温泉モニタリングマニュアル

平成 年 月

環境省自然環境局
目次

はじめに

•温泉モニタリングを行う目的

•温泉モニタリングに関する基礎知識
 □) 源泉の種類と測定に当たっての注意点
 □) 温泉の変動要因

モニタリングの準備
 □) 資料の収集
 □) モニタリング項目の検討
 □) モニタリング実施頻度の検討
 □) 測定機材の検討および記入表作成等の準備
 □) 予備調査（測定口の設置、人材の準備、役割の検討）
 □) モニタリング実施計画の策定

モニタリングに必要な機材
 □) モニタリングに用いる基礎的な測定器と道具
 □) 自動観測機器について

モニタリング項目及び測定方法
 □) 温度
 □) 湧出量の測定
 □) 水位
 □) 温泉成分分析
 □) 測定頻度

モニタリング実施時の注意事項
 □) 測定口の設置
 □) 高温泉への対応
 □) ガス対策
 □) 周囲の状況（その他）

モニタリング計器の保守点検、管理、注意点等

□) 温度計
□) 流量計
□) 電気伝導率計
□) 水位計

モニタリング結果の活用

□) 適正採取量の評価
①）温泉採取計画の見直し
③）成分濃度の確認
⑤）源泉が与える環境への影響評価
⑦）温泉の保護（啓発と連携）

実施主体により想定される温泉モニタリング内容とその活用、注意点
①）温泉事業者が行う温泉モニタリング想定例
③）温泉施設管理者が行うモニタリング想定例
⑤）地方公共団体が行うモニタリング想定例

おわりに

参考文献

引用文献

参考文献

参考：温泉モニタリングに関する用語集
図類

図　温泉の流動　………………………………………………………………………………………………
図　源泉の構造と種類　…………………………………………………………………………………………
図　降水量の変化に伴う自噴温泉湧出状況の変化例　……………………………………………………
図　地震に伴う温泉水位の変化例　大塚他　………………………………………………………………
図　箱根湯本の温泉水位の経年変化　大山　………………………………………………………………
図　温泉の揚湯に伴う近隣源泉の水位変化　山下・由佐　に加筆修正　…………………………
図　源泉構造物の老朽化事例（大塚　…………）　…………………………………………………………
図　温泉モニタリングに使用する機器　……………………………………………………………………
図　最近の温泉モニタリング事例（遠隔監視と情報共有）　……………………………………
図　温泉の採取、湧出量確認のための配管構造の一例（環境省　…………）　…………
図　気泡式水位計のしくみ　………………………………………………………………………………
図　タンクや源泉貯湯槽の中での測定は危険　…………………………………………………………
図　モニタリング結果からの判断　………………………………………………………………………
図　適正採取量が変化した事例　…………………………………………………………………………
図　採取量の見直しを行った事例　………………………………………………………………………
図　水質が変化した事例　…………………………………………………………………………………
図　源泉のモニタリング実施の流れ　……………………………………………………………………
図　温泉保護における啓発と連携　………………………………………………………………………
表 銀 モニタリング記録表の作成例
表 銀 モニタリング記録表の作成例
表 銀 温泉の硫化水素ガスによる事故事例
表 銀 可燃性天然ガスが発生する源泉の事故事例
表 銀 モニタリング結果に表われる変化と想定される原因の例
はじめに

我が国は、世界有数の火山国であり、豊富な地熱資源を有しており、古来より温泉を活用してきました。近年は、我が国の豊富なエネルギー資源として温泉をさらに広く活用するようになってきています。しかし、一口に温泉と言っても温度や泉質・温泉付随ガスの有無や源泉の構造によって、その資源量の評価や維持・管理における注意点は様々です。

温泉は国民共有の資源であるという観点に立ち、次世代に渡って持続的に利用してゆくためにも温泉の特性と資源量について把握することが重要です。源泉の維持管理を適切に行い安全に利用することは、温泉を採取し利用する皆様の責務と言えます。

水循環の中で温泉も流動し常に循環している

図 □ 温泉の流動

地下水の一形態である温泉はその多くが天水（降水）を起源水としています（一部には化石水等を起源とするものもあります）。温泉は大きな水循環の中にあり、降水、河川、海、火山等の環境影響を受けており、その湧出状況は常に変動します。また、地域の水文環境保全も重要となります。
本書は、主に温泉を浴用又は飲用利用に供している事業者等の方々が、実際にモニタリングを行うことができるよう、代表的な測定方法と主な注意点について記載しております。実際のモニタリングの実施にあたっては、測定に危険を伴う温泉もありますので、常に測定者の安全確保を優先しながら実施してください。また、本書に示したモニタリング方法については、必ずしも全ての温泉で最適の方法とは限りません。実際の温泉のモニタリングにあたって不明な点は、都道府県温泉行政担当部署もしくは、専門機関等に相談し、事故等が発生しないよう対策を行う必要があります。
温泉モニタリングを行う目的

温泉モニタリングは、温泉の湧出状況を把握するために監視、観察を継続することです。皆さんが、健康管理のために日常定期的に体温や体重、血圧を計ったりすることと同様に、温泉の湧出状況は、一定ではなく常に変動していますので、温泉モニタリングを通じて普段から季節的な変動や経年的な変動状況を把握しておく必要があります。湧出状況の把握ができないと温泉の過剰な採取を引き起こし、個々の温泉の枯渇を誘発する可能性があるだけでなく、地域の温泉資源全体の衰退を招くこともありません。

温泉モニタリングの最大の目的は、温泉の状態を継続的に把握することで、枯渇や泉質低下等に気づく特異な変動を早期に察知し、適切な対策を講じることにあります。つまり、普段の湧出状況を記録しておくことは、温泉モニタリングデータの変化を通じて温泉に異常が発生したことが早期に解り、その変化状況からの適正採取量の維持、温泉源保護のための対策の実施、揚湯設備等の健全性評価やメンテナンス実施の判断に関します。

加えて、個々の温泉のモニタリング結果を総括的にとりまとめることにより、地域全体の温泉資源の状況を把握でき、保全対策を講じるための基礎資料とする等の活用も期待できます。温泉モニタリングの目的は、次のように整理することができます。

目的１　持続的な温泉の利用

温泉モニタリングにより、現在の温泉採取量が適正なのか、また将来どうなるのか予測が可能となります。

目的２　温泉資源保護対策の実施

温泉資源保護の基礎資料とし、例えば、周辺での温泉掘削やその他の土木工事による掘削等で温泉に影響が現れた場合は、その影響を早期に発見することも可能となります。

目的３　源泉設備の健全性評価

モニタリングの結果から源泉構造物やボンプ等の設備が健全な状態にあるのかも推定することが可能です。モニタリングの結果に異常が認められ、源泉構造物やボンプ等の設備異常が疑われる場合は、修繕を検討することとなります。
温泉モニタリングに関する基礎知識

