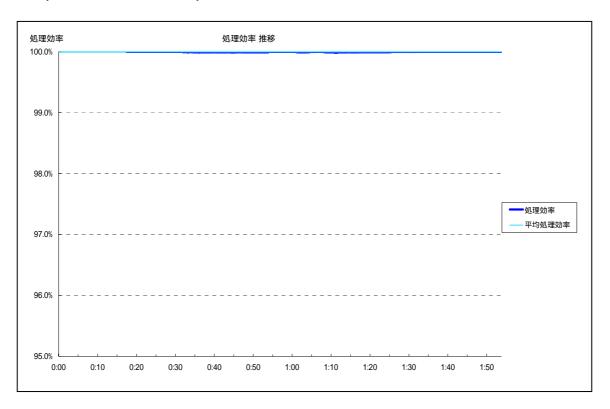

(3) 酸化エチレン滅菌器シミュレータ排ガス処理試験(パターン B 50L)

排気装置:【ドライポンプ】

	項目			単位	測定値	
	処理時間		処理時間		min	97
	チャ	チャンバー容量		L	50	
			温度		24.5	
試験		法目	排ガス時	L/min	平均 0.73 最大 6.0	
条件	流入ガス	流量	洗浄 (連続)時	L/min	4.1	
		総流入量 (酸化エチレン)		g	54	
	酸化エチ	レン平均排出濃度		ppm	0.13 (捕集管 GC/MS法)	
試験	処理率	(移動	収支)	%	99.9 以上	
		温度			33.3	
結果	排出ガス	流量		Nm³/min	0.068	
	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	排出カスト	#出ガス 総排出量 (酸化エチレン		mg	1.67


(排出パターン)

チャンバー内圧力



工程	時間(分)
真空	4
給ガス	4
滅菌	1
排ガス	7
洗浄(連続)	60

(濃度推移チャート)

(処理効率推移チャート)

模分氏	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$R^2 = 0.999$	0.00	0.4	0.7	0:0	0.0 0.1 0.2
	積分比	9990	0.000	0.040	7.0.0	2.300	9.387
	2-7'DE T4/-11.	2/306	24330	00000	127.930	193809	345501
	2-7'DE T#1-11. d4	36611	26000	26274	4,000	30202	36805
	検量線濃度 (11 0/ml)	0.05	5.5	- c	7.0	ر. د.	0.5

9.0

0.5

0.4

濃度 (μg/ml) 0.3

200400129 検量線

		1.0
		0.8
20040204 検量線	-	0.6 濃度 (μg/ml)
	$y = 18.800x - 0.354$ $R^2 = 0.999$	0.4 濃度
	y = 18.8	0.2
積分比	15.0	0.0

積分比	0.749	1.362	3.197	5.456	9.152	14.618
2-7′□E 19/-1	22774	41070	98640	159972	291713	444535
2-7'□€ I9/-∥ d4	30386	30151	30858	29320	31875	30410
検量線濃度 (na/ml)	0.05	0.1	0.2	0.3	0.5	0.8

ドーなが	キンプラグ	環境技術	計略分	2-7 DE	2-7 DE	語分下	捕集ガス量	則 則	濃度	濃度	定量下限	· 阅
I `	I	開発者	I くらい	I9/-∥ d4		04 C K			mg/m3	ppm	mg/m3	ppm
040115.d01	20031218_01	キ ラマ	パターンA		47817	1.59	0.15	21.9	0.72	0.37	0.14	0.07
040115.d02	20031219_09	イラキ	標準	28967	47799	1.65	1.5	22.4	0.07	0.04	0.01	0.01
040116.d01	20031218_04TB	TB	トラヘ ルプ ランク		0	0.00						
20040204.d07 20040130_25	20040130_25	キシケ	パターンB		173274	6.26	1.5	21.9	0.25	0.13	0.02	0.01
20040204.d10	20040204.d10 20040130_28TB	TB	トラヘブリプランク	21444	2608	0.12						

