海外ETV制度における実証済技術の例

国	技術分野	実証技術
米国	大気モニタリ ング	アンモニアセンサー、微粒子モニター、アンモニア連続排気モニター、硫化水素モニター、水銀連続排気モニター、多金属連続排気モニター、携帯型 NO/NO2 分析計、携帯型マルチガス排気分析計、車載排気モニター、オプティカル・オープンパス・モニター
	水質モニタリ ング	ヒ素試験キット、アトラジンの免疫検定法試験キット、病原体と 毒素の免疫検定法試験キット、モバイル質量分析計、分配システムのマルチパラメーター水質モニター、マルチパラメーター水質 モニタリング・プローブ、栄養物モニタリング技術、携帯型シアン化物分析計、携帯型水質分析計/試験キット、速効性毒性テス
	サイト特性調査	トシステム、速効性ポリメラーゼ連鎖反応(PCR)技術、濁度計意志決定支援ソフトウェア、ガスクロマトグラフ(携帯型)、ガスクロマトグラフ/質量分析計(携帯型)、地下水試料採取装置、免疫検定法試験キット/免疫センサー、赤外線モニター(携帯型)、イオン移動性分光計、イオン選択電極、レーザー励起蛍光検出器、粉塵中の鉛検出技術、堆積物試料採取技術、土壌/土壌ガス試料
	大気汚染制御技術	採取技術、X線蛍光分析計(携帯型) 付加 NO x 制御、バグハウス濾過製品、粉塵抑制と土壌安定化、 エマルジョン燃料、移動発生源デバイス、塗料オーバーレイ・ア レスター
	飲料水システム	ヒ素除去のための吸着、逆流洗浄可能フィルター(微生物学除去)、カートリッジ/バッグファイルター、ヒ素除去のための凝固・濾過技術、高精度凝固(微生物学除去のための濾過)、ヒ素除去のためのイオン交換、精密濾過(微生物学除去のための濾過)、ハロゲンのオンサイト生成(微生物学不活性)、オゾン/高度な酸(微生物学不活性と SOC 除去)微生物学不活性のための Pentalodide 樹脂、プレコートけい藻土濾過、微生物学的病原体のために使用される装置をベースとする逆浸透、化学的病原体のために使用される装置をベースとする逆浸透、ヒ素除去のための逆浸透技術、限外濾過(微生物学除去のための濾過)、高度凝固による限外濾過(微生物学的除去のための濾過)、紫外線(UV)放射(微生物学不活性と消毒)
	温暖化ガス技術	分散生成/結合した熱とパワー(化石燃料)、分散生成/結合した熱とパワー(燃料条件)、分散生成/結合した熱とパワー(再資源化燃料)、モニタリング技術(排気)、石油とガス(漏出緩和)、石油とガス(工程技術)、輸送(エンジン・モデフィケーション技術)、輸送(石油と潤滑油)
	水源保護	動物の排泄物処理(固体分離)、浄化排水処理、排水管内処理技術、水銀混合物分離、家庭排水に含まれる栄養塩類の低減化、UV消毒(二次流出物/排水再利用)
	雨水流出 環境技術・持続	流量計、高速消毒誘導ミキサー、雨水源処理装置、都市の雨水流 出(地下に吸収されない)モデル バイオマス共同ボイラー、カビ抵抗性建材、塗料中の鉛のための
	可能な技術	定性スポットテストキット

