環境技術実証事業 湖沼等水質浄化技術分野

湖沼等水質浄化技術 実証試験要領

初 版 平成 2 0 年 4 月 第 1 版 平成 2 1 年 6 月 第 2 版 平成 2 2 年 8 月

実証運営機関 (社)日本水環境学会 環境省 水・大気環境局

目次

本編		1
. #	緒言	1
1.	本事業の目的と基本的な考え方	1
2.	対象技術	1
3.	用語の定義	2
4.	実証試験の種類及び概要	3
. 3	実証試験実施体制	4
1.	環境省	4
2.	環境技術実証事業検討会	4
3.	実証運営機関	4
4.	湖沼等水質浄化技術ワーキンググループ	4
5.	実証機関	4
6.	技術実証委員会	5
7.	環境技術開発者(実証申請者)	5
8.	実証試験実施場所の所有者または管理者	5
. 5	実証対象技術の選定	7
1.	申請	7
2.	実証対象技術の選定	7
. 5	実証試験の設計	8
1.	実証試験の目的の決定	8
2.	実証試験の条件の決定	8
3.	調査項目、目標水準、試料採取及び測定分析方法の決定	11
4.	試験期間と日程の決定	14
5.	実証試験計画の策定	15
. 3	実証試験の実施	16
1.	実証対象機器の準備	16
2.	維持管理	16
3.	その他	17
. 5	実証試験結果報告書の作成	18
5	実証試験実施上の留意点	19

1.	データの品質管理	19
2.	データの管理、分析、表示	20
3.	環境・衛生・安全	21
4.	手数料	22
5.	実証試験の変更又は中止について	26
付録	0:実証機関において構築することが必要な品質管理システム	28
序为	Ż	28
1.	適用範囲	28
2.	参考文献	28
3.	品質管理システム	28
4.	技術的要求事項	29
付録	1:実証申請書	31
付録	2:実証試験計画	36
1.	表紙/実証試験参加者の承認/目次	36
2.	実証試験参加組織と実証試験参加者の責任分掌	36
3.	実証試験実施場所の概要	36
4.	実証対象技術及び実証対象機器の概要	36
5.	実証試験の方法	36
6.	データの品質管理	37
7.	データの管理、分析、表示	37
8.	監査	37
9.	付録	37
付録	3:実証試験結果報告書 概要フォーム	38
付録	4:移入種に関する本技術分野ワーキンググループの見解(平成 17 年度	₹) 43
冷心	6 0	•
資料	編	1
	. 環境技術実証事業の概要	I
	.「環境技術実証事業」実施体制	II
	. 環境技術実証事業の流れ	III

本編

. 緒言

1. 本事業の目的と基本的な考え方

環境技術実証事業(以下「本事業」)の湖沼等水質浄化技術分野(以下「本技術分野」)の目的は、対象技術の環境保全効果(本技術分野の場合、自然湖沼、ダム湖、池等(以下「湖沼等」という。)の水質の浄化を指す)やその他の重要な性能(本技術分野の場合、湖沼等の環境保全に関する性能を指す)を、試験等に基づく客観的データによって、ユーザーに示すことである。

本実証試験要領には、実証試験に関する一般的な考え方や情報を示すことで、実証機関での検討を支援し、本技術分野の実証試験の共通の土台を提供する役割が期待されている。一方、本技術分野の対象技術は独自性に富み、湖沼等の浄化ニーズも極めて多様である。 実証試験のあり方を画一的に規定することは、ユーザーにとって価値のない結果を導く恐れもある。

実証機関、技術実証委員会は、本事業の目的、本実証試験要領の内容とその意図を十分に理解した上で、各実証対象技術について柔軟に判断を下し、実証試験を実施することが望まれる。

2. 対象技術

湖沼等水質浄化技術とは、湖沼等において、汚濁物質(有機物、栄養塩類等)や藻類の除去、透明度の向上、底泥からの溶出抑制等の水質浄化の達成及び湖沼等の環境の向上に役立つ技術を指す。ただし大規模な土木工事を要する技術(底泥浚渫、浄化用水導入等)は対象としない。

3. 用語の定義

本実証試験要領中の主な用語の定義は日本工業規格(以下 JIS)に準ずるものとする。特に関連の深い JIS としては、

● JIS K 0102 「工場排水試験方法」

● JIS B 8530 「公害防止装置用語」

が挙げられる。

また本事業が独自に定める用語は表 1の通りである。

表 1 実証試験要領中の用語の定義

用語	定義
実証対象技術	実証試験の対象となる浄化技術等を指す。実証対象技術は、明確な科学的根拠を持つものでなければならない。
実証対象機器	実証対象技術を機器・装置として具現化したもののうち、実証試験で 実際に使用するものを指す。
実証試験実施場所	実証対象機器が設置され、実証試験が実施される場所・水域を指す。
調査項目	実証対象機器の性能や悪影響の有無の実証に関連して、測定される項目を指す。水質や底質の測定データのように、直接的に実証に用いられる項目だけでなく、水温や雨量などの補助的な情報を含む。
実証申請者	技術実証を受けることを希望する者を指す。複数の事業者による技術について申請する場合は、代表となる事業者一名を実証申請者として申請する。申請した技術が実証対象として選定された後、実証申請者を環境技術開発者と呼ぶ。
環境技術開発者	実証対象技術の保有者を指す。申請した技術が実証対象として選定される前までは、実証申請者と呼ぶ。

4. 実証試験の種類及び概要

(1) 実証試験の種類

本実証試験では、以下の各区分において、実際の水域における実証対象技術の性能・影響を実証する。

- 水質関連(水質浄化、湖沼等の環境向上に関する性能及び悪影響)
- 底質関連(底質浄化に関する性能及び悪影響)
- 生物関連(水質に有害な生物の除去に関する性能及び生物への悪影響)環境への上 記以外の影響

(2) 実証試験の概要

実証試験は以下の各段階を経て実施される。

実証対象技術の選定

実証機関は、実証申請者の申請書に基づき、実証対象技術を選定する (p.7)。

実証試験の設計

実証機関は、環境技術開発者の提案した実証試験方法(p.35)を参考に、実証試験実施場所の所有者または管理者の協力の下、実証試験を設計し、実証試験計画を策定する。この主な手順は以下の通りである。

- 実証試験の目的を決定する(p.8)。
- 実証試験の条件を決定する(p.8)。
- 調査項目、目標水準、試料採取及び測定分析の方法を決定する(p.11)。
- 試験期間と日程を決定する(p.14)。

実証試験の実施

実証機関は、実証試験計画に則して、また状況の変化に則して、実証試験を実施する。 実証機関は、実証試験の一部を外部機関に実施させることができる。

実証試験結果報告書の作成

実証機関は、全てのデータ分析・検証を行い、実証試験結果報告書をとりまとめ、技術 実証委員会での検討を経た上で、実証運営機関を経て、環境省に提出し、承認を得る(p.18)。 実証機関は、実証に係る作業の運営および実証試験結果報告書原案の作成を、外部機関に 委託することができる。

. 実証試験実施体制

1. 環境省

- 環境技術実証事業全般を運営管理し、実証体制を検討する。
- 環境技術実証事業検討会を設置し、運営管理する。
- 実証試験の対象技術分野を選定する。
- 実証運営機関を選定する。
- 実証試験要領を承認する。
- 実証機関を承認する。
- 実証運営機関に実証試験業務委託等を行い、その費用を負担する。
- 実証試験結果報告書を承認する。
- 環境技術の普及に向けた環境技術データベースを構築する。

2. 環境技術実証事業検討会

- 環境技術実証事業全体の運営に対し、助言を行う。
- 実証運営機関の選定にあたり、助言を行う。
- 実証試験結果の総合評価を行うにあたり、助言を行う。

3. 実証運営機関

- 実証試験要領を策定し、環境省の承認を得る。
- 実証機関を選定し、環境省の承認を得る。
- 実証対象技術を承認する。
- 実証試験にかかる手数料の項目の設定と実証申請者からの手数料の徴収を行う。
- 実証機関への実証試験業務の委託等を行う。
- 実証試験結果報告書を確認し、環境省の承認を得る。
- 湖沼等水質浄化技術ワーキンググループを設置し、運営管理する。

4. 湖沼等水質浄化技術ワーキンググループ

- 湖沼等水質浄化技術分野に関する環境技術実証事業の運営に対し、助言を行う。
- 実証試験要領の策定に対し、助言を行う。
- 実証機関の選定に対し、助言を行う。
- 実証試験結果報告書の承認にあたり、助言を行う。

5. 実証機関

- 環境省又は実証運営機関からの委託等により、実証試験を運営管理する。
- 実証対象技術を公募し、選定する。
- 技術実証委員会を設置、運営する。
- 実証試験実施場所を選定する。
- 実証試験計画を策定する。

- 実証試験計画に基づき、実証試験を実施する。(ただし実証試験の一部を、外部機関に委託してもよい。)
- 実証試験の一部を外部機関に委託する場合、委託先機関を含み、実証試験要領で求められる品質管理システムが機能するよう、体制を整える。
- 実証試験中の、関係者の健康と安全を確保する。
- 実証試験関係者の連絡手段の確保、日程調整等、実証試験に係る調整業務を行う。
- 実証試験の手順について監査を行う。
- 実証試験によって得られたデータ・情報を管理する。
- 実証試験結果報告書を作成する。
- 環境技術開発者による実験区の設置と原状回復を確認する。

6. 技術実証委員会

- 実証対象技術の選定にあたり、助言を行う。
- 実証試験実施場所の準備にあたり、助言を行う。
- 実証試験計画の策定にあたり、助言を行う。
- 実証試験の過程で発生した問題に対し、適宜助言を行う。
- 実証試験結果報告書の作成にあたり、助言を行う。

7. 環境技術開発者(実証申請者)

- 実証対象技術に関する既存の性能データを実証機関に提出する。
- 維持管理マニュアルを実証機関に提供する。
- 実証試験計画の策定にあたり、実証機関に協力する。
- 自らの費用負担及び責任において、実証試験実施場所における実験区の設置、実証 対象機器の運搬、設置等を行う。
- 実証試験、実証対象機器の運転及び維持管理に要する費用を負担する。また追加的 に発生する薬剤、消耗品、電力等の費用も負担する。
- 必要に応じ、実証対象機器の維持管理・監視等において、実証機関を補助する。
- 実証試験結果報告書の作成において、実証機関に協力する。
- 実証試験終了後、実証機関の監督の下、実証試験実施場所の所有者または管理者との協議に基づき、実証試験実施場所の原状回復を行う。
- (実証申請者として)薬剤、微生物製剤、動植物等を使用する場合、生物に対する 影響についての調査・分析結果、生態影響試験結果、移入種問題の発生可能性を検 討するための情報を、申請の時点で実証機関に提出する。

8. 実証試験実施場所の所有者または管理者

- 実証試験計画の策定にあたり、実証試験に必要な情報を提供する等、実証機関に協力する。
- 実証試験計画に基づき、実証試験に協力する。

- 実証機関、環境技術開発者、及び実証試験実施場所の所有者または管理者の間での 合意に基づき、運搬上及び技術的な補助を用意する。
- 実証試験実施場所の水質に影響を及ぼしうる、変化・変動要因について、実証機関 に情報提供する。
- 実証試験終了後の原状回復について、環境技術開発者と協議する。

. 実証対象技術の選定

1. 申請

実証申請者は、申請者が保有する技術・製品の実証を実証機関に申請する。申請内容・ 提出書類は以下の通りとする。実証申請者は、付録1に定める「実証申請書」に必要事項 を記入し、指定された書類とともに、実証機関に提出する。

- a.企業名、住所、担当者所属、担当者氏名、連絡先、技術・製品の名称
- b . 技術の概要
- c . 自社試験結果概要
- d.製品データ
- e . 開発状況・納入実績
- f . 技術の先進性について
- g.その他(特記すべき事項)
- h. 実証試験方法の提案(対応可能な実証試験期間を必ず示す。)
- i.添付書類(技術仕様書、自社試験結果、維持管理マニュアル、実証試験方法提案書、薬剤・微生物製剤の内容と安全性を証明する文書、移入種問題の発生可能性を検討するための各種情報、充填材等からの溶出試験結果)