（a）源泉の種類と測定に当たっての注意点
源泉決して未出形成態と構造により、大きく分けると自然未出、掘削自噴、掘削揚湯に分けられます。掘削揚湯泉には源泉の特性（温度、水位、採取量、口徑等）により様々な動力の種類があり、源泉に応じたモニタリング方法と測定項目を選択する必要があります。各々の特性と注意点を図 4 と以下に記します。
（a）自然未出泉
人為的に手を加えなくても自然に未出する温泉です。自然条件や周辺環境の影響を受けやすく、特に降水に伴い未出状況が変化しやすい特徴があります。
未出量の測定は源泉から溢れる量を測定するか、施設での着湯量を測定することになります。未出量がどうしても計測できない場合は、源泉の水位を変化の目標として測ることも考えられます。
（b）掘削自噴泉
人為的に掘削し、源泉の流路を作ることによって、地下の圧力、もしくはガスにより未出する温泉です。降水、河川、湖等との関係は、源泉採取深度等により異なります。自然の力で未出するため、環境変化の影響を受けやすい特徴があります。掘削直後は未出量が多い場合でも、時間の経過と共に大きく減少する場合があります。
自噴泉の水位測定が必要な場合は、管を立ち上げるか、孔口の閉めきり圧から推定することになります。
（c）掘削揚湯泉
人為的に掘削し、かつポンプを設置することによって、汲み上げを行っている温泉です。動水位の深さによって、陸上にポンプを設置して揚湯するもの（図 5）から源泉孔内にポンプを設置し、深部から地上部まで源泉を未出させる水中ポンプ（図 6）利用まで様々なもののがございます。
降水、河川等との関係は、源泉採取深度等により異なります。ポンプにより強制的に源泉を採取しているため、源泉の能力を超えた採取を続けると未出量は安定していても地中水位が継続して低下し、あるところで揚湯できなくなることがあります。そのため、未出量と共に水位の測定が必要であり、適正採取量の見極めが重要となります。
(2) 温泉の変動要因

温泉の湧出状況は一定ではなく常に変動していますが、その変化の程度は源泉ごとに異なります。なお、これらの変動は複数の要因が関係して発生する場合もあり、変動の原因を見極めるには様々なデータを集めることも必要です。

（a）自然的変動
（ア）降水等

降水に伴う地下水位や河川水位の作用により温泉湧出状況に変化を与えすることがあります。源泉の構造によりますが、一般に自然湧出泉や掘削深度の浅い源泉の方が降水の影響を受けやすい傾向にあります。降水量に伴う湧出状況の変化はすぐに湧出量や水位に現れる温泉と時間差をもって変化が現れるタイプの温泉があります。なお、近隣の河川水位や、潮の満ち引きにより湧出状況が変動する温泉もあります。

図 2 降水量の変化に伴う自噴温泉湧出状況の変化例

図 3 は、降水量の増減に伴い、温泉の湧出量も増減している事例です。
（イ）火山活動
火山地域にある温泉水は、火山活動が温泉水の成因に深く関わっていることが多く、火山活動の影響を受けて温度や成分等が変化することがあります。

（ウ）地震変動
地震による地盤変動が、温泉水の出状況に変化を与えることがあります。変化の仕方は様々です。多くの場合においてその影響は、時間の経過と共に収束しますが、長期間に渡って変化を及ぼした事例もあります。特に平成（）年の東北地方太平洋沖地震では、広範囲に長期間にわたって変化が確認されました。

年月日

図 これは地震に伴う温泉水位の変化例です。大塚他（）

図 は、震央より約も離れた温泉水の水位変動事例です。観測項目は、未利用源泉の静水位で、ごとに自動観測が行われています。毎日の水位における小さな周期的変動は、周辺源泉の揚湯量変動による影響ですが、平成年月日の東北地方太平洋沖地震発生後に水位が上昇し、同日に時分には水位が上昇する結果となりました。
（b）人為的変動
（ア）温泉の過剰採取
温泉を過剰に採取すると温泉の水位や圧力が低下し、それに伴い湧出量も減少します。過剰採取は、個々の温泉の減少を招くだけでなく、地域全体の温泉資源衰退の原因ともなります。
図 □ 温泉の揚湯に伴う近隣源泉の水位変化 [山下・由佐] に加筆修正 □

図 □は、別府温泉での源泉間影響調査事例です。源泉をフリーランス揚湯した際の周辺源泉の水位変動を示しています。水位低下の現れ方は、各源泉の位置関係でも異なります。
（ウ）周辺での土木工事による影響

周辺の土木工事により、温泉が涌出したり、温泉流動が妨げられたりすると温泉に影響が及ぶことがあります。土木工事で温泉が涌出した場合は、前記（イ）と同様の変化の他に、温度の低下や成分濃度の低下が、温泉のモニタリング結果に現れることがあります。

（エ）源泉構造物の破損および老朽化

源泉構造物は、経年劣化します。それに伴い、温泉の湧出状況が悪化し、温度の低下や、湧出量の減少、成分濃度の低下を招くことがあります。下にその例を示します。

源泉構造物劣化の事例

（ア）ケーシング管破損により地下水が、流入すると温度が低下し、成分濃度が低下します。海水混入の場合は、塩水化します。

（イ）浅層地下水混入により細菌類が増えたと源泉孔内が汚染されることがあります。

（ウ）管路やストレーナーがスケール付着により管内が閉塞すると湧出量が徐々に減少します。

（エ）土砂やスケール片等の沈殿物堆積による温泉湧出部の埋没や落下物による閉塞によっても湧出量が減少することがあります。

図 Ⅲ 源泉構造物の老朽化事例（大塚 昭俊）
モニタリングの準備

モニタリングは、長期間にわたって定期的に継続して測定を行うことが重要です。モニタリングの内容は、状況に応じて変更することも可能ですが、計画的に行う必要があります。

資料の収集
測定対象温泉に関する情報（分析書、源泉構造図、過去の測定記録等）、モニタリングの事例や手法、活用事例などの文献収集等が考えられます。

モニタリング項目の検討
温度と湧出量、さらに掘削揚湯泉の場合は、これに加えて水位の測定を基本とし、その他、必要測定項目の検討を行います。測定対象とする温泉の特性と目的に応じて測定項目を決定します。加えて、同時に測定すべき他の事象（河川、降水量、気温等）があれば、追加で実施します。なお、モニタリング項目は適宜見直す必要があります。