6.2 環境負荷実証項目

(1) 騒音

測定方法:高さ 1.2m、距離 1m、4 方向で、装置運転時と停止時において、 L_{Aeq} 及び L_{Ceq} の測定を数値が安定するまで (1 分程度) 行うこととする。 L_{Aeq} とは、A 特性による等価騒音レベルであり、 L_{Ceq} は C 特性による等価音圧レベルである。ここで A 特性とは、振動数による人間の聴覚特性を考慮し、人間の耳に聞こえる音の大きさに近い騒音レベルを示すよう補正したものであり、C 特性とは、補正を加えない純粋な騒音レベルを示すものであり、一般に人間の耳には認識しにくい低周波成分が、数値に大きく影響してくる。

		L _{Aeq}			L_Ceq	
	運転時	暗騒音	補正後	運転時	暗騒音	補正後
前面	50	49	(43.8)	65	65	(-)
背面	52	49	(48.7)	66	66	(-)
右側面	50	49	(43)	65	66	(-)
左側面	50	48	(43)	65	66	(-)

暗騒音補正後の騒音レベルが、暗騒音より+3dB以内のものは、データとしての信頼性に欠けるため()とした。

主な騒音発生源はなく、LAeq・LCeq 共に暗騒音より小さいため、装置から発生する 騒音は環境にまったく影響を与えないレベルであった。

6.3 運転及び維持管理実証項目

(1) 使用資源

・電気使用量

電流計により一回の運転あたりの電力使用量を測定した。各実証試験の開始前および終了後に記録を行い、差分より使用電力量を求めた。

試験名	測定値(kWh)	測定時間 (min)
標準酸化エチレン ガス処理試験	0.62	60
パターン A	0.81	75
パターン B	1.08	96

(2) 運転および維持管理性能

運転および維持管理性能に関する項目について環境技術開発者から提出された技 術仕様書等より評価を行った。

(定性的所見)

項目	所見
┃ ┃ ┃ 機器運転・維持管理に	自動運転機能があり滅菌器の動作に合わせて自動的に運転するので
が要な人員数・技能	煩わしい運転操作が必要無い。また手動運転動作でも一人で操作が可
必安は八貝奴・汉郎	能で通常の運転であれば特殊な技能は必要ない。
運転及び維持管理	操作自体が簡易であるため、通常の運転に関しては理解しや
マニュアルの評価	すい。濃度の平滑化方法についても簡単にでも記載や図があれ ばよりユーザーが理解ししやすいのではないかとも思われる。
その他	本体の発熱量は少なく、作動中の装置上部を触れても問題は
(実証対象機器の	ない程度の温度である。また排ガスも熱交換により冷却されて いるため、温度が低く安全である。さらに省エネモード(低濃
発熱等)	度時)では流量が大幅に減少し、排熱は更に少なくなる。

(参考情報)

このページに示された情報は、全て環境技術開発者が自らの責任において申請した内容であり、 環境省及び実証機関は、内容に関して一切の責任を負いません。

製品データ

TCHH	10日	理培士你問及李 句) 烟
-	<u>項目</u>	環境技術開発者 記入欄
	3称/型式	酸化エチレン排ガス処理装置 / MEJ-101A
製造	(販売)企業名	ムラキ株式会社
油	TEL / FAX	(03) 3303 - 5988 / (03) 5374 - 7817
先 連	Web アドレス	http://www.muraki.co.jp
, m	E-mail	kudou@muraki.co.jp
サ	イズ / 重量	380 × 650 × 1000 (mm) 67 kg
前処	理、後処理の	なし
	必要性	
	付帯設備	希釈用エアコンプレッサーが必要
	応できる滅菌	ドライポンプ式のこと
器種	等の特記事項	17137710766
		滅菌器側の停電時:滅菌器からの信号が途絶えても本装置内の
		チャンバーガスを処理した後停止する。また運転再開後、滅菌
		器が残留ガスを排出してもチャンバー内にストックし、順次処
l .		理することで対応が可能である。
実	証対象機器の	実証対象機器の停電時:対象機器に電源が入っていない状態で
	安全性	は排ガスはバイパスより直接外部に排出する。
		通電再開時:触媒部の温度が設定値に関わらず一旦チャンバー
		にストックし、その後 触媒温度が設定温度となったところで処
		理弁が開く。しかしながら触媒温度が低くかつチャンバー内に
		既に圧がある場合は直接外部に排気する。
60 TM.	LUL 41 0 ++ /+ LUL	対象とするガスには酸化エチレン、二酸化炭素および空気以外の
処埋'	性能の持続性	成分を含む可能性が低く、触媒毒による劣化はおきにくいが、異常
		高温による触媒の劣化はありうる。
l	:ゴルムこの	回避動作スイッチを押すことでバイパスより直接排ガスが行なわ
	ブルからの	れる。その後再び回避動作スイッチを押すことで元の状態に戻る。
1	復帰方法	なお装置警報が発報している時は自然復帰をしないため装置電源を
		切断する。電源停止時はバイパスより直接排ガスが行なわれる。
		滅菌器側の停電時:滅菌器からの信号が途絶えても本装置内の
		チャンバーガスを処理した後停止する。また運転再開後、滅菌 器が残留ガスを排出してもチャンバー内にストックし、順次処
		- ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
北台	事態への対応	遅りることに対応が可能である。 実証対象機器の停電時:対象機器に電源が入っていない状態で
	事態への対心 ´停電時)	美証対象機器の停電時、対象機器に電源が入りていない状態で
'	(17)电时丿	は採り入はハイハスより直接が記に採出する。 通電再開時:触媒部の温度が設定値に関わらず一旦チャンバー
		にストックし、その後 触媒温度が設定温度となったところで処
		理弁が開く。しかしながら触媒温度が低くかつチャンバー内に
		既に圧がある場合は直接外部に排気する。
		WINCIAN COMPRESSION CONTRACTOR C