2. 実証対象技術の選定

実証機関は、実施要領に定められた以下の各観点を中心に申請内容を総合的に考慮のうえ、実証対象技術を選定し、実証運営機関の承認を得る。

- a . 形式的要件
 - 申請技術が「対象技術 (p. 1)」に示した対象技術分野に該当するか
 - 申請内容に不備はないか
 - 商業化段階にある技術か
- b. 実証可能性(科学技術的な見地からも検討すべき内容)
 - 予算、実施体制等の観点から実証が可能であるか。
 - 実証試験計画が適切に策定可能であるか。
 - 実証試験にかかる手数料を実証申請者が負担可能であるか
- c.環境保全効果等(主に科学技術的な見地から検討すべき内容)
 - 技術の原理・仕組みが科学的に説明可能か
 - 環境保全効果が見込めるか
 - 副次的な環境問題等が生じないか
 - その技術に独自性が認められるか
 - 実証申請者の提案する実証試験方法は科学的に妥当か
 - 生態系及び人間に対する安全性は確保できるか
 - 使用される薬剤・微生物製剤の安全性は確保されているか
 - 適切な移入種対策をとることは十分に可能か(付録4参照)

. 実証試験の設計

1. 実証試験の目的の決定

本実証試験の目的は、

- 水質の浄化性能または湖沼等の環境保全に関する性能の実証、
- 悪影響や副作用の有無の確認、

である。実証機関は、環境技術の開発趣旨・目標と、実証技術開発者の主張を考慮し、実証試験の目的を具体化する。

2. 実証試験の条件の決定

実証機関は以下について、実証機関に応募する以前より十分に検討し、実施可能な体制 を構築する必要がある。

(1) 実証試験実施場所について

実証試験実施場所は、実証機関が選定し、実証試験実施場所の所有者または管理者の了解を得る。実証試験実施場所の選定にあたり、実証機関は、本実証試験要領の示す枠組みに則った実証試験が実施可能であることを確認する。

実証対象機器の設置にあたり、環境技術開発者と実証機関は、周囲環境との調和を図り、 利水や事業への影響を最低限にとどめるよう配慮する。実証試験終了後、環境技術開発者 は、実証機関の監督の下で実証試験実施場所を開始前の状態に戻す。

実証機関は、実証試験実施場所の所有者または管理者の協力の下、実証試験実施場所への人の立ち入りを制限する等、実証試験実施場所を撹乱する行為、実証対象機器の機能を 損なう行為を防ぐよう努める。

(2) 実証試験条件について

実証試験では、実証対象機器による水質浄化性能等に関する性能を実証できるよう、実験条件を整備しなければならない。

自然条件の影響を考慮する方法としては、対照区の設置、過去の観測結果や周辺の類似する水域での観測結果との比較等が考えられる。どのような方法が適切かは、実証試験実施場所となる水域や、実証対象技術の特性に依存するため、実証機関は実証対象技術毎に適切な方法を検討する。実証試験中の不慮の事故に備え、この方法については複数の案を検討しておくことが望ましい。

(3) 実証申請者が保有するデータに利用について

実証機関は、技術の実証に必要な実証試験について、本要領 .実証試験の設計 3.調査項目、目標水準、資料採取及び測定分析方法に基づき、調査項目等を決定する。

また、実証機関は、実証申請者が保有し提出したデータが、以下のデータの取得機関、データの品質の基準を満たし、技術実証委員会が実証試験に対して十分な精度を確保できると判断した場合には、技術の実証に必要な実証試験の一部を省略し、実証申請者が提出したデータにこれをもって代えることができる。

なお、この実証申請者が提出したデータよる実証試験の一部を省略する範囲については、 実証試験計画に明記する必要がある。

a . データの取得機関

・実証申請者、公的機関、大学等試験研究機関、環境計量証明機関又は客観的な試験結果 が得られると認められる機関。

b . データの品質

- ・客観的データに基づく試験結果や調査報告等であって、十分な信頼性が確保されている と認められるものであること。
- ・データの取得にあたっては、本要領 .実証試験の設計に準じた方法によるものである こと。
- ・実証対象技術への応募申請の日から、概ね5年以内に取得したデータであること。

表 2 実証試験実施場所についての整理様式(実証機関選定時の申請フォームより抜粋)

_		
3	証試験場所として想定している水域について	
	名称	
	住所	
	LEMI	
	水域の種類(ため池、ダム湖 等)と主な月途(農業用水、親水 等)	1
	水域の規模	
	(湖面積、水深、平均滞留日数 等)	
	水域の抱える主な課題	
	(富栄養化、悪臭、景観の悪化 等)	
	水質、汚濁収支等のデータ	
	(可能な範囲で記述して下さい。)	
	その他	┃ ┃(想定する水域及びその周辺の状況がわかる地図や写真等を貼付し
		(ぶたする小域及びでの同意の小派がわかる地面で与其寺を知りて下さい)
J	験区周辺について 実証対象機器の設置スペースはどの程度確保	2
		K
	作業スペースはどの程度確保できるか	
	電源はどのように用意するのか	
	電源はこのように用意するのは	
I		
I	実験区までのアクセス(作業車両は乗り入れ 可能か 等)	1
I	ы m n · · · · · · · · · · · · · · · · · ·	

3. 調査項目、目標水準、試料採取及び測定分析方法の決定

実証機関は表 3の(1)~(6)について、実証試験の目的(p.8)上必要な調査項目と、補助的に使用する調査項目をそれぞれ決定する。またこの際、試料採取場所も決定する。

実証機関は、所定の調査項目について、浄化の目標水準を検討する。本事業は特定の基準で技術を判定するものではないが、目標水準は、実証対象技術が予定通りに機能したかを示す目安として重要である。

実証機関は各調査項目について、関連 JIS、関連規制、公的機関の定める調査方法やガイドラインに従い、試料採取及び測定分析の方法を決定する。技術実証委員会が十分な精度を確保できると判断した場合は、それ以外の方法を採用してもよい。

表 3 調査項目の全体像

調査項目の目的		実証試験の目的 (p.8)		補助的に	
調査対	才 象	神里 項目の日の	性能を 実証する	悪影響の有無を確認する	使用する
種実類証	(1)水質関連				
	(2)底質関連				
	(3)生物関連				
္ တ	(4)環境への上記以	外の影響			
	(5)機器の維持管理				
	(6)その他				

... 該当する調査項目の有無を検討

... 基本的には検討不要

(1) 水質関連

実証機関は、「水質汚濁に係る環境基準について 別表 2 (2)湖沼(昭和 46・12・28 環告 59)」に示された湖沼に関する生活環境項目等、実証試験実施場所の利水目的等を考慮し、調査項目等を定める。

表 4 水質に関連する調査項目の具体例(湖沼に関する生活環境項目等)

項目	出典
水素イオン濃度(pH) 化学的酸素要求量(COD) 浮遊物質量(SS) 溶存酸素量(DO) 大腸菌群数	湖沼類型 AA, A, B, C 関連
全窒素 (T-N) 全リン (T-P)	湖沼類型 , , , , 関連
全亜鉛 (T-Zn)	湖沼類型 生物 A, 生物特 AA, 生物 B, 生物特 BB 関連
景観、透明度	

(2) 底質関連

実証機関は、水質影響についての検討結果との整合性を考慮しつつ、実証対象技術による底質改善効果や、底質への悪影響の可能性について検討し、調査項目を定める。

試料採取及び測定分析の方法は、主に「底質調査方法(昭和 63 年、環境庁)」もしくは「底質調査方法(平成 13 年 3 月、環境省)」に従う。

表 5 底質に関連する調査項目の具体例

	項目
所見	底質の色、におい
嫌気状態の改善状況に関する項目	酸化還元電位 (ORP)
間隙水に関する項目	T-N、T-P
固形分に関する項目	全有機炭素、T-N、T-P

(3) 生物関連

生物に与える影響についての調査項目には、

- 実証試験実施場所での試験に先立って、実証申請者の責任と費用負担で試験し、その結果を申請時に実証機関に提出すべき調査項目と、
- 実証試験実施場所において実証機関が調査すべき項目

の2種類がある。

実証申請者が実証機関に提出すべき調査項目

薬剤・微生物製剤を用いる技術の場合、実証申請者は「新規化学物質等に係る試験を実施する試験施設に関する基準」(化審法GLP基準)に適合する試験機関による、表 6に示す生態影響試験の結果を、申請時に実証機関に提出する。

また有害な成分が環境中に溶出しうる素材を用いる技術の場合、実証申請者は JIS K 0058-1 (スラグ類の化学物質試験方法 第1部:溶出量試験方法)に基づく溶出試験の結果を、申請時に実証機関に提出する。

実証機関はこれらの他にも、実地試験に先立ち必要な試験を決定し、実証申請者に提出を要請することができる。これらの試験結果は、実証試験結果報告書に示す。

表 6 薬剤・微生物製剤を用いる場合に実証申請者が結果を提出すべき生態影響試験

対象	項目	方法
植物プランクトン	藻類に対する生長阻害	OECD テストガイドライン No.201
動物プランクトン	ミジンコ急性遊泳阻害	OECD テストガイドライン No.202
魚類	魚類急性毒性の有無	OECD テストガイドライン No.203

実証試験実施場所において実証機関が調査すべき項目

実証機関は、水質に有害な生物の除去に関する性能や、生物への悪影響や副作用につい

て、調査項目を検討する。生物への悪影響や副作用が確認された場合、また移入種問題について十分に管理できていないことが確認された場合、実証機関は速やかに実地試験を中止できるよう、調査項目と中断すべき水準を事前に検討する。特に希少種が確認されている場合は、十分な検討が必要である。

試料採取及び測定分析の方法は、主に関連 JIS、SCOR / UNESCO 法(クロロフィル a) OECD テストガイドライン (生態影響試験)に従う。

表 7 生物に関連する調査項目の具体例

対象	項目	
植物プランクトン	クロロフィル a 種毎の個体数・群数	
動物プランクトン	種毎の個体数・群数	
その他	底生生物(二枚貝、昆虫類 等)の種毎の個体数 遊泳動物(魚類等)への影響	

(4) 環境への上記以外の影響

実証機関は、実証対象機器の使用に伴う前述以外の環境への影響を考慮し、表 8に示された標準的な調査項目の過不足を検討し、調査項目を決定する。

表 8 環境負荷に関する標準的な調査項目

項目	測定方法 等	関連費用
汚泥または 汚泥由来の廃棄物の量	汚泥の乾重量 湿重量(kg/日)と含水率	処理費用
廃棄物の種類と発生量 (汚泥関連のものを除く)	発生する廃棄物毎の重量(kg/日) 産業廃棄物・事業系一般廃棄物等取り 扱い上の区分も記録する	処理費用
騒音	可能であれば騒音計を用いて測定	
におい	3点比較式臭袋法・同フラスコ法等に よる臭気濃度測定	

(5) 機器の維持管理

実証機関は、実証対象機器の維持管理上の特性を考慮し、表 9に示された標準的な調査項目の過不足を検討し、調査項目を決定する。特に実際の作業担当者の維持管理技能が低い場合に予想される問題点についても考慮する。

表 9 維持管理に関する標準的な調査項目

分類	項目	測定方法 等	関連費用
	電力等消費量	全実証対象機器の電源の積算動力計に よって測定(kWh/日)	電力使用料
使用 資源	薬品の種類と使用量	適宜	薬品費
<i></i>	微生物製剤等の種類と使用量	適宜	製剤費
	その他消耗品	適宜	消耗品費
	実証対象機器の立ち上げに要 する期間	時間(単位は適宜)	
維持	実証対象機器の維持管理に 必要な人員数と技能	作業項目毎の最大人数と作業時間 作業の専門性、困難さ	人件費
管理 性能	実証対象機器の信頼性	系内の通常の変動に対する安定性	
	トラブルからの復帰方法	復帰操作の容易さ・課題	
	維持管理マニュアルの評価	読みやすさ・理解しやすさ・課題	