モニタリング実施頻度の検討
自動観測の場合は毎時、観測者による手動観測の場合は毎日が基本となりますが測定方法や状況、目的に応じて測定頻度を決める必要があります。また、モニタリングとは定期的に測定を行うものですが、特定期間中（例えば影響調査等）に注意が必要な場合は、その期間は重点的に測定を行うことも考えられます。

測定機材の検討および記入表作成等の準備
測定の道具や測定器を準備します。なお、詳細は4. モニタリングに必要な機材で記載しています。次に測定する項目を記載した測定記録記入表を作成します。測定においては記入表の欄を埋めるように作成し、記載漏れがないか確認しやすいようにします。また、測定にあたっての留意点も判るように記載すると使いやすく、測定者による個人差も小さくなります。次ページに例を示しました。

予備調査（測定口の設置、人材の準備、役割の検討）
測定口を設け、実際に安全に測定が行えるか、問題点は無いか確かめて、問題があれば測定方法や測定場所を改善します。また、安全に行うための人材の確保と役割分担を決めます。

モニタリング実施計画の策定
適切なモニタリング実施計画を策定します。
表 □ モニタリング記録表の作成例 □

温泉観測帳

調査日付	時刻（開始）	（終了）	天候	準備
源泉名	泉温	電気伝導率（□）	燃焼値	温度補正値
気温	泉温	電気伝導率（□）	燃焼値	温度補正値

表 □ モニタリング記録表の作成例 □

流量計

<table>
<thead>
<tr>
<th>流量計</th>
<th>積算値（時）</th>
<th>機器名</th>
<th>容器</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>測定日</td>
<td>積算値（時）</td>
<td>機器名</td>
<td>容器</td>
<td>備考</td>
</tr>
<tr>
<td>2013/8/1</td>
<td>8:30</td>
<td>20.0</td>
<td>46.7</td>
<td>22.3</td>
</tr>
<tr>
<td>2013/8/2</td>
<td>8:30</td>
<td>26.7</td>
<td>46.7</td>
<td>22.3</td>
</tr>
<tr>
<td>2013/8/3</td>
<td>8:30</td>
<td>26.8</td>
<td>47.0</td>
<td>22.3</td>
</tr>
</tbody>
</table>

メモ欄
モニタリングに必要な機材

温泉モニタリングは、目的と測定対象とする温泉の特性に応じた測定方法を用いる必要があります。計りやすい道具や測定器を準備しましょう。なお、メンテナンスについては、7.モニタリング計器の保守点検、管理、注意点等に記載してあります。

(6) モニタリングに用いる基礎的な測定器と道具
・温度計は電気式温度計があると便利です。電気式温度計は、おおよそ10万円程度から購入することが可能です。センサーにも様々なタイプがありますのでご使用の温泉で使いやすいものを選択して下さい。ガラス温度計を用いる場合は、破損する危険性があるので取り扱いには注意して下さい。
・湧出量を測定する容器は、湧出量に合せた大きさのものを準備する必要があります。数秒であっという間に満水になるようすと測定も不正確となります。秒数の測定にはストップウォッチがあると便利です。
・水位計は水位の深さや井戸径に合せて適切なものを選びます。
・ガス等を多く含む温泉の場合は、対象となるガスの警報機等を常備して下さい。

図 ① 温泉モニタリングに使用する機器

温度計
ストップウォッチ
水位計（ロープ式）
測定容器
図9は、自動観測装置とインターネットを活用した遠隔監視と情報共有を行った事例です。源泉で測定されたデータは電話回線を利用し、管理業者や利用者に閲覧し情報を共有できるようにしています。
モニタリング項目及び測定方法

モニタリングにおいて、最も重要とされる項目は、温度、湧出量及び掘削揚湯場の場合には水位ですが、必要に応じて、成分等の項目を監視項目に加えることも重要です。以下に項目別に基本的な測定方法と注意点について説明します。

温泉モニタリングにおける主要項目

- 温度
- 湧出量
- 水位
- 成分（必要に応じて）

(1) 温度

(a) 測定方法

温泉が地上に湧出したときの温度を測定します。湧出地点または湧出地点に最も近い位置で測定します。直近まで採取を行っておらず自噴を再開させた場合や、揚湯開始直後は温度が低く安定するまで時間がかかりますので注意して下さい。

温度の測定状況

温度の測定方法

- 温泉の湧出口に温度計もしくはセンサーをあてます。
- 数値が安定したところで目盛りもしくは表示を読み取ります。

(b) 注意点

- 高温であったり、ガスが発生する温泉では、測定時に危険を伴うので接近しないで測定できるよう長めのセンサーを用いたり、貯湯槽で整流した後の温泉で測定する等の工夫をしてください。
- 測定値が安定しない場合は最高温度を記録して下さい。
- 高温の温泉では、厚手のゴム手袋でやけどしないよう防護し、安全を確
認して測定する必要があります。
・加水等により冷却が行われている場合は、測定前に加水等を停止させる
必要があります。
・同時に気温も測ると季節的変動についての参考となります。気温は、日
光のあたらない場所で測定して下さい。

（a）渓出量の測定
渓出量は、定常に安定して長時間採取している量であることあり、この
量を測定します。
（a）測定方法（容積法）
渓出量の測定においては、最も正確であり基本であるのは容積法です。
この方法では、容器既知の容器（計量パケツ等）を用いて、満水になるま
での時間をストップウォッチで計って毎分あたりの量に換算を行います。
下記の計算式で □分あたりの渓出量を求めます。

渓出量（リットル/分） = 容器容量 × 満水になるまでの秒数

測定にあたっては、全量が排出できるよう配管を加工し、必要なバルブ
等を設ける必要があります。なお、パケツに表示された容量と実際の容量
が異なる場合があります。測定容器の容量は、あらかじめ正確に計量して
おきます。
渓出量の測定（容積法）

(b) 注注意点
・容器で温泉を受ける際には、満水時に水平となるようにします。温泉の
渓出は一定ではないこともあるので、測定ミスを避けるためにも複数回
測定します。渓出が安定している温泉で □回程度、渓出が安定しない（脈
動する）温泉では □回以上の測定を行い平均することが推奨されます。
・測定値が減少し続ける場合や上昇し続ける場合には安定するまで待ちま