1 <mark>網かけ</mark>:我が国ETV制度と重複する技術分野

国	技術分野	実証技術
カナダ	紫外線による	紫外線(UV)によって病原体やバクテリアに汚染された水を浄化
	水質浄化装置	する。
	メタンガスセ ンサー	ダイオードレーザ放出および反射器を利用して大気中のメタン 濃度を測る。
	 水素燃料注入	「偏反で刑る。 電気分解により水素と酸素を発生させ、吸気マニホルドに直接注
	かぶ 燃 神 圧 八 システム	もれ力解により小系と酸系を光生とで、吸れマーホルドに直接性
		し、エンジン稼動中は水素のみ発生する。
	 焼却と酸化触	- プンプライン・ファック・ファック・ファック・ファック・ファック・ファック・ファック・ファック
	媒による排出	を焼却し排出を低減するほか、酸化触媒によって HC、CO、SOF
	低減システム	を低減する。
	Oxy-fuel 燃焼 技術	Oxy-fuel 燃焼技術利用による燃料の少量化(燃焼効率の向上)、 二酸化炭素排出の抑制、窒素酸化物発生の抑制を実証した。
	冷却塔系付着	冷却塔からの循環水は、冷却系の付着物や腐食、生物付着を防ぐ
	物除去	ために一定の伝導性と pH を維持する必要がある。従来は、複数
		の化学物質を調合して水に投入していたが、このシステムでは電
		磁気により産生した炭酸イオンを水中に飽和させ付着物を炭酸
		カルシウムとして沈殿させて除去することができる。
	船尾管に利用	水に対して生分解性を持ちながら、潤滑油の機能としても潤滑、
	する生分解性 潤滑油	腐食保護において高いレベルを維持する。
	シンクロトロ	日光の 100 万倍明るいシンクロトロンを用いると、高い空間解像
	ンを利用した X	度でのX線吸収分光法により、土壌中や鉱山の重金属、特にヒ素
	線吸収分光法	の酸化状態と価数を正確かつ完全に測定できる。
	によるヒ素酸	
	化状態の測定	
	汚染土壌処理	ガスを利用した装置によって、汚染土内を高熱および低酸素環境
	装置	に保ち、汚染土壌における揮発性有機化合物の発生を抑制する。
	牛の消化効率	牛に口から摂取させることで、消化効率(特に第一胃での発酵効
	改善剤	率)を改善し、吸収可能なタンパク質の割合を増やすとともにメ
		タンやアンモニウムの産生を抑える。また腸への寄生虫感染を防
	西埃尔名共和	止する。 (学表のなませいた名くのわり) は環境をの影響がよさいたよ
	環境低負荷射	従来の硫黄成分を多く含むクレーは環境への影響が大きいため、
	撃用クレー	環境負荷の低いカルシウムと石油を用いてクレーを製造し、環境
	済化業品の井	負荷の低さを実証した。 動物の巻尾にまわる第の岩裏はち渇ばて状間化し、低息、無益の
	液状糞尿の堆	動物の糞尿に麦わら等の炭素材を混ぜて堆肥化し、低臭、無菌の
	肥化システム	堆肥を作成する。コンポストは機械的な攪拌とエアレーションが そわれる好気理接受、従来システムトロ温度化ガスの発生を低減
		行われる好気環境で、従来システムより温暖化ガスの発生を低減
	ヒ素除去のた	吸着膜を備えた管に塩素処理した水を流し込むと、ヒ素・鉄・マ
	めの吸着膜	ンガン・亜鉛・カドミウム・鉛・銅、などを化学的に吸着する。
		最適な pH は 6.5~7.0 だが、5.5~8.0 でも十分機能する。
	洗浄水からの	携帯用電気凝固物処理システムは、産業排水に対するスクリーニ
	クロム・ヒ素除	ング・流量調整・pH コントロール・脱ガス・機械的攪拌による
	去装置	綿状沈殿・浄化、により洗浄水からクロムやヒ素を除去する。