(6) その他の調査項目

実証機関は、(1)から(5)に含まれていない項目についても、調査項目の必要性を検討し、適宜調査項目として定める。

表 10 その他の調査項目の具体例

	項目等
実証試験実施場所 に関する項目	● 実証試験実施場所の天候、降水量、最高気温、 最低気温(最寄りの測候所のデータを利用)● 水温、水位、水量
流入域等に関する項 目	● 流入汚濁負荷またはその変化を示すデータ
その他の項目	上記以外に、維持管理マニュアルでモニタリング するよう指定された項目があれば、検討する。

4. 試験期間と日程の決定

実証機関は、実証試験の目的と、実証試験実施場所の特性(平均滞留日数、汚濁負荷の流入状況、水質悪化の季節性、冬季の凍結の可能性 等) 実証対象技術の特徴(処理効果

が現れるまでの時間、処理効果の持続期間 等)を考慮し、以下の各期間と作業日程を定める。

(1) 準備期間

実証機関は環境技術開発者、実証試験実施場所の所有者または管理者との協議に基づき、 実証対象機器の設置・調整期限について決定し、定期的な交換が必要な備品・部品や使用 する薬剤・微生物製剤・その他の消耗品をこの期限までに特定する。期限以降の実証対象 機器の構成変更は認めない。実地試験期間中に行うべき維持管理の頻度や方法についても、 準備期間の間に環境技術開発者と実証機関の間で協議し、決定する。

(2) 試験期間

実証機関は、実証対象技術の性能を証明するために必要な開始時期と期間を決定する。 試験期間中、基本的に機器構成についての変更は認めないが、維持管理の頻度や方法に ついては適宜変更・修正を検討してよい。この場合、環境技術開発者と実証機関の間で協 議を行い、実証試験結果報告書に変更時期・変更内容とその理由を記載する。

(3) フォローアップ期間

実証対象機器の撤去後にフォローアップ調査を行う必要がある場合、実証機関は予めフォローアップ調査の開始及び終了時期を設定する。

5. 実証試験計画の策定

以上の検討を基に、実証機関は付録2の各項目を含む実証試験計画を作成する。実証機 関は実証試験計画について、環境技術開発者、実証試験実施場所の所有者または管理者の 承認を得る。

. 実証試験の実施

1. 実証対象機器の準備

環境技術開発者は、実証試験実施場所に実証対象機器を設置する。

環境技術開発者は、実証対象機器の全ての構成部分の読みやすい位置に、以下を記した データプレートを添付する。

- 機器・装置の名称
- モデル番号
- 製造番号
- 環境技術開発者の社名、住所、担当者名、緊急連絡先
- 電源電圧、相数、電流、周波数
- 搬送・取り扱い時の注意事項
- 注意書き・警告文(読みやすさ・見つけやすさに留意すること)
- 容量または排水量(適用可能な範囲で)

実証機関は、実証試験実施場所の整備を監督する。そして準備期間中、実証対象機器の 準備状況、所見、結果を記録し、実証試験結果報告書に記載する。

2. 維持管理

試験期間を通じ、定常な運転状態を維持し、運転の適正化と効率化を図るために、実証対象機器は定期的な維持管理を要する。実証機関は、維持管理に関する全ての作業について、関係者間の役割分担を調整し、実証試験計画に記載する。

(1) 通常の維持管理

作業担当者は、試験期間中、維持管理マニュアルに従って実証対象機器の維持管理を実施する。必要に応じて、維持管理活動に伴い、作業担当者は日報を作成する。日報には、

- 作業場所、日時、担当者名、
- 作業時の天候、気温、水温、水位、
- 作業内容と結果
- 実証試験実施場所及び実証対象機器の所見

を記録する。これらの報告は、実証試験結果報告書の作成の際にデータとして利用できる。 実証機関が必要と判断した場合、日報は実証試験結果報告書の付録として添付される。

実証機関は試験期間中、実証試験実施場所の毎日の天候、降水量、最高気温、最低気温 について、最寄の測候所の発表を整理し、記録する。

実証対象機器の安定な運転を保証するため、維持管理マニュアルで規定された頻度・程度を超えて行うことは妨げない。その場合実証機関は、実証対象技術に必要十分な維持管理活動と、実際に実施した維持管理活動を明確に区別し、実証試験結果報告書に記載する

よう配慮する。

実地試験開始後、維持管理の頻度や方法を変更する必要が発生した場合については、環境技術開発者と実証機関の間で協議を行い、新たな維持管理の頻度・方法を決定するものとする。実証機関は、新たな維持管理の頻度・方法と、その開始時期について実証試験結果報告書に記載する。

(2) 実証対象機器に関する異常事態への対応

実証機関は、実証対象機器に関する異常事態が発生した際には速やかに環境技術開発者に連絡をとる。実証機関は、環境技術開発者の示した定常運転状態に復帰させるよう、措置をとらなければならない。不測の事態の際には、実証機関は環境技術開発者とともに問題に対応する。

実証対象機器に関する異常事態については、その状態、原因、結果、復帰方法を実証試験結果報告書に文書化する。原因がわからない場合、また本当に異常事態だったのかどうかが判断できない場合は、その期間中の試料も実証試験結果報告書に示す。異常事態と判断された場合は、定常運転に復帰し次第、代わりの試料採取を実施する。

生物関連の調査項目において、実証機関が予め定めた、実地試験を中断すべき水準を超えた場合は、直ちに実証試験を中断し、適切な保全措置をとる。

(3)費用に関する情報の整理

実証機関は、環境技術開発者、実証試験実施場所の所有者の協力の下、汚泥・廃棄物の 処理費用、実証試験実施場所での電力使用料、排水処理薬品の価格、その他消耗品の価格 等、維持管理にかかる費用を評価するために必要な情報を、可能な範囲で整理する。

3. その他

実証機関は、実証試験実施場所への立ち入りは制限以外にも、実証試験への不要な撹乱を排除するための方法を検討し、対応する。

. 実証試験結果報告書の作成

実証機関は、実証試験の結果を実証試験結果報告書として報告する。実証試験結果報告書に記載すべき主な内容は以下の通りである。

- 全体概要(付録3の内容が含まれるように記載する。)
- 導入と背景
- 実証対象技術及び実証対象機器の概要
 - ・ 実証対象技術の原理と機器構成
 - ・ 実証対象技術の仕様と処理能力
- 実証試験実施場所の概要
 - ・ 水域の概況
 - ・ 実証試験実施場所の状況(隔離水塊の状況、池外設置の際の導水・排水系統 等)
 - ・ 実証対象技術の配置
 - · 試料採取位置
- 実証試験の方法と実施状況
 - ・ 実証試験全体の実施日程表
 - ・ 各調査項目について、目標水準、試料採取/分析/機器校正の方法と実施日
- 実証試験結果と検討(測定・分析結果を表やグラフを用いて示す)
 - ・ 各調査項目の結果(目標が設定される場合、達成状況ついての評価・分析を含む)
 - ・ 異常値についての報告
 - ・ 他の実水域への適用可能性を検討する際の留意点
 - ・ 技術実証委員会 各委員からのコメント (留意点、技術実証委員会での論点における意見等)
- 付録
 - ・ データの品質管理
 - 品質管理システムの監査

実証試験結果報告書の基礎資料として、実証機関は維持管理マニュアル、維持管理記録、 試料採取・分析の実施及び確認記録、品質管理システムの監査記録等を整理し、実証試験 結果報告書とともに実証運営機関に提出する。

実証機関は、環境技術開発者や技術実証委員会の意見を考慮しつつ、読者が他の実水域への適用可能性を検討する際の留意点について検討し、参考意見として実証試験結果報告書に掲載する。環境技術開発者と実証機関で意見が相容れない場合、両者を明確に区別し、併載してもよい。

実証機関が実証試験結果報告書の原案を策定し、記載の誤り等について、環境技術開発者の確認を経た後、技術実証委員会での検討を経たうえで、実証試験結果報告書を取りまとめ、実証運営機関に提出する。実証運営機関は、提出された実証試験結果報告書を環境省に報告し承認を得る。実証試験結果報告書の承認に当たっては、ワーキンググループに

よる検討も踏まえつつ、実証運営機関又は環境省は、実証機関に対し必要に応じ意見を述べる。

. 実証試験実施上の留意点

1. データの品質管理

(1) データ品質指標

測定データには、正確で信頼性の高いことが求められる。測定者、試料の保存状態、試薬、分析環境等様々な要因によって誤差やバラツキを生じるため、実証機関は、試料採取から分析操作、結果の集計に至るまで精度管理を実施する。

定量的なデータ品質指標 (DQI, Data Quality Indicator) としては、

ればそれを特定し、容認基準と評価手順を定め、実証試験計画に記載する。

- 精度(同一試料を分割し、それぞれ個別に測定して得られる標準偏差またはレンジ)
- 完全性(妥当な試料数を計画した試料数全体で割って得られるパーセンテージ)、 等が挙げられる。実証試験計画の策定の際には、DQIによる精度管理が必要なデータがあ

DQI を用いた精度管理が不要と判断されたデータについては、標準作業手順書の遵守、 二重測定等の方法による精度管理を実施する。

(2) 測定とデータの取得

データの品質管理のための、測定とデータの取得における留意点は以下の通りである:

- 実証機関は、実証試験計画の背景となる仮定、試料採取の採取位置と採取すべき試料について、実証試験計画の策定時に技術実証委員会に報告する。
- 試料の採取、分析については、その都度実施記録と確認記録をとる。
- 実証機関は、標準化されていない手法や機器を使用する場合、実証試験計画の策定 時等に技術実証委員会に報告する。技術実証委員会はその妥当性を検証し、実証機 関に助言を与える。
- 各試料について、試料の取り扱い、保管場所、輸送に関する要求事項を事前に確認 する。
- 動料ラベル、保管ラベル、試料の保管記録を残す。
- 使用される分析手法と分析機器を実証試験計画に示す。
- ◆ 分析機器の校正手法(校正の際の要求事項や校正基準等)を実証試験計画に示す。
- インタビュー等、測定以外の方法で得られる全てのデータについては、その使用限度を検討する。

2. データの管理、分析、表示

調査項目には、水質測定の結果、薬品・薬剤使用量、汚泥及び汚泥由来廃棄物の量といった定量データに加え、実証対象機器の信頼性と操作性、人員の必要性といった定性データがある。これらの管理、分析、表示方法は以下の通りである。

(1) データ管理

実証機関は、28ページの「付録 0:実証機関において構築することが必要な品質管理システム 3.品質管理システム (3)文書及び記録の管理」に示されるように、データを確実に管理する。このため、実証機関は、データの品質管理者を1名指名する。

(2) データ分析と表示

定量データは、表やグラフとして整理し、必要ならば統計分析する。これらの結果は、全て実証試験結果報告書に掲載されなければならない。統計分析に使用された数式は、全て実証試験結果報告書に掲載する。統計分析に含まれなかったデータ(異常事態の間に収集されたデータを含む)は、実証試験結果報告書の「異常値についての報告」で報告する。

水質、底質、生物関連のデータの分析・表示方法の例

- 全データを示す表
- 実証試験期間中の経日変化を示すグラフ
- 実証対象機器による除去効率

環境負荷、維持管理、その他についての分析・表示方法の例

- 汚泥及び汚泥由来廃棄物の量を示す表またはグラフ
- 廃棄物(汚泥関連を除く)の発生量を示す表またはグラフ
- 薬品・薬剤の使用量を示す表またはグラフ
- 微生物製剤等の使用量を示す表またはグラフ
- 電力消費量を示す表またはグラフ
- その他消耗品の使用量を示す表またはグラフ
- 実証対象機器の運転性と信頼性のまとめ(定常運転、異常事態の両方について示す)
- 維持管理マニュアルの使い易さのまとめ
- 実証対象機器の信頼性と、実証試験中に確認された変化・変動に関するまとめ
- 要求される維持管理技能のまとめ
- 月間平均維持管理時間