16
す。
・湧出量を測定する容器は、湧出量に合せた大きさのものを準備する必要があります。数秒で満水になるようすと測定も不正確となります（写真参照）。
・湧出量が容器で受けきれないような自然湧出泉の場合は、溢流を袋で温泉を受けて重量を測定するなど的方法もあります。袋で受けた場合は、重量を容器容量に換算し計算します（箱が約 に相当します）。
・エアリフトを使用した源泉やガスを多量に含む温泉の場合は、ガスと混合体となって勢いよく噴出するため、そのままでは危険であり正確な測定は困難です。一旦、タンクや容器で貯湯し空気やガスを分離・除去した後に測定するような工夫が必要です（写真参照）。
・少なくとも 2 名以上で測定してください。
・間欠的にポンプで揚湯し利用している場合には、瞬間的な湧出量だけではなく、日々の積算値や揚湯時間から、実質的な採取量を評価する必要があります。
・加水等により冷却が行われている場合は、測定前に加水等を停止させるかその量を差し引く必要があります。

湧出量が多い場合
湧出量に合せて容器を準備して下さい。全量が排出できるよう測定管も太くする必要があります。写真は バケツを用っています。なお、高温の温泉では、樹脂製のバケツは変形することがあるのでご注意ください。
ガスが多く湧出量が多い場合
いったん貯湯槽で温泉を受けて整流した後に測定を行うような工夫が必要です。写真では温泉が数百リットルに及ぶためドラム管が用いられています。

測定源泉が多いケース
貯湯槽に複数の源泉から送湯されているケース。
測定口（写真では○箇所）が○箇所に集中して集められています。また、排水孔も設けられています。

（c）その他の測定方法
容積法による直接測定以外にも様々な湧出量の測定法があります。
（ア）三角堰法（ノッチ法）
湧出量が毎分数百リットルにおよぶような非常に多い湧出量を測定する場合や揚湯試験のように頻繁に測定するには一般に三角堰（ノッチ箱）による測定が行われています。ただし、この方法は湧出量に応じたノッチ箱を選定する必要がありますが、少量の測定では精度が低下し不向きとなりますのでご注意下さい。

湧出量（容積法）の測定方法
ノッチ（切欠き）からの溢流高さ（上流部で測る）を測定し、直角三角堰の場合は流量に次式で換算します。

流量\(Q = c \times h^n \times 60 \div 100\)
\(Q=\)流量L/分
\(c=1.4\)（流出係数）
\(h=\)ノッチ水深（cm）
（イ）流量計
電磁流量計、超音波流量計、積算型流量計等の様々な原理の流量計が用いられています。使用する流量計の選定にあたっては、温泉の特性によっては、使用が困難なものがあるため、注意を要します。温泉スケールの多い温泉では内面に沈着物等が付着しますので機器選定やメンテナンスに注意が必要です。ガスを多量に含む温泉では、ガス分離後の配管に流量計を取り付ける必要があります。また、実測を行い、計器の正常性が定期的に確認できるよう測定口を設けます。

図 10 温泉の採取、湧出量確認のための配管構造の一例（環境省 〇〇〇〇）
（イ）水位

動力揚湯泉の場合、水位は、温泉資源の動向を判断するために最も重要な項目となります。常日頃から湧出量と同時に測定し、状況を把握しておかないと水位低下に気づかないまま揚湯量が維持できなくなるケースが多々あります。水位計は、以下のようなロープ式・鈍針式・圧力式、気泡式など様々な水位計がありますが、水位の深さ、温泉の特性や源泉構造、モニタリングの目的に合わせ選定します。揚湯中の動水位だけでなく、揚湯停止時の静水位を記録することもまた重要です。

（ア）測定方法と注意

（イ）自記水位計

機械式の水位計には様々な種類がある。

圧力式水位計による測定

圧力センサーを水面下に設置し、測定するタイプです。

耐熱温度や水質をよく考慮し選定しないと短期間で壊れることもあります。

水位や口径にもよりますが、水位測定管に入れられるスペースがあるのならば、測定管に入れて出し入れできるほうがメンテナンスを行いやすくなります。
(ウ) 気泡式水位計

気泡式水位計
感圧チューブを孔内に挿入し、地上コンプレッサーから一定量の空気を送り込むと、チューブ内の空気はチューブの先端から押し出されて、気泡が出ます。このとき、チューブ内の空気圧は水の深さに相当する圧力になり、これを圧力センサーで検出して水位に換算して表示します。

源泉孔内に設置するのは感圧チューブ（直径約10㎜程度）のみで、測定器本体は地上部に設置されるので高温の温泉にも対応可能であり、故障した場合も、基本的にはチューブが破損しない限り、水位計メンテナンスのために孔内からポンプを引き上げる等の工事は必要としないのが利点です。ただし、測定精度が高くないので、細かな変動を測定するには不向きです。測定水位が深い場合、高出力のコンプレッサーを用いるので作動音が発生することも欠点です。

図 〇〇 気泡式水位計のしくみ

(b) その他（自噴泉の場合）

自噴泉の水位は、地上より上に水位が存在することになりますが、基本的には自噴量を監視することで変動を判断することができます。水位を測定する必要がある場合は、密閉し圧力計等を設置して自噴圧を測定し水位に換算するか、孔口を必要な高さまで立ち上げて測定する等の方法が考えられます。
(2) 温泉成分分析
温泉は様々な物質を含み、またガスを伴うものもあります。温泉のモニタリングにおいては溶存成分やガス成分の把握も重要となります。なお、温泉法第 3 条第 3 項に基づき、事業者は温泉の成分を 3 年以内に登録分析機関で測定することとなっています。成分が温泉法上の温泉となるか否かといったケースや成分が変動しやすく温泉とならないようなケース等では、重要と判断される成分だけでもより詳細に測定し実態を確認することが重要です。なお、簡易的に成分量変動についての推定を行うには電気伝導率で補うことできます。

参考：電気伝導率計の利用について

![電気伝導率計の図](image)

電気伝導率計
温泉水を探水し、検出部を溶液中に浸けるのみであり、簡単に測定でき、その場で大まかな溶存成分量変化の推定ができます。測定後は、水で汚れを洗浄して下さい。
電気伝導率は、各成分の正確な濃度や化学組成までは判りませんが、成分量の変動を知るため有効です。

(3) 測定頻度
モニタリングの記録間隔については、機関による自動観測の場合は、毎時、人による実測の場合は、毎日が目安となります。目的やモニタリング方法、温泉の変動特性によって必要とされる測定間隔は、異なってきますので安全を確保した上で適切な測定頻度で行って下さい。まずは、モニタリング実施計画に基づき定期的に行うことが大切です。
モニタリング実施時の注意事項

