12.1.5 生態系

12.1.5 生態系

- 1. 地域を特徴づける生態系
- (1) 動植物その他の自然環境に係る概況
- ① 調査結果の概要
 - a. 文献その他の資料調査

動植物、地形及び地質に係る自然環境の概要について、文献その他の資料調査から、当該情報を整理した。

(a) 調査地域

対象事業実施区域及びその周辺とした。

(b) 調査地点

神戸市及び芦屋市とした。

(c) 調査結果

7. 動植物の概要

「12.1.3 動物 1. 重要な種及び注目すべき生息地(海域に生息するものを除く)」及び「12.1.4 植物 1. 重要な種及び重要な群落(海域に生育するものを除く)」の文献その他の資料から、当該情報を整理した。その結果は、第12.1.5-1表のとおりである。

第 12.1.5-1 表	動植物の概要	(文献その他の資料調査)
\mathcal{H} 14. 1. 0 1 1X	30111111111111111111111111111111111111	

	項目	確認状況
	哺乳類	アブラコウモリ、イノシシ(2種)
	鳥類	チョウゲンボウ、ハヤブサ、ミサゴ、カワウ、アオサギ、ヒヨドリ、ムクドリ、カワラヒワ、ハクセキレイ、シジュウカラ、キジバト、ドバト、メジロ等(160種)
	爬虫類	ニホンヤモリ、ニホントカゲ、アオダイショウ(3種)
動物	両 生 類	ウシガエル、ツチガエル (2種)
	昆虫類	ショウリョウバッタ、ヤマトシジミ、シマハナアブ、ヒメサビキコリ、アミメアリ、シ オカラトンボ、クマゼミ等(199種)
	クモ類	ジョロウグモ、アリグモ、オダカユウレイグモ等 (39種)
	陸産貝類	ヒメオカモノアラガイ、チャコウラナメクジ、オトメマイマイ等 (4種)
植物	現存植生	対象事業実施区域及びその近傍:工場地帯 対象事業実施区域周辺の平地:市街地が広く分布 対象事業実施区域の北側の山地:アベマキーコナラ群集、モチツツジーアカマツ群集が 優占
	植物相	クスノキ、ムクノキ、アキニレ、トウネズミモチ、シャリンバイ、トベラ、タチバナモ ドキ、アキノエノコログサ、カタバミ、イヌノフグリ等 (1,434 種)

イ. 地形及び地質の概要

地形及び地質の概要は、「第3章 対象事業実施区域及びその周囲の概況 3.1 自然的状況 3.1.4 地形及び地質の状況」のとおりである。

b. 現地調査

(a) 調査地域、調査地点、調査期間、調査方法

「12.1.3 動物 1. 重要な種及び注目すべき生息地(海域に生息するものを除く)」及び「12.1.4 植物 1. 重要な種及び重要な群落(海域に生育するものを除く)」の現地調査のとおりである。

(b) 調査結果

現地調査で確認した動植物の概要は、第12.1.5-2表のとおりである。

第 12.1.5-2 表 動植物の概要 (現地調査)

]	項目		確認状況
	哺乳類	対象事業実施区域	ハツカネズミ、ノネコ、アブラコウモリ等 (4種)
	"用 孔块	対象事業実施区域外	アライグマ、イノシシ、ノネコ、ハツカネズミ等 (7種)
		対象事業実施区域	チョウゲンボウ、ハヤブサ、ミサゴ、ヒヨドリ、ムクドリ、カワラヒ ワ、ハクセキレイ、ツグミ、キジバト、ドバト、スズメ等 (36 種)
	鳥類	対象事業実施区域外	チョウゲンボウ、ハヤブサ、ミサゴ、カワウ、アオサギ、ヒョドリ、ムクドリ、カワラヒワ、シジュウカラ、メジロ、キジバト、ドバト、スズメ等(60種)
	爬虫類	対象事業実施区域	ニホンヤモリ (1種)
	爬出類	対象事業実施区域外	ニホンヤモリ、ニホンスッポン、クサガメ等(4種)
動物	両生類	対象事業実施区域	(0種)
293 173		対象事業実施区域外	ニホンアマガエル、ヌマガエル (2種)
		対象事業実施区域	ハラオカメコオロギ、アゲハ、ホソヒメヒラタアブ、ヒメサビキコリ、 トビイロシワアリ、シオカラトンボ、クマゼミ等(142種)
	昆虫類	対象事業実施区域外	ハラオカメコオロギ、アゲハ、ホソヒメヒラタアブ、マヤサンオサムシ、 トビイロシワアリ、ショウジョウトンボ、クマゼミ等(463種)
	クモ類	対象事業実施区域	ジョロウグモ、アリグモ、マミジロハエトリ等 (20種)
	ノし規	対象事業実施区域外	ジョロウグモ、アリグモ、マミジロハエトリ、ササグモ等 (62種)
	陸産貝類	対象事業実施区域	チャコウラナメクジ、トクサオカチョウジガイ等 (3種)
	庄庄 只想	対象事業実施区域外	チャコウラナメクジ、ハリママイマイ、オトメマイマイ等(15種)
		対象事業実施区域	緑化樹林帯、イタチハギ群落、植生樹群を伴う公園等、芝地
Linds	現存植生	対象事業実施区域外	クスノキ群落、ムクノキ群落、タチバナモドキ群落、路傍・空地雑草群落、湿生植物群落,クスノキ植林、クロマツ植林、ユーカリ植林、ハリエンジュ植林、緑化樹林帯、植栽樹群を伴う公園等、芝地
植物	植物相	対象事業実施区域	クスノキ、アキニレ、トウネズミモチ、シャリンバイ、トベラ、アキノ エノコログサ、カタバミ等(251種)
	10.10/11	対象事業実施区域外	クスノキ、ムクノキ、クロマツ、アキニレ、トウネズミモチ、トベラ、 タチバナモドキ、カヤツリグサ、ヨシ等(500種)

c. 地域の生態系の概要

文献その他の資料及び現地調査結果に基づいた地域の生態系の概要は、以下のとおりである。

(a) 一般概況

対象事業実施区域は、兵庫県の東部、神戸市域のやや東寄りにあたり、神戸市域は六甲山を 中心にした広大な地域に広がっている。

対象事業実施区域の植生は、落葉広葉樹が優占する緑地、常緑広葉樹が優占する緑地、低木種が優占する緑地、シバが優占する緑地が分布しており、これらの緑地以外は工場地帯に区分され対象事業実施区域の大部分を占めている。

対象事業実施区域の周辺の植生は、河川沿いや公園等の緑地、社寺林等が分布しており、これらの緑地以外は市街地、工場地帯、開放水域に区分され周辺区域の大部分を占めている。

(b) 対象事業実施区域及びその周辺の状況

対象事業実施区域及びその周辺における食物連鎖の概要は第 12.1.5-1 図のとおりである。 対象事業実施区域の陸域は埋立地であり、大部分はコンクリートやアスファルトからなる工 場地帯である。また、対象事業実施区域外は工場地帯、市街地、植栽樹群を伴う公園などの土 地利用や海域が大半を占める。

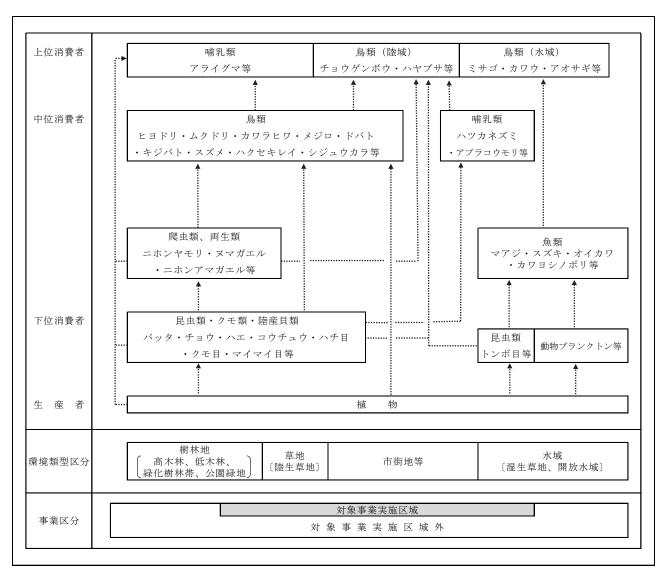
〈生産者:生態系の基盤(植生)>

対象事業実施区域では、植栽由来のアキニレやコナラ等の落葉樹やヤマモモ等の常緑樹が混生する緑化樹林帯、イタチハギの優占するイタチハギ群落の他、土地利用としての植栽樹群を伴う公園等や芝地がみられた。

対象事業実施区域外では、クスノキ群落(社寺林)やムクノキ群落、クロマツ植林等の高木林、タチバナモドキ群落といった低木林、路傍・空地雑草群落等の草地、クロマツやウバメガシが優占する緑化樹林帯を確認した。また、主に河川の河口付近には湿生植物群落を確認した。 〈下位消費者〉

対象事業実施区域では、昆虫類としてエンマコオロギやハラオカメコオロギ、ショウリョウバッタ等のバッタ目、アゲハ等のチョウ目、ホソヒメヒラタアブ等のハエ目、ヒメサビキコリやハマベヒメサビキコリ等のコウチュウ目、トビイロシワアリやトビイロケアリ等のハチ目、シオカラトンボ等のトンボ目、クマゼミ等のカメムシ目等を確認した。また、これらの昆虫類を捕食するクモ類のジョロウグモ等が確認され、陸産貝類ではチャコウラナメクジやトクサオカチョウジガイ等を確認した。

対象事業実施区域外では、上記対象事業実施区域で確認された種の他、昆虫類として樹林性のサビキコリやマヤサンオサムシ等のコウチュウ目や、池等の止水環境でショウジョウトンボやギンヤンマ等のトンボ目、河川等の流水環境ではオナガサナエ、コヤマトンボ等のトンボ目を確認した。また、上記の他これらの昆虫類を捕食するクモ類としてササグモ等が確認され、陸産貝類ではハリママイマイやオトメマイマイ等を確認した。


〈中位消費者〉

哺乳類ではアブラコウモリやハツカネズミ等、鳥類ではヒヨドリ、ムクドリ、キジバト等が 確認され、爬虫類・両生類ではニホンヤモリやヌマガエルを確認した。

〈上位消費者〉

哺乳類ではアライグマやノネコ等が確認され、鳥類では陸域を中心にチョウゲンボウ、ハヤブサ等、水域を中心にミサゴ等を確認した。

第12.1.5-1 図 対象事業実施区域及びその周辺における食物連鎖の概要

(2) 複数の注目種等の生態、他の動植物との関係又は生息環境若しくは生育環境の状況

① 注目種の選定

a. 上位性の注目種

上位性の注目種は、対象事業実施区域及びその周辺の生態系を形成する生物群集において、 食物連鎖の上位に位置する種を対象とし、対象事業実施区域及びその周辺地域で平成 27 年に 実施した猛禽類調査 (2月~8月) 結果をもとに検討した。

平成 27 年の猛禽類調査において確認された種は、ミサゴ、ノスリ、サシバ、ハヤブサ、チョウゲンボウの5種である。これらの5種を候補種として、上位性の注目種を選定するための条件項目を以下のように設定した。

- ・対象事業実施区域及びその周辺地域において食物連鎖の上位に位置すること。
- ・対象事業実施区域で確認されていること。
- ・対象事業実施区域及びその周辺地域において繁殖期に確認されていること。
- ・対象事業実施区域及びその周辺地域において繁殖が確認されていること。
- ・対象事業実施区域及びその周辺地域において採餌が確認されていること。

上記条件項目の適合状況は、第12.1.5-3表に示すとおりである。

検討の結果、最も条件項目に適合しているチョウゲンボウを上位性の注目種として選定した。

	対象事業実施区	対象事業実施区	対象事業実施区	対象事業実施区	対象事業実施区
	域及びその周辺	域で確認されて	域及びその周辺	域及びその周辺	域及びその周辺
種名	地域において生	いること	地域において繁	地域において繁	地域において採
	態系の上位に位		殖期に確認され	殖が確認されて	餌が確認されて
	置すること		ていること	いること	いること
ミサゴ	0	0	0	×	0
ノスリ	0	0	×	×	×
サシバ	0	0	×	×	×
ハヤブサ	0	0	0	×	0
チョウゲンボウ	0	0	0	0	0

第12.1.5-3表 上位性注目種の適合状況

なお、第12.1.5-4表に示すように、チョウゲンボウは平成28年の猛禽類調査結果において も条件項目に最も適合している。

また、哺乳類については、平成 28 年の調査においてノイヌ、ノネコ、アライグマ、イノシシ、ハツカネズミ、アブラコウモリ、ヒナコウモリ科の一種、イタチ属の一種を確認した。このうちノイヌ、ノネコの確認数は多いが、人間活動に強く依存している可能性があり、その他の種については確認数は少なかった。

注:1. 本表は、平成27年の猛禽類調査結果に基づき作成した。

^{2. 「○」}は適合している、「×」は適合していないことを示す。

第 12.1.5-4 表 上位性注目種の適合状況

種名	対象事業実施区 域及びその周辺 地域において生 態系の上位に位 置すること	対象事業実施区 域で確認されて いること	対象事業実施区 域及びその周辺 地域において繁 殖期に確認され ていること	対象事業実施区 域及びその周辺 地域において繁殖が確認されていること	対象事業実施区 域及びその周辺 地域において採 餌が確認されていること
ミサゴ	0	0	0	×	0
ハイタカ	0	×	×	×	×
ノスリ	0	0	×	×	×
サシバ	0	×	×	×	×
ハヤブサ	0	0	0	×	0
チョウゲンボウ	0	0	0	0	0

注:1. 本表は、平成28年の猛禽類調査結果に基づき作成した。

^{2. 「} \bigcirc 」は適合している、「 \times 」は適合していないことを示す。

b. 典型性の注目種

典型性の注目種については、対象事業実施区域及びその周辺の生態系の中で生物間の相互作用や生態系の機能に重要な役割を担うような種・群集を対象とし、平成 27 年に対象事業実施区域及びその周辺で実施した鳥類予備調査(2月~8月)結果をもとに検討した。

平成 27 年の鳥類予備調査において、対象事業実施区域で繁殖期に確認された鳥類(猛禽類を除く)は、キジバト、ツバメ、ハクセキレイ、ヒヨドリ、カワラヒワ等の 14 種である。これらの 14 種を候補種として、典型性の注目種を選定するための条件項目を以下のように設定した。

- ・対象事業実施区域で繁殖期に確認されていること。
- ・対象事業実施区域及びその周辺地域において確認個体数が多いこと。
- ・対象事業実施区域及びその周辺地域において生物間の相互作用や生態系の重要な役割を担うこと。
- ・樹林地・草地などの緑地を営巣環境とすること。
- ・現地調査により餌生物の生息・生育環境及び生息・生育量の把握が可能であること。

上記条件項目の適合状況は、第12.1.5-5表に示すとおりである。

検討の結果、最も条件項目に適合しているカワラヒワを典型性の注目種として選定した。

種名	対象事業実施区 域で繁殖期に確認されていること	対象事業実施区 域及びその周辺 地域において確 認個体数が多い こと	対象事業との以上を表現では、対象をでは、対象では、対象では、対象では、対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対象を対	樹林地・草地などの緑地を営巣 環境とすること	現地調査によ息・ 餌生物の生息で 生育環境量の 息・生育 虚が可能である こと
キジバト	0	\triangle	0	0	\triangle
ツバメ	0	Δ	0	×	×
ハクセキレイ	0	Δ	0	×	×
ヒヨドリ	0	0	0	0	Δ
カワラヒワ	0	0	0	0	0
スズメ	0	0	0	×	Δ
ムクドリ	0	0	0	Δ	Δ
カワウ	0	0	0	0	×
コサギ	0	×	0	0	×
コアジサシ	0	0	0	×	×
ドバト	0	0	0	×	0
イソヒヨドリ	0	×	0	×	×
ハシボソガラス	0	Δ	0	0	Δ
ハシブトガラス	0	0	0	0	Δ

第12.1.5-5表 典型性注目種の適合状況

なお、第 12.1.5-6 表に示すように、カワラヒワは平成 28 年の一般鳥類調査結果においても 条件項目に最も適合している。

また、哺乳類については、平成 28 年の調査においてノイヌ、ノネコ、アライグマ、イノシシ、ハツカネズミ、アブラコウモリ、ヒナコウモリ科の一種、イタチ属の一種を確認した。このうちノイヌ、ノネコの確認数は多いが、人間活動に強く依存している可能性があり、その他の種については確認数は少なかった。