3. 環境・衛生・安全

実証機関は、実証試験に関連する環境・衛生・安全対策を厳重に実施しなければならない。実証試験計画を策定する際には、関連する環境問題や、実証試験と実証試験実施場所の潜在的な危険性を特定し、またそれらを防止する対策を特定しなければならない。実証機関は、実証試験に参加していない雇用者・作業員を含む、実証試験実施場所の人員に対し、これらの潜在的な危険性と安全策を周知しなければならない。実証試験計画において検討されるべき事項としては、主に以下の点が挙げられる。

- 実証対象機器の運転、処理水の排出、廃棄物発生に関する留意点
- 生物的・化学的・電気的危険性
- 実証試験に関係する化学物質の取り扱い、保管、廃棄
- 実証試験に関係する残さと廃棄物の取り扱いと廃棄
- 地域の電力・配管規則の遵守
- 実証対象機器からガスが発生する場合、排気・換気設備
- 火災防止
- 緊急連絡先(救急、消防他)の確保
- 労働安全の確保
- その他

緊急連絡先、電話番号、最寄の病院の住所と電話番号を 1 ページにまとめた書面は、透明なプラスチックのカバーで保護し、必要な場所に設置されなければならない。

4. 手数料

(1) 手数料の設定と徴収

環境技術開発者は、実証試験に係る経費のうち、「測定・分析等」、「試験に伴う消耗品」、「人件費」、「出張旅費」の4項目に関する手数料を負担することとする。

実証機関は、対象技術の公募を実施するにあたり、この4項目に関する予定額を算定し、 実証運営機関に登録するとともに、公募の際、これを明示しなければならない。算定すべ き主な手数料項目は(2)のとおりであるが、必要に応じ実証運営機関と協議の上、決定 することとする。手数料予定額は、いくつかの前提条件や留保条件に応じて場合分けし、 幅を持たせてもよいが、可能な限り具体的なものにすることとする。

実証機関は、実証試験計画の策定後、実証試験を開始する前に実証運営機関と調整の上、 実証試験に係る手数料額及び納付期日を確定し、環境技術開発者に通知しなければならない。手数料額の確定にあたっては必要に応じ実証運営機関及び環境技術開発者と協議の上、確定することとする。なお、納付期日は、原則実証試験開始前とする。環境技術開発者は、 当該通知を受け、期日までに、実証運営機関に手数料を納付する。

なお、実証機関は、手数料額の確定の際に、実証試験途中における実証項目の追加、また、これに伴う手数料額の追加があり得ることを、環境技術開発者に対し確認しておくとともに、これらの追加を行う場合には、実証運営機関及び環境技術開発者と協議の上、対応することとする。

また、何らかの理由により実証試験が完了できなかった場合には、実証機関は、実証運営機関及び環境省にその経緯を説明し、承認を得た上で、環境技術開発者と協議し、そこまでの試験に要した費用を算定し、環境技術開発者が納付すべき手数料額を改めて確定しなければならない。

(2) 手数料項目

測定・分析等

現地作業に伴う測定・分析、運転・維持管理実証項目の調査等に係る費用であり、外部委託費(分析費用)を計上する。

試験に伴う消耗品

実証試験の実施に伴い消費する消耗品の費用であり、主に以下のものが挙げられる。 なお、下記の試料採取容器等の消耗品については、外部委託費(分析費用)に含まれる 場合もある。

- · 消耗品(試料採取容器等)
- 測定器等が消費する電気料金、水道料金等

なお、装置の運転、維持管理に係る消耗品については、主に以下が挙げられるが、実 証対象技術、実証試験実施場所等に固有のものであり、実証申請者が準備し、それらの 費用は実証申請者が負担する(手数料額に含める必要はない)。

- · 薬品剤代(排水処理薬品等)
- · 製剤代(微生物製剤等)
- ・装置が消費する電気料金、水道料金等
- ・発生した廃棄物の処理費用

人件費(実証機関)

実証試験に伴う、工事確認・立会い、試料採取等に要する人件費を計上する。

出張旅費(実証機関)

実証試験実施場所(現地)までの実証機関の出張旅費であり、主に以下のものが挙げられる。

- ・ 交通機関による旅費(運賃、特急料金等)
- · 車使用料等(車使用料、燃料代、高速道路料金等)
- ・日当
- · 宿泊費

なお、交通機関による移動では、試料等の運搬費用(宅配便料金等)が必要となる。

その他

実証機関は、必要に応じ一般管理費を含めることができる。

表 手数料項目の例

測定分析等	T			備考		
項目	内訳			144 写		
人件費	全体	現地作業計画策定のための調査		†		
(現地作業費)	実証項目(水質関連·底質関連·生物関連)	試料採取	定期試験 日間試験 週間試験			
	環境への上記以外の影響	現地での調査	汚泥または汚泥由来の廃棄物の量 廃棄物の種類と発生量 騒音 におい			
	機器の維持管理	現地での調査	使用資源 維持管理性能			
	その他の調査項目	現地での調査等	実証試験実施場所に関する項目 流入域等に関する項目 その他の項目			
補助職員賃金	全体	現地作業計画策定のための調査	1441044			
(現地作業)	実証項目(水質関連·底質関連·生物関連)	試料採取	定期試験 日間試験 週間試験			
	環境への上記以外の影響	現地での調査	汚泥または汚泥由来の廃棄物の量 廃棄物の種類と発生量 騒音 におい			
	機器の維持管理	現地での調査	使用資源 維持管理性能			
	その他の調査項目	現地での調査等	実証試験実施場所に関する項目 流入域等に関する項目 その他の項目	最寄りの測候所のデータ等を調査		
機器損料 (現地作業)	実証項目(水質関連·底質関連·生物関連)	採取器具その他	採水器等 水温計等			
	環境への上記以外の影響	汚泥または汚泥由来の廃棄物の量	重量計その他			
		廃棄物の種類と発生量	重量計 その他			
		騒音の測定	騒音計 データ処理機 その他			
		においの採取	ポンプ 風速計 温湿度計 その他			
	機器の維持管理	使用資源等の調査	電力計 クランプロガー その他	電力計、流量計等が設置されていな い場合には、申請者が準備する		
	その他の調査項目	実証試験実施場所に関する項目に係る 流入域等に関する項目に係る調査 その他の項目に係る調査				
外部委託費	実証項目	水質		「実証対象機器による水質浄化性能、		
(分析作業)		底質		底質浄化性能、水質に有害な生物の		
		生物	除去に関する性能の実証」・「環境へ			
		騒音		の悪影響の有無の評価」の観点から 必要であると考えられる項目		
		におい		「環境技術開発者」から調査の要望か		
	追加項目(任意)		水質			
		底質		以外に追加することが認められた項		
試験に伴う消息	I	生物		目		
項目	内訳			備考		
消耗品 (現地作業)	実証項目(水質関連·底質関連·生物関連)	試料採取容器 その他	ポリエチレン容器 ガラス容器 導管等	試料採取容器、測定器具等は外部委		
	環境への上記以外の影響	臭気の採取容器 騒音の測定器具 その他	デドラーパッグ 電池等 導管等	- 託費(分析費用)に含まれる場合もある。		
1	機器の維持管理		10 m 3	申請者負担による。		
	その他の項目			申請者負担による。		
消耗品	消耗品	処理薬品 その他				
1	電気代		電気代			
1	水道料金		水道料金			
	廃棄物の処理費用 その他	廃棄物の処理費用 器具等	1			
出張旅費	C 00/10	HI X T		1		
項目	内訳			備考		
旅費	現地作業、実証機関の試験場所までの旅費	旅費	運賃	交通機関又は車による移動。交通機 関による移動では、試料等の運搬費		
		車使用料等	特急料金 車使用料 燃料費	関による参勤では、試科等の運搬員 一用(宅配便料金等)が必要となる場合 がある。		
		日当	高速道路料金			
		宿泊費				