（）測定口の設置

測定を行う測定口は安全な場所に設置し、必要に応じて配管の分岐やバルブの設置を行います。なお、ガスが滞留しないよう風通しが良く開放された場所で行って下さい。

測定口における注意点

- 漏出量を全量排出できる口径の測定口を適切な場所に設けて下さい。
- ポンプが動作しているのに測定口も送湯も同時に閉じてしまうと、温泉の排出路がなくなりポンプ故障の原因となりますので注意して操作して下さい。測定後は必ずバルブを元の状態に戻すのを忘れないようにしましょう。

硫化水素ガス、炭酸ガス、可燃性天然ガス等に注意！

図 ）タックや源泉貯湯槽の中での測定は危険
□）高温泉への対応
厚手のゴム手袋を用いたり、長靴を着用し防水をする等、やけどしないよう安全対策を行ってから測定を行って下さい。

□）ガス対策
分析書や可燃性ガスの検査結果を参考にガスを含む温泉では、危険性があるという自覚を持つ必要があります（含二酸化炭素泉、硫黄泉、採取許可申請井戸、多量の温泉付随ガス、噴気を発生する源泉は特に注意して下さい。次ページに硫化水素ガス、可燃性天然ガスによる温泉での事故事例を示しました）。
ガス自体に毒性は無い場合でも高濃度の場合は酸欠事故や爆発事故を起こすことがあるので十分注意し測定して下さい。ガスを含む危険な濃度に達する温泉の場合は、ガス分離後の設備で安全に測定を行うようにして下さい。
なお、危険を伴う心配がある場合、都道府県温泉行政担当部署もしくは専門機関等に相談して下さい。酸素欠乏症、硫化水素中毒についての危険性や対策については下記の厚生労働省ホームページも参考にして下さい。
□）環境省：都道府県温泉行政担当部署一覧
□）厚生労働省：なくそう！酸素欠乏症・硫化水素中毒
□）周辺の状況（その他）
測定場所の安全性を確保し、適正な場所を選んで下さい。
・足場の確保、ヘルメット等の着用
・火気厳禁
・野生動物の有無、進入防止対策等
測定は危険な場所で行わないこと

・ガスを伴う温泉では、ガス警報器、ガス検知器を携帯し安全が確認された場所で測定してください。低い場所、閉鎖された場所にガスが貯まっているので顔を近づけたりしないようにして下さい。
・人間が感知できない温泉付随ガスがあることや、ガスだまりがあることにも注意が必要です。貯湯槽内のこのような閉鎖的な場所では酸素欠乏症の危険性もあるので、そのような場所では原則測定を行わず、安全に計れる場所に測定口を別途設けて下さい。
・火気は使用しないで下さい。

表 8 温泉の硫化水素ガスによる事故事例

<table>
<thead>
<tr>
<th>発生年</th>
<th>温泉地</th>
<th>発生場所</th>
<th>概要（発生時）</th>
</tr>
</thead>
<tbody>
<tr>
<td>昭和40年</td>
<td>泥湯</td>
<td>旅館付近駐車場</td>
<td>0名死亡</td>
</tr>
<tr>
<td>昭和43年</td>
<td>曽仙温泉</td>
<td>貯湯槽</td>
<td>0名死亡 0名重体</td>
</tr>
<tr>
<td>昭和44年</td>
<td>登別温泉</td>
<td>貯湯槽</td>
<td>0名死亡</td>
</tr>
</tbody>
</table>
表 ① 可燃性天然ガスが発生する源泉の事故事例

<table>
<thead>
<tr>
<th>都道府県</th>
<th>市町村</th>
<th>発生時期</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>埼玉県</td>
<td>高崎市</td>
<td>平成10年10月</td>
<td>サーマルエネルギー利用に伴う火災</td>
</tr>
<tr>
<td>長崎県</td>
<td>長崎市</td>
<td>平成10年11月</td>
<td>サーマルエネルギー利用に伴う火災</td>
</tr>
<tr>
<td>宮崎県</td>
<td>宮崎市</td>
<td>平成15年4月</td>
<td>サーマルエネルギー利用に伴う火災</td>
</tr>
<tr>
<td>東京都</td>
<td>北区</td>
<td>平成17年2月</td>
<td>サーマルエネルギー利用に伴う火災</td>
</tr>
</tbody>
</table>

採取開始後の事故

<table>
<thead>
<tr>
<th>都道府県</th>
<th>市町村</th>
<th>発生時間</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道</td>
<td>函館市</td>
<td>平成2年4月</td>
<td>サーマルエネルギー利用に伴う火災</td>
</tr>
<tr>
<td>北海道</td>
<td>函館市</td>
<td>平成4年11月</td>
<td>サーマルエネルギー利用に伴う火災</td>
</tr>
<tr>
<td>宮崎県</td>
<td>長崎市</td>
<td>平成9年7月</td>
<td>サーマルエネルギー利用に伴う火災</td>
</tr>
<tr>
<td>北海道</td>
<td>大樹町</td>
<td>平成10年4月</td>
<td>サーマルエネルギー利用に伴う火災</td>
</tr>
<tr>
<td>北海道</td>
<td>大樹町</td>
<td>平成13年8月</td>
<td>サーマルエネルギー利用に伴う火災</td>
</tr>
<tr>
<td>北海道</td>
<td>白州町</td>
<td>平成14年7月</td>
<td>サーマルエネルギー利用に伴う火災</td>
</tr>
<tr>
<td>北海道</td>
<td>函館市</td>
<td>平成17年2月</td>
<td>サーマルエネルギー利用に伴う火災</td>
</tr>
<tr>
<td>北海道</td>
<td>函館市</td>
<td>平成19年4月</td>
<td>サーマルエネルギー利用に伴う火災</td>
</tr>
<tr>
<td>北海道</td>
<td>函館市</td>
<td>平成19年6月</td>
<td>サーマルエネルギー利用に伴う火災</td>
</tr>
</tbody>
</table>

採取を終えた後の事故

「施設整備管理のための天然ガス爆発ガドックプラック」p12より引用
モニタリング計器の保守点検、管理、注意点等

機器の保守点検と管理はご使用の機器のマニュアルをよく読むか、製造会社等に依頼し適切に実施して下さい。

① 温度計

機械の表示値が正しいか、定期的に他の温度計とも比較し動作確認を行って下さい。

温度計が温泉で濡れた場合は、温泉の成分により金属部が腐食する可能性がありますのでよく拭いて取り除けて下さい。

② 流量計

温泉への流量計の使用においては、温泉スケール（沈殿物）により、配管内径が縮小し、測定値が不正確となることがあります。定期的に容積法で実測し、測定値に差が無いか把握しておくことが大切です。差が大きい場合は原因を取り除くか、メンテナンスを行って下さい。