注:1. 本表は、平成27年の鳥類予備調査結果に基づき作成した。

^{2.} $[\bigcirc]$ は適合している、 $[\triangle]$ は一部適合している、 $[\times]$ は適合していないことを示す。

第12.1.5-6表 典型性注目種の適合状況

種名	対象事業実施区 域で繁殖期に確認されていること	対象事業実施区 域及びその周辺 地域において確 認個体数が多い こと	対象事業実施区域及びその間ではいて生物間の相互作用や生態系の担重な役割を担うこと	樹林地・草地などの緑地を営巣環境とすること	現地調査により 餌生物の生息・生育環境及び生息・生育量のが可能であること
キジバト	0	Δ	0	0	\triangle
ハクセキレイ	0	Δ	0	×	×
ヒヨドリ	0	0	0	0	\triangle
シジュウカラ	0	Δ	0	0	Δ
カワラヒワ	0	0	0	0	0
スズメ	0	0	0	×	Δ
ムクドリ	0	0	0	Δ	\triangle
カワウ	Ō	Δ	Ō	0	×
カルガモ	0	\triangle	0	Δ	0
ウミネコ	0	Δ	Ō	×	×
コアジサシ	0	\triangle	0	×	×
ドバト	0	0	0	×	0
ハシボソガラス	0	\triangle	0	0	\triangle
ハシブトガラス	0	0	0	0	\triangle

- 注:1. 本表は、平成28年の一般鳥類調査結果に基づき作成した。
 - 2. 「〇」は適合している、「 \triangle 」は一部適合している、「 \times 」は適合していないことを示す。

c. 特殊性の注目種

特殊性の注目種は、特殊な環境要素や特異な場の存在に生息・生育が強く規定される種・群落を対象とするが、対象事業実施区域及びその周辺には、特殊な環境は存在しないことから特殊性の注目種は選定しなかった。

② 上位性の注目種 (チョウゲンボウ) に係る調査の結果

a. 文献その他の資料調査

既存文献及びその他の資料により、チョウゲンボウの一般生態を整理した。既存文献及びその他の資料は第 12.1.5-7 表、チョウゲンボウの一般生態は第 12.1.5-8 表のとおりである。

第 12.1.5-7 表 チョウゲンボウに係る既存文献及びその他の資料

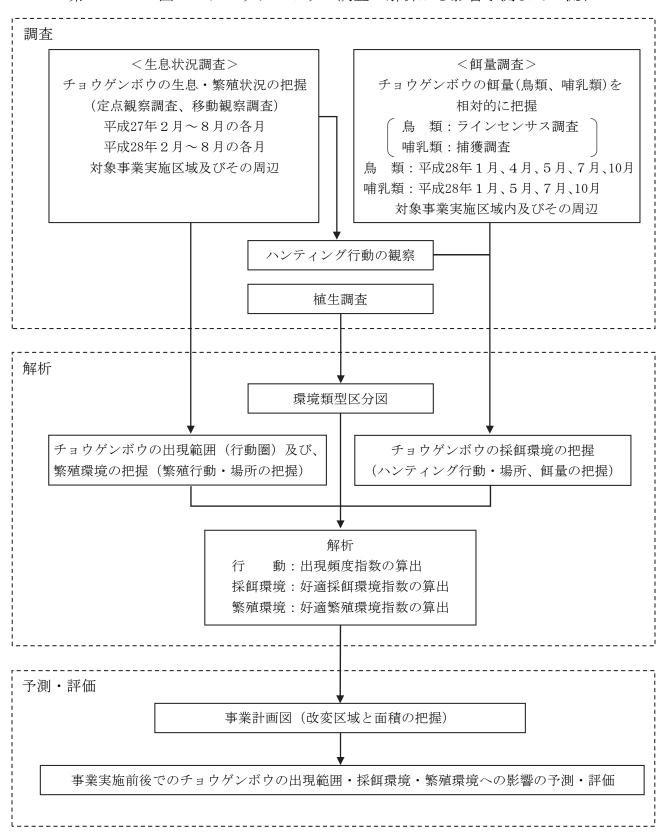
資料名
「図鑑 日本のワシタカ類」(文一総合出版、平成7年)
「日本動物大百科第3巻 鳥類I」(平凡社、平成8年)
「原色日本野鳥生態図鑑<陸鳥編>」(保育社、平成7年)

第 12.1.5-8 表 チョウゲンボウの一般生態

	項目	特徴
	分布	 ・ユーラシア大陸とアフリカ大陸に広く分布する。イギリス、アイルランド、スカンジナビア南端、西欧から東欧南部にかけて、アラビア南部および東部、トルコおよびカフカスからインドを経て東南アジアにいたる地域、及び中国南部、台湾、日本では越冬している。 ・日本では北海道と、東北地方から中部地方にかけての本州で繁殖しているが、北海道では少ない。 ・岡山県、高知県、鹿児島県でも夏期に観察されている。越冬記録のある地域は、本州、佐渡、伊豆諸島(八丈島、鳥島)、四国、九州、対馬、種子島、中部琉球(沖縄)であるが、北海道でも少数が越冬しており、南部琉球(宮古島、石垣島、西表島、黒島、与那国島)でも確実に越冬している。また、小笠原諸島、硫黄列島、壱岐、南部琉球の鳩間島でも記録されている。
	形態	・全 長:雄 33cm、雌 39cm ・翼開長:雄 69cm、雌 76cm
	生息環境	・好みの繁殖環境は農耕地、草地、湿地、広い川原などが近くにある崖や林であるが、 近年、街なかでの繁殖が多く知られる。 ・冬には各地の農耕地、湿地、原野、川原、埋立地などで見られる。
生態	食性	 ・ネズミ類を主要な餌としているが、適応性に富み、その土地土地で捕れる獲物は何でも捕っている。 ・繁殖期にペリットを調査した結果によると、ハタネズミやヒミズモグラ等のネズミ類や食虫類が全体の 60%で最も多く、スズメ、ヒバリ、カワラヒワ、キセキレイ、イワツバメ、コヨシキリ、ヒヨドリ、ホオジロ、ニュウナイスズメ、ムクドリ、イエバト等の鳥類が 30%、その他、夏を中心にバッタ等の昆虫類、トカゲ、カナヘビ、ヘビ類等の爬虫類、トノサマガエル等の両生類が確認されている。 ・別の繁殖地で4~6月に行われた調査では、ネズミ類が 61%、カワラヒワ、ホオジロ、キセキレイ等の鳥類が 33%、ゴミムシ、コガネムシ等の昆虫類が 6%であった。
	繁殖	・繁殖期は4~7月、一夫一妻で繁殖する。 ・繁殖場所は岩や土質の崖の穴または棚、木の洞、ビルの棚状の部分、倉庫の通風口、 橋桁などであるが、日本ではこのほかに、他の鳥の古巣を利用した例や校舎の天井裏 で営巣した例がある。 ・4月頃、3~6卵を産み、抱卵は雌雄交代で行われる。1か月ほどでふ化する。 ・ふ化後1か月ほどで巣立つ。

b. チョウゲンボウを上位性注目種とした生態系への影響予測の考え方

チョウゲンボウの調査・解析から影響予測までの流れは、第 12.1.5-2 図に示すとおりである。


チョウゲンボウを上位性注目種とした生態系への影響予測では、対象事業実施区域及びその周辺(調査範囲)を一辺約 500m のメッシュに区切り、生息状況調査結果及び餌量調査結果を基に、対象事業の実施によるチョウゲンボウの行動、採餌環境及び繁殖環境への影響予測を実施した。

行動への影響予測では、各メッシュを通過した軌跡数から、各メッシュの出現頻度指数を算出・ランク区分し、改変区域における各ランクの占める面積及び割合を求めた。同面積及び割合を基に行動への影響の程度を予測した。

採餌環境への影響予測では、環境類型区分毎の餌量及びハンティング回数から得た餌量及びハンティング行動の指数と、メッシュ毎の各環境類型区分の面積比から、各メッシュの好適採餌環境指数を算出・ランク区分し、改変区域における各ランクの占める面積及び割合を求めた。同面積及び割合を基に採餌環境への影響の程度を予測した。

繁殖環境への影響予測では、各メッシュで確認された繁殖行動の回数から、各メッシュの好 適繁殖環境指数を算出・ランク区分し、改変区域における各ランクの占める面積及び割合を求 めた。同面積及び割合を基に繁殖環境への影響の程度を予測した。

第 12.1.5-2 図 チョウゲンボウの調査・解析から影響予測までの流れ

c. 現地調査

(a) 調査地域

対象事業実施区域及びその周辺とした。

(b) 調査地点

7. 生息状況調査

調査地域における視界範囲、植生等を考慮して設定した定点観察調査及び移動観察調査の 11 地点とした(第 12.1.5-3 図)。

定点観察調査及び移動観察調査の調査地点の概要は、第12.1.5-9表のとおりである。

化 餌量調査

チョウゲンボウの餌量調査では、一般鳥類調査及び哺乳類調査を行った。調査ルート及び地点は、調査地域における植生等を考慮して設定した一般鳥類調査(ラインセンサス調査)の15ルート、哺乳類調査(捕獲調査)の6地点とした(第12.1.5-3図)。

調査ルートの概要は第12.1.5-10表、調査地点の概要は第12.1.5-11表のとおりである。

(c) 調査期間

7. 生息状況調査

平成27年2月16日、17日 平成28年2月15日、16日 平成27年3月5日、6日 平成28年3月14日、15日 平成27年4月9日、10日 平成28年4月14日、15日 平成27年5月18日、19日 平成28年5月12日、13日 平成27年6月22日、23日 平成28年6月9日、10日 平成27年7月13日、14日 平成28年7月4日、5日 平成27年8月6日、7日 平成28年8月4日、5日 平成27年8月6日、7日 平成28年8月4日、5日 平成27年8月6日、7日 平成28年8月4日、5日 平成27年8月6日、19月1日 10日 平成28年8月4日、5日

調査地点の配置状況及び調査時間は第12.1.5-12表のとおりである。

化 餌量調査

平成28年1月20日~22日、26日(一般鳥類調査)、25日~27日(哺乳類調査)

平成28年4月11日~13日(一般鳥類調査)

平成28年5月9日~11日(一般鳥類調査・哺乳類調査)

平成28年7月6日~8日(一般鳥類調査・哺乳類調査)

平成28年10月12日~14日 (一般鳥類調査・哺乳類調査)

第 12.1.5-9 表 チョウゲンボウの生息状況調査地点の概要

調査地点	概要
St. 1	対象事業実施区域西側が見通せる。
St. 2	対象事業実施区域東側が見通せる。
St. 3	御影浜町西側が確認できる。
St. 4	都賀川沿いに飛行する個体が確認できる。
St. 5	石屋川沿いに飛行する個体が確認できる。
St. 6	六甲アイランド北西の状況及び海上の状況が確認 できる。
St. 7	神戸発電所南側の海上の状況が確認できる。
St. 8	御影浜町南側及び海上の状況が確認できる。
St. 9	御影浜町東側が確認できる。
St. 10	御影浜町南側の建屋群に出入りする個体が確認で きる。
St. 11	平成 28 年春季の一般鳥類調査時に西郷川下流部で 出現したチョウゲンボウの状況が確認できる。

第 12.1.5-10 表 チョウゲンボウの餌量調査ルートの概要 (一般鳥類調査)

調査ルート	概要
R1	社寺林のクスノキ群落内の調査ルート。
R2	植栽樹群を伴う公園内の調査ルート。
R3	主に社寺林のクスノキ群落及び樹林に囲まれた参道の調査ルート。
R4	川沿いの緑地を主体とした調査ルート
R5	植栽樹群を伴う公園内の調査ルート。
R6	川沿いの植栽樹群を伴う公園を含む調査ルート。
R7	川沿いの緑地を主体とした調査ルート。
R8	川沿いの緑地を主体とした調査ルート。
R9	植栽樹群を伴う公園内の調査ルート。
R10~13	対象事業実施区域内の調査ルートであり、R10 は緑化マウンドの際をルートに含む。
R14	草地、裸地、樹林帯からなる調査ルート。
R15	六甲アイランド内の緑化樹林帯及び公園からなる調査ルート。

第 12.1.5-11 表 チョウゲンボウの餌量調査地点の概要 (哺乳類調査)

調査地点	概要
P1	社寺林のクスノキ群落内の調査地点。
P2	植栽樹群を伴う公園内の調査地点。
P3∼5	対象事業実施区域内の調査地点であり、P3は緑化マウンド内を調査地点とする。
Р6	草地及び樹林帯内の調査地点。

第 12.1.5-12 表 調査地点の配置状況及び調査時間

						調査地点					
調査日	st. 1	st. 2	st. 3	st. 4	st. 5	st.6	st. 7	st.8	st. 9	st. 10	st. 11
平成 27 年											
2月16日	8:50~ 16:00	8:45~ 16:00	8:00~ 12:00 13:40~ 16:00			12:45~ 13:20					
2月17日		10:00~ 16:00	8:00~ 16:00	8:20~ 9:40	9:45~ 11:00		8:00~ 9:50 12:30~ 16:00				
3月5日		8:00~ 16:00	8:00~ 16:00				8:00~ 16:00				
3月6日		8:00~ 16:00	8:00~ 16:00				8:00~ 16:00				
4月9日		8:00~ 16:00	8:00~ 16:00				8:00~ 16:00				
4月10日			8:00~ 16:00				8:00~ 16:00	8:00~ 16:00			
5月18日		8:00~ 16:00	8:00~ 16:00					8:00~ 16:00			
5月19日		8:00~ 16:00						8:00~ 16:00	8:00~ 16:00		
6月22日		8:00~ 12:00					12:15~ 16:00	8:00~ 16:00	8:00~ 16:00		
6月23日								8:00~ 16:00	8:00~ 16:00	8:00~ 16:00	
7月13日			8:00~ 16:00					8:00~ 16:00	8:00~ 16:00		
7月14日		8:00~ 12:00	8:00~ 16:00					12:45~ 16:00	8:00~ 16:00		
8月6日		8:00~ 12:30	8:00~ 16:00					8:00~ 16:00	13:30~ 16:00		
8月7日	8:00~ 12:00		8:00~ 16:00					8:00~ 16:00	13:00~ 16:00		
平成 28 年		1			r	1					
2月15日		8:00~ 16:00	8:00~ 16:00					8:00~ 16:00			
2月16日		8:00~ 16:00	8:00~ 16:00					8:00~ 16:00			
3月14日		13:30~ 16:00	8:00~ 13:00				8:00~ 13:00	8:00~ 16:00	13:00~ 16:00		
3月15日		8:00~ 16:00	12:10~ 16:00					8:00~ 16:00	8:00~ 12:00		
4月14日		8:00~ 16:00							8:00~ 16:00		8:00~ 16:00
4月15日		8:00~ 16:00							8:00~ 16:00		8:00~ 16:00
5月12日		8:00~ 16:00						8:00~ 16:00	8:00~ 16:00		
5月13日		8:00~ 16:00						8:00~ 16:00	8:00~ 16:00		
6月9日		8:00~ 16:00						8:00~ 16:00	8:00~ 16:00		
6月10日		8:00~ 16:00						8:00~ 16:00	8:00~ 16:00		
7月4日		8:00~ 16:00						8:00~ 16:00	8:00~ 16:00		
7月5日		8:00~ 16:00	0.00					8:00~ 16:00	8:00~ 16:00		
8月4日		8:00~ 16:00	8:00~ 16:00					8:00~ 16:00	0.00		
8月5日		8:00~ 16:00						8:00~ 16:00	8:00~ 16:00		

(d) 調査方法

7. 生息状況調査

(7) 定点観察調査

複数の調査定点において $8\sim16$ 時に、無線機で連絡を取り合いながら、 $8\sim10$ 倍程度の双眼鏡及び 20 倍以上望遠鏡を用いてチョウゲンボウを直接観察し、飛行跡、行動等を記録した。調査定点はチョウゲンボウの出現状況に応じて、適宜移動した。

(1) 移動観察調査

定点観察調査においてチョウゲンボウの繁殖が確認された場合には、定点観察調査地点周辺 で適宜移動し、営巣箇所、繁殖行動等を記録した。

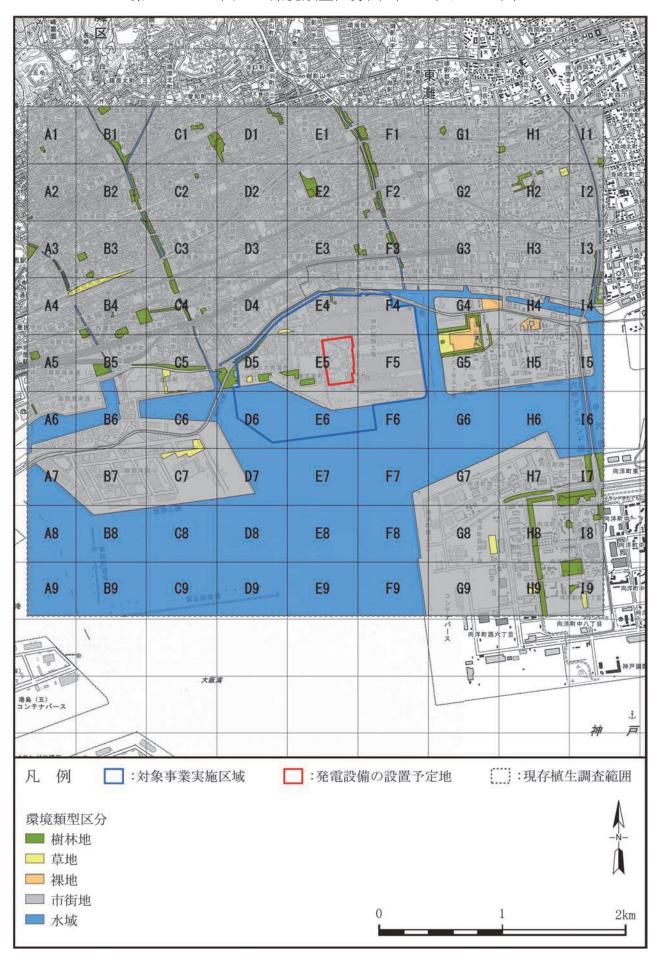
4. 餌量調査

(ア) 一般鳥類調査 (ラインセンサス調査)