⁽注)実証機関は、必要に応じ一般管理費を含めることができる。

表 調査項目(実証項目・追加項目)の例

_ ^ _	(天皿項目 追加項目)の例				
ケース番号	各ケースの概要	種別	大項目	小項目	備考
No.1	技術区分:水中設置型技術(曝気循環)	実証項目	水質	水温	
	技術原理(概要):表層水・空気の底層供給	I		DO	
	効果:水温躍層の破壊、貧酸素状態の解消			濁度	
		l	L	流速	
		I	底質	-	
		I	生物	-	
			騒音	騒音レベル	
l			におい	臭気指数	現場での定性的な所見でも可
				臭気強度	
		追加項目(任意)	水質	COD	
		1	l	T-N	
l				T-P	
l				ss	
l				VSS	
l			底質	含水率	
l				強熱減量	
l				T-N	
				T-P	
				тос	
				ORP	
			生物	動物プランクトン	
				植物プランクトン	
				クロロフィルa	
	1	I	l	底生生物	
No.2	技術区分:湖外設置型技術、薬剤・微生物製剤	実証項目	水質	SS	
	技術原理(概要):凝集剤添加、浮上分離	I	底質	-	
	効果:浮遊物質、アオコ等の除去	I	生物	植物プランクトン	
		I	l	動物プランクトン	
		I		クロロフィル。	
		I	騒音	騒音レベル	
		I		臭気指数	現場での定性的な所見でも可
	1	I	,	臭気強度	
		追加項目(任意)	水質	pH	
			3.54	ISS	
		I		DO	
		I		DOC	
		I		T-N	
		I		T-P	
		I		PO4-P	
		I	l	透明度	
		I		水温	
				水色	
		I		臭気	
		I	底質	色、におい	1
			戊貝	TOC	
		I		T-N	
		I		T-P 強熱減量	
				知然與重	
			生物		
No 3	技術区分:水中铅墨刑技術(陽気循環)	宝红酒日	生物水質	- COD	
No.3	技術区分:水中設置型技術(曝気循環) 技術原理(解票):微細宗海供於	実証項目	生物 水質	- COD 液連	
No.3	技術原理(概要):微細気泡供給	実証項目		流速	
No.3		実証項目	水質	流速 DO	
No.3	技術原理(概要):微細気泡供給	実証項目		流速 DO 色、におい	
No.3	技術原理(概要):微細気泡供給	実証項目	水質底質	流速 DO 色、におい 酸化還元電位	
No.3	技術原理(概要):微細気泡供給	実証項目	水質 底質 生物	流速 DO 色、におい 酸化還元電位 クロロフィルa	
No.3	技術原理(概要):微細気泡供給	実証項目	水質 底質 生物 騒音	流速 DO 色、におい 酸化還元電位 クロロフィルa 騒音レベル	期提売の学歴的な所目でま す
No.3	技術原理(概要):微細気泡供給	実証項目	水質 底質 生物 騒音	流速 DO 色、におい 酸化還元電位 クロロフィルa 騒音レベル 臭気指数	現場での定性的な所見でも可
No.3	技術原理(概要):微細気泡供給		水質 底質 生物 におい	流速 DO 色、におい 酸化還元電位 クロロフィルa 騒音レベル 臭気指数 臭気強度	現場での定性的な所見でも可
No.3	技術原理(概要):微細気泡供給	実証項目	水質 底質 生物 におい	流速 DO 色、におい 酸化還元電位 クロロフィルa 騒音レベル 臭気指数 臭気強度 酸化還元電位	現場での定性的な所見でも可
No.3	技術原理(概要):微細気泡供給		水質 底質 生物 におい	流速 DO 色、におい を を化遠元電位 クロフィル2 騒音レベル 臭気指数 臭気指数 酸化還元電位 pH	現場での定性的な所見でも可
No.3	技術原理(概要):微細気泡供給		水質 底質 生物 におい	流速 DO 色、におい 酸化還元電位 クロロフィルa 騒音レベル 臭気指数 臭気強度 PH 水温	現場での定性的な所見でも可
No.3	技術原理(概要):微細気泡供給		水質 底質 生物 におい	流速 DO 色、におい 酸化還元電位 クロロフィルa 騒音レベル 臭気指数 臭気強度 酸化還元電位 pH 水温 電気伝導度	現場での定性的な所見でも可
No.3	技術原理(概要):微細気泡供給		水質 底質 生物 におい	流速 DO	現場での定性的な所見でも可
No.3	技術原理(概要):微細気泡供給		水質 底質 生物 におい	流速 DO 色、におい 酸化適元電位 クロロフィル2 臭気強度 酸化適元電位 PD 等 製造強度 酸化通元電位 PH 水温 電気伝導度 溶解性COD SS	現場での定性的な所見でも可
No.3	技術原理(概要):微細気泡供給		水質 底質 生物 におい	流速 DO 色、におい 酸化還元電位 クロロフィル 製査レイル 臭気指数 臭酸化還元電位 PH 水温電管 PH 水温 電気に等度 溶解性COD SS S 透視度	現場での定性的な所見でも可
No.3	技術原理(概要):微細気泡供給		水質 底質 生物 におい	流速 DO 色、におい 酸化還元電位 クロロフィル 製養性の 発養性の 発養性の 発養性の 関係を を を の の の の の の の の の の の の の の の の の	現場での定性的な所見でも可
No.3	技術原理(概要):微細気泡供給		水質 底質 生物 におい	流速 DO	現場での定性的な所見でも可
No.3	技術原理(概要):微細気泡供給		水質 底質 生物 音話い 水質	流速 DO 色、におい 酸化還元電位 クロロフィル 製養性の 発養性の 発養性の 発養性の 関係を を を の の の の の の の の の の の の の の の の の	現場での定性的な所見でも可
No.3	技術原理(概要):微細気泡供給		水質 底質 生 類に 水 質 底 質 質 に 水 質 の 質 の の の の の の の の の の の の の の の の	液速 DO	現場での定性的な所見でも可
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制	追加項目(任意)	水質 底質 生 類に 水質 原質 物 音 お い 質 物 質 物 質 物 質 物 質 物 の の の 質 り の の の の の の の の の の の の の の の	流速 DO 色、におい 酸化還元電位 クロロフィルs 騒音ルベル 臭気指数度 繋気強度 酸化還元電位 アルカ 臭気指数度 酸化還元電位 アト 水温 電気伝導度 溶解性COD SS SS 透視度 BOD T-N T-P	現場での定性的な所見でも可
	技術原理(概要):微細気泡供給		水質 底質 生 類に 水 質 底 質 質 に 水 質 の 質 の の の の の の の の の の の の の の の の	流速 DO 色、におい 酸化減元電位 クロロフィル。 軽強に元電位 クロロフィル。 軽乗気指数 臭気強度 酸化適元電位 PH 水電気伝導度 溶解性COD SS 透視度 BOD T-N T-P L植物プランクトン SS	現場での定性的な所見でも可
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意)	水質 底 生騒に 水質 (産生水) (産生水)	 減速 DO 色、におい 整化道元電位 クロロフィルs 騒音レベル 具質指数 臭気強度 酸化通元電位 pH 水温 電気伝導度 溶解性COD SS 透視度 BOD T-N T-P - <li< td=""><td>現場での定性的な所見でも可</td></li<>	現場での定性的な所見でも可
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術)	追加項目(任意)	水質 底 生騒に 水水質 底生水質	 減速 DO 色。におい 酸化還元電位 クロロフィルa 騒音にクリル 臭気指数 臭気指数 最後に週元電位 ph水温 電台 高解性COD SS 透視度 BOD T-T-P ・ 植物ブランクトン SS COD T-N 	現場での定性的な所見でも可
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意)	水質 底 生 騒 に 水 変 を を を を を を を を を を を を を	 減速 DO 色、におい 整化道元電位 クロロフィルs 騒音レベル 具質指数 臭気強度 酸化通元電位 pH 水温 電気伝導度 溶解性COD SS 透視度 BOD T-N T-P - <li< td=""><td>現場での定性的な所見でも可</td></li<>	現場での定性的な所見でも可
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意)	水質 底生類 に 水質 (底生水 質物質 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	 減速 DO 色、におい 酸化還元電位 クロロフィルs 騒音レベル 臭気指数度 酸化還元電位 財子 水温 電気伝送のD ボート T-ト T-P・・・ 植物プランクトン SS COD T-N T-P・・ 	現場での定性的な所見でも可
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意)	水 順 質 佐 騒	 減速 DO 色、におい 酸化適元電位 クロロフィルs 騒音レベル 臭気指数 臭気が速度 酸化適元電位 pH 水温 電気伝導度 溶解性COD SS BOD T-N T-P - 	
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意)	水 順 質 佐 騒	 流速 DO 色、におい 胞化減元電位 クロロフィルs 騒音に対していた 暴棄に対していた 臭気強度 験化適元電位 pH 水電気伝導度 溶解性COD SS 透視度 BOD T-N T-P 基物プランクトン SS COD T-N T-P プロコフィルs 	現場での定性的な所見でも可
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意) 実証項目	水 (展 集 物	 流速 DO 色、におい 島化流元電位 クロロフィルs 騒音に発売電位 リロコンイルs 最高を終代流元電位 ドイマール 東京議定 電管 高解性COD SS 透視度 BOD T-N T-P 上 植物ブランクトン SS COD T-N T-P ・ ・	
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意) 実証項目	水 順 質 佐 騒	 減速 DO 色、におい 酸化還元電位 クロロフィルシ 騒音 レベル 臭気指効度 酸化週元電位 財子 水温 電気伝導度 溶剤度 BOD T-N T-P 植物プランクトン SS COD T-N T-P 基づり 基づり サンクトン SS 関助の サート 大・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア・ア	
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意) 実証項目	水 (展 集 物	 流速 DO 色、におい 島化通元電位 クロロフィルs 騒音の 最高の 最高の 最高の 内H 水電気 高解性 高の お課金 お課金 お課金 お課金 お課金 お課金 お記録 お記録 この この<td></td>	
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意) 実証項目	水 (展 集 物	流速	
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意) 実証項目	水 (展 集 物	流速 DO 色、におい 脱化返元電位 クロコンベル 臭気領速 臭気領速 臭気領速 脱化適元電位 PH 温 示電位 PH 温 示価 PH 温 元 P	
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意) 実証項目	水 (展 集 物	流速 DO 色、におい 配位	
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意) 実証項目	水 (展 集 物	流速 DO 色、におい 脱化返元電位 クロコンベル 臭気領速 臭気領速 臭気領速 脱化適元電位 PH 温 示電位 PH 温 示価 PH 温 元 P	
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意) 実証項目	水 (展 集 物	 流速 DO 色、におい 直の 色、におい 直が、原生 原とに近元電位 クロロフィルシ 騒音 最高 自動 日本 日本	
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意) 実証項目	水 (展 集 物	波速	
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意) 実証項目	水 (展 集 物	 流速 DO 色、におい 直の 色、におい 直が、原生 原とに近元電位 クロロフィルシ 騒音 最高 自動 日本 日本	
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意) 実証項目	水 (展 集 物	 減速 DO 色、におい 島化道元電位 クレロコンイルs 騒音にクルレ 臭気相強度 職能である。 最近に対している。 実施機度 お相応 BOD T-N T-P ・ 植物ブランクトン SS SS おり ア・ト エ・ト ア・ト ア・ト エ・ト ア・ト <l< td=""><td></td></l<>	
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意) 実証項目	水 (展 集 物	 流速 DO 色、におい 色、におい 島とは元電位 クロロフィルン 臭臭気指数度 臭気が速度 身に変形性でのD SS 透視度 BOD T-N T-N T-N T-N T-P クロロンベル 臭臭気指数度 DOC 溶液 原型 原型 原型 原型 原型 原型 原型 原型 原型 のの 溶液 原型 原型 のの 内 内 の 	
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意) 実証項目	水 (展 集 物	 減速 DO 色、におい 直の 色、におい 直に表示電位 クレロコンベル 騒音の 臭気指数度 最終化道元電位 月外水電気保健 電気保健 電気保健 BOD T-N T-P - <li< td=""><td></td></li<>	
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意) 実証項目	水 (展 集 物	 減速 DO 色、におい 施化豆元電位 2 基金 基金	
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意) 実証項目	水質 医 生殖に 水質 物音 に 水質 医性水 原 医生物 に 水質 物音 に 水質 物質 物質 物質 物質 物質 物質 を いん の に 大質 いん の に 大質 いん の に 大質 に 水質	 減速 DO 色、におい 直、にあい 直、にあい 直、上、は、 原生の 日本・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意) 実証項目	水質 医 生殖に 水質 物音 に 水質 医性水 原 医生物 に 水質 物音 に 水質 物質 物質 物質 物質 物質 物質 を いん の に 大質 いん の に 大質 いん の に 大質 に 水質	 減速 DO 色、におい 直の 色、におい 直の 色、にあい 直面 型量査化 型量を 型型 型 型 型 <	
	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意) 実証項目	水 底 箕 短 生 騒 に 水 が 軽 が	 減速 DO 色、におい 色、におい 直、一点 原生 日本 日本	
No.3	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意) 実証項目	水質 医 生殖に 水質 物音 に 水質 医性水 原 医生物 に 水質 物音 に 水質 物質 物質 物質 物質 物質 物質 を いん の に 大質 いん の に 大質 いん の に 大質 に 水質	 減速 DO 色、にあい 直の 色、にあい 直の 色、にあい 直の 自身には、 自身気料強度 最大の 自身気料強度 高級では、 自身の 日本できる 自身の 日本できる <l< td=""><td></td></l<>	
No.4	技術原理(概要):微細気泡供給 効果:自然浄化能力向上による水質浄化及びアオコ発生抑制 技術区分:水上設置型技術(浮き島を用いる技術) 技術原理(概要):権生浮島設置による日光の遮蔽、沈降・付着作用	追加項目(任意) 実証項目 追加項目(任意)	水 底	 減速 色、にあい 色、にあい 他、にあい 他、にあい 他、にあい 他、にあい 他、にあい 他、にあい 中、にあい 中、にあい 中、にあい 中の <l< td=""><td>現場での定性的な所見でも可</td></l<>	現場での定性的な所見でも可

| 組物プランテン| (注)追加項目(任意)とは、環境技術開発者から調査の要望があり、技術実証委員会にて実証項目以外に追加することが認められた項目を指す

5. 実証試験の変更又は中止について

(1) 環境技術開発者の希望による実証項目の追加について

実証試験途中において、環境技術開発者より、実証項目の追加について希望があった場合には、実証機関は、第3者による客観的実証である本事業の趣旨に照らして適当な変更であるかを技術実証委員会の意見等を踏まえて判断し、実証運営機関及び環境技術開発者と協議の上、実証試験計画を変更することとする。

なお、この変更により手数料額の変更が生じる場合には、実証機関は、実証運営機関及び環境技術開発者と協議の上、環境技術開発者が納付すべき手数料額を改めて確定することとする。実証運営機関は、手数料額の再確定後速やかに、環境技術開発者に対し、手数料の追加の手続きを取ることとする。

(2) 環境技術開発者の希望による中止(辞退)について

実証試験途中において、環境技術開発者より、実証試験の中止(辞退)について希望があった場合には、実証機関は、実証運営機関及び環境省にその旨を報告し承認を得た上で、 実証試験を中止することとする()

なお、この中止に当たり手数料額の変更が生じる場合には、実証機関は、実証運営機関及び環境技術開発者と協議の上、環境技術開発者が納付すべき手数料額を改めて確定することとする。実証運営機関は、手数料額の再確定後速やかに、環境技術開発者に対し、手数料の返却の手続きを取ることとする。

()環境技術開発者は、中止までに要した費用を負担する。また、既に納付された手数料のうち、中止までに使用されなかった残額については、実証機関は実証運営機関及び環境技術開発者と協議の上、返却するか、返却せずに引き続き技術の改善点等の研究等にあてるかを決定することとする。また、実証機関は、環境技術開発者が費用を負担した範囲で得られた試験データについては、環境技術開発者に提供することとする。