③ 電気伝導率計

電気伝導率計の使用にあたっては、温度補正を行うか、一定の温度で測定する必要があります。正確に温度補正を行うには、測定する温泉固有の温度補正係数を事前に調べておく必要があります。電気伝導率計には補正機能が備わっていますので、必ずマニュアルをよく読んで設定を行って下さい。

④ 水位計

高温の温泉は、水位計のケーブル、チューブ等の劣化が早いケースもありますので測定機器の維持管理に注意してください。また、硫化水素等の腐食性ガスを含む場合は計測機器の故障原因となりますので注意して下さい。
モニタリング結果の活用

モニタリングは、ただ記録するだけでなく解析し活用していくことが重要です。温泉モニタリングによる温度や涌出量、水位といった情報は、判りやすく図化（グラフ化）し、時系列で整理することが重要です。

図 111 モニタリング結果からの判断

図 111 にはモニタリング結果に異常が現れた場合の考え方についてイメージ図を示しました。

ダ 状況把握：普段からモニタリングにより、通常時の変動幅を把握し、通常時の変動範囲から逸脱した変化がないか判断を行います。

ダ 原因究明：異常が確認された場合は、その変動時期と原因となる要因の有無について調べます。

ダ 対策の実施：原因の特定により適切な対策を講じ、モニタリングにより効果を確認します。

ダ 時系列変化から資源動向を評価し、温泉の維持管理や将来計画の参考とすることもできます。

モニタリングを行わず対策が遅れると資源の衰退は進行し、涌出量の減少や水位の低下のみならず、温度の低下、成分濃度の低下といった現象まで招くことになるかもしれません。
表 ❯ モニタリング結果に表われる変化と想定される原因の例

<table>
<thead>
<tr>
<th>原因</th>
<th>温度</th>
<th>満出量</th>
<th>水位</th>
<th>成分濃度</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>過剰揚湯、資源量の衰退 満出部の埋没、目詰まり</td>
<td>不変もしくは低下</td>
<td>減少</td>
<td>低下</td>
<td>不変もしくは低下</td>
<td>徐々に進行してゆく。</td>
</tr>
<tr>
<td>周辺源泉の開発による影響</td>
<td>不変もしくは低下</td>
<td>減少</td>
<td>低下</td>
<td>不変もしくは低下</td>
<td>周辺での温泉採取の開始時期に対応した変化があるか。</td>
</tr>
<tr>
<td>湯水</td>
<td>不変もしくは上昇</td>
<td>減少</td>
<td>低下</td>
<td>不変もしくは上昇</td>
<td>源泉により変化の現れ方が異なる。</td>
</tr>
<tr>
<td>掃掃管などの破損 ポンプの能力低下</td>
<td>不変</td>
<td>減少</td>
<td>上昇</td>
<td>不変</td>
<td></td>
</tr>
<tr>
<td>ケーシング管の破損</td>
<td>低下</td>
<td>増加</td>
<td>上昇</td>
<td>低下</td>
<td>海岸での成分濃度は増加</td>
</tr>
<tr>
<td>地震</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>状況により変化は様々</td>
</tr>
</tbody>
</table>

表 ❯ にはモニタリング結果に現れる変化とそこから考えられる原因を示しました。実際にには源泉の特性により、変化の様相はそれぞれ異なりますのでここに示したのは一例です。モニタリング結果のみでなく、周辺環境や源泉設備の状況についても考慮して原因について推定し対応する必要があります。

図 ❯ にはモニタリングの実施から判断、原因究明、対策に至るまでの流れを示しました。
（）適正採取量の評価

揚湯試験から判断された適正揚湯量は長期に渡って必ずしも適正とは言えません。源泉の採取量は地域全体の水や熱の収支を考慮の上、判断する必要があります。

当初適正と判断された揚湯量も周辺の温泉採取状況や環境の変化、源泉構造物の老朽化に伴って変わっていきます。モニタリングにより、水位の低下や湧出量の減少が継続していると判断される場合には、適正揚湯量についての再評価が必要です。

図 図 適正採取量が変化した事例

上のグラフは、動水位と揚湯量の関係を示したもので平成2年掘削当初の揚湯試験結果と平成23年における再揚湯試験結果の比較を行ったものです。同じ揚湯量でも21年経過した平成23年では50〜60mの水位低下が認められ、源泉の湧出能力が変化していることが判ります。
(2) 温泉採取計画の見直し
将来の温泉採取計画は、モニタリングデータの検証を行い、良好な湧出状況（温度・湧出量・水位・成分）が持続するよう維持管理を行うことが重要です。

図 (22) 採取量の見直しを行った事例

上のグラフは、適正揚湯量以下で控えめの温泉採取を行っていたにも関わらず、水位低下傾向が長期間にわたり継続したため、揚湯量の減量調整を行い、湧出状況の改善（水位安定）に成功した事例です。
成分濃度の確認

温度、涌出量に大きな変化が生じた際には、その源泉の特性を見ながら、温泉水に含まれている重要な成分についても必要に応じて確認します。源泉に地下水等が混入すると温度低下と共に成分濃度が低下し、また、海岸近くでは塩水化したりすることもあります。高温の温泉では、濃度が低下すると温度も同時に低下するので発見しやすいのですが、元々低温の温泉では成分濃度の変化に気づきにくく、対策が遅れることもありますので、注意が必要です。

図 Ⅱ 水質が変化した事例

上のグラフは、源泉に低温水が侵入し、成分濃度が大きく変化した事例です。棒グラフは温泉水の各成分を積み上げて表示したものです。平成 15 年 2 月に著しく濃度が低下していますが、源泉修繕の対策工事を平成 15 年 7 月に回復しました。しかし、平成 18 年 2 月には再び低下しています。
(1) 源泉が与える環境への影響評価

温泉も周辺環境に影響を与えることがあります。流出される温泉水が与える環境影響には以下のようなことが考えられます。所有する温泉の特性を十分に把握し、周辺環境に影響を及ぼしている場合には、モニタリングデータに基づく検証をもとに、直ちに対策を行わなければなりません。下にその一例を示しました。

温泉による周辺環境への影響の例

・温泉の温度による生態等への影響
・温泉水に含まれる有害物質による環境汚染
・温泉付随ガスによる災害、事故 等
１．モニタリングの実施
・モニタリングに必要な項目を選定し、記録する。
・各項目の経時変化図を作成する。
・季節的変動が認められる場合は降雨、河川との関係を把握する。