1 <mark>網かけ</mark>:我が国ETV制度と重複する技術分野

国	技術分野	実証技術
カナダ	医療排気ガス	麻酔装置の排気口に設置し、ハロゲン化吸入麻酔薬に含まれる温
(続き)	浄化装置	暖化ガス(デスフルレン、セボフルレン、イソフルレン)を吸着
		し、病院の排気標準に適合するように排気ガスを浄化する。吸着
		した気体は、熱い窒素ガスによって脱着しその後急冷して液化し
	75 至 二 如 芸	た後、蒸留によって回収する。認証されたのは回収プロセス。
	硫酸還元細菌 (SRB)検出・	ガラス瓶の中の化学物質が分解される際に酸化環境と還元環境 の活性化の程度を観察し、サンプル水に含まれる硫酸塩還元細菌
	(SRD)機山。 分類技術	の活性化の程度を観察し、サンフルがに含まれる弧酸温度ル細菌 (SRB)を検出し、活性に応じて 3 段階に分類するとともに、5
		個の主要な分類群に分類する。
	鉄 関 連 細 菌	ガラス瓶の中の化学物質が分解される際に酸化環境と還元環境
	(IRB)検出・	の活性化の程度を観察し、鉄関連細菌(IRB)を検出し、活性に
	分類技術	応じて3段階に分類するとともに、5個の主要な分類群に分類す
		ప 。
	従属栄養の好	ガラス瓶の中の化学物質が分解される際に酸化環境と還元環境
	気性細菌(HAB)	の活性化の程度を観察し、従属栄養の好気性細菌(HAB)を検出
	検出・分類技術	し、呼吸量に応じて2個の主要な分類群に分類する。また、連動
		したソフトウェアによって活性細胞の密度を予測する。
	照明制御シス	オフィスビルにおける照明制御とエネルギー管理システム。使用
	テム	状況や明るさを感知するセンサーからエネルギー管理ユニット
		でデータ収集し、照明に付加されたモジュールで制御する。エネー
		ルギー管理ユニットは、ビル全体のエネルギー管理も担う中央監 視システム上のエネルギー管理ソフトや個人端末上の管理ソフ
		トからの指令も受ける。
	土壌焼却浄化	汚染土壌をバーナーによって加熱し、主に炭化水素による汚染を
	装置	除去する。
	自動再生フィ	送風機、遠心力集塵装置、エアフィルタによって粉塵を回収・処
	ルター式空気	理する。
	清浄機	
	水銀混合物分	廃材中に含まれるイオン状水銀および有機水銀を吸着剤に吸着
	離	させ、除去する。
	オンサイト PCB	オンサイトで土壌から PCB を揮発させ、イオン移動度分光分析に
	定量分析装置 固形廃棄物焼	より PCB 濃度の定量/半定量分析を行う。 煙突からの排出基準に沿うように固形廃棄物の焼却処理を行う。
	却処理装置	ただがらの採出を生に泊りよりに回形廃業物の焼却処理を11つ。
	生物医学廃棄	煙突からの排出基準に沿うように生物医学廃棄物の焼却処理を
	物焼却処理装	行う。
	置	
	下水道汚染物	処理装置をマンホール内に取り付けることにより、マンホール内
	質沈殿装置	で汚染物質を沈殿させ、川への流入を防ぐ。
	土壤高熱浄化	汚染した土壌に高熱を与えることにより、汚染物質をガスや液体
	装置	として排出する。排出されたガス・液体は再利用される。
	流体機械の耐	あらゆる液体について極限環境のなか、流体機械が耐用可能かど
<u> </u>	用実験	うかを実証した。

1 網かけ:我が国ETV制度と重複する技術分野

国	技術分野	実証技術
EU	水関連技術	<mark>排水処理</mark> ・モニタリング
	固形廃棄物・資	分別、リサイクル技術、バイオマス由来の素材等
	源	
	エネルギー	再生可能エネルギー、 <mark>省エネ技術</mark> 、廃棄物エネルギー等
韓国	水処理技術	-
	廃棄物処理技	-
	術	
	大気汚染防止	-
	技術	
フィリピン	大気汚染防止	-
	(触媒)	
	固形廃棄物処	-
	理(炭化)	
	<mark>省エネルギー</mark>	-
	<mark>技術</mark>	
ベトナム	海産物加工工	-
2	場の排水処理	
	技術	
	固形廃棄物の	コンポスト化施設:コンポスト不可のものは燃料として利用
	処理施設	
	有害廃棄物処	-
	理技術(セメン	
	ト原料化)	

- 1 網かけ:我が国ETV制度と重複する技術分野
- 2 関心領域として検討されている技術(実証済技術ではない)

(出典:以下の情報源をもとに編集

- ・「海外類似制度調査の経過報告について」、 平成 18 年度第2回環境技術実証モデル事業検討会配布資料(http://www.env.go.jp/policy/etv/pdf/comm/h18/02/mat04.pdf)
- ・各国ETV制度ウェブサイト
- ・国際シンポジウム「環境管理のための技術実証事業」(平成 15 年 2 月開催)配布資料 (URL; http://www.env.go.jp/policy/etv/08_ab_b.html))