調査ルートを早朝から午前中を中心に一定の速度($1\sim2\,\mathrm{km/h}$)で歩きながら、 $8\sim10$ 倍の双眼鏡を用いて、目視及び鳴き声により調査ルートの左右約 $25\,\mathrm{m}$ の範囲において確認した種及び個体数、出現環境等を記録した。

(イ) 哺乳類調査 (捕獲調査)

調査地点にシャーマン式トラップを1地点あたり2昼夜設置し、捕獲されたネズミ類の種名及び個体数等を記録した。誘引餌には押し麦や煎ったアーモンドを用いた。トラップは各地点に 20 個設置した。トラップの設置場所は、捕獲状況に応じて、調査時期毎に調査地点周辺で適宜移動した。


(e) 環境類型区分

チョウゲンボウの解析では、「第 12.1.4.1-2 図 対象事業実施区域及びその周辺における現存植生」をもとに、対象事業実施区域及びその周辺の環境類型区分として樹林地、草地、裸地、市街地、水域の 5 区分を設定した。環境類型区分は第 12.1.5-13 表、環境類型区分図は第 12.1.5-4 図のとおりである。

第 12.1.5-13 表 環境類型区分 (チョウゲンボウ)

植生区分	環境類型区分
クスノキ群落	
クスノキ植林	
クロマツ植林	
ハリエンジュ植林	
ムクノキ群落	樹林地
ユーカリ植林	倒你追
イタチハギ群落	
タチバナモドキ群落	
緑化樹林帯	
植栽樹群を伴う公園等	
芝地	草地
路傍・空地雑草群落	早地
人工裸地	裸地
市街地等	- 市街地
工場地帯	111月11
湿生植物群落	- 水域
開放水域	小坝

第 12.1.5-4 図 環境類型区分図 (チョウゲンボウ)

(f) 解析方法

7. 出現頻度指数の算出

調査範囲内におけるチョウゲンボウの出現状況を把握するために、以下の手順により出現頻度指数を求めた。

〈出現頻度指数の算出手順〉

- ・メッシュ図(約 500m) にチョウゲンボウの飛行跡を重ね合わせ、各メッシュを通過した軌跡数(出現回数)を計数した。
- ・メッシュ毎に、軌跡数の最大値を1として出現頻度の指数を求めた。出現頻度図は、同指数 を図化したものである。

イ. 好適採餌環境指数の算出

調査範囲内におけるチョウゲンボウの採餌環境の質を把握するために、以下の手順により好 適採餌環境指数を求めた。

〈好適採餌環境指数の算出手順〉

- ・環境類型区分毎にチョウゲンボウの餌量(相対値)を算出し、最大値を1として環境類型区 分毎の餌量の指数を求めた。
- ・環境類型区分毎のハンティング行動の確認回数と、出現範囲内の各環境類型区分の面積から、 ハンティング行動頻度を算出した。さらに、同頻度の最大値を1として環境類型区分毎のハ ンティング行動の指数を求めた。
- ・メッシュ(約 500m)毎に、『「各環境類型区分の餌量の指数」と「各環境類型区分の面積 比」の積の総和』と、『「各環境類型区分のハンティング行動の指数」と「各環境類型区分 の面積比」の積の総和』」を算出し、両総和の積の最大値を1として好適採餌環境指数を求 めた。好適採餌環境図は、同指数を図化したものである。

ウ. 好適繁殖環境指数の算出

調査範囲内におけるチョウゲンボウの繁殖環境の質を把握するために、以下の手順により好 適繁殖環境指数を求めた。

〈好適繁殖環境指数の算出手順〉

- ・メッシュ図(約 500m) にチョウゲンボウの繁殖行動確認箇所を重ね合わせ、各メッシュに おける繁殖行動の確認回数を計数した。
- ・メッシュ毎に、繁殖行動の確認回数の最大値を1として繁殖行動頻度指数を求めた。好適繁 殖環境図は、同指数を図化したものである。

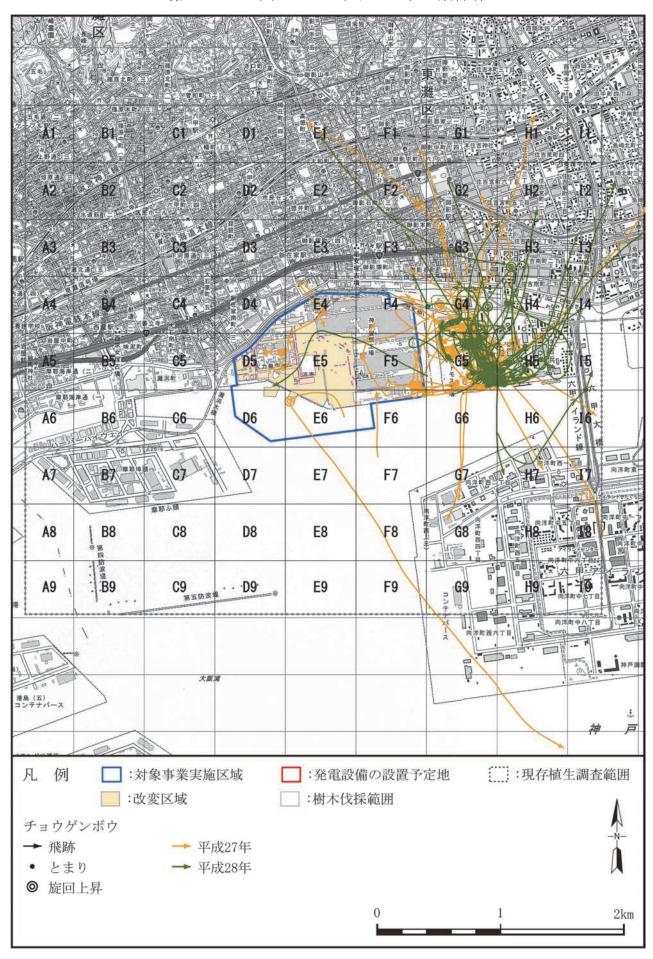
(g) 調査結果

7. 現地調査結果

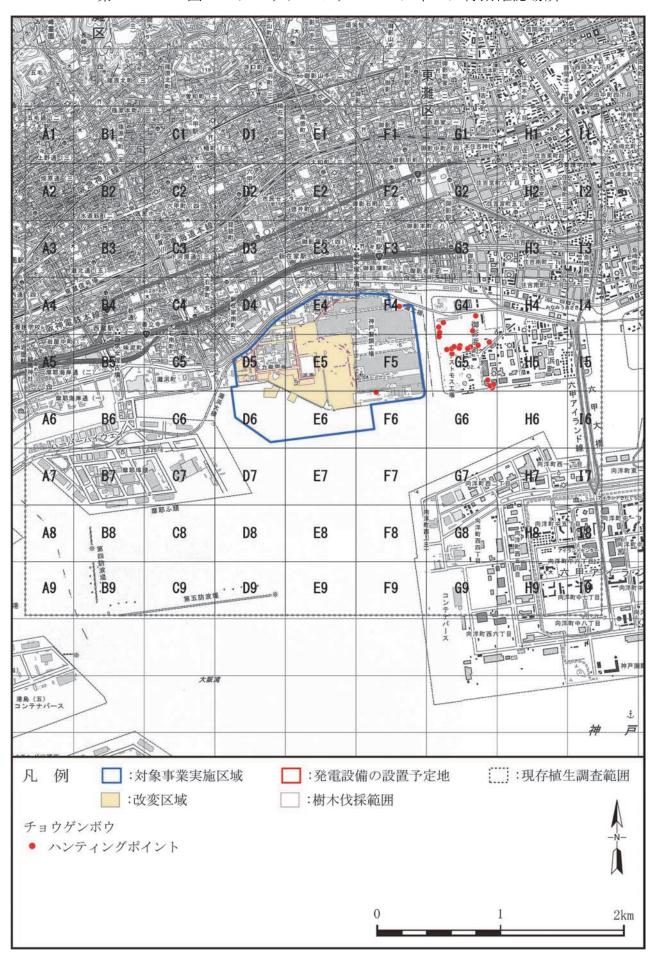
(ア) チョウゲンボウの出現状況

チョウゲンボウの飛行跡は第 12. 1. 5-5 図、ハンティング行動確認場所は第 12. 1. 5-6 図、繁殖行動確認場所は第 12. 1. 5-7 図、ハンティング及び繁殖行動別確認状況は第 12. 1. 5-14 表のとおりである。

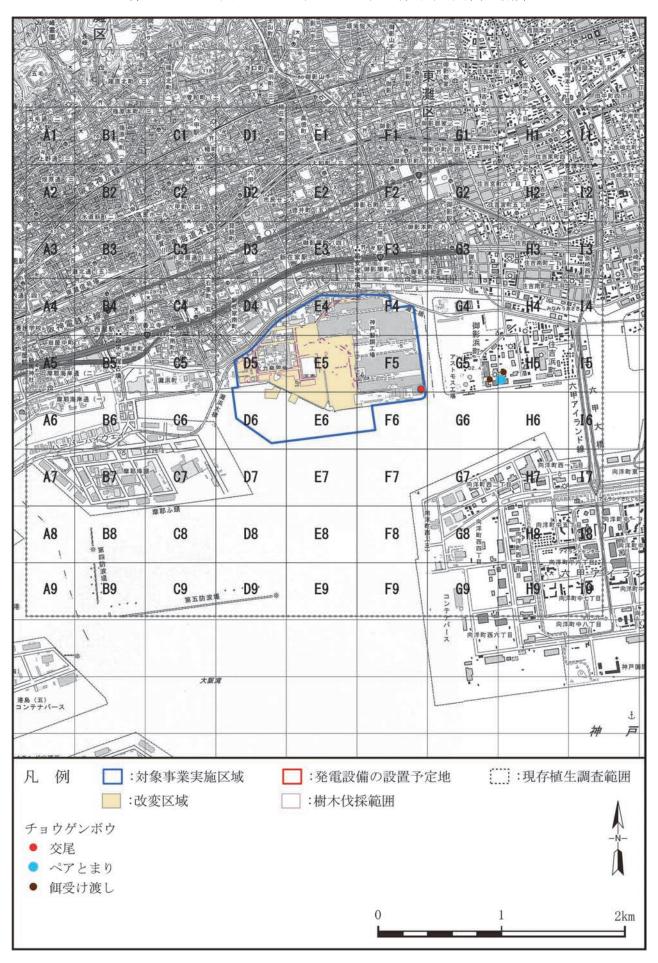
チョウゲンボウは御影浜町で集中して確認された。また、御影浜町から対象事業実施区域、 御影浜町北方の市街地及び六甲アイランドへ飛翔する個体も確認された。 チョウゲンボウの行動のうち、ハンティング行動は 23 回、繁殖行動(交尾、ペアとまり、餌受け渡し)は 15 回確認された。ハンティング行動は御影浜町で集中して確認された他、対象事業実施区域内でも2回確認された。繁殖行動は対象事業実施区域内で交尾及びペアとまりが各1回確認されたものの、御影浜町で集中して確認された。


また、平成27年及び平成28年とも、調査時にチョウゲンボウの巣は確認されなかったが、 両年とも御影浜町において繁殖行動が頻繁に確認された建屋で営巣及び繁殖に成功したものと 考えられ、同建屋及びその周辺では巣立ち幼鳥も確認された。

第 12.1.5-14 表 チョウゲンボウのハンティング及び繁殖行動確認状況


钿木左	細木口	ハンティング		繁殖行動 (回)	
調査年	調査月	(回)	交尾	ペアとまり	餌受け渡し
	2月	-	-	-	_
	3月	1	1	1	_
	4月	-	-	-	_
平成 27 年	5月	1	-	1	_
十成21中	6月	3	-	1	5
	7月	7	-	-	_
	8月	1	-	-	_
	小計	13	1	3	5
	2月	-	-	-	_
	3月	-	-	-	_
	4月	3	ı	-	_
平成 28 年	5月	_	ı	2	1
十成 20 平	6月	1	ı	_	1
	7月	_	ı	_	1
	8月	6	_	_	1
	小計	10	0	2	4
合計	合計		1	5	9

注:繁殖行動の各回数については、同時に確認された2個体の行動を1回として計数した。


第 12.1.5-5 図 チョウゲンボウの飛行跡

第 12.1.5-6 図 チョウゲンボウのハンティング行動確認場所

第 12.1.5-7 図 チョウゲンボウの繁殖行動確認場所

(イ) チョウゲンボウの餌量

「図鑑日本のワシタカ類」(文一総合出版、1995 年)によると、チョウゲンボウのペリットを調査した結果、小型哺乳類(60%内外)、鳥類(30%内外)及びその他昆虫類等が確認されているなど、チョウゲンボウはこれらの動物を採餌していることが知られている。このようにチョウゲンボウの餌としては小型哺乳類及び鳥類がその多くを占めている。

一方、チョウゲンボウのハンティング行動が集中してみられた御影浜町における哺乳類調査 (捕獲調査)では、ネズミ類等のチョウゲンボウの餌となる小型哺乳類が確認されなかった。 このため、対象事業実施区域及びその周辺では、鳥類をチョウゲンボウの主な餌として位置付け、餌量を算出した。

環境類型区分毎のチョウゲンボウの餌量は、第 12.1.5-15 表に示すとおりである。また、餌量算出の手順は以下のとおりである。

〈チョウゲンボウの餌量算出の手順〉

- ・チョウゲンボウの餌となる鳥類は、各調査地点における出現種のうち、チョウゲンボウより も小型(全長、体重とも)の種とした。
- ・環境類型区分毎に各鳥類の確認個体数と密度から現存量を求め、同現存量を環境類型区分毎 の餌量とした。

チョウゲンボウの餌として、ハクセキレイ、ヒョドリ、スズメ、ムクドリ等の鳥類 32 種を抽出した。チョウゲンボウの餌量は、樹林地が 1,116.2g/ha で最も多く、次いで水域が426.1g/ha、市街地が260.3g/ha、草地が192.9g/ha、裸地が66.1g/haであった。

第 12.1.5-15 表(1) 環境類型区分毎のチョウゲンボウの餌量

	ΛĦ	14-4-					樹林	也								草地		
種名	全長 (cm)	体重 (g)			確認	個体数			密度	現存量			確認	個体	数		密度	現存量
	(CIII)	(g)	1月	4月	5月	7月	10月	平均	(個体/ha)	(g/ha)	1月	4月	5月	7月	10月	平均	(個体/ha)	(g/ha)
コチドリ	16	40	-	-	2	-	-	0.4	0.0	0.0	-	-	1	-	-	0.2	0.1	4.0
コアジサシ	28	60	-	-	-	-	-	0.0	0.0	0.0	-	-	-	-	-	0.0	0.0	0.0
カワセミ	17	30	-	-	-	1	-	0.2	0.0	0.0	-	-	-	-	-	0.0	0.0	0.0
コゲラ	15	22	3	1	1	1	1	1.2	0.1	2. 2	ı	-	ı	-	-	0.0	0.0	0.0
ヒバリ	17	35	-	-	-	1	1	0.0	0.0	0.0	ı	-	ı	-	-	0.0	0.0	0.0
ツバメ	17	17	-	4	4	2	1	2.0	0.1	1.7	ı	1	ı	-	-	0.2	0.1	1.7
キセキレイ	19	17	2	-	-	-	1	0.6	0.0	0.0	Ī	-	ı	-	-	0.0	0.0	0.0
ハクセキレイ	21	30	11	3	4	1	8	5. 4	0.3	9.0	-	-	-	_	3	0.6	0.3	9.0
セグロセキレイ	20	28	2	-	2	2	1	1.4	0.1	2.8	ı	-	ı	-	-	0.0	0.0	0.0
ヒヨドリ	28	68	138	20	34	25	130	69.4	4.0	272.0	2	-	ı	-	-	0.4	0.2	13.6
モズ	20	38	-	-	-	1	1	0.2	0.0	0.0	ı	-	ı	-	-	0.0	0.0	0.0
ジョウビタキ	15	15	5	-	-	1	1	1.2	0.1	1.5	ı	-	ı	-	-	0.0	0.0	0.0
イソヒヨドリ	22	75	-	1	-	1	2	0.6	0.0	0.0	ı	-	ı	-	-	0.0	0.0	0.0
シロハラ	24	73	25	23	-	1	1	9.6	0.6	43.8	ı	-	ı	-	-	0.0	0.0	0.0
マミチャジナイ	22	66	-	1	-	-	-	0.2	0.0	0.0	-	-	-	-	-	0.0	0.0	0.0
ツグミ	24	86	41	33	-	-	-	14.8	0.9	77. 4	-	6	-	-	-	1.2	0.5	43.0
ウグイス	15	16	4	1	-	1	1	1.0	0.1	1.6	-	1	-	-	-	0.2	0.1	1.6
キマユムシクイ	11	7	-	-	1	1	1	0.2	0.0	0.0	ı	-	ı	-	-	0.0	0.0	0.0
エゾムシクイ	12	10	-	-	1	-	-	0.2	0.0	0.0	ı	-	ı	-	-	0.0	0.0	0.0
センダイムシクイ	13	10	-	-	-	1	2	0.4	0.0	0.0	ı	-	ı	-	-	0.0	0.0	0.0
セッカ	12	10	-	-	-	1	1	0.0	0.0	0.0	ı	-	2	-	-	0.4	0.2	2.0
キビタキ	14	16	-	-	1	1	1	0.4	0.0	0.0	ı	-	ı	-	-	0.0	0.0	0.0
オジロビタキ	12	12	1	-	-	-	-	0.2	0.0	0.0	ı	-	-	-	-	0.0	0.0	0.0
エナガ	14	7	-	-	1	1	2	0.8	0.0	0.0	ı	-	-	-	-	0.0	0.0	0.0
ヤマガラ	15	20	3	-	-	1	1	1.0	0. 1	2. 0	-	-	-	-	-	0.0	0.0	0.0
シジュウカラ	15	16	15	7	6	7	13	9.6	0.6	9.6	-	_	_	-	-	0.0	0.0	0.0
メジロ	12	11	70	8	3	2	42	25.0	1.4	15. 4	-	-	-	-	-	0.0	0.0	0.0
ホオジロ	17	23	7	-	-	-	-	1.4	0.1	2. 3	1	-	-	-	-	0.2	0.1	2.3
アオジ	16	21	1	1	_	-	_	0.4	0.0	0.0	-	_	-	_	-	0.0	0.0	0.0
カワラヒワ	15	24	10	37	18	12	12	17.8	1.0	24. 0	-	2	1	_	-	0.6	0.3	7.2
スズメ	15	24	324	241	246	169	438	283.6	16. 4	393.6	-	1	-	21	1	4.6	2.1	50. 4
ムクドリ	25	83	31	53	46	82	61	54.6	3. 1	257.3	ı	2	5	-	1	1.6	0.7	58. 1
合計			693	434	370	307	715	503.8	29. 0	1, 116. 2	3	13	9	21	5	10.2	4.7	192. 9