(3) 実証機関の判断による実証項目の追加について

実証機関は、実証試験途中において、第3者による客観的実証である本事業の趣旨に照らして、実証項目の追加を行うことが必要と判断した場合()には、実証運営機関及び環境技術開発者と協議の上、実証試験計画を変更することとする(2)

なお、この変更により手数料額の変更が生じる場合には、実証機関は、実証運営機関及び環境技術開発者と協議の上、環境技術開発者が納付すべき手数料額を改めて確定することとする。実証運営機関は、手数料額の再確定後速やかに、環境技術開発者に対し、手数料の追加の手続きを取ることとする。

()実証対象技術に、実証試験計画策定時には予想されなかった副次的影響が認められ、

実証項目として追加するべきとされた場合等

(2)変更について環境技術開発者との合意が得られなかった場合には、実証試験結果 報告書に、実証機関により測定するべきと判断された項目の一部についてデータが得 られていないことを記述することについて、環境技術開発者の同意を得ることとする。 付録 0:実証機関において構築することが必要な品質管理システム

序文

環境技術実証事業における実証機関は、JIS Q 17025:2000 (ISO/IEC17025:1999)「試験所及び校正機関の能力に関する一般要求事項」に準拠した品質管理システムを構築することが望ましい。本付録では、上記規格に準拠した品質管理システムがない場合、実証機関において構築することが必要な品質管理システムの要素を述べる。

1. 適用範囲

実証機関において実証試験に係るすべての部門及び業務に適用する。また、実証試験の一部が外部の機関に委託される場合には、受託する試験機関も本システムの適用範囲となる。

実証試験に関連する全部署を対象範囲とし、

JIS Q 17025:2000 (試験所及び校正機関の能力に関する一般要求事項)

JIS Q 9001:2000 (品質マネジメントシステム要求事項)

の認証を既に受けている組織であれば、それをもって本付録の要求事項を満たしているものとする。

2. 参考文献

JIS Q 17025:2000 (ISO/IEC17025:1999) 試験所及び校正機関の能力に関する一般要求事項 JIS Q 9001:2000 (ISO9001:2000) 品質マネジメントシステム要求事項

3. 品質管理システム

(1) 組織体制、責任

当該組織は、法律上の責任を維持できる存在であること。

実証試験に関与する組織内の主要な要員の責任を明確に規定すること。

他の職務及び責任のいかんにかかわらず、品質システムが常に実施され遵守されていることを確実にするため、明確な責任及び権限を付与される職員1名を品質管理者(いかなる名称でもよい)に指名する。

(2) 品質システム

当該組織は、実証試験について適切な品質管理システムを構築し、実施し、維持すること。 品質管理システムは、実証試験にかかわる品質方針、品質管理システムの手順を文書化すること。 これらは関係する要員すべてに周知され、理解されること。

方針は、以下の事項を含まなければならない。

- a) 実証試験の品質を確保することに対する組織としての公約
- b) 実証試験の品質水準に関する組織としての考え方の表明
- c) 品質システムの目的
- d) 品質マネジメントシステムを構築し実施することの記載

また、実証試験に係る実施体制、各要員の役割と責任及び権限を文書化すること。

(3) 文書及び記録の管理

当該組織は、実証試験に関する基準(実証試験要領及び関連する規格)実証試験計画、並びに図面、 ソフトウェア、仕様書、指示書及びマニュアルのような文書の管理を行うこと。

文書管理に関して、以下の事項を確実にすること。

a) 文書は、発行に先立って権限をもった要員が確認し、使用の承認を与える。

- b) 関連文書の構成を示し、すべての実証試験実施場所で、適切な文書がいつでも利用できる。
- c) 無効文書または廃止文書は、速やかに撤去するか、若しくは他の方法によって誤使用を確 実に防止する。
- d) 文書のデータとしての管理方法。
- e) 記録の様式と文書の配置及び閲覧方法。

また、実証試験に関連する記録は、識別し、適切に収集し、見出し付け、利用方法を定め、ファイリングし、保管期間を定め、維持及び適切に廃棄すること。特に、試験データ原本の記録、監査の追跡ができるようなデータ及び情報、校正の記録、職員の記録、発行された個々の報告書及び校正証明書のコピーを、定めた期間保管すること。

(4) 試験の外部請負契約

当該組織が外部請負契約者に実証試験を委託する場合は、適格な能力をもつ外部請負契約者に行わせ、 当該組織において実証機関と同等の品質管理を要求すること。

(5) 物品・サービスの購入

当該組織は、外部から購入する物品・サービスのうち、実証試験の品質に影響を及ぼす可能性のある ものは、検査等の適切な方法により実証試験要領の要求に合うことを検証し、この検証が済むまでは実 証試験には用いないこと。

また、物品・サービスの供給者を評価し、承認された供給者のリストを作成すること。

(6) 苦情及び不適合の試験の管理

実証試験の業務またはその結果が、何らかの原因で実証試験要領やその他の規定に逸脱した場合に対応する体制と対応方法を用意すること。また、環境技術開発者からの苦情や中立性の阻害、または情報の漏洩等の不測の事態が生じた場合に対応する体制と対応方法を用意すること。これらの体制には、責任者及び対応に必要な要員を含むこと。

(7) 是正及び予防処置

当該組織は、実証試験の業務及びその結果が、実証試験要領やその他の規定に逸脱した場合または逸 脱する恐れがある場合、その原因を追求し、是正または予防処置を行うこと。

(8) 監査

当該組織は、実証試験が適切に実施されているかどうか、監査を実施しなければならない。実証試験を外部請負業者に委託している場合は、外部請負契約者における当該業務を監査の対象とすること。

監査は試験期間中に1回以上行うこととする。2ヵ年以上の実証試験を行う場合は、定期的な監査を 実施し、その頻度は1年以内であることが望ましい。

また、この監査は、できる限り実証試験の業務から独立した要員が行うものとする。

監査の結果は当該組織の最高責任者に報告すること。

4. 技術的要求事項

(1) 要員

当該組織は、実証試験に用いる設備の操作、試験の実施、結果の評価及び報告書への署名を行う全ての要員が適格であることを確実にすること。特定の業務を行う要員は、必要に応じて適切な教育、訓練、技量の実証に基づいて資格を付与すること。

(2) 施設及び環境条件

実証試験を行うための施設は、エネルギー、照明、環境条件等を含め、試験の適切な実施を容易にするようなものにし、環境条件が試験の結果を無効にしたり悪影響を及ぼしたりしないことを確実にする。 実証試験が恒久的な施設以外の場所で行われる場合には、特別の注意を払う。

実証試験要領、実証試験計画及びその他の基準に基づき、試験の環境条件を監視し、制御し、記録する。環境条件が試験の結果を危うくする場合には、試験を中止する。

(3) 試験方法及び方法の妥当性確認

当該組織は、業務範囲内の全ての試験について適切な方法及び手順を用いるため、実証試験要領に基づき試験方法を定めること。

実証試験要領に使用すべき方法が指定されていない場合、当該組織は、国際規格、地域規格若しくは 国家規格、科学文献等に公表されている適切な方法、または設備の製造者が指定する方法のいずれかを 選定する。規格に規定された方法に含まれない方法を使用する必要がある場合、これらの方法は、実証 申請者の同意に基づいて採用し、使用前に適切な妥当性確認を行うこと。妥当性確認とは、意図する特 定の用途に対して要求事項が満たされていることを調査によって確認することである。この妥当性確認 は、技術実証委員会による検討及び承認によって行うことができる。

当該組織は、データの管理においてコンピュータまたは自動設備を使用する場合には、コンピュータ 及び自動設備を適切に保全管理し、誤操作によるデータの消失や誤変換がないよう、必要な環境条件及 び運転条件を与えること。

(4) 設備

当該組織は、実証試験の実施に必要なすべての設備の各品目を保有(貸与を含む)すること。権限を付与された要員以外は操作できない設備がある場合は、当該組織はそれを明確にすること。過負荷または誤った取り扱いを受けた設備、疑わしい結果を生じる設備、若しくは欠陥を持つまたは規定の限界外と認められる設備は、それが修理されて正常に機能することが確認されるまで、業務使用から取り外すこと。

(5) 測定のトレーサビリティ

当該組織は、実証試験の結果の正確さ若しくは有効性に重大な影響をもつ設備は、使用する前に適切な校正がされていることを確認する。

(6) 試料採取

当該組織は、試料、材料または製品の試料採取を行う場合、実証試験要領に基づいて実施すること。

(7) 試験・校正品目の取り扱い

当該組織は、必要に応じ、試験品目の輸送、受領、取り扱い、保護、保管、保留、処分について実証 試験要領に基づいて実施すること。

(8) データの検証及び試験結果の品質の保証

実証試験の結果のデータは、傾向が検出できるような方法で記録し、結果の検討に統計的手法を適用することが望ましい。この検証は、実証試験を実施した者以外の者が行うこと。

(9) 結果の報告

当該組織は、実施された試験の結果を、実証試験要領に基づき、正確に、明瞭に、あいまいでなく、 客観的に報告すること。

付録1:実証申請書

【申請者】

企業名			ED
住 所	〒		
担当者所属・氏名			
連絡先	TEL:	FAX:	
连桁九	e-mail:		
技術・製品の名称			

1	技術	σ	四重
1.	ויויו או	vJ.	IWL3Z

e-ma	ш.
技術・製品の名称	
技術の概要	
□ 3 . 生物学的処理(生物 □ 4 . 上記以外	てに) は□閉鎖環境で使用 □開放環境で使用) 勿または微生物製剤は□閉鎖環境で使用 □開放環境で使用) 環境技術の構成システムと処理フローを、図表を用いて示してくだ
海化 原理・水質海化の科学	り機構を簡潔に示してください。
が心体性・小臭が心が行う	IJIX(特で向/糸にかしてくたでvi。
	な条件において、どのような機能を発揮することを目標に開発され 等を用いて具体的・定量的に提示して下さい。
既存技術との対比:既存技術 ださい。	桁に対する、本技術の特徴、改良点が明確にわかるように示してく
設置にかかる期間:	

2. 自社試験結果概要

測定責任者						印				
測定年月日	平成	年	月	日	~	平成	年	月	日	

開発目標の達成の確認方法
開発目標の達成を確認するための試験項目と、目標達成を判断するための水準
各試験項目に対する試験方法
を表形式で示してください。
各試験項目に対する試験結果を、可能な限り数値で記入してください。

使用した機器のデータ

	項目	記入欄
実証対象機器名		
	型番	
製	造企業名	
	W (mm)	
サイズ	D (mm)	
	H (mm)	
重	量(kg)	
前処理、後処理の必要性		なし ・ あり (具体的に
付帯設備		なし ・ あり (具体的に
実証対象機	(設計値)	

環境影響及び使用資源に関する結果

項目	単位	測定値等
汚泥及び汚泥由来廃棄物の量	kg/日	
廃棄物発生量	kg/日	
悪臭・騒音の発生可能性		
電力等消費量	kWh/日	
()	kg/日	
薬品・薬剤使用量()	kg/日	
括弧内は薬品名 ()	kg/日	
()	kg/日	
微生物製剤等使用量 ()	kg/日	
括弧内は消耗品名 ()	kg/日	
()	kg/日	
その他消耗品使用量 ()	kg/日	
括弧内は消耗品名 ()	kg/日	

微生物や動植物を利用する場合、以下についてもご記入下さい。

利用する微生物・	
動植物種	
これまで確認され	
た主な侵入種	

維持管理に関する結果

管理項目			管理頻度
「薬品の補充」 「汚泥・廃棄物処理」 「定期点検」等を記入	一回あたりの 管理時間		月・週・日のいずれかに 括弧内に回数を記入
	()分	(月・週・日)に ()回
	()分	(月・週・日)に ()回
	()分	(月・週・日)に ()回
	()分	(月・週・日)に ()回