項目	環境技術開発者	記入欄		
非常事態への対応 (高濃度酸化エチ レン 流入時)	装置内のチャンバーでバッファリングを行うため、高濃度酸化エチレンが流入しても、直ちに触媒部の温度上昇にはつながらない。本装置では滅菌器から排気が行われる前に装置内のチャンバーの空気を抜き、真空にしている。そのため滅菌器と同じ容量のチャンバーを用意しておくことで、滅菌機内のガスを一旦ストックし、順次処理することができる。また低濃度時はチャンバーにストックすると同時に触媒槽に導入している。			
実証対象機器寿命	設置後 10 年	間		
	イニシャルコ	スト		
	本体価格	× 1台	1,600,000	
コスト概算(円)	エアコンプレッサー × 1台 3			
	合計 1,980,0			
(電力消費量は実証機	ランニングコ	スト		
関による測定値)	1運転あたり(A)	0.81 kWh	12.6	
	1運転あたり(B)	1.08 kWh	16.8	
	EOG100g 処理あたり	0.46 kWh	7.2	

その他メーカーからの情報

特徴

- 1. 初期の排ガス中の高濃度酸化エチレンガスをチャンバーで平準化
- 2. 低濃度の酸化エチレンガスはチャンバーを経由せずに処理
- 3. 省エネモードによりランニングコストを削減
- 4. 自動運転ユニットにより、滅菌器、ポンプの電源を監視し、自動で起動・運転

- 7 . 参考
 - 7.1 標準操作手順書
- 7.2 記録表

「標準作業手順 SOP」

酸化エチレンの測定分析法

- 1.試料採取・調整
- 2 . GC-MS 分析
- 3 . 精度管理データの提出

東京都環境科学研究所 応用研究部

酸化エチレンの測定分析方法

「根拠] 環境庁:「有害大気汚染物質測定方法マニュアル(酸化エチレン)」

1.試料採取・調整

1.1 試料採取・調整用機材の準備

試料採取・調整用機材

- (1) 試料ガス採取装置:図1および2
- (2) 捕集管: ORBO-78
- (3) 密閉容器 (活性炭入)
- (4) ポリエチレン袋、シールテープ、ラベル、ビニールテープ

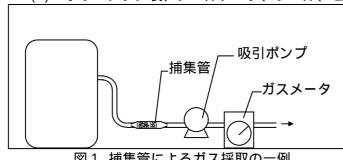
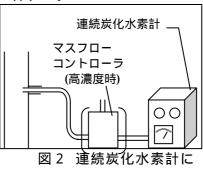



図1 捕集管によるガス採取の一例

よる測定の一例

1.2 試料ガスの採取操作

(1) 試料ガス採取操作

試料ガスの採取時のチェック項目および測定結果等は「サンプリング記録紙」(フ ォーム [F- -1~2]) に記録する。

捕集管による採取装置は漏れ試験を行う。漏れ試験は採取管のノズルをふさいで 吸引ポンプを作動させ、ガスメータの指針が停止すればよい。この試験結果を記録 しておく。

(2)