- 注:1. 本表は、一般鳥類調査 (ラインセンサス調査) の結果に基づき作成した。
 - 2. 種名の配列は、原則として「河川水辺の国勢調査のための生物リスト(平成 28 年度生物リスト)」(国土 交通省ホームページ)に従った。
 - 3. 全長、体重は、基本的に「日本動物大百科鳥類 I・Ⅱ」 (平凡社、平成8年・平成9年) に示す最大及び最小値の平均値を記載した。
 - 4. 密度は、確認個体数(平均)を調査面積で除した値を示した。調査面積は、各調査地点における環境類型 区分毎の調査面積の総和である(樹林地:17.34ha、草地:2.19ha、裸地:3.85ha、市街地:13.96ha、水域:1.68ha)。

第 12.1.5-15 表(2) 環境類型区分毎のチョウゲンボウの餌量

	ΛE	/ / 手						裸地							市街	地		
種名	全長 (cm)	体重 (g)			確認	個体	数		密度	現存量			確認	個体数			密度	現存量
	(CIII)	(g)	1月	4月	5月	7月	10月	平均	(個体/ha)	(g/ha)	1月	4月	5月	7月	10月	平均	(個体/ha)	(g/ha)
コチドリ	16	40	-	2	_	-	-	0.4	0. 1	4.0	-	-	-	-	-	0.0	0.0	0.0
コアジサシ	28	60	-	-	-	-	-	0.0	0.0	0.0	-	-	1	-	-	0.0	0.0	0.0
カワセミ	17	30	-	-	-	-	-	0.0	0.0	0.0	-	-	1	-	-	0.0	0.0	0.0
コゲラ	15	22	_	_	_	-	-	0.0	0.0	0.0	-	-	-	-	-	0.0	0.0	0.0
ヒバリ	17	35	1	1	-	-	-	0.4	0. 1	3. 5	-	-	-	-	-	0.0	0.0	0.0
ツバメ	17	17	-	1	-	-	-	0.2	0. 1	1. 7	_	1	2	1	_	0.8	0.1	1. 7
キセキレイ	19	17	-	-	-	-	-	0.0	0.0	0.0	_	_	_	_	_	0.0	0.0	0.0
ハクセキレイ	21	30	1	-	-	-	4	1.0	0.3	9.0	9	4	2	2	6	4.6	0.3	9.0
セグロセキレイ	20	28	-	-	-	-	-	0.0	0.0	0.0	3	1	_	_	1	1.0	0.1	2.8
ヒヨドリ	28	68	-	-	-	-	-	0.0	0.0	0.0	9	1	6	1	14	6.2	0.4	27. 2
モズ	20	38	-	-	-	-	-	0.0	0.0	0.0	-	-	_	-	-	0.0	0.0	0.0
ジョウビタキ	15	15	-	-	-	-	-	0.0	0.0	0.0	2	-	_	-	-	0.4	0.0	0.0
イソヒヨドリ	22	75	-	-	-	-	-	0.0	0.0	0.0	-	1	_	-	1	0.4	0.0	0.0
シロハラ	24	73	-	1	-	-	-	0.2	0.1	7. 3	1	-	_	-	-	0.2	0.0	0.0
マミチャジナイ	22	66	-	-	-	-	-	0.0	0.0	0.0	_	_	_	-	-	0.0	0.0	0.0
ツグミ	24	86	-	2	-	-	-	0.4	0.1	8.6	_	1	_	-	-	0.2	0.0	0.0
ウグイス	15	16	-	-	-	-	-	0.0	0.0	0.0	_	_	_	-	-	0.0	0.0	0.0
キマユムシクイ	11	7	-	ı	ı	ı	ı	0.0	0.0	0.0	-	-	ı	-	ı	0.0	0.0	0.0
エゾムシクイ	12	10	-	ı	ı	ı	ı	0.0	0.0	0.0	-	-	ı	-	ı	0.0	0.0	0.0
センダイムシクイ	13	10	-	ı	ı	ı	ı	0.0	0.0	0.0	-	-	ı	-	ı	0.0	0.0	0.0
セッカ	12	10	-	ı	ı	ı	ı	0.0	0.0	0.0	-	-	ı	-	ı	0.0	0.0	0.0
キビタキ	14	16	-	ı	ı	ı	ı	0.0	0.0	0.0	-	-	ı	-	ı	0.0	0.0	0.0
オジロビタキ	12	12	-	ı	ı	ı	ı	0.0	0.0	0.0	-	-	ı	-	ı	0.0	0.0	0.0
エナガ	14	7	-	ı	ı	ı	ı	0.0	0.0	0.0	-	-	ı	-	ı	0.0	0.0	0.0
ヤマガラ	15	20	-	ı	ı	Ī	Ī	0.0	0.0	0.0	-	-	ı	ı	ı	0.0	0.0	0.0
シジュウカラ	15	16	-	_	-	-	-	0.0	0.0	0.0	-	-	3	-	-	0.6	0.0	0.0
メジロ	12	11	-	-	-	-	-	0.0	0.0	0.0	1	-	-	-	1	0.4	0.0	0.0
ホオジロ	17	23	ı	_	-	-	-	0.0	0.0	0.0	-	-	_	-	-	0.0	0.0	0.0
アオジ	16	21	ı	1	-	-	-	0.2	0.1	2. 1	-	-	_	-	-	0.0	0.0	0.0
カワラヒワ	15	24	5	3	2	ı	ı	2.0	0.5	12.0	-	1	2	1	3	1.4	0.1	2. 4
スズメ	15	24	3	1	ı	1	3	1.6	0.4	9.6	78	22	46	88	105	67.8	4.9	117.6
ムクドリ	25	83	_	_	-	_	1	0.2	0.1	8.3	14	14	19	18	21	17.2	1.2	99.6
合計		·	10	12	2	1	8	6.6	1.9	66. 1	117	46	80	111	152	101.2	7. 1	260.3

- 注:1. 本表は、一般鳥類調査 (ラインセンサス調査) の結果に基づき作成した。
 - 2. 種名の配列は、原則として「河川水辺の国勢調査のための生物リスト(平成 28 年度生物リスト)」(国土 交通省ホームページ)に従った。
 - 3. 全長、体重は、基本的に「日本動物大百科鳥類 I・Ⅱ」 (平凡社、平成8年・平成9年) に示す最大及び 最小値の平均値を記載した。
 - 4. 密度は、確認個体数(平均)を調査面積で除した値を示した。調査面積は、各調査地点における環境類型 区分毎の調査面積の総和である(樹林地:17.34ha、草地:2.19ha、裸地:3.85ha、市街地:13.96ha、水域:1.68ha)。

第 12.1.5-15 表(3) 環境類型区分毎のチョウゲンボウの餌量

	ΛĒ	ルチ					水域			
種名	全長 (cm)	体重 (g)			確認個	国体数			密度	現存量
	(CIII)	(g)	1月	4月	5月	7月	10月	平均	(個体/ha)	(g/ha)
コチドリ	16	40	-		-	-	-	0.0	0.0	0.0
コアジサシ	28	60	-	-	_	-	_	0.0	0.0	0.0
カワセミ	17	30	-	-	_	_	_	0.0	0.0	0.0
コゲラ	15	22	-	-	-	-	-	0.0	0.0	0.0
ヒバリ	17	35	_	-	_	-	_	0.0	0.0	0.0
ツバメ	17	17	_	1	1	-	_	0.4	0. 2	3.4
キセキレイ	19	17	_	-	ı	ı	ı	0.0	0.0	0.0
ハクセキレイ	21	30	10	7	2	1	8	5.6	3. 3	99.0
セグロセキレイ	20	28	5	-	2	1	3	2.0	1.2	33. 6
ヒヨドリ	28	68	1	-	_	-	3	0.8	0.5	34.0
モズ	20	38	_	-	_	-	_	0.0	0.0	0.0
ジョウビタキ	15	15	_	-	_	-	_	0.0	0.0	0.0
イソヒヨドリ	22	75	_	-	_	-	_	0.0	0.0	0.0
シロハラ	24	73	_	-	_	-	_	0.0	0.0	0.0
マミチャジナイ	22	66	_	-	_	-	_	0.0	0.0	0.0
ツグミ	24	86	_	-	_	-	_	0.0	0.0	0.0
ウグイス	15	16	-	-	_	_	_	0.0	0.0	0.0
キマユムシクイ	11	7	_	-	_	-	_	0.0	0.0	0.0
エゾムシクイ	12	10	_	-	_	-	_	0.0	0.0	0.0
センダイムシクイ	13	10	_	-	_	-	_	0.0	0.0	0.0
セッカ	12	10	_	-	-	-	_	0.0	0.0	0.0
キビタキ	14	16	_	-	-	-	_	0.0	0.0	0.0
オジロビタキ	12	12	_	-	-	-	_	0.0	0.0	0.0
エナガ	14	7	_	-	-	-	_	0.0	0.0	0.0
ヤマガラ	15	20	ı	-	l	1	1	0.0	0.0	0.0
シジュウカラ	15	16	-	-	-	1	_	0.0	0.0	0.0
メジロ	12	11	_	-	I	1	I	0.0	0.0	0.0
ホオジロ	17	23	-	_	I	-	I	0.0	0.0	0.0
アオジ	16	21	-	-	-	-	-	0.0	0.0	0.0
カワラヒワ	15	24	-	1	I	1	I	0.4	0.2	4.8
スズメ	15	24	21	8	1	1	2	6.6	3.9	93.6
ムクドリ	25	83	_	6	3	3	4	3. 2	1.9	157.7
合計			37	23	9	6	20	19.0	11.2	426. 1

- 注:1. 本表は、一般鳥類調査 (ラインセンサス調査) の結果に基づき作成した。
 - 2. 種名の配列は、原則として「河川水辺の国勢調査のための生物リスト(平成 28 年度生物リスト)」(国土交通省ホームページ)に従った。
 - 3. 全長、体重は、基本的に「日本動物大百科鳥類 I・Ⅱ」(平凡社、平成8年・平成9年)に示す最大及び最小値の平均値を記載した。
 - 4. 密度は、確認個体数(平均)を調査面積で除した値を示した。調査面積は、各調査地 点における環境類型区分毎の調査面積の総和である(樹林地:17.34ha、草地:2.19ha、 裸地:3.85ha、市街地:13.96ha、水域:1.68ha)。

4. 解析結果

(7) チョウゲンボウの出現頻度指数の算出

出現頻度指数の算出手順に基づき、チョウゲンボウの出現頻度指数を算出した。各メッシュにおけるチョウゲンボウの出現回数(飛行跡数)及び出現頻度指数は第 12.1.5-16 表、出現頻度図は第 12.1.5-8 図のとおりである。

チョウゲンボウの出現頻度指数は、出現回数が 195 回と最多であったG 5 メッシュを 1 とし、次いでH 5 が 0.59、G 4 が 0.29 となった。これらのメッシュはいずれも御影浜町及びその周辺であった。対象事業実施区域を含むD 4 \sim D 6、E 4 \sim E 6、F 4 \sim F 6 は 0 \sim 0.09 であった。

第12.1.5-16表 各メッシュにおけるチョウゲンボウの出現回数及び出現頻度指数

メッシュ 番号	出現 回数	出現頻度 指数	メッシュ 番号	出現 回数	出現頻度 指数	メッシュ 番号	出現 回数	出現頻度 指数
A1	0	0.00	D1	0	0.00	G1	0	0.00
A2	0	0.00	D2	0	0.00	G2	5	0.03
А3	0	0.00	D3	0	0.00	G3	12	0.06
A4	0	0.00	D4	0	0.00	G4	57	0. 29
A5	0	0.00	D5	5	0.03	G5	195	1.00
A6	0	0.00	D6	0	0.00	G6	13	0.07
A7	0	0.00	D7	0	0.00	G7	2	0.01
A8	0	0.00	D8	0	0.00	G8	1	0.01
A9	0	0.00	D9	0	0.00	G9	1	0.01
B1	0	0.00	E1	2	0.01	H1	1	0.01
B2	0	0.00	E2	1	0.01	Н2	2	0.01
В3	0	0.00	E3	0	0.00	Н3	8	0.04
B4	0	0.00	E4	2	0.01	H4	17	0.09
В5	0	0.00	E5	7	0.04	Н5	116	0. 59
В6	0	0.00	E6	1	0.01	Н6	6	0.03
В7	0	0.00	E7	1	0.01	Н7	4	0.02
В8	0	0.00	E8	0	0.00	Н8	0	0.00
В9	0	0.00	E9	0	0.00	Н9	0	0.00
C1	0	0.00	F1	2	0.01	I1	0	0.00
C2	0	0.00	F2	3	0.02	12	1	0.01
C3	0	0.00	F3	4	0.02	13	5	0.03
C4	0	0.00	F4	7	0.04	14	5	0.03
C5	0	0.00	F5	17	0.09	15	2	0.01
С6	0	0.00	F6	12	0.06	16	2	0.01
C7	0	0.00	F7	2	0.01	17	2	0.01
C8	0	0.00	F8	1	0.01	18	2	0. 01
С9	0	0.00	F9	1	0.01	19	0	0.00

第 12.1.5-8 図 チョウゲンボウの出現頻度図

五号	表 区	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		TO WE LIFE CO.		東	国際などの一日	の日本 - 1 日
A1	B1	C1	D1	E1	F1	G1	H1	□min =
A2	B2	C2	D2	E2	F2	G2	H2	12
A3	В3	C3	D3	E3	F3	G 3	НЗ	13
A4	B4	C4	D4	E4	F4	G4	H4	14
A5	B5	C5	D5	E5	F5	G5	1 H5 共	15
A6	B6	C6	D6	E6	F6	G6	H6	# F F F F F F F F F F
A7	B7	С7	07	E7	F7	G7	HZ.	17 向洋町東
A8	B8	^{韓耶尔顿} C8	D8	E8	F8	G8	H8 1	18 7 0 1
A9	B9	C9 家玉助法	· · D9	E9	F9	G9	H9 二	19
湯島(国)コンテナバース		**	难		4	パースの果町西グ	TE	新中八丁目
II II II IV	度指数 (0.81 - 1.00 (0.61 - 0.80 (0.41 - 0.60 (0.21 - 0.40 (0.01 - 0.20	0) 0)	区域	:発電設	備の設置予	定地	:現存植/ 1	生調査範囲 → N- N- 2km

(イ) チョウゲンボウの好適採餌環境指数の算出

好適採餌環境指数の算出手順に基づき、チョウゲンボウの採餌に係る各指数を算出した。

環境類型区分毎のチョウゲンボウの餌量の指数は第 12.1.5-17 表、ハンティング行動の指数は第 12.1.5-18 表のとおりである。これらの指数と各メッシュにおける環境類型区分の面積比から求めた好適採餌環境指数は第 12.1.5-19 表のとおりである。また、好適採餌環境図は第 12.1.5-9 図のとおりである。