コスト概算

	費目	単価(円)	数量	計(円)
イニ	ニシャルコスト			
	土木費			
	建設費			
	本体機材費			
	付帯設備費			
	()			
ラン	/ニングコスト (月間)			
	薬品・薬剤費			
	微生物製剤費			
	その他消耗品費			
	汚泥処理費			
	廃棄物処理費			
	電力使用料			
	維持管理費			
	円 / 対象水量 1m ³			

3.	開発状況・納入実績 もっとも近い番号に をつけてください。 1.既に製品化しており、製品として出荷できる。 2.納入実績がある。	
	具体的に	
4.	技術の先進性について 「特許・実用新案等の申請・取得状況、論文発表、受賞歴等を記入してください。	

その他(特記すべき事項)		

5. その他 (特記すべき事項)

6. 安全性、生態影響試験結果について

薬剤や微生物製剤を用いる技術については、

- 病原性、有害物質の産生性等の、人やその他の生物に対する影響についての文献調査結果や 分析結果、
- OECD テストガイドラインに則った生態影響試験結果(薬剤の場合)
- OECD テストガイドラインに準じた生態影響試験結果(微生物製剤の場合)

を提出して下さい。生態影響試験については、本実証試験要領12ページ(表 6)に示してあります。 生態影響試験に関しては、「新規化学物質等に係る試験を実施する試験施設に関する基準」(化審 法GLP基準)に適合する試験機関による試験結果を、申請の際に添付資料として提出して下さい。

充填材等からの成分の溶出の恐れがある技術については、溶出試験の結果を、申請の際に添付資料として提出して下さい。

これらの文献調査や試験は、実証申請者の自己負担となります。この試験結果が添付されない場合、その実証申請は受け付けられない場合があります。

7. 実証試験方法の提案

貴社の技術を実証するための実証試験方法を、別途提案書として提出して下さい。実証試験方法の提案は、対象技術選定における最重要項目の一つです。科学的かつ実施可能な方法を提案して下さい。 提案書作成の際には、以下に適宜修正や新項目を追加して下さい。

実証試験方法概要【詳細は別紙提案書として提出】

実証試験の条件について 実証対象機器の規模 実験区の設計、対照データの取得方法

既に記載した、開発趣旨と目標、その他の性能を確認するために必要な項目を挙げ、それぞれ について

等

試料採取頻度と方法、 試験分析方法 目標水準と、目標設定の考え方 を表形式で記入してください。

試験期間と試験時期

(環境技術開発者としての作業に対応可能な期間)

維持管理のための作業日程、必要な人員等の見込み

【本申請書に添付する書類】

技術・製品の技術仕様書

自社試験結果詳細

維持管理マニュアル

実証試験方法提案書(できるだけ詳細に)

薬剤・微生物製剤の内容(薬剤を用いる場合その成分を、微生物製剤を用いる場合主要な微生物の種類)

薬剤・微生物製剤を用いる場合、人に対する影響(病原性、有害物質の産生性)に関する文献調査結果または分析結果と、「新規化学物質等に係る試験を実施する試験施設に関する基準」(化審法 G L P 基準)に適合する試験機関による生態影響試験結果

充填材等の成分の溶出試験の結果

付録2:実証試験計画

実証試験計画の主な項目は以下の通りである。

1. 表紙/実証試験参加者の承認/目次

実証試験計画の表紙、実証試験計画を承認した参加者(実証機関責任者、環境技術開発者、実証試験 実施場所の所有者または管理者等)氏名

2. 実証試験参加組織と実証試験参加者の責任分掌

実証試験への参加組織、責任者

3. 実証試験実施場所の概要

- 実証試験実施場所の名称、住所、所有者または管理者
- 水域の概況(面積、水深、水量、過去の水質の経時データ、汚濁収支、湖岸の状況、特徴的な生物層 等)
- 実証試験実施場所の状況(隔離水塊の状況、池外設置の際の導水・排水系統 等)
- 試料採取位置
- 実証対象機器の配置

4. 実証対象技術及び実証対象機器の概要

- 実証対象技術の原理、前処理及び後処理を含むシステム構成
- 実証対象機器の処理量または負荷の容量、大きさ、重量
- 主な消耗品、消耗材、電力等消費量
- 実証対象機器の維持管理に必要な作業項目
- 実証対象機器が正常に稼動する条件
- 汚泥や廃棄物の物理化学的特性と発生頻度、取り扱い時の注意事項
- 実証対象機器の使用者に必要な維持管理技能
- 騒音・におい対策と建屋の必要性

5. 実証試験の方法

(1) 試験期間

- 試験期間と全日程
- (2) 実証対象機器の立ち上げ
 - 実証対象機器の立ち上げ日程
- 立ち上げにおける留意点

(3) 水質に与える影響

- 調査項目及び目標水準
- 試料採取方法、試料採取に用いる機器、試料採取日程(頻度)、保存方法、保存期間
- 分析手法・分析機器、校正方法、校正日程

(4) 底質に与える影響

- 調査項目及び目標水準
- 試料採取方法、試料採取に用いる機器、試料採取日程(頻度)、保存方法、保存期間
- 分析手法・分析機器、校正方法、校正日程

(5) 生物に与える影響

- 調査項目及び目標水準
- 試料採取方法、試料採取に用いる機器、試料採取日程(頻度)、保存方法、保存期間
- 分析手法・分析機器、校正方法、校正日程

- (6) 環境への上記以外の影響
 - 調査項目
 - 試料採取方法、試料採取に用いる機器、試料採取日程(頻度)、保存方法、保存期間
 - 分析手法・分析機器、校正方法、校正日程
- (7) 機器の維持管理
 - 調査項目
 - 試料採取方法、試料採取に用いる機器、試料採取日程(頻度)、保存方法、保存期間
- 分析手法・分析機器、校正方法、校正日程
- (8) その他の調査項目
 - 調査項目
 - 試料採取方法、試料採取に用いる機器、試料採取日程(頻度)、保存方法、保存期間
 - 分析手法・分析機器、校正方法、校正日程
- 6. データの品質管理
 - 精度、完全性等、データ品質指標 (DQI) を使用するデータの種類とその手法
 - 試料採取に用いる機器・分析機器の校正、関連資料等、追加的な品質管理情報の提出の必要性(ただし全ての未処理データは、実証試験結果報告書の付録として記録する)
- 7. データの管理、分析、表示
- (1) データ管理 管理対象となるデータと書式の整理
- (2) 分析と表示 データの分析手法、表示形式
- 8. 監査
 - 監査グループについて
 - 監査手続き
 - 監査日程
- 9. 付録
 - 環境技術開発者による維持管理マニュアル
 - その他、計画策定の参考とした文書やデータ

付録3:実証試験結果報告書 概要フォーム

実証対象技術 / 環境技術開発者									
実証機関									-
実証試験期間	平成	年	月	日 ~	平成	年	月	日	

実	証試験期間		平成	年	月	日	~ 平成	年	月	日	
 1 . 実証対象											
フロー							原理				
)	y – r	(図)					原理				
2. 実証試験 実証試験	の概要 実施場所の概要										
	名称 / 所在地										
	水域の種類/										
	利水状況										
	規模	面積:				容和平均	責: 自滞留日数	数:			
	流入状況										
	その他										
	名称 / 所在地										
	水域の種類 /										
	利水状況										
対照区	規模	面積:				容和平均	意: 自滞留日数	数:			
	流入状況										
	その他										
実証対象	機器の仕様及び処理	里能力									
区分	項目				ſ	土様及	び処理能	力			
	名称 / 型	型式									
施設	サイズ(mm),	重量(kg)									
概要	設置基数と場所	(水中、水									
	面、水域	外)									
	対象項目と										
設計	面積(m²)、容			_	· <u> </u>		_	_	_		
条件	対象水量(m										
	稼働時	間									

実証対象機器の設置状況と試料採取位置
(図を添付)
(EXC.VIII.)
実証試験スケジュール
(表形式(カレンダー形式)で、日程(実績)を整理)

3.実証試験結果	
	(各項目の経時変化を示すグラフ・表を作成し、添付)
	(LIZE OF THE STORES OF THE STO
	(中年1454年日は、2歳、バハマル・ボーフェリン
	(実証試験結果は、2ページ分で作成すること)

項目			里
5泥 / 汚泥由来廃棄物発	単位 送生量 kg / 日	実証結り	★
原棄物発生量 廃棄物発生量	kg/日		
	kg/ Ц		
 におい			
120701			
資源項目			
項目	単位	実証結頻	 ₽
二二二八日 電力使用量	kwh / 日	天 冊加力	Τ.
薬品等使用量	кин / д		
管理性能項目			
管理項目		一回あたりの管理時間	 管理頻度
		口的化)の日廷利司	日在水区
的所目			
的所見		新目	
項目		所見	
項目 水質所見		所見	
項目 水質所見 立ち上げに要する期間		所見	
項目 水質所見 立ち上げに要する期間 運転停止に要する期間		所見	
項目 水質所見 立ち上げに要する期間 運転停止に要する期間 維持管理に必要な人員数		所見	
項目 水質所見 立ち上げに要する期間 運転停止に要する期間 維持管理に必要な人員数 維持管理に必要な技能		所見	
項目 水質所見 立ち上げに要する期間 運転停止に要する期間 維持管理に必要な人員数 維持管理に必要な技能 実証対象機器の信頼性		所見	
項目 水質所見 立ち上げに要する期間 運転停止に要する期間 維持管理に必要な人員数 維持管理に必要な技能 実証対象機器の信頼性 トラブルからの復帰方法		所見	
項目 水質所見 立ち上げに要する期間 運転停止に要する期間 維持管理に必要な人員数 維持管理に必要な技能 実証対象機器の信頼性		所見	
項目 水質所見 立ち上げに要する期間 運転停止に要する期間 護持管理に必要な人員数 維持管理に必要な技能 実証対象機器の信頼性 トラブルからの復帰方法 ま持管理マニュアルの評	!	所見	

(参考情報)

注意:このページに示された製品データは、全て環境技術開発者が自らの責任において申請した内容であり、環境省及び実証機関は、内容に関して一切の責任を負いません。

製品データ

	項目			環境技	術開発者	針 記入	.欄		
	名称								
	型式								
製油	造(販売)企業名								
谉	TEL / FAX		TEL()	-	/ FAX()	-	
連絡先	Web アドレス	http:/	,						
无	E-mail		@						
	サイズ·重量								
前	処理、後処理の 必要性	なして							
	付帯設備	なし・a (具体	5り s的に						
実記	証対象機器寿命								
	 立ち上げ期間								
			費目		単価	(円)	数量	į	計(円)
		イニシ	ャルコスト						
		-	上木費						
			建設費						
			卜 体機材費						
	コスト概算	1	付帯設備費						
)						
	草の仮定(対象水		ングコスト(月間	1)					
)容量、運転時間	ı —	薬品·薬剤費						
等	うをここに記載		数生物製剤費						
		ı —	その他消耗品費	<u> </u>					
		l —	5泥処理費						
			廃棄物処理費						
			[[力使用料						
			推持管理費						
			円/対象水量1	m³ あたり					

その他 本技術に関する補足説明(導入実績、受賞歴、特許・実用新案、コストの考え方の補足)

付録4:移入種に関する本技術分野ワーキンググループの見解(平成 17年度)

移入種は、「過去あるいは現在の自然分布域外に導入された種、亜種、それ以下の分類群であり、生存し、増殖することができるあらゆる器官、配偶子、種子、卵、無性的繁殖子を含む」と定義されている(2004年4月 第6回生物多様性条約締約国会議)。

本技術分野においては、生態系の基本原理や営みを利用して、水質を浄化する技術が多く提案されている。これらの生物の能力を利用する技術であっても、その水域の在来の生態系等に大きな悪影響を及ぼすようであれば、環境負荷の小さい技術とは呼べない。外来植物による植生浄化、その水域に存在しない微生物や微生物製剤の利用等の、移入種の意図的導入はもちろん、人工浮島における移入種の非意図的導入についても、慎重な対応が必要である。