1.3 試料ガス採取量の算出

$$V_{SD} = Vm \times \frac{273}{273 + t} \times 10^{-3}$$
 (1)

ここに、 V_{SD} :標準状態 [0 , 101.325kPa] における試料ガス採取量 (m³N)

Vm :ガスメータの読み(1)

:ガスメータにおける吸引ガスの温度()

- 1.4 試料の保存・運搬
 - (1) 運搬容器の準備

活性炭を入れてあり、密閉ができる容器

(2) 捕集管の保存および運搬

採取後の試料は外部からの混入および分解を防ぐため、密閉・遮光できる容器 に入れて保存し、実験室に運搬する。

採取した試料は、速やかに前処理以降の操作を行う。

試料運搬中に容器の破損、試料成分の揮発による損失がないようにクッション 材を用い実験室に持ち帰る。

1.5 試料ガスの採取の記録

- (1) 試料ガスの採取を行った場合は、次の項目について「サンプリング記録紙」(フォーム[F- -1~2])に記録する。また必要に応じて現場写真も撮る。
 - ・ 試料採取の日時
 - · 試料対象:環境技術開発者名、対象機器名
 - ・ 測定条件:標準試験・パターンA、B
 - ・ 採取対象の条件:温度、流速
 - ・ 試料採取条件:測定部の構造・サイズ、漏れ試験の結果、吸引時間、吸引ガス 量
- 1.6 試料採取における配慮事項
 - (1) 試料の保管・運搬

採取後の試料は、外部からの混入および分解を防ぐため、密閉・遮光できる容器に入れ、保管・運搬する。

(2) 試料の代表性の確保

目的とする調査対象に対して代表試料の採取が適切に行われるようにする。

2. 試料からの抽出

「試料の前処理の概要]

採取した試料は、溶媒としてトルエン・アセトニトリル、および炭酸ナトリウムを添加し、一定時間(おおむね2時間)抽出し、ガスクロマトグラフ質量分析計によって測定を行う。

2.1 抽出操作用機材の準備

抽出操作用試薬類

- (1) メタノール: 特級 関東化学(株)
- (2) トルエン: ダイオキシン類分析用 関東化学(株)
- (3) アセトニトリル: 特級 関東化学(株)
- (4) 炭酸ナトリウム: 特級 関東化学(株)
- (5) 標準原液 (0.1 μg/μ) : 2-ブロモエタノール (関東化学 (株)) 284mgをメタノールに溶解して100m とし、さらにメタノールで10倍に希釈する。この標準原液 1 μ 中の2-ブロモエタノールは酸化エチレンとして0.1 μgに相当する。
- (6) 標準溶液:標準原液の0.5~5 μ と内標準溶液 1 μ を1.0m のトルエン/アセトニトリル(1:1)に希釈して5段階程度の標準濃度系列用の標準溶液を調製する。標準溶液は使用時に調製する。
- (7) 内標準物質: 2-ブロモエタノールd4
- (8) 内標準溶液(0.1 μg/μ)2-ブロモエタノールd4(98% 和光純薬(株)) 269mg をメタノールに溶解して100m とし、さらにメタノールで10倍に希釈する。この内標準溶液 1 μ 中の2-ブロモエタノールd4 は酸化エチレンd4 として0.1 μgに相当する。

抽出操作用機器

- (1) 抽出瓶:スクリューキャップ付パイアル瓶(容量1.3ml)
- (2) マイクロシリンジ:容量5 µ 程度のもの。

2.2 抽出操作

- (1) 捕集管から捕集剤を 1.3m のスクリューキャップ付パイアル瓶に取り出し、トルエン / アセトニトリル (1:1) 1.0 ml を加えて抽出した後、炭酸ナトリウム 100mg を加えて 2 時間以上放置したものに、内標準溶液(0.1 μg/μl) 1 μ を加えたものを試験液とする。なお、10 試料に 1 回の割合で 2 層を別々に抽出し 2 層目に一定割合 (1 層目の 10%程度)以上の測定対象物質がないことを 5 の試験操作をそれぞれ行って確認する。2 層目に一定割合以上の測定対象物質が認められた場合は測定対象物質の破過が疑われるため、捕集量等を検討して再度採取を行う必要がある。
- (2) 操作ブランク試験