２．判断
温泉湧出状況に異常値と判断される変動があるか

3．湧出状況変動の要因を抽出し対策を検討する
環境変動時期と温泉湧出状況変動時期との時系列的な関係性を整理し、原因究明を行う。（はっきりしない場合は、モニタリング頻度を増やす等の対応により再度検証を続ける）１．モニタリングの実施へ）

原因
a.異常気象（渇水、増水等）
b.源泉構造物の破損・スケール付着による閉塞等
対策：破損箇所の修繕、スケールの除去
問題の箇所が特定できない場合は、検層や孔内カメラ観察による孔内診断を行う。
c.過剰採取
対策：温泉採取量を減量し、湧出状況の安定化を計る。
d.他源泉・坑井の開発
対策：原因となった源泉からの温泉採取量を調整し干渉を軽減する。
e.周辺土木工事
対策：周辺土木工事で温泉・地下水・ガス等が湧出している場合は湧出を止め対策を行う。工事が窯衝動を阻害している場合は、要因を取り除く。
f.その他（地震、火山活動、台風などの自然災害）
対策：源泉改修工事の実施等

図 ①① 源泉のモニタリング実施の流れ
温泉の保護（啓発と連携）

温泉を地域の共有資源として末永く持続的に利用するには、温泉事業者の皆様が情報を共有し、地域の温泉特性を理解した上で、協力し保護対策等の取り組みを進めていくことが重要です

1. 継続的なモニタリングによる現況把握
 - 温泉の温度や涌出量、水位変動の調査
 - 温泉の水質調査
 - 更なる観測源泉の設置
 - 源泉の分布、地質状況
 - 降水量や河川水位、地域の水文調査等

2. 記録の整理と分析（情報共有）
 上記調査および資料を積極的に活用できるよう整理する。モニタリング結果の数値情報などはグラフ化し判りやすくとりまとめ出来るだけ多くの人で情報共有する。これにより、地域の温泉の収支バランスが分析可能となり、問題の発生原因および対策を検討することができる。

3. 対策効果の検証
 対策後のモニタリング結果に基づき効果の検証を行う

4. 保護対策の実施
 涌出状況が安定、回復するように採取量をコントロールしたり周辺環境の保全を行う。

図 体温泉における啓発と連携
実施主体により想定される温泉モニタリング内容とその活用、注意点

本モニタリング方法では、主に温泉を浴用等に供する事業者が行う温泉モニタリングの実施を記載してきました。温泉モニタリングには県・研究機関との協働により情報を広く収集し、また精度を上げることでより一層効果的になります。

具体的には「温泉事業者」「（給湯事業を行う）温泉施設管理者」「地方公共団体（行政・専門機関との連携を含む）」が行う温泉モニタリング、について一例を記します。

(1) 温泉事業者が行う温泉モニタリング想定例
(a) 測定について
温泉の保護・維持管理には利用している温泉の状態等を事業者が理解して管理することが大切です。具体的には、定期的な測定を実施することが基本となり、その結果を記録し、解析することです。
(b) 注意点
経済的な理由や温泉の特性により機器を取り付けられない場合は、温度計と測定容器さえあれば温度や湧出量といった基本項目の測定は可能ですが、安全のため測定は2名以上で行ってください。ガス等を多く含む等、危険性のある温泉は都道府県温泉行政担当部署もしくは、専門機関等へ相談してください。ガスの有無については、分析書やこれまでのガス濃度の確認結果を参考にし、判断に迷う場合は専門機関等へ相談して下さい。

浴槽着湯部での測定例
(b) 温泉施設管理者が行うモニタリング想定例
（a）測定について
給湯事業を行う温泉施設管理者は、源泉の湧出状況について把握し、大きな変化が生じている場合は報告する必要も出てきます。そのため、温泉の湧出状況が判るよう計器等を設置し、常時記録と直ぐに確認ができるような体制が望ましいと考えられます。
（b）注意点
下記にその一例を示しましたが、どこまでのシステムが必要かは温泉の特性や利用源泉数、給湯数、費用等に基づいて検討する必要があります。

源泉監視
表示システム例
各源泉は組合事務所で集中管理され、事務所の制御盤でコントロールされています。測定情報はグラフで確認することができます。

機器設置状況
電磁流量計および温度計の設置状況。
記録は携帯電話回線を用いて管理事務所に送信され、リアルタイムで確認ができます。
(a) モニタリングの指導と情報の共有

地方公共団体は、温泉事業者や（給湯事業を行う）温泉施設管理者等によるとのモニタリング結果を収集・整理し、積極的に温泉資源の保全対策や許可等の判断における基礎資料として活用することが考えられます。

温泉事業者や温泉施設管理者のモニタリングが適切かつ定期的に実行され、状況を確認し指導することも重要となります。正確に測定するには容積法による涌出量の確認も重要です。そのため、安全に測定できるような測定口の設置、モニタリング方法について指導する必要もあります。

モニタリング結果を地域として活用するには各源泉からの記録を集計する必要があります。地域ごとの動向を捉え、当該結果を公開し、地域で情報共有を行うことで保全対策に役立てることが考えられます。地域の温泉に異常が認められる場合は、新たに詳細な調査を行うことが考えられます。

地方公共団体が行う取り組み例について

講習会

水質の確認

実測による確認

測定場所の確認

法律上の手続きへの活用、影響調整後の追跡調査への活用、許可採取量内にあるかの確認、保護活動の基礎資料作成、資源保護対策への活用、安全対策の指導、モニタリング方法の講習等

38
【おわりに】

・将来の世代に渡って持続的に温泉を使えるよう、皆様が積極的にモニタリングに取り組み、適正な温泉利用を行うことが重要です。
・温泉モニタリングを継続して行うことは、地域の温泉資源を保護するためにも必要なことです。
・モニタリングの結果は、温泉の湧出状況の悪化原因についての推定や対応策の検討に役立ちます。
・モニタリング方法は、温泉の特性に応じて工夫して行う必要があります。
・測定にあたっては、安全を確認し、ガスによる中毒や酸素欠乏症、やけど等の事故がないよう注意して行って下さい。
・本書がモニタリングの実施や活用の参考となれば幸いです。
文献