チョウゲンボウの餌量の指数は、餌量の最も多い樹林地を1とし、次いで水域が0.38、市街地が0.23、草地が0.17、裸地が0.06となった。

チョウゲンボウのハンティング行動の指数は、ハンティング行動頻度が最多であった裸地を1とし、次いで草地が0.76、樹林地が0.19、市街地が0.01となった。また、水域は0であった。

各メッシュにおける好適採餌環境指数は、G5メッシュを1とし、次いでG4が 0.76、 I 7が 0.66、 I 9が 0.41 となった。G5及びG4は御影浜町及びその周辺、 I 7及び I 9は六甲アイランドである。対象事業実施区域を含む D 4~D 6、 E 4~E 6、 F 4~F 6 は 0~ 0.26 であった。

第 12.1.5-17 表 チョウゲンボウの餌量の指数

環境類型区分	餌量 (g/ha)	餌量の指数
樹林地	1, 116. 2	1.00
草地	192. 9	0. 17
裸地	66. 1	0.06
市街地	260. 3	0. 23
水域	426. 1	0. 38

第 12.1.5-18 表 チョウゲンボウのハンティング行動の指数

環境類型区分	ハンティング 行動回数	出現範囲 面積(ha)	ハンティング 行動頻度	ハンティング 行動の指数
樹林地	5	24. 26	0. 21	0. 19
草地	3	3. 54	0.85	0.76
裸地	7	6. 26	1. 12	1.00
市街地	8	619. 15	0.01	0.01
水域	0	253. 36	0.00	0.00
合計	23	906. 57	_	_

第 12.1.5-19 表 各メッシュにおける好適採餌環境指数

				ì		
メッシュ	好適採餌	メッシュ	好適採餌		メッシュ	好適採餌
番号	環境指数	番号	環境指数		番号	環境指数
A1	0.05	D1	0.11		G1	0.06
A2	0.05	D2	0.05		G2	0.05
А3	0.10	D3	0.05		G3	0.05
A4	0.10	D4	0.08		G4	0.76
A5	0.07	D5	0. 26		G5	1.00
A6	0.04	D6	0.00		G6	0.00
A7	0.03	D7	0.02		G7	0.04
A8	0.00	D8	0.00		G8	0.16
A9	0.00	D9	0.00		G9	0.05
B1	0.11	E1	0.08		H1	0.06
B2	0.10	E2	0.12		Н2	0.15
В3	0.13	E3	0.05		НЗ	0.05
B4	0.33	E4	0.07		H4	0. 27
В5	0.11	E5	0.09		Н5	0.05
В6	0.04	E6	0.02		Н6	0.01
В7	0.05	E7	0.00		Н7	0.20
B8	0.01	E8	0.00		Н8	0.15
В9	0.00	E9	0.00		Н9	0. 27
C1	0.09	F1	0.11		I1	0.06
C2	0.05	F2	0.12		I2	0.05
C3	0.11	F3	0.09		13	0.07
C4	0.13	F4	0.05		14	0.10
C5	0.19	F5	0.05		I5	0.03
С6	0.14	F6	0.01		16	0.00
С7	0.21	F7	0.00		17	0.66
C8	0.00	F8	0.01		I8	0. 13
С9	0.00	F9	0.01		19	0.41

第 12.1.5-9 図 チョウゲンボウの好適採餌環境図

	編集 国 日 日 日 日 日 日 日 日 日	長区 第 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	五 五 五 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	第1日	(大) 山井			西側木四丁目	10日 10
	A1	B1	C1	D1	Ē1	F1	G1	H1	中南町
	A2	B2	C2	D2	e (52)	下2	62	H2	12
	A3	B3	C3	D3	E3	石 · · · · · · · · · · · · · · · · · · ·	G3	H3	13
6 通	A4	B4	7. C4 五	所 D4	E4	F4	G4	100 0.4 100 000 000 000 000 000 000 000 000 00	[4
	岩屋中町 24 A5 厚耶海岸	西 宋 康 服 · · · · · · · · · · · · · · · · · ·	C5	D5. 力务電影	E5	F5	浜 ア G5 ₃₂ 4 ストモスス	上 古 古	15
	A6	B6	C6	D6	E6	F6	G6	H6	甲アイラ 16 大橋
	A7	B7 摩耶埃斯	C7	D7	E7	F7	G7	日本 日	向洋町東 向洋町東 はあり木を変である。
>	A8	B8 版图:	摩耶ふ頭 C8	D8	E8	F8	G8 # # # # # # # # # # # # # # # # # # #	一种 8	18 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
港	A9 \	- B9	C9 第五防波 ^线	. D9	E9	F9	G9	H9 11	19 向洋町中
		*	455			35	パース向洋町西	大丁目 一	野中八丁目
港島(コンテ	(五)ナバース		大阪	4			1.	1	· 神 戸
凡	. 例	二:対	象事業実施	区域	二:発電設	備の設置予	定地 [: :現存植설	生調査範囲
	好適採餌環境指数 I (0.81 - 1.00) II (0.61 - 0.80) III (0.41 - 0.60)								
		(0. 21 - 0. 40 (0. 01 - 0. 20 (0)				0		1	2km

(ウ) チョウゲンボウの好適繁殖環境指数の算出

好適繁殖環境指数の算出手順に基づき、チョウゲンボウの好適繁殖環境指数を算出した。各メッシュにおけるチョウゲンボウの繁殖行動回数及び好適繁殖環境指数は第 12.1.5-20 表のとおりである。また、好適繁殖環境図は第 12.1.5-10 図のとおりである。

チョウゲンボウの好適繁殖環境指数は、繁殖行動回数が 12 回と最多であったH5メッシュを1とし、次いでF5が 0.17、G5が 0.08 となり、その他のメッシュはいずれも0であった。H5及びG5は御影浜町及びその周辺であり、F5は対象事業実施区域であった。

第 12.1.5-20 表 各メッシュにおける繁殖行動回数及び好適繁殖環境指数

メッシュ 番号	繁殖行 動回数	好適繁殖 環境指数	メッシュ 番号	繁殖行 動回数	好適繁殖 環境指数	メッシュ 番号	繁殖行 動回数	好適繁殖 環境指数
A1	0	0.00	D1	0	0.00	G1	0	0.00
A2	0	0.00	D2	0	0.00	G2	0	0.00
А3	0	0.00	D3	0	0.00	G3	0	0.00
A4	0	0.00	D4	0	0.00	G4	0	0.00
A5	0	0.00	D5	0	0.00	G5	1	0.08
A6	0	0.00	D6	0	0.00	G6	0	0.00
A7	0	0.00	D7	0	0.00	G7	0	0.00
A8	0	0.00	D8	0	0.00	G8	0	0.00
А9	0	0.00	D9	0	0.00	G9	0	0.00
B1	0	0.00	E1	0	0.00	H1	0	0.00
B2	0	0.00	E2	0	0.00	Н2	0	0.00
В3	0	0.00	Е3	0	0.00	НЗ	0	0.00
В4	0	0.00	E4	0	0.00	H4	0	0.00
В5	0	0.00	E5	0	0.00	Н5	12	1.00
В6	0	0.00	Е6	0	0.00	Н6	0	0.00
В7	0	0.00	E7	0	0.00	Н7	0	0.00
В8	0	0.00	E8	0	0.00	Н8	0	0.00
В9	0	0.00	E9	0	0.00	Н9	0	0.00
C1	0	0.00	F1	0	0.00	I1	0	0.00
C2	0	0.00	F2	0	0.00	12	0	0.00
C3	0	0.00	F3	0	0.00	13	0	0.00
C4	0	0.00	F4	0	0.00	I4	0	0.00
C5	0	0.00	F5	2	0. 17	15	0	0.00
С6	0	0.00	F6	0	0.00	16	0	0.00
C7	0	0.00	F7	0	0.00	17	0	0.00
C8	0	0.00	F8	0	0.00	18	0	0.00
С9	0	0.00	F9	0	0.00	19	0	0.00

第 12.1.5-10 図 チョウゲンボウの好適繁殖環境図

为作者 为《		to the second	. 5 10 区			77好 迪 茶加			
	は	T (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	等12章(清 等	* # # # # # # # # # # # # # # # # # # #	0 July 2		Ta Till (1)	E DEST	温泉
	n Car						· ·		
A1	B1	C1	D1	E1	-F1 -	G1	HI	it.	
A2	B2	C2	D2	E2	F2	G2	H2	12	E.
A3	В3	C3	D3	E3	F3	G3	Н3	13	
A4	B4	C4	D4	E4	F4	G4 1	H4	14	
A5	B5	C5	D5	E5	F5	G5	H5 #5	15	
A6	B6	C6	D6	E6	F6	G6	Н6	ザアイラ I6 大	
A7	B7	С7	D7	E7	F7	G7	H7	17	向河
A8	B8	^{企助办机} C8	D8	E8	F8	G8	H8	18	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A9 \	B9	C9 _{被五郎汝}	D9	E9	F9	G9	H9 =	19	
	\			*******		パース向洋町西グス		洋町中八丁目	
		大阪	ją.						نِـ
(重)								神	
emare -	0			The second section and second second	144640000 T. Berryon Make 1999	on out to			
. 例		象事業実施	以区域	:発電設	備の設置予	正地 [.	:現存植	生調查	車 技
	環境指数 0.81 - 1.00	0)							-N
I I (0.61 - 0.80	0)							
	0.41 - 0.60 $0.21 - 0.40$								
■ V (0.01 - 0.20				0		1		21
□ VI (0)								

③ 典型性の注目種(カワラヒワ)に係る調査の結果

a. 文献その他の資料調査

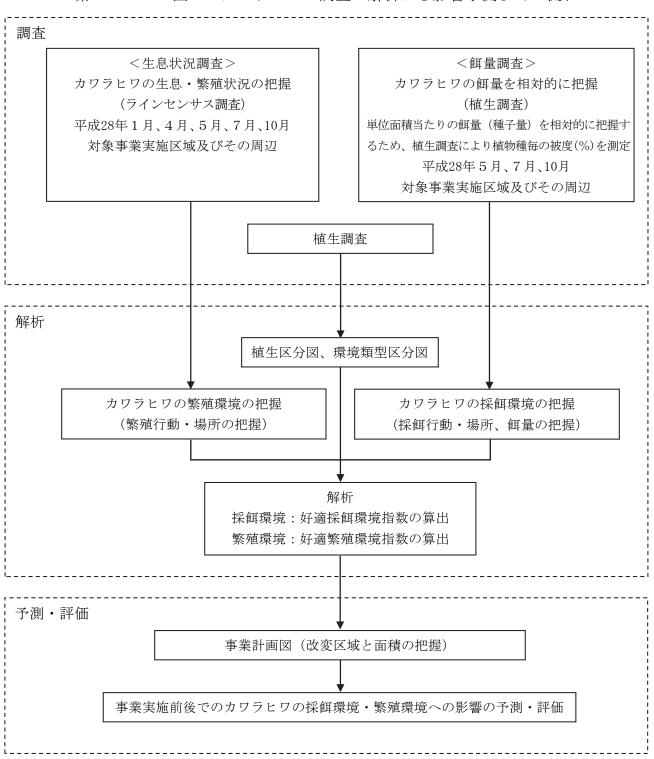
既存文献及びその他の資料により、カワラヒワの一般生態を整理した。既存文献及びその他の資料は第12.1.5-21表、カワラヒワの一般生態は第12.1.5-22表のとおりである。

第 12.1.5-21 表 カワラヒワに係る既存文献及びその他の資料

資料名
「原色日本野鳥生態図鑑<陸鳥編>」(保育社、平成7年)
「日本動物大百科第4巻 鳥類Ⅱ」(平凡社、平成9年)

第 12.1.5-22 表 カワラヒワの生態情報

項目		特徴
分布		・中国、ウスリー・アムール川流域、モンゴル、朝鮮半島、日本などに分布する。 ・日本では、北海道から九州までの全域に分布する。主に留鳥として年中生息するが、 北海道や雪の多い地方では夏鳥で、冬は温暖な地方に移動する。
形態		・全長:13~17cm ・翼長:7~9cm ・体重:17~30g ・スズメほどの大きさ。
	生息環境	・人家周辺、農耕地、雑木林、河原に生息する。繁殖期には、平地から低山帯のいろいろな林で見られるが、スギ林やマツ林といった針葉樹林を好む。非繁殖期には、主な生息地を河原に移す。
	食性	・四季を通して、キク科、イネ科、タデ科、マメ科などの植物の種子だけを食べる。雛にも種子だけを与え、親は種子の皮をむき、胚乳をそ嚢に貯えたあと雛に給餌する。 雛は餌をそ嚢に貯えて少しずつ消化するため、昆虫食のスズメ目の鳥類に比べて育雛期の給餌回数は少ない。
生態	繁殖	・繁殖期は3~7月、年に1~2回繁殖する。 ・つがいの形成は、長野県では春先、京都府では秋に行われる。 ・秋につがいが形成される地域では、一部のつがいは秋のうちになわばりを確立し、なかには巣材運びを始めるつがいもいる。しかし、巣を完成するには至らない。つがい関係は秋から翌年の春まで維持され、春に繁殖を開始する。 ・産卵数は3~5個で卵は12日ほどでふ化する。 ・ふ化後しばらくは、雌が抱雛するが、給餌は雌雄で行い、雛はふ化後2週間ほどで巣立つ。


b. カワラヒワを典型性注目種とした生態系への影響予測の考え方

カワラヒワの調査・解析から影響予測までの流れは、第 12.1.5-11 図に示すとおりである。 カワラヒワを典型性注目種とした生態系への影響予測では、対象事業実施区域及びその周辺 (調査範囲)を一辺約 500m のメッシュに区切り、生息状況調査結果及び餌量調査結果を基に、 対象事業の実施によるカワラヒワの採餌環境及び繁殖環境への影響予測を実施した。

採餌環境への影響予測では、植生区分毎の餌量から得た餌量の指数、環境類型区分毎の採餌行動回数から得た採餌行動の指数、各メッシュにおける各植生区分及び各環境類型区分の面積比から、各メッシュの好適採餌環境指数を算出・ランク区分し、改変区域における各ランクの占める面積及び割合を求めた。同面積及び割合を基に採餌環境への影響の程度を予測した。

繁殖環境への影響予測では、環境類型区分毎に繁殖行動の確認個体数及び調査面積から得た各環境類型区分の繁殖行動指数と、各メッシュにおける環境類型区分の面積比から、各メッシュの好適繁殖環境指数を算出・ランク区分し、改変区域における各ランクの占める面積及び割合を求めた。同面積及び割合を基に繁殖環境への影響の程度を予測した。