操作ブランク試験は、試験液の調製または分析機器への導入操作等に起因する汚染を確認し、試料の分析に支障のない測定環境を設定するために行うものである。試料採取用と同一ロットの捕集管を用意し、試料と同様に抽出し、'操作ブランク'試料とする。

(3) トラベルブランク試験

トラベルブランク試験は、試料採取準備時から試料分析時までの汚染の有無を確認するためのものであり、採取操作以外は試料と全く同様に扱い持ち運んだものを抽出し、 'トラベルブランク'試料とする。

(4) 二重測定

試料採取、前処理操作および機器分析における総合的な信頼性を確保するために、同一条件で採取した2つ以上の試料について同様に分析し、定量下限値以上の濃度の測定対象物質について両者の差が30%以下であることを確認する。差が大きい時には測定値の信頼性に問題があるため、原則として欠測扱いとする。このような場合には、捕集流量、系の漏れの有無、分析機器の安定性等種々の必要事項についてチェック、改善した後、再度試料採取を行う。

3 . GC/MS 分析

- 3.1 GC/MS 分析の準備
 - (1) 内標準物質: 2-ブロモエタノール d4
 - (2) 検量線作成用標準溶液
- 3.2 GC/MS 分析装置の調整
 - (1) GC-MS の操作条件

質量分析装置:島津製作所製(QP-5000) 検出方法:選択モニタリング(SIM)法 イオン化法:EI

(2) MS のチューニング

MSに質量校正用標準物質(PFTBA)を導入し、質量校正用プログラムにより、マスパターン、分解能{質量数(m/z) = 18~300 程度の範囲で1質量単位(amu)以上}等に校正する。質量校正結果はハードコピーし、保存する。

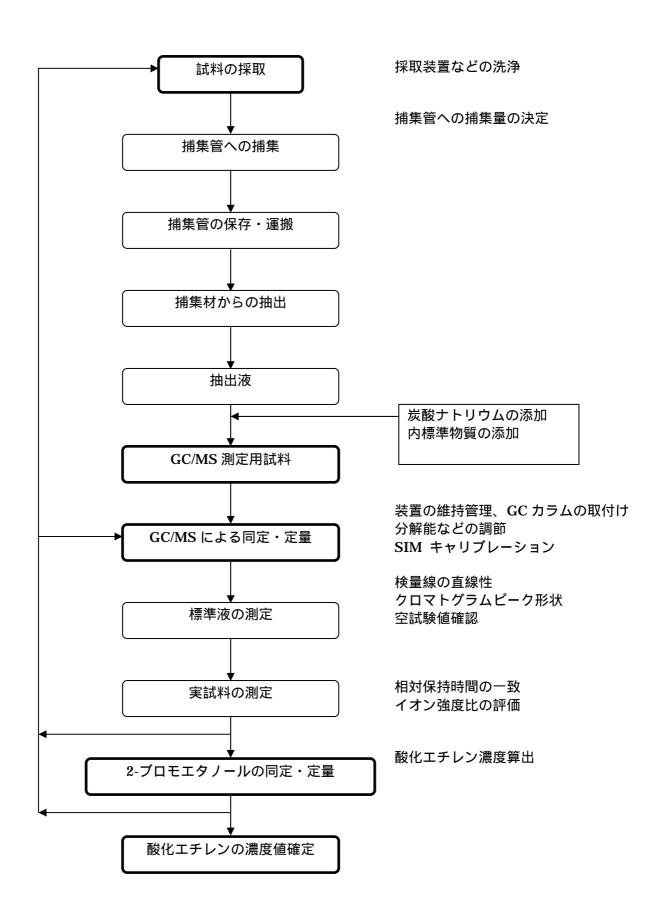
(3) GC/MS 装置の操作条件

GC/MS の分析条件

GC	カラム	Polyethyleneglycol DB-WAX (0.25 mm 内径×60 m長さ)
	昇温	40 (1分間保持)
		200 (10 /min)
	INJ 温度	200
	注入方法	スプリットレス
	キャリアガス	Не
MS	分析装置	島津 QP-5000
	イオン化法	EI
	イオン化電圧	70 e V
	イオン源温度	200
	分解能	質量数 (m/z) = 18~300 程度の範囲で 1 質量単位
		(amu)以上
	検出モード	選択モニタリング(SIM)法