引用文献
大塚晃弘 (2014) 源泉の維持管理，第 回温泉保護・管理研修会テキスト．
大塚晃弘 (2014) 温泉のモニタリングについて，温泉，第号 第号，第号
大塚晃弘・高橋孝行・益子保 (2014) 平成 年（ 年）東北地方太平洋
沖地震に伴ういくつかの温泉の変化，温泉科学，第巻 第号，第号
大山正雄 (2012) 箱根湯本温泉の流出解析（第 報），温地研報告， 報（ ）
環境省自然環境局 (2014) 温泉資源の保護に関するガイドライン（改訂）
山下幸三郎・由佐悠紀 (2014) 別府温泉の源泉保護について（ ）北石垣、
鉄輪地区温泉の揚水影響，大分県温泉調査研究会報告， 報 報．

参考文献
阿岸祐幸 編集代表 (2014) 温泉の百科事典，丸善出版株式会社．
森康則 (2014) 温泉とは何か 温泉資源の保護と活用，三重大学出版会．
山本隆毅責任編集 (2014) 地下水学用語辞典，古今書院．
参考：温泉モニタリングに関する用語集

・影響【えいきょう】
温泉においては、温度、湧出量、水位、化学組成等が外的要因により変動を受けること。原因の例としては、近隣での温泉掘削や温泉採取量の増加のほか土木工事や自然災害等の様々な要因がある。

・温泉【おんせん】
温泉とは地中から湧出する40℃以上の温水もしくは温泉水に規定する特定成分を基準値以上含むもの。なお、水蒸気やその他のガス（炭化水素を主成分とする天然ガスを除く）も温泉に定義される。

・温泉スケール【おんせんすけーる】
温泉の中の成分が過飽和となり析出した沈殿物。湯の華とも呼ばれている。スケールの析出は源泉孔内や揚湯管等を詰まらせたり、測定器の誤差原因とったりするので定期的に除去する必要がある。

・温泉成分分析【おんせんせいぶんぶんせき】
温泉に含まれる成分と含有量を調べること。分析は各種の公定法に準拠して実施する。温泉成分は、溶存成分と非解離成分、ガス成分に分けられる。利用の許可を得た施設では、登録分析機関による温泉成分分析（10年に一度の定期的な分析）を要する。

・温泉付随ガス【おんせんふぞいがす】
温泉湧出時に付随するガス。可燃性天然ガス（メタン等）の他に硫化水素、二酸化炭素（炭酸ガス）等がある。毒性が無いガスでも高濃度で滞留している場合には酸欠事故を引き起こすことがある。

・温度【おんど】
温泉のモニタリングを行う場合は、地上での湧出温度が重要となる。この温泉の湧出温度は、泉温とも称される。
・温度計【おんどけい】
温度を測定する計器。温度計にはアルコールや水銀を用いた棒状ガラス製温度計から、電気式の温度計等様々な種類が存在する。

・化石水【かせきすい】
地層の堆積時に地層中につつみこまれ、そのまま閉じこめられた水。海成層は海底で形成されるため、地層中に海底付近の海水が残留している場合には、化石海水と呼ばれる場合もある。また、その後の繰成作用により化学組成は変化す
る。

源泉【げんせん】
温泉の湧出口。自然に温泉が湧出する源泉もあれば、掘削し、動力・ポンプ等により温泉を採取している源泉もある。
・源泉構造物【げんせんこうぞうぶつ】
ケーシング管等の温泉井戸を維持構成する人工物のこと。

検層【けんそう】
温泉の掘削孔の深さ方向に測定器を降下させ、地下の状態を測定する技術。温度や電気伝導率、口径等、様々な測定項目がある。目的に応じて項目を選択し源泉の診断を行う。

水位【すいい】
地表面もしくは源泉孔口から水面までの距離で表すことが多い。
・静水位【せいますい】
温泉を採取しない状態での自然状態での水面の高さ。揚湯泉の場合は地表からの深さとなる。なお、自噴泉の場合は、地表より上に位置することになる。
・動水位【どうすいい】
ポンプ等を運転して、温泉を汲み上げているときの水位。揚湯量に応じて変化し、一般には揚湯量を増やすと低下することになる。
・水位測定管【すいいそくていかん】
水位測定のため、源泉孔内にセンサーを水面まで安全に降下させるため揚湯管に併設したガイド管のこと。
・水位計【すいいくけい】
水位を測るための測定器。ロープ式、圧力式など様々な測定法と種類がある。

適正採取量【てきせいさいしゅりょう】
自噴、揚湯に関わらず持続的に安定して採取可能な温泉の量。温泉の水を過剰に採取すると源泉の水位や圧力の低下から周辺の他水系（地下水、河川水、海水等）が混入し、温度の低下や温泉成分濃度が低下することもある。

電気伝導率【でんきてんだどうりつ】
電気伝導率は、検水の電気の通りやすさを示す指標で、溶存物質量の多少により増減する。そのため、温泉中の溶存成分変化について、大まかではあるが現地で推定できる。
□ 被圧水【ひあつすい】
上部と下部に難透水層を有した加圧層によって被圧されている地下水で大気圧より高い圧力を有している。

□ 不圧水【ふあつすい】
上面が大気と釣り合った状態にある地下水。一般に水位は、地表からの降雨浸透により敏感に変化する。

□ 湧出量【ゆうしゅつりょう】
涌出量とは、定常的に安定して長期間採取している量をいう。自噴する源泉では、日常安定して長期間、溢流している水量である。ポンプで採取している場合には、日常安定した動水位で汲み上げている水量である。間かつか自噴または動力揚湯の源泉ではその平均水量である。温泉では 分あたりに湧き出る量（リットル）に換算し比較をすることが多い。なお、自然に地中より湧き出る量を自噴量、ポンプ等の動力を利用して人为的に汲み上げる量を揚湯量と記すこともある。

・容積法【ようせきほう】
容器で温泉を受けて、満水になる時間を測定することで単位時間あたりの量を求める測定方法。

・三角堰法【さんかくせきほう】
流出口に三角堰を設け、越流水深を測定し流量を求める方法。ノッチ箱等で利用されている。

・流量計【りゅうりょうけい】
流量を測定する計器。温泉の場合は、送湯管に計器を設置して測定を行うことになる。温泉で使用する場合は、スケールやガスが精度低下の原因となることが多くある。温泉の水質や特性に応じて適したものを選び定期的にメンテナンスを行う必要がある。

□ 揚湯試験【ようとうしけん】
源泉の温泉湧出能力の評価のための試験。主に掘削工事完了時に行われる。揚湯量を段階的に変えて、その水位変化を測定し限界揚湯量を検証する段階揚湯試験と段階揚湯試験結果から求めた限界揚湯量に基づいて適正揚湯量と仮定し連続的に揚湯する連続揚湯試験がある。