第 12.1.5-11 図 カワラヒワの調査・解析から影響予測までの流れ

c. 現地調査

(a) 調査地域

対象事業実施区域及びその周辺とした。

(b) 調査地点

7. 生息状況調査

調査地域における植生等を考慮して設定したラインセンサス調査の 15 ルートとした (第 12.1.5-12 図)。

調査ルートの概要は第12.1.5-10表に同じである。

化 餌量調査

調査地域の植生を考慮して33地点を選定した(第12.1.5-12図)。

(c) 調査期間

7. 生息状況調査

平成28年1月20日~22日、26日

平成28年4月11日~13日

平成28年5月9日~11日

平成28年7月6日~8日

平成28年10月12日~14日

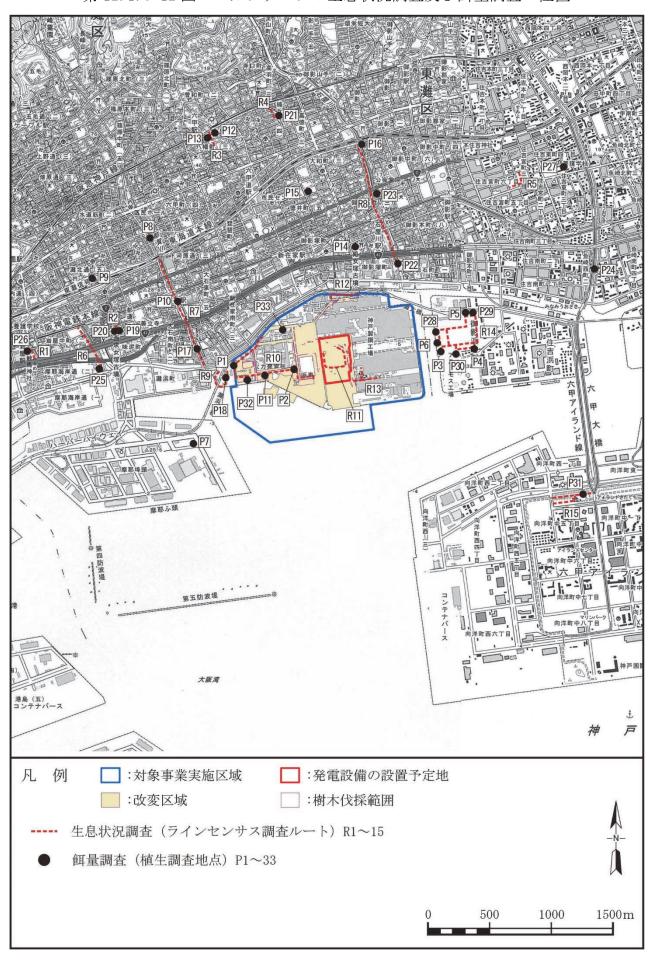
4. 餌量調査

平成28年5月9日、11日

平成28年7月6日~8日

平成28年10月12日

(d) 調査方法

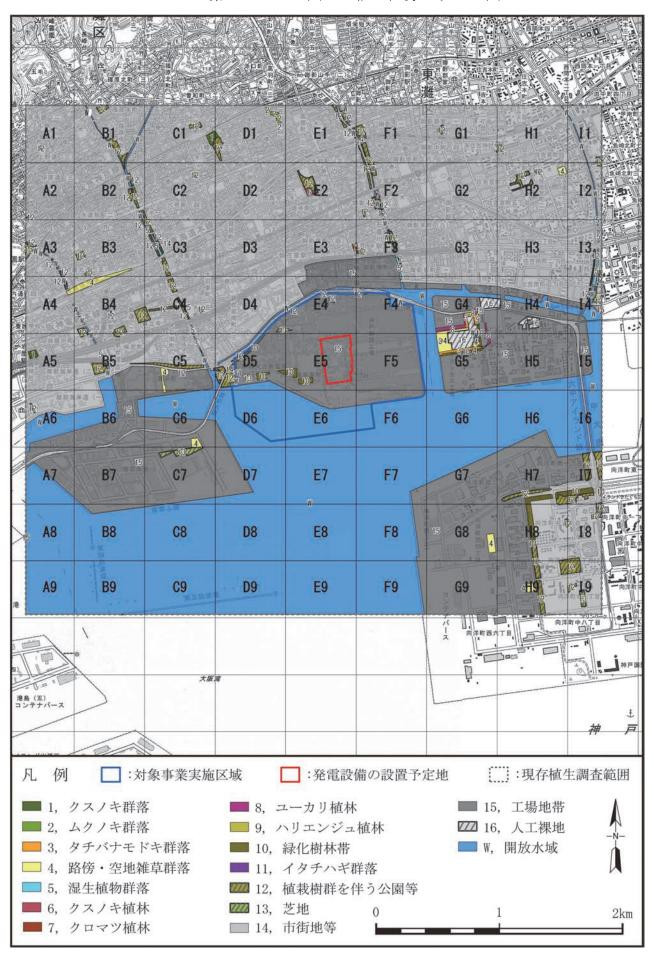

7. 生息状況調査

調査ルートを早朝から午前中を中心に一定の速度($1\sim2\,\mathrm{km/h}$)で歩きながら、 $8\sim10$ 倍の双眼鏡を用いて、目視及び鳴き声により調査ルートの左右約 $25\,\mathrm{m}$ の範囲において確認したカワラヒワの個体数、行動等を記録した。

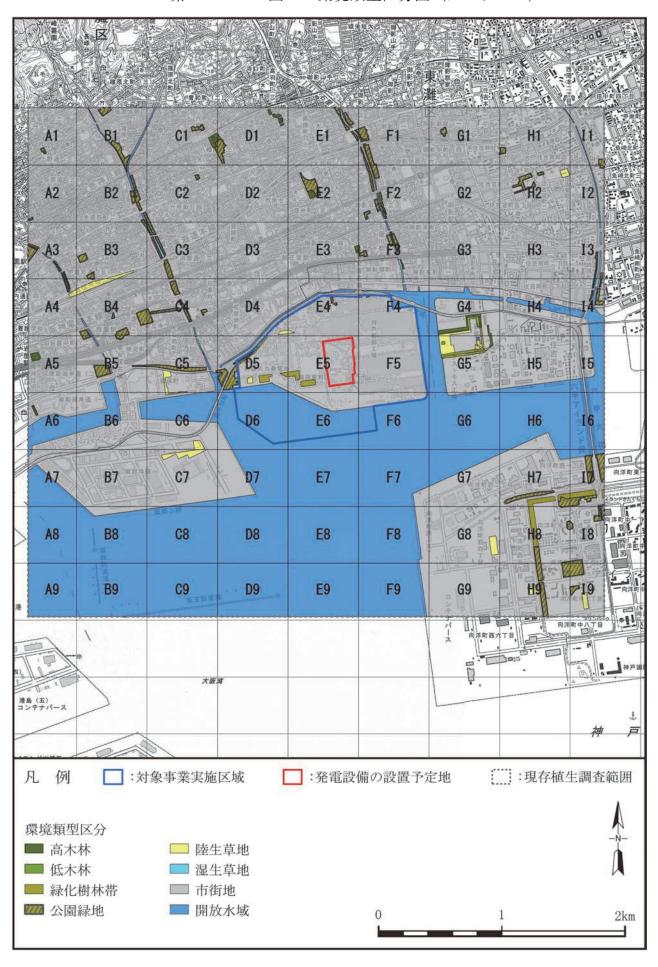
4. 餌量調査

植物の種子を採餌するカワラヒワの餌量調査では、調査地点に設置した調査区内の階層ごとの出現種と各種の植被率を記録した。

第12.1.5-12図 カワラヒワの生息状況調査及び餌量調査の位置


(e) 植生区分及び環境類型区分

カワラヒワの解析では、「第 12.1.4.1-2 図 対象事業実施区域及びその周辺における現存植生」をもとに、対象事業実施区域及びその周辺の環境類型区分として高木林、低木林、緑化樹林帯、公園緑地、陸生草地、湿生草地、市街地、開放水域の8区分を設定した。環境類型区分は第 12.1.5-23 表、植生区分メッシュ図は第 12.1.5-13 図、環境類型区分図は第 12.1.5-14 図のとおりである。


第 12.1.5-23 表 環境類型区分 (カワラヒワ)

植生区分	環境類型区分
クスノキ群落	
ムクノキ群落	
クスノキ植林	→ → 高木林
クロマツ植林	一同小孙
ユーカリ植林	
ハリエンジュ植林	
タチバナモドキ群落	/C-+-++
イタチハギ群落	→ 低木林
緑化樹林帯	緑化樹林帯
植栽樹群を伴う公園等	公園緑地
路傍•空地雑草群落	一 陸生草地
芝地	一 医生早地
湿生植物群落	湿生草地
市街地等	
工場地帯	市街地
人工裸地	
開放水域	開放水域

第 12.1.5-13 図 植生区分メッシュ図

第 12.1.5-14 図 環境類型区分図 (カワラヒワ)

12. 1. 5-40 (1248)

(f) 解析方法

7. 好適採餌環境指数の算出

調査範囲内におけるカワラヒワの採餌環境の質を把握するために、以下の手順により好適採 餌環境指数を求めた。

〈好適採餌環境指数の算出手順〉

- ・植生区分毎に、カワラヒワの採餌植物(果実や種子を採餌)の被度を算出し、同被度を各植生区分における餌量(相対値)とした。さらに、餌量の最大値を1として、植生区分毎の餌量の指数を求めた。
- ・環境類型区分毎の採餌行動の確認個体数と調査面積から採餌行動頻度を算出した。さらに、 同頻度の最大値を1として環境類型区分毎の採餌行動の指数を求めた。
- ・メッシュ(約 500m)毎に、『「各植生区分の餌量の指数」と「各植生区分の面積比」の積の総和』と、『「各環境類型区分の採餌行動の指数」と「各環境類型区分の面積比」の積の総和』を算出し、両総和の積の最大値を1として好適採餌環境指数を求めた。好適採餌環境図は、同指数を図化したものである。

イ. 好適繁殖環境指数の算出

調査範囲内におけるカワラヒワの繁殖環境の質を把握するために、以下の手順により好適繁 殖環境指数を求めた。

〈好適繁殖環境指数の算出手順〉

- ・カワラヒワの繁殖行動について、環境類型区分毎の確認個体数と調査面積から繁殖行動頻度 を算出した。さらに、同頻度の最大値を1として繁殖行動指数を求めた。
- ・メッシュ(約 500m)毎に、「各環境類型区分の繁殖行動指数」と「各環境類型区分の面積 比」の積の総和を算出し、総和の最大値を1として好適繁殖環境指数を求めた。好適繁殖環 境図は、同指数を図化したものである。

(g) 調査結果

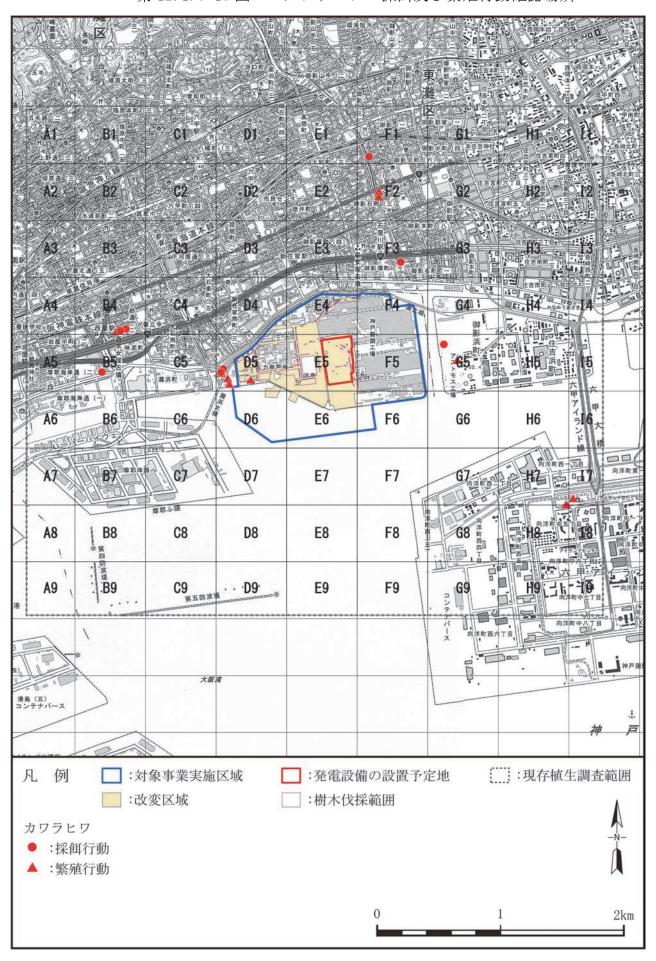
7. 現地調査結果

(7) カワラヒワの出現状況

カワラヒワの出現状況は第 12. 1. 5-24 表、採餌及び繁殖行動の確認状況は第 12. 1. 5-25 表、 採餌及び繁殖行動確認場所は第 12. 1. 5-15 図のとおりである。

カワラヒワは、対象事業実施区域で2個体、対象事業実施区域外で109個体の計111個体確認された。

確認されたカワラヒワの行動のうち、採餌行動は対象事業実施区域で0個体、対象事業実施 区域外で22個体の計22個体で確認され、繁殖行動(囀り、なわばり行動等)は対象事業実施 区域で1個体(囀り)、対象事業実施区域外で20個体の計21個体で確認された。


第 12.1.5-24 表 カワラヒワの出現状況

調査						確認個	固体数						
時期	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10 ∼13	R14	R15	合計
1月	-	-	-	-	-	-	2	4	-	_	9	-	15
4月	-	5	ı	ı	ı	2	ı	5	20	1	11	ı	44
5月	_	_	-	-	3	-	1	6	4	1	7	1	23
7月	_	_	-	-	-	-	3	3	1	-	-	7	14
10月	-	6	_	_	_	_	_	9	_	_	_	_	15
合計	0	11	0	0	3	2	6	27	25	2	27	8	111

第 12.1.5-25 表 カワラヒワの採餌及び繁殖行動確認状況

	調査						確認個	国体数						
区分	時期	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10 ∼13	R14	R15	合計
	1月	_	_	-	_	_	_	_	1	_	_	_	-	1
	4月	_	2	_	_	_	2	_	-	8	-	1	_	13
採餌行動	5月	1	ı	-	l	ı	ı	ı	1	2	-	ı	ı	3
	7月	ı	ı	1	l	ı	ı	ı	-	ı	_	ı	1	0
	10 月	ı	5	1	l	ı	ı	ı	-	ı	_	ı	1	5
合計	•	0	7	0	0	0	2	0	2	10	0	1	0	22
	1月	ı	ı	1	l	ı	ı	ı	-	ı	-	ı	1	0
	4月	1	2	ï	ĮI.	1	1	1	-	10	-	1	İ	13
繁殖行動	5月	1	1	1	1	1	1	1	1	-	1	1	-	2
	7月	-	ı	-	1	1	ı	ı	3	ı	_		3	6
	10 月	-	ı	-	1	1	ı	ı	-	ı	-	ı	ı	0
合計	•	0	2	0	0	0	0	0	4	10	1	1	3	21

第 12.1.5-15 図 カワラヒワの採餌及び繁殖行動確認場所

12. 1. 5-43 (1251)

(イ) カワラヒワの餌量

植物の種子や果実を採餌するカワラヒワの餌量は、餌植物の平均被度(植生区分毎の相対値)で示す。各植生区分におけるカワラヒワの餌量(被度%)は第12.1.5-26表のとおりである。また、餌量算出の手順は以下のとおりである。

〈カワラヒワの餌量算出の手順〉

- ・植生調査箇所毎に、カワラヒワの餌植物を抽出した。餌植物は、文献等によりマツ科(マツ属)、ニレ科(ニレ属)、タデ科、ツバキ科(サカキ属、ヒサカキ属)、バラ科(サクラ属、トキワサンザシ属)、マメ科、トウダイグサ科(シラキ属)、モチノキ科(モチノキ属)、アカバナ科(マツヨイグサ属)、モクセイ科(イボタノキ属)、キク科、イネ科、カヤツリグサ科の植物種とした。
- ・植生区分毎に餌植物の平均被度を求め、同被度を各植生区分の餌量とした。

カワラヒワの餌量は、タチバナモドキ群落が 122.80%で最も多く、次いでクロマツ植林が 118.01%、ハリエンジュ植林が 110.78%、路傍・空地雑草群落が 105.30%、芝地が 102.15% であった。また、まとまった植生のない市街地等や工場地帯、人工裸地、開放水域の餌量はいずれも0%であった。

第 12.1.5-26 表(1) カワラヒワの餌量(被度%)

科名	種名	クスノキ群落	ムクノキ群落	タチバナモドキ群落	路傍・空地雑草群落	湿生植物群落	クスノキ植林	クロマツ植林	ユーカリ植林	ハリエンジュ植林	緑化樹林帯	イタチハギ群落	植栽樹群を伴う公園等	芝地
マツ	アカクロマツ	-	-	_	1	-	ı	_	-	1. 50	-	-	-	-
	クロマツ		-	-	-	-	-	43.34	_	-	17. 58	-	-	-
ニレ	アキニレ		-	-	-	-	-	-	_	16. 50	5. 78	-	-	-
タデ	シャクチリソバ	-	-	-	-	0.00	-	-	-	-	-	-	-	-
	ヤナギタデ		-	-	-	0.25	-	-	_	-	-	-	-	-
	イヌタデ		-	-	-	0.05	-	-	_	-	-	-	-	-
	イタドリ		-	-	-	-	-	-	_	-	1.83	-	-	-
	スイバ		-	-	-	0.03	-	-	_	-	-	-	-	-
	アレチギシギシ		-	-	-	0.13	-	0.03	_	-	-	-	-	-
	ナガバギシギシ		-	-	-	0.25	-	-	_	-	-	-	-	-
ツバキ	サカキ	5.00	-	-	1	-	ı	-	-	Ī	-	-	-	-
	ヒサカキ	0.67	-	-	ı	1	ı	-	-	ı	0.13	_	1	-
バラ	カワヅザクラ		-	-	Ī	-	ı	-	_	Ī	ı	_	8.75	-
	オオシマザクラ		-	-	-	-	-	6.67	_	-	7. 51	-	-	-
	リンボク	0.67	-	-	1	-	ı	-	-	Ī	-	-	-	-
	ソメイヨシノ		-	-	-	-	-	3. 33	_	-	1.25	-	-	-
	タチバナモドキ	-	-	45.00	2.00	1	ı	-	40.00	1.01	12.00	_	1	-
マメ	イタチハギ	-	-	-	ı	1	ı	-	-	ı	ı	95. 10	1	-
	アレチヌスビトハギ	-	-	_	0.30	-	ı	_	-	ı	-	-	1. 25	-
	ヤハズソウ	-	_	_	-	-	-	-	-	-	-	-	-	_
	メドハギ	-	_	0.50	-	-	-	-	-	-	-	-	-	_
	コメツブウマゴヤシ	_	_	-	1.00	-	-	_	-	_	-	-	-	-
	シナガワハギ	-	_	0.10	-	-	-	-	-	-	-	-	-	_
	クズ	_	_	-	1.00	-	-	_	-	_	-	-	-	-

第 12.1.5-26 表(2) カワラヒワの餌量(被度%)