測定質量数の設定

試料および内標準物質の定量用質量数と確認用質量数を設定する


物質名	定量用質量数	確認用質量数
2-ブロモエタノール	3 1	4 5
2-プロモエタノール d4	4 9	
(内標準物質)		

3.3 試料の測定

- (1) GC に 3.2(3)のカラムが取り付けられ、十分にエージングされていることを確認する。
- (2) GC 測定条件を 3.2(3)に設定する。
- (3) GC/MS の安定を確認後、自動測定を開始する。(クロマトグラムの記録、各モニター印についてのピーク面積の測定および濃度の測定を行う)
- (4) ブランクおよび二重測定用試料の測定

操作ブランク試料の測定 2.2(2)で調整した操作ブランク試料について 3.1~3.3の操作を行って、各対象物の操作ブランク値を測定する。

トラベルブランク試料の測定 2.2(3) で調整したトラベルブランク試料について3.1~3.3の操作を行って、各対象物のトラベルブランク値を測定する。 2 重測定試験試料の測定 2.2(4) で調整した2 重測定試験試料について 3.1~3.3の操作を行って、各対象物の操作ブランク値を測定する。

3.4 結果の報告

(1) 濃度の単位

酸化エチレンの実測値は、ppmで表示する。

(2) 数値の取扱い

濃度の表示における数値の取扱いは、特に指定がない場合には次による。 濃度については JIS Z 8401 によって数値を丸め、有効数字を 2 桁として表す。 定量下限値については JIS Z 8401 によって数値を丸め、有効数字を 1 桁として表す。 表す。

(3) まとめ 分析の有効性に関する判断基準

下記事項が確認できたとき、GC/MS 分析値が有効であると判断する。

測定方法の検出下限・定量下限値

トラベルブランク

二重測定における測定値(測定を行った場合)

MS 分析計の調整

分解能: 質量数 (m/z) = 18~300 程度の範囲で1質量単位(amu)以上

GC/MS の感度変動および保持時間

内標準物質の感度:検量作成時の相対感度に比べて±20%以内 保持時間:±5%以内、内標準物質との相対保持比:±2%以内

検量線の範囲

高濃度試料注入の影響

4.精度管理データの提出

測定精度の管理を行うために、以下の測定データを準備しなければならない。

- 4.1 測定データの信頼性確保
 - (1) 検出下限値および定量下限値の確認

検量線作成時の最低濃度(定量下限値付近)の標準溶液を用いて、所定の操作により測定する。5試料以上を測定して、その時の標準偏差(s)を算出し、次式のように標準偏差の3倍を検出下限値、10倍を定量下限値とする。操作ブランク値のある場合には、操作ブランク用試験液を同様に測定して標準偏差を計算し、両者の標準偏差のうち、大きい方を検出下限値および定量下限値の計算に用いる。

検出下限値: 3 × s (μg/μl) 定量下限値: 10 × s (μg/μl)

(2) トラベルブランク試験

トラベルブランク試験を行う場合には、一連の試料採取において試料数の10%以上の頻度で、その結果の平均値を求めて、以下のように測定値の補正を行う。

トラベルブランク < 操作ブランク or トラベルブランク 操作ブランクの 場合 移送中の汚染は無視できるものとする。

トラベルブランク > 操作ブランクの場合

- ・ 試料測定値 トラベルブランク and 試料測定値 トラベルブランクの標準偏差×10 濃度 = 試料測定値 トラベルブランク
- ・ 試料測定値 < トラベルブランク 欠測扱い

(3) 二重測定

二重測定は、同一条件で採取した2つ以上の試料について同様に分析し、定量下限値以上の濃度の測定対象物質について両者の差が30%以下であることを確認する。差が大きい時には測定値の信頼性に問題があるため、原則として欠

測扱いとする。

4.2 GC/MS 分析

日常的点検、調整の記録分析機器の感度の変動

4.3 分析の有効性に関する判断基準

測定方法の検出下限・定量下限値

トラベルブランク

二重測定における測定値(測定を行った場合)

MS 分析計の調整

分解能: 質量数 (m/z) = 18~300 程度の範囲で1質量単位 (amu)以上 GC/MS の感度変動および保持時間

内標準物質の感度:検量作成時の相対感度に比べて±20%以内保持時間:±5%以内、内標準物質との相対保持比:±2%以内

検量線の範囲

高濃度試料注入の影響