環境省は平成 14 年 8 月、「移入種(外来種)への対応方針について(以下『対応方針』)」を定めている¹。対応方針では、予防、調査・モニタリング、早期対応、導入されたものの管理、普及啓発について、方針が整理されている。また移入種のうち、特に外来生物については、「特定外来生物による生態系等に係る被害の防止に関する法律(以下『外来生物法』)」(平成 16 年 6 月公布)、「特定外来生物被害防止基本方針(以下『基本方針』)」(平成 16 年 10 月閣議決定)を定めている。

本モデル事業の流れを考慮すると、最も効果的であり、優先順位をおくべき対策は予防であり、その主な検討は実証機関と技術実証委員会によってなされることとなる。対応方針より、予防に関する整理を以下に引用する。実証機関は応募された技術について、対応方針を参考に移入種の予防について検討する。

外来動植物、微生物製剤等の使用にあたり、対応方針、外来生物法、基本方針の遵守は もちろんのこと、生態系への影響や安全性について事前に十分な確認を受けることを必須 条件とし、移入種問題の未然防止を徹底しなければならない。

環境省「移入種(外来種)への対応方針について」より、予防に関する整理の引用 3 . 予 防

3-1 意図的導入に対する考え方

指針原則²では、意図的導入については、国外からの導入あるいは国内の他地域からの導入に関する決定をする前に、環境影響評価を含む適切なリスク分析を実施すべきこととされているが、意図的導入のタイプは、封じ込められた状態での利用から環境へ意図的に放出する利用まで様々考えられるため、利用タイプごとに対応を検討する必要がある。

・ 意図的導入は、以下の3つのタイプに分けられる。

意図的に環境中に移入種(外来種)を放出する利用(天敵利用など) 移入種(外来種)を不特定の者が入手できるように流通させる利用(ペットとして販売するなど)

¹ なお対応方針では、微生物など知見の蓄積が十分でない分類群については十分な検討がなされていない。

² 生物多様性条約締約国会議「生態系、生息地及び種を脅かす外来種の影響の予防、導入、影響緩和のための指針原則」を指す。

実験室内、柵内等、移入種(外来種)の特性に応じ、外部に逸出、定着しないように封じ込められた状態で利用されるもの(実験、動物園利用など)

このうち、環境中に放出、定着し、生物多様性への影響等を及ぼす可能性の大きさから、 、 を「環境放出利用」 を「封じ込め利用」と分けて、対応を整理する必要がある。

3-1-1 意図的導入(環境放出利用)に際しての考え方

- ・移入種(外来種)の環境放出利用は、事前に利用による影響評価を行い、利用により生物多様性への影響等を生じさせることがないかについて確認を受けるような仕組みが必要である。(環境放出利用に関し、法令による同等の許可等を受けている場合を除く。この許可等には、専門家による審査等を経たものであることが望ましい。)
- ・カテゴリー -a、 -a、 -a に含まれる種の環境放出利用を目的とした導入には、事前の影響評価を実施することが必要であるが、導入されることにより生物多様性への影響等が生じる可能性の高い種群については、 、 のうち-a に分類されていない種も含めて、事前の影響評価の対象とすることを検討する必要がある。
- ・ただし、カテゴリー 、 に分類され、これまで環境放出利用の経験が豊富であって、 これまでの利用方法により環境への逸出、定着が見られず、生物多様性への影響等が 生じていないもので、評価に関する専門家による検討を経たものについては、必ずし も確認を受ける必要はない。
- ・ 過去に分布していた生物の再導入などの場合、在来種(カテゴリー)であっても影響の確認を行うことが望ましい。
- ・ 利用による影響の評価は、導入を計画する者が、導入による影響評価のための情報を収集、実施し、行政がその評価結果の妥当性を確認することを原則とする。
- ・ 行政が影響評価について確認する際には、専門家に対しデータの正確性、評価結果の 妥当性について意見を求めることが必要である。この専門家は、同時に、種のカテゴ リー分けを検討する専門家と共通する。
- ・上記の事前の影響評価は、当面、国外から国内への導入について検討を進めることが 現実的である。国内の他地域からの導入に対しても、原則として同様の考え方をとる べきであるが、国内の生物の移動を審査する仕組みがほとんどないことから、要注意 地域など生物多様性の保全上重要な地域について、導入時の審査手法も含め、検討を 行うことが適当である。

3-1-2 影響評価の項目と評価に基づく利用の考え方

- ・動物、植物の利用に際しての影響評価の項目(例)を示す(表 9-1~4)。評価は、対象となる生物の定着の可能性と、定着した際の影響の可能性の大きく2段階に分けて考えられる。それぞれの評価項目については、ある程度客観的なデータで評価が可能な内容とする必要がある。
- ・導入を計画する者は、導入する生物の生態学的特性に関するデータ(生息環境、食性、 温度適応性等)、導入する環境に関するデータなど評価項目について得るべきデータを 収集し、影響評価を行う。

- ・ 影響評価の結果、影響を及ぼすおそれがない、影響の軽減措置を講ずることにより影響を及ぼすおそれがないと判断されるものについて利用できることとする。
- ・ 影響評価に基づく利用の判断については、データに基づいた定量的な評価を行うこと は困難であることが多いことから、評価の手続きや情報に関する透明性を確保すると ともに、生態学的な観点からの専門家の意見を広く求める必要がある。

3-1-3 影響軽減のための措置

- ・ 環境放出利用に関し、影響軽減のための措置としては、例えば、以下のような措置が考えられる。
- ・環境中へ意図的に放出するものなどについて、利用地点での影響をモニタリングし、 影響が生じた際の対応措置を講ずること
- ・飼育されるものなどについて、個体識別ができるような措置や、流通過程の追跡措置 などを講ずることにより、逸出した場合の措置をとれるようにすること
- ・繁殖抑制措置を施すことにより、意図しない個体数の増加や、逸出した場合の定着の 防止を図ること
- ・ 影響の軽減措置については、利用の条件として、確実に実施されることが必要である。

3-1-4 意図的導入(封じ込め利用)に際しての考え方

- ・ 封じ込め利用を目的とした移入種(外来種)の導入については、環境への逸出、定着 の可能性が低いことから、例えば、封じ込め利用の基準を設け、その基準に合致した 利用を行うことが適当である。
- ・ 封じ込め利用の基準については、動物・植物、または個々の種によって、どのような 状態を封じ込められた状態とするのか様々であるが、外部環境との接触や環境への逸 出、定着を避けるための施設、設備の伴った利用となっているかどうかを基本と考え るべきである。

3-2 非意図的導入に対する考え方

・ 我が国への非意図的導入の経路の特定と経路ごとに侵入による影響について調査が必要である。主たる経路と考えられるものは以下のとおり。

農業: 飼料への混入雑草等

水産業:水の移動の際に混入する水生生物の侵入

海運:バラスト水の放出による水生生物の侵入

建設事業:建設資材(土砂等)に混入する生物の侵入

- ・ このうち、移入種(外来種)の流通拠点となっている場所における定期的なモニタリングについて検討が必要。
- ・ 国内移動については、特に島嶼地域などの要注意地域への資材等の輸送に際しての非 意図的導入に注意を払う必要がある。そのため、要注意地域での侵入とその経路のモニタリングを実施し、非意図的導入が見られる場合には、その経路となっている事業 を行っている者が配慮すべき事項を明らかにする必要がある。

資料編

. 環境技術実証事業の概要

1.目的

既に適用可能な段階に有り、有用と思われる先進的環境技術でも環境保全効果等についての客観的な評価が行われていないために、地方公共団体、企業、消費者等のエンドユーザーが安心して使用することができず、普及が進んでいない場合がある。

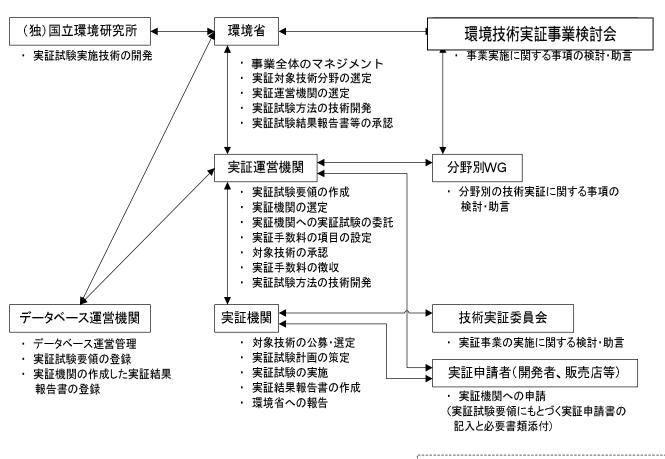
このため、本事業により、このような普及が進んでいない先進的環境技術について、その環境保全効果等を第三者機関が客観的に実証する事業を試行的に実施する。

本事業の実施により、ベンチャー企業等が開発した環境技術の普及が促進され、環境保全と地域の環境産業の発展による経済活性化が図られるものと期待する。

2.「実証」の意味について

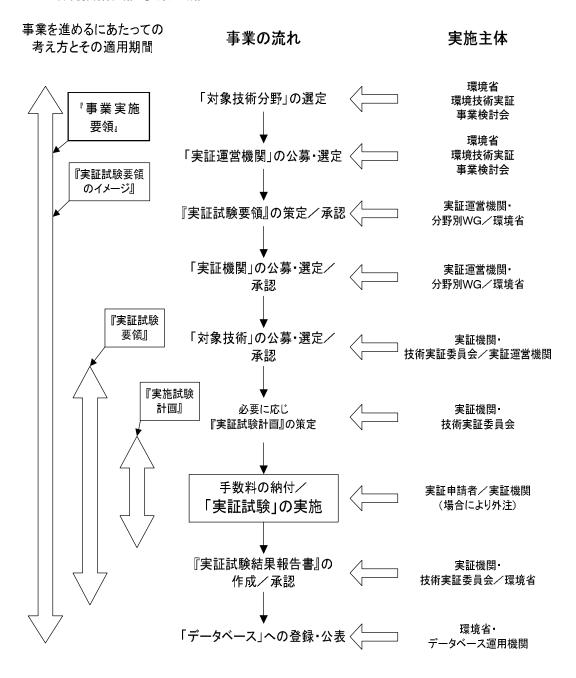
本事業では、環境技術の環境保全効果等を試験等に基づき客観的なデータとして示す「実証」を行う。類似のものとして、環境技術が満たすべき性能について一定の基準を設定し、この基準への適合性を判定する「認証」があるが、本事業では、このような「認証」は行わない。

3.事業実施体制


本事業は、環境省、実証試験要領の作成・実証機関の公募選定・手数料項目の設定と 徴収等を行う実証運営機関、技術実証を行う実証機関等が連携して行う。

4. 事業の手順

本事業は、概ね以下のような手順で進める。


- (1) 環境省は、アンケート調査等により、技術の開発・販売企業、ユーザー等のニーズを 把握する。
- (2) 環境省は、検討会における検討を踏まえ、対象技術分野を選定する。
- (3) 環境省は、実証試験要領の作成・実証機関の公募選定・手数料項目の設定と徴収等を 行う「実証運営機関」を選定する。
- (4) 実証運営機関は、選定された対象技術分野について、具体的な技術実証の方法を定めた「実証試験要領」を作成する。
- (5) 実証運営機関は、実証試験を行う第三者機関である「実証機関」を選定する。
- (6) 実証機関は、企業等が実証を受けることを希望する技術を公募する。
- (7) 実証機関は、応募されてきた技術の中から、実証を行う技術を、専門家による委員会で検討を行った上で、選定する。
- (8) 実証機関は、選定された技術について、実証試験要領に基づき、実証試験を行う。
- (9) 実証機関は、実証試験結果を報告書として取りまとめ、技術の開発・販売者へ通知するとともに、実証運営機関を経て、環境省へ報告する。また、この報告書は、インターネット上のデータベースに登録され、一般に公表される。

. 「環境技術実証事業」実施体制

注)環境省の承認を得た上で、実施体制の一部を変更 して、事業を実施することもありうる。

. 環境技術実証事業の流れ