	T							1	1					
科名	種名	クスノキ群落	ムクノキ群落	タチバナモドキ群落	路傍・空地雑草群落	湿生植物群落	クスノキ植林	クロマツ植林	ユーカリ植林	ハリエンジュ植林	緑化樹林帯	イタチハギ群落	植栽樹群を伴う公園等	芝地
マメ	ハリエンジュ	_	-	-	-	-	_	-	_	85.00	1.25	-	-	-
	コメツブツメクサ	-	_	-	_	-	_	-	_	_	-	-	2.50	_
	シロツメクサ	-	-	-	4.00	0.03	60.00	13.33	-	-	-	-	13. 75	-
	ヤハズエンドウ	-	-	0.10	1. 10	-	-	-	1	0.01	1	1	-	-
トウダイグサ	ナンキンハゼ	-	_	_	-	0.03	_	-	-	_	-	_	-	-
モチノキ	モチノキ	-	_	-	-	-	-	-	-	_	1.75	-	-	-
	タラヨウ	-	-	-	-	-	4.00	-	-	_	1	-	-	_
	クロガネモチ	5.00	-	-	-	-	-	-	-	1.50	2.63	-	1. 25	-
アカバナ	メマツヨイグサ	-	-	-	0.10	-	-	-	-	_	-	-	-	-
1	コマツヨイグサ	-	-	-	0.02	0.03	-	0.07	-	-	0.01	ı	-	-
	アレチマツヨイグサ	-	-	-	0.20		-	-	_	-	-	ı	-	-
	ユウゲショウ	-	-	-	0.10	0.05	-	-	1	_	1	1	-	-
モクセイ	ネズミモチ	13. 37	1.00	-	-	-	-	-	_	-	-	ı	-	-
	トウネズミモチ	0.67	-	-	1	_	-	-	8.50	3.50	0.58	-	-	-
キク	ヨモギ	-	-	-	7. 20	5. 75	-	2. 17	0.05	1.00	-	-	-	-
	ヒロハホウキギク	-	1	-	1	0.03	-	1	1	1	1	ı	-	-
	アメリカセンダングサ	-	-	-	0.02	-	-	Ī	ı	-	-	ı	-	-
	コセンダングサ	-	-		-	0.15	_	-	-	-	-	-		-
	アレチノギク	-	1	-	1	0.03	1.00	1	1	1	1	ı	-	-
	オオアレチノギク	-	-		0.30	0.13	0.10	0.70	-	0.01	-	-	0.06	-
	ハルシャギク	-	-	_	-	2.63	-	-	-	-	-	-	_	-
	ヒメムカショモギ	-	-	-	-	0.00	-	-	-	-	-	-	-	-
	チチコグサ	-	-	-	-	0.00	-	-	-	-	-	-	-	_
	チチコグサモドキ	-	-	-	-	-	-	0.67	-	-	-	-	-	_
	ウラジロチチコグサ	_	-	-	0.02	-	3.00	-	-	-	-	-	1. 25	-
	キクイモ	-	-	-	-	1.25	-	-	-	-	-	-	-	_
	トゲチシャ	-	-	-	-	0. 25	-	-	-	-	-	-	-	-
	ノボロギク	_	-	-	-	-	_	-	-	-	-	0.01	-	-
	セイタカアワダチソウ	-	-	0.50	19. 40	0. 13	-	0.03	0. 25	-	1.75	-	-	-
	ノゲシ	-	-	-	0. 12	-	-	0.03		0.25	-	-	-	-
	タイワンハチジョウナ	-	I—I	-	0.30	-	-		-	-	-	-	-	-
	ヒメジョオン	-	_	-	0.10	0.03	2.00	0.03	-	_	-	-	0.09	-
	ヘラバヒメジョオン	-	-	0. 10	0.30	_	-	0.03	-	-	-	-	-	_
	セイヨウタンポポ	-	-	-	-	_	0.02	0. 17		_	-	-	-	-
L.,	オニタビラコ	-	-	_	-	-	0.10	_	-	-	-	-	-	_
イネ	カモジグサ		-	-	0. 20	0.65	5.00	1.83		-	-	-		-
	ヌカボ	-	-	-	-	_	0.50	-	-	-	-	-	-	-
1	ハナヌカススキ	-	-	- 1 00	1.00	-	-	-	-	-	- 1.05	-	-	-
	メリケンカルカヤ	-	-	1.00	11. 00	_	-	-	-	-	1. 25	-	-	-
	ヒメコバンソウ	-	-	-	0. 20	_	- 0.50	- 0.00	-	-	-	-	-	-
	イヌムギ		-	-	0.40		0.50	3. 33	_	-	-	-	-	-
	スズメノチャヒキ		_	_	0. 30	1 95		-	_	_		_	-	_
	ジュズダマ	_	_	-		1. 25	2.00			-		_		
	ギョウギシバ	_	_	_	39. 00	0. 15	3.00	21. 03	_	_	_	-	5. 00	0.50
	メヒシバ	_	_	_	_			_	_	_			10.00	2. 50
	アキメヒシバ オヒシバ	_		_	_		0.50	_		_	-			0.05
	シナダレスズメガヤ	_		_	_		_	_	_	_	-	-	1. 00 22. 50	_
L	マラティハハグルド					*	l						44. JU	

第 12.1.5-26 表(3) カワラヒワの餌量(被度%)

科名	種名	クスノキ群落	ムクノキ群落	タチバナモドキ群落	路傍・空地雑草群落	湿生植物群落	クスノキ植林	クロマツ植林	ユーカリ植林	ハリエンジュ植林	緑化樹林帯	イタチハギ群落	植栽樹群を伴う公園等	芝地
イネ	チャボウシノシッペイ	-	-		-	-	-	0.33	-	-	-	-	-	-
	オニウシノケグサ	-	-	-	0.20	-	-	_	-	-	-	-	-	-
	チガヤ	-	-	75. 00	8. 20	-	-	_	-	-	0.50	-	1. 31	-
	ネズミムギ	-	-	-	1.00	0.13	-	0.03	-	-	-	-	2.50	-
	ススキ	_	-	-	1.02	-	-	-	0.15	-	5.00	-	_	_
	ケチヂミザサ	-	15. 00	-	-	-	-	_	-	-	-	-	-	-
	シマスズメノヒエ	-	-	-	-	1.50	-	-	-	-	-	-	-	-
	キシュウスズメノヒエ	-	-	-	1	23. 75	-	_	-	-	-	-	-	-
	タチスズメノヒエ	-	-	-	1	6. 25	-	_	-	-	-	-	-	-
	チカラシバ	-	-	-	1	2.75	-	_	-	-	-	-	-	-
	クサヨシ	-	-	-	1	0.25	-	_	-	-	-	-	-	-
	ヨシ	-	-	-	1	22.50	-	_	-	-	-	-	-	-
	ツルヨシ	-	-	-	1	22.50	-	_	-	-	-	-	-	-
	ネザサ	-	40.00	-	1	-	-	_	-	-	-	-	-	-
	アキノエノコログサ	-	-	-	1	-	-	_	-	-	-	-	-	-
	ツルスズメノカタビラ	-	-		-	-	0.01	-	-	-	-	-	-	-
	エノコログサ	_	-	-	0. 20	-	-	0.03	-	-	0.50	-	_	-
	オカメザサ	_	-	-	-	-	-	1.00	-	-	-	-	_	-
	ナギナタガヤ	_	-	-	5. 00	-	1.00	1.00	-	-	-	-	_	-
	シバ	_	-	-	-	-	3.00	10.00	-	-	-	-	_	99.00
	コウライシバ	_	-	-	-	-	-	-	-	-	-	-	15.00	-
カヤツリグサ	シラスゲ	_	-	-	-	-	-	-	-	0.50	-	-	_	-
	アオスゲ	-	-	0.50	-	_	-	-	_	-	-	-	-	-
	コウボウシバ	_	ı	-	I	-	-	0.33	-	-	-	-	-	-
	イヌクグ	-	1	-	ı	-	-	5.00	-	-	-	-	-	_
	メリケンガヤツリ	-	-	-	-	4.50	-	_	-	-	-	-	-	0.05
	カヤツリグサ	-	-	-	-	-	-	_	-	-	-	-	-	0.05
	ハマスゲ	-	-	-	-	-	-	3. 50	-	-	0.03	-	1.50	_
	合計	25. 38	56.00	122.80	105.30	97. 41	83. 73	118.01	48.95	110.78	61.33	95. 11	87. 71	102. 15

注:種名の配列は、原則として「河川水辺の国勢調査のための生物リスト(平成28年度生物リスト)」(国土交通省ホームページ)に従った。

4. 解析結果

(7) カワラヒワの好適採餌環境指数の算出

好適採餌環境指数の算出手順に基づき、カワラヒワの採餌に係る各指数を算出した。

植生区分毎のカワラヒワの餌量の指数は第 12.1.5-27 表、環境類型区分毎の採餌行動の指数は第 12.1.5-28 表のとおりである。これらの指数と各メッシュにおける植生区分及び環境類型区分の面積比から求めた好適採餌環境指数は第 12.1.5-29 表のとおりである。また、好適採餌環境図は第 12.1.5-16 図のとおりである。

カワラヒワの餌量の指数は、餌量の最も多いタチバナモドキ群落を1とし、次いでクロマツ 植林が0.96、ハリエンジュ植林が0.90、路傍・空地雑草群落が0.86となった。

カワラヒワの採餌行動の指数は、採餌行動頻度が最多であった公園緑地を1とし、次いで陸 生草地が0.23、高木林が0.18であった。その他の環境類型区分については、現地調査時に採 餌行動が確認されなかったため、採餌行動の指数は0であった。

各メッシュにおける好適採餌環境指数は、六甲アイランド公園付近(I7)を1とし、次いで同島のI9が0.30、H9が0.17となった。また、対象事業実施区域を含むD4~D6、E4~E6、F4~F6は0~0.13であった。

第12.1.5-27表 カワラヒワの餌量の指数

環境類型区分	植生区分	餌量 (被度%)	餌量の指数
	クスノキ群落	25. 38	0. 21
	ムクノキ群落	56.00	0.46
古七廿	クスノキ植林	83. 73	0.68
高木林	クロマツ植林	118.01	0.96
	ユーカリ植林	48. 95	0.40
	ハリエンジュ植林	110.78	0.90
低木林	タチバナモドキ群落	122.80	1. 00
14. 个 个	イタチハギ群落	95. 11	0. 77
緑化樹林帯	緑化樹林帯	61.33	0. 50
公園緑地	植栽樹群を伴う公園等	87.71	0. 71
选生基地	路傍・空地雑草群落	105.30	0.86
陸生草地	芝地	102. 15	0. 83
湿生草地	湿生植物群落	97.41	0. 79
	市街地等	0.00	0.00
市街地	工場地帯	0.00	0.00
	人工裸地	0.00	0.00
開放水域	開放水域	0.00	0.00

第 12.1.5-28 表 カワラヒワの採餌行動の指数

環境類型区分	採餌行動 個体数	調査面積(ha)	採餌行動頻度	採餌行動の指数
高木林	1	2.76	0.36	0.18
低木林	0	1.46	0.00	0.00
緑化樹林帯	0	3. 31	0.00	0.00
公園緑地	20	9.82	2.04	1.00
陸生草地	1	2. 19	0.46	0. 23
湿生草地	0	0. 51	0.00	0.00
市街地	0	17.81	0.00	0.00
開放水域	0	1. 17	0.00	0.00
合計	22	39. 03	_	_

第 12.1.5-29 表 各メッシュにおける好適採餌環境指数

メッシュ 番号	好適採餌 環境指数	メッシュ 番号	好適採餌 環境指数	メッシュ 番号	好適採餌 環境指数
A1	0.00	D1	0.02	G1	0.00
A2	0.00	D2	0.00	G2	0.00
А3	0.03	D3	0.00	G3	0.00
A4	0.00	D4	0.00	G4	0.02
A5	0.00	D5	0.13	G5	0.03
A6	0.00	D6	0.00	G6	0.00
A7	0.00	D7	0.00	G7	0.00
A8	0.00	D8	0.00	G8	0.00
A9	0.00	D9	0.00	G9	0.00
B1	0.04	E1	0.01	H1	0.00
B2	0.03	E2	0.04	Н2	0.03
В3	0.02	E3	0.00	Н3	0.00
B4	0. 13	E4	0.00	H4	0.00
В5	0.04	E5	0.00	Н5	0.00
В6	0.00	E6	0.00	Н6	0.00
В7	0.00	E7	0.00	Н7	0.09
В8	0.00	E8	0.00	Н8	0.03
В9	0.00	E9	0.00	Н9	0. 17
C1	0. 01	F1	0.04	I1	0.00
C2	0.00	F2	0.05	12	0.00
С3	0.06	F3	0.02	13	0.02
C4	0.07	F4	0.00	I4	0.05
C5	0.06	F5	0.00	15	0.00
C6	0.00	F6	0.00	16	0.00
C7	0. 01	F7	0.00	17	1.00
C8	0.00	F8	0.00	18	0.07
С9	0.00	F9	0.00	19	0.30

第 12.1.5-16 図 カワラヒワの好適採餌環境図

	· · · · · · · · · · · · · · · · · · ·			100円 100円 100円 100円 100円 100円 100円 100円				西川本図 丁目	では、 の の の の の の の の の の の の の	
57	Å1	B1	C1	D1 .	El	F1	G1	HÍ	11	印南自三 鱼崎北町
	A2	B2	C2	D2	E2	F2	G2	H2	12	
	A3	B3	C3	D3	E3	F3	G3	НЗ	13	
	A4	B4	C4	D4	E4	F4	G4	H4	14	
	A5	B5	C5	D5	E5	F5	G5	B H5 Jan	15	
	A6	B6	C6	D6	E6	F6	G6	H6	甲アイラ I6 大	
	A7	B7	C7	D7	E7	F7	G7	H7		向洋町東
>	A8	B8	28 C8	D8	E8	F8	G8	H8 (18	(A)
港	A9 \	B9	C9	D9	E9	F9	G9	H9	19	自海神
		*					パース 同洋町西グ	A A	斯中八丁目 	i appar
港島 (コンテ	五)ナバース		大阪	i e			1	,	de terr	· 士 戸
									神	
	例		象事業実施	区域	:発電設	備の設置予算	定地 [:現存植生	主調查筆	范囲
好		「環境指数 0.81 - 1.00))							\bigwedge
		0. 61 - 0. 80 0. 41 - 0. 60								
	IV (0.21 - 0.40))							r M
	□ V (□ VI (0.01 - 0.20 0)))			0		1		2km

(イ) カワラヒワの好適繁殖環境指数の算出

好適繁殖環境指数の算出手順に基づき、カワラヒワの繁殖に係る各指数を算出した。

環境類型区分毎のカワラヒワの繁殖行動の指数は第 12.1.5-30 表、繁殖行動の指数と各メッシュにおける環境類型区分の面積比から求めた好適繁殖環境指数は第 12.1.5-31 表のとおりである。また、好適繁殖環境図は第 12.1.5-17 図のとおりである。

カワラヒワの繁殖行動の指数は、繁殖行動頻度が最も多かった公園緑地を1とし、次いで高木林が0.95、緑化樹林帯が0.20となった。

各メッシュにおける好適繁殖環境指数は、六甲アイランド公園付近(I7)を1とし、次いで同島のI9が0.54、H9が0.47となった。対象事業実施区域を含むD4~6、E4~E6、F4~F6は0.01~0.40であった。

第 12.1.5-30 表 カワラヒワの繁殖行動の指数

環境類型区分	繁殖に係る 行動個体数	調査面積(ha)	繁殖行動頻度	繁殖行動の指数
高木林	4	2.76	1. 45	0. 95
低木林	0	1.46	0.00	0.00
緑化樹林帯	1	3. 31	0.30	0. 20
公園緑地	15	9.82	1. 53	1.00
陸生草地	0	2. 19	0.00	0.00
湿生草地	0	0. 51	0.00	0.00
市街地	1	17.81	0.06	0.04
開放水域	0	1. 17	0.00	0.00
合計	21	39. 03	_	_

第 12.1.5-31 表 各メッシュにおける好適繁殖環境指数

	レンマケケケ	, ,	レン・ケーケーナー	1		レフトナータケアナ
メッシュ 番号	好適繁殖 環境指数	メッシュ 番号	好適繁殖 環境指数		メッシュ 番号	好適繁殖 環境指数
A1	0. 17	D1	0.32		G1	0.18
A2	0. 16	D2	0.15		G2	0. 15
A3	0.30	D3	0. 15		G3	0. 15
A4	0. 17	D4	0.16		G4	0. 27
A5	0.23	D5	0.40		G5	0.14
A6	0.11	D6	0.01		G6	0.00
A7	0.08	D7	0.05		G7	0.09
A8	0.00	D8	0.00		G8	0.14
A9	0.00	D9	0.00		G9	0. 15
B1	0.32	E1	0. 26		H1	0.18
B2	0. 29	E2	0.35		Н2	0. 27
В3	0. 24	Е3	0.17		НЗ	0. 15
B4	0.35	E4	0.19		H4	0.13
В5	0.33	E5	0.17		Н5	0.13
В6	0.11	E6	0.03		Н6	0.01
В7	0. 15	E7	0.00		Н7	0.39
В8	0.01	E8	0.00		Н8	0. 28
В9	0.00	E9	0.00		Н9	0.47
C1	0. 27	F1	0.33		I1	0.20
C2	0.17	F2	0.35		I2	0. 17
СЗ	0. 33	F3	0. 28		13	0.22
C4	0. 37	F4	0. 13		I4	0.28
C5	0.30	F5	0. 13		I5	0.08
С6	0.08	F6	0.03		16	0.01
С7	0.14	F7	0.01		17	1.00
C8	0.00	F8	0.02		18	0.39
С9	0.00	F9	0.01		19	0. 54

第 12.1.5-17 図 カワラヒワの好適繁殖環境図

I e		7 (1) 7 (2) 7 (3) 7 (4) 7 (4)	1日間				高田本田 上記 日本	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
A1	B1	C1 V	D1	E1	F1 -	G1	H1	11
A2	B2	C2	D2	E2	F2	G2	H2	12
A3	B3	C3	D3	Ē3	F3	G3	НЗ	13
A4	B4	C4	D4	E4	F4	G4	H4	14
A5	B5	C5	D5	E5	F5	G 5	H5	15
A6	B6	C6	D6	E6	F6	G6	H6	サディランド
A7	B7	C7	D7	E7	F7	G7	H7	17 向洋町東
A8	B8	28 C8	D8	E8	F8	G8	H8	18 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A9 \	B9	C9	D9	E9	F9	G9	H9:11	19
	*					八八人	TH.	即中八丁目 一下
港島 (五) コンテナバース		大阪	i e			1	1	A Sur
神戸								
凡 例 :対象事業実施区域 :発電設備の設置予定地 :現存植生調査範囲								
好適繁殖環境指数 ■ I (0.81 - 1.00)								
II (0.61 - 0.80)								
☐ III (0. 41 - 0. 60) ☐ IV (0. 21 - 0. 40)								
	0.01 - 0.20	0)			0		1	2km
□ VI (_	y	L	

④ 予測及び評価の結果

- a. 工事の実施、土地又は工作物の存在及び供用
- (a) 造成等の施工による一時的な影響、地形改変及び施設の存在

7. 環境保全措置

工事の実施及び施設の存在に伴う地域を特徴づける生態系(上位性注目種のチョウゲンボウ 及び典型性注目種のカワラヒワ)への影響を低減するため、以下の環境保全措置を講じる。

- ・既存の敷地や既設設備の有効活用、機器及び配管等の工場組立等により、工事範囲を低減 する。
- ・可能な限り、低騒音型の建設機械を使用する。
- ・対象事業実施区域における樹木の伐採は必要最小限とするとともに、新たに緑化マウンドを設けて植栽を行うことにより、対象事業実施区域における緑地面積は約 $61,000\text{m}^2$ から約 $86,000\text{m}^2$ となる。
- ・緑化マウンドの植栽に当たっては、立地条件を考慮の上、地域の生態系(生物多様性)に 配慮して、鳥類等の食餌植物・在来種による多層構造の樹林を目指す。

4. 予測地域

対象事業実施区域及びその周辺とした。

ウ. 予測対象時期

工事期間中の造成等の施工による注目種等の生息・生育環境への影響が最大となる時期及び 運転開始後に注目種等の生息・生育環境が安定する時期とした。

I. 予測手法

環境保全措置を踏まえ、文献その他の資料調査及び現地調査結果に基づき、注目種等の分布 及び生息・生育環境の改変の程度を把握した上で、地域を特徴づける生態系への影響を予測し た。

t. 予測結果

(ア) チョウゲンボウ

i. 行動への影響

チョウゲンボウの出現頻度指数ランク毎の面積は、第12.1.5-32表のとおりである。

生息状況調査結果によると、チョウゲンボウは対象事業実施区域外である御影浜町で集中的に出現している状況が確認されており、出現頻度指数ランクI及びⅢが分布している。一方、対象事業実施区域における出現回数は比較的少なく、改変区域及び対象事業実施区域全域とも出現頻度指数ランクは下位ランクであるランクV及びⅥのみであった。このことから、対象事業実施区域はチョウゲンボウの主要な行動域ではないものと考えられる。

工事中は、対象事業実施区域をチョウゲンボウが利用することは困難になると考えられるが、工事終了後には、対象事業実施区域を行動圏の一部として利用することも可能であると考えられる。また、対象事業実施区域外の出現頻度指数ランクが上位ランクである区域には、工事による直接的な影響はない。

以上のことから、工事の実施及び施設の存在によるチョウゲンボウの行動への影響は少ないものと予測する。

	面積(ha)											
出現頻度指数ランク	対象事業実施区域											
	改変区域			全域			出現範囲					
I (指数 0.81 - 1.00)	0	(0.0)	0	(0.0)	26. 44	(2. 9)
Ⅱ (指数 0.61 - 0.80)	0	(0.0)	0	(0.0)	0	(0.0)
Ⅲ (指数 0.41 - 0.60)	0	(0.0)	0	(0.0)	26. 44	(2. 9)
IV (指数 0.21 - 0.40)	0	(0.0)	0	(0.0)	26. 44	(2. 9)
V (指数 0.01 - 0.20)	36. 51	(98.6)	125. 19	(88.8)	827. 25	(91. 3)
VI(指数 0)	0.50	(1. 4)	15. 85	(11. 2)	0	(0.0)
合計	37. 01	(100)	141.04	(100)	906. 57	(100)

第 12.1.5-32 表 チョウゲンボウの出現頻度指数ランク毎の面積

- 注:1. 表中の() 内の数値は、合計面積に対するランク毎の割合(%)を示す。割合(%)の合計値は、四捨五入の関係上、100%とならない場合がある。
 - 2. 面積の合計値は、四捨五入の関係上、内訳の合計値と一致しない場合がある。
 - 3. 改変区域の面積は陸域の改変面積(掘削及び盛土範囲)を示す。

ii. 採餌への影響

チョウゲンボウの好適採餌環境指数ランク毎の面積は、第 12.1.5-33 表のとおりである。 生息状況調査結果によると、チョウゲンボウのハンティング行動は主に対象事業実施区域 外である御影浜町で確認されており、好適採餌環境指数ランク I 及びII が分布している。ま た、六甲アイランドにおいても好適採餌環境指数ランク II 及びIII が分布している。一方、対 象事業実施区域でのハンティング行動は比較的少なく、対象事業実施区域における好適採餌 環境指数ランクは下位ランクのみであり、改変区域はランクIV及びV、対象事業実施区域全 域はランクIV、V及びVIであった。このことから、対象事業実施区域はチョウゲンボウの主 要な採餌環境ではないものと考えられる。 工事中は、チョウゲンボウが対象事業実施区域を採餌環境として利用することは困難になると考えられるが、工事終了後には、餌となる小型鳥類が新たに設置する緑地を生息場所の一部として利用することで、チョウゲンボウが対象事業実施区域を採餌環境の一部として利用することも可能であると考えられる。また、対象事業実施区域外の好適採餌環境指数ランクが上位ランクである区域には、工事による直接的な影響はない。

以上のことから、工事の実施及び施設の存在によるチョウゲンボウの採餌環境への影響は 少ないものと予測する。

第 12. 1. 5-33 表 チョウゲンボウの好適採餌環境指数ランク毎の面積

	面積(ha)							
好適採餌環境指数 ランク	対象事業	山珀然田						
, , ,	改変区域	全域	出現範囲					
I (指数 0.81 - 1.00)	0 (0.0)	0 (0.0)	26.44 (2.9)					
Ⅱ (指数 0.61 - 0.80)	0 (0.0)	0 (0.0)	39. 20 (4. 3)					
Ⅲ (指数 0.41 - 0.60)	0 (0.0)	0 (0.0)	0 (0.0)					
Ⅳ (指数 0.21 - 0.40)	6.67 (18.0)	16.36 (11.6)	52.88 (5.8)					
V (指数 0.01 - 0.20)	30.34 (82.0)	110.48 (78.3)	695. 98 (76. 8)					
VI (指数 0)	0 (0.0)	14.20 (10.1)	92.08 (10.2)					
合計	37.01 (100)	141.04 (100)	906.57 (100)					

- 注:1. 表中の()内の数値は、合計面積に対するランク毎の割合(%)を示す。割合(%)の合計値は、四捨五入の関係上、100%とならない場合がある。
 - 2. 面積の合計値は、四捨五入の関係上、内訳の合計値と一致しない場合がある。
 - 3. 改変区域の面積は陸域の改変面積(掘削及び盛土範囲)を示す。

iii. 繁殖への影響

チョウゲンボウの好適繁殖環境指数ランク毎の面積は、第12.1.5-34表のとおりである。 生息状況調査結果によると、チョウゲンボウの繁殖行動は主に対象事業実施区域外である

生心状況調査相未によると、アョウケンホウの素種行動は主に対象事業美地区域がである 御影浜町で確認されており、好適繁殖環境指数ランク I が分布している。一方、対象事業実 施区域での繁殖行動は比較的少なく、改変区域及び対象事業実施区域全域とも好適繁殖環境 指数ランクは下位ランクであるランク V 及びVI のみであった。このことから、対象事業実施 区域はチョウゲンボウの主要な繁殖環境ではないものと考えられる。

工事中は、チョウゲンボウが対象事業実施区域を繁殖環境として利用することは困難になると考えられるが、工事終了後には、対象事業実施区域でペアとまりをするなど繁殖環境の一部として利用することも可能であると考えられる。また、対象事業実施区域外の好適繁殖環境指数ランクが上位ランクである区域には、工事による直接的な影響はない。

以上のことから、工事の実施及び施設の存在によるチョウゲンボウの繁殖環境への影響は少ないものと予測する。

第 12.1.5-34 表 チョウゲンボウの好適繁殖環境指数ランク毎の面積

	面積(ha)						
好適繁殖環境指数 ランク	対象事業	山珀然田					
, , ,	改変区域	全域	出現範囲				
I (指数 0.81 - 1.00)	0 (0.0)	0 (0.0)	26.44 (2.9)				
Ⅱ (指数 0.61 - 0.80)	0 (0.0)	0 (0.0)	0 (0.0)				
Ⅲ (指数 0.41 - 0.60)	0 (0.0)	0 (0.0)	0 (0.0)				
Ⅳ (指数 0.21 - 0.40)	0 (0.0)	0 (0.0)	0 (0.0)				
V (指数 0.01 - 0.20)	0.04 (0.1)	24. 18 (17. 1)	52.88 (5.8)				
VI (指数 0)	36.97 (99.9)	116.86 (82.9)	827.24 (91.2)				
合計	37.01 (100)	141.04 (100)	906.57 (100)				

- 注:1. 表中の() 内の数値は、合計面積に対するランク毎の割合(%)を示す。割合(%)の合計値は、四捨五入の関係上、100%とならない場合がある。
 - 2. 面積の合計値は、四捨五入の関係上、内訳の合計値と一致しない場合がある。
 - 3. 改変区域の面積は陸域の改変面積(掘削及び盛土範囲)を示す。

(イ) カワラヒワ

i. 採餌への影響

カワラヒワの好適採餌環境指数ランク毎の面積は、第12.1.5-35表のとおりである。

生息状況調査結果によると、カワラヒワの採餌行動は対象事業実施区域外の広範囲で確認されており、六甲アイランドでは好適採餌環境指数ランク I が分布している。一方、対象事業実施区域では採餌行動は確認されておらず、改変区域及び対象事業実施区域全域とも好適採餌環境指数ランクは下位ランクであるランク V 及び VI のみであった。このことから、対象事業実施区域はカワラヒワの主要な採餌環境ではないものと考えられる。

工事中は、カワラヒワが対象事業実施区域を採餌環境として利用することは困難になると考えられるが、工事終了後には、新たに設置する緑地に生育する植物の種子がカワラヒワの餌資源となることで、カワラヒワが対象事業実施区域を採餌環境の一部として利用することも可能であると考えられる。また、対象事業実施区域周辺に広範囲に分布する採餌環境には、工事による直接的な影響はない。

以上のことから、工事の実施及び施設の存在によるカワラヒワの採餌環境への影響は少ないものと予測する。

	面積(ha)							
好適採餌環境指数 ランク	対象事業	細木炊田						
	改変区域	全域	調査範囲					
I (指数 0.81 - 1.00)	0 (0.0)	0 (0.0)	12.76 (0.6)					
Ⅱ (指数 0.61 - 0.80)	0 (0.0)	0 (0.0)	0 (0.0)					
Ⅲ (指数 0.41 - 0.60)	0 (0.0)	0 (0.0)	0 (0.0)					
IV (指数 0.21 - 0.40)	0 (0.0)	0 (0.0)	11.97 (0.6)					
V (指数 0.01 - 0.20)	6.67 (18.0)	16.36 (11.6)	671.05 (34.1)					
VI (指数 0)	30.34 (82.0)	124.68 (88.4)	1, 274. 00 (64. 7)					
合計	37.01 (100)	141.04 (100)	1, 969. 78 (100)					

第 12.1.5-35 表 カワラヒワの好適採餌環境指数ランク毎の面積

- 注:1. 表中の() 内の数値は、合計面積に対するランク毎の割合(%)を示す。割合(%)の合計値は、四捨五入の関係上、100%とならない場合がある。
 - 2. 面積の合計値は、四捨五入の関係上、内訳の合計値と一致しない場合がある。
 - 3. 改変区域の面積は陸域の改変面積(掘削及び盛土範囲)を示す。

ii. 繁殖への影響

カワラヒワの好適繁殖環境指数ランク毎の面積は、第12.1.5-36表のとおりである。

生息状況調査結果によると、カワラヒワの繁殖行動は対象事業実施区域外の広範囲で確認されており、六甲アイランドでは好適繁殖環境指数ランクⅠ及びⅢが分布している。一方、対象事業実施区域での繁殖行動は比較的少なく、改変区域及び対象事業実施区域全域とも好適繁殖環境指数ランクは下位ランクであるランクⅣ及びVのみであった。このことから、対象事業実施区域はカワラヒワの主要な繁殖環境ではないものと考えられる。

工事中は、カワラヒワが対象事業実施区域を繁殖環境として利用することは困難になると 考えられるが、工事終了後には、新たに設置する緑地がカワラヒワの繁殖環境となることで、 カワラヒワが対象事業実施区域を繁殖環境の一部として利用することも可能であると考えられる。また、対象事業実施区域周辺に広範囲に分布する繁殖環境には、工事による直接的な影響はない。

以上のことから、工事の実施及び施設の存在によるカワラヒワの繁殖環境への影響は少ない ものと予測する。

第 12. 1. 5-36 表 カワラヒワの好適繁殖環境指数ランク毎の面積

	面積(ha)							
好適繁殖環境指数 ランク	対象事業	细木 盔田						
, • ,	改変区域	全域	調査範囲					
I (指数 0.81 - 1.00)	0 (0.0)	0 (0.0)	12.76 (0.6)					
Ⅱ (指数 0.61 - 0.80)	0 (0.0)	0 (0.0)	0 (0.0)					
Ⅲ (指数 0.41 - 0.60)	0 (0.0)	0 (0.0)	36.77 (1.9)					
IV (指数 0.21 - 0.40)	6.67 (18.0)	16.36 (11.6)	611.50 (31.0)					
V (指数 0.01 - 0.20)	30.34 (82.0)	124.68 (88.4)	1,042.22 (52.9)					
VI (指数 0)	0 (0.0)	0 (0.0)	266. 52 (13. 5)					
合計	37.01 (100)	141.04 (100)	1, 969. 78 (100)					

- 注:1. 表中の() 内の数値は、合計面積に対するランク毎の割合(%)を示す。割合(%)の合計値は、四捨五入の関係上、100%とならない場合がある。
 - 2. 面積の合計値は、四捨五入の関係上、内訳の合計値と一致しない場合がある。
 - 3. 改変区域の面積は陸域の改変面積(掘削及び盛土範囲)を示す。

カ. 評価の結果

(7) 環境影響の回避・低減に関する評価

造成等の施工による一時的な影響並びに地形改変及び施設の存在に伴う地域を特徴づける生態系(上位性注目種のチョウゲンボウ及び典型性注目種のカワラヒワ)への影響を低減するため、以下の環境保全措置を講じる。

- ・既存の敷地や既設設備の有効活用、機器及び配管等の工場組立等により、工事範囲を低減 する。
- ・可能な限り、低騒音型の建設機械を使用する。
- ・対象事業実施区域における樹木の伐採は必要最小限とするとともに、新たに緑化マウンドを設けて植栽を行うことにより、対象事業実施区域における緑地面積は約 61,000m² から約 86,000m² となる。
- ・緑化マウンドの植栽に当たっては、立地条件を考慮の上、地域の生態系(生物多様性)に 配慮して、鳥類等の食餌植物・在来種による多層構造の樹林を目指す。

これらの環境保全措置を講じることにより、造成等の施工による一時的な影響並びに地形改変及び施設の存在に伴う地域を特徴づける生態系への影響は少ないものと考えられることから、 実行可能な範囲内で影響の低減が図られているものと評価する。