温泉資源の保護に関するガイドライン(改訂) (案)

平成26年3月12日環境省自然環境局

目 次

第一 基本的考え方	1
1. 背景	1
2. 本ガイドラインのねらい	2
第二 掘削等の原則禁止区域の設定、既存源泉からの距離規制、 <mark>温泉の</mark> 採取量 <mark>制</mark>	
における に関する取扱い	
1. 現状	5
2. 掘削等の原則禁止区域の設定	7
(1) 考え方	
(2) 具体的な区域の設定の方法	8
3. その他の規制	- 10
3-1. 距離規制	- 10
(1)考え方	- 10
(2) 都道府県が現に行っている距離規制の妥当性の検証	- 10
(3) 距離規制の基点となる「既存源泉」と未利用源泉等の関係	
3-2. 温泉の採取量に関する取⊌扱い	- 14
(1)考え方	
(2) 具体的な設定方法	
4. その他の掘削等	14
(1) いわゆる「代替掘削」について	15
(2) いわゆる「集中管理方式」について	
5. 既存源泉の所有者等の同意書を得る方式の取 り 扱い	15
6. 条件付き許可	16
第三 個別的許可判断のための影響調査等	18
1. 影響調査等の実施対象及び実施方法	18
(1) 影響調査等の実施対象	
(2) 影響調査等の実施手法	19
(3) 影響調査における注意点	
2. 調査結果の反映	
第四 温泉資源保護のためのモニタリング	
1. モニタリングの実施方法	
2. モニタリング結果の反映	
第五 公益侵害の防止	- 23
1. 公益侵害への対応についての考え方	
(1) 不許可に反映できる公益侵害の範囲	
(2) 公益侵害への対応についての考え方	
2. 具体的な公益侵害の類型と対応	- 24

(1)	騒音・振動	24
(2)	温泉の放流に伴う水質への影響	25
(3)	地盤沈下	26
第六 名	その他	27
1. 大	深度掘削泉について	27
(1)	大深度掘削泉の資源的特性	27
(2)	大深度掘削泉の採取に伴う地盤環境への影響実態	28
(3)	大深度掘削泉における揚湯試験(集湯能力調査)	28
(4)	大深度掘削泉の特性の把握等の参考となる <mark>科学</mark> 的資料大深度掘削泉におし	ر ۵
	 となる地質・化学資料	
	利用源泉について	
(1)	未利用源泉の問題	29
(2)	未利用源泉における指導の在り方	29
	年の温泉利用形態について	
(1)	温泉を用いた発電	29
備考		32
別紙1	距離規制の妥当性について検証するための事例	34
別紙 2	熱収支について	38
別紙3	経年的な水位低下について	
別紙4	温泉採取制限事例	42
別紙 5	動力装置の際の影響調査実施手法及び揚湯試験実施手法	47
別紙6	影響調査事例	63
別紙7	温泉モニタリング実施手法	70
別紙8	長期モニタリング事例	77
別紙 9	水質基準について	79
別紙 10	沖縄県宮古島市における塩化物イオン濃度の上昇に係る	
	原因究明調査事例	84
別紙 11	動力装置許可の審査基準(東京都)	88
別紙 12	揚湯試験事例	89
別紙 13	登録分析機関一覧	94

コメント [事務局1]: パブリックコメント (対応) ご指摘に基づいて修正しました。

第一 基本的考え方

1. 背景

温泉法(昭和23年法律第125号、以下「法」という。)は、貴重な資源である温泉の保護を図るため、温泉をゆう出させる目的の掘削、増掘及び動力の装置(以下「掘削等」という。)を都道府県知事の許可制としている。掘削等の申請を受けて、都道府県知事は、温泉のゆう出量、温度又は成分(以下「ゆう出量等」という。)に影響を及ぼすときには不許可にすることができる。また、温泉源保護のため必要な場合には都道府県知事が採取の制限を命ずることができるとしている。

本来、これらの不許可及び採取制限命令は、温泉の掘削等がゆう出量等に及ぼす影響についての科学的根拠に基づき行うことが必要である。しかし、実際には、温泉の賦存量に関するデータや温泉の採取によるゆう出量等への影響に関する科学的知見が不足しており、十分な科学的根拠に基づき、不許可及び採取制限命令を行うことは難しい現状にある。

このような限界がある中で、各都道府県は、独自に要綱等により温泉保護地域の 設定、既存源泉との距離規制、揚湯量の制限等、近隣源泉への影響に配慮しつつ、 地域特性を活かした温泉資源の保護への取組を行ってきた。

このような取組は、温泉資源の保護に一定の機能を果たしてきたと考えられるが、 温泉の賦存量に関するデータ等が不足している現状において、引き続き資源枯渇の おそれは継続しているとの指摘もある。なお、我が国における動力源泉数と動力湧 出量は増加の一途をたどってきたが、近年の3年間(平成21年度~23年度)では、 やや減少傾向にあるものの、依然として動力湧出量が全体量に対して高い割合を占 めている(図1、図2参照)。

その一方で、地域によっては、温泉資源の保護を名目に、新規の温泉の掘削等を 過度に制限しているケースもあるとの指摘もある。

また、温泉の掘削工事に伴う騒音・振動、温泉の採取に伴う地盤沈下、温泉の放流に伴う塩害等、温泉の利用の拡大が周辺環境に影響を及ぼすおそれも指摘されている。

環境省では、これら温泉資源の保護等に関する様々な課題について検討を行うため、平成 18 年 6 月に「温泉行政の諸課題に関する懇談会」を設置した。同懇談会は同年 10 月に報告書を取りまとめたが、そこでは、温泉資源の保護施策に関し「掘削許可等の基準の明確化、データや科学的知見の一層の充実等、さらなる進化が求められる状況にある」との認識を示した上で、温泉資源の保護のための仕組みについて「見直しを行う必要がある」と指摘している。

また、平成19年2月、環境省の諮問に基づき温泉資源の保護対策及び温泉の成

コメント [事務局2]: 委員指摘事項

概念的で恐縮ですが、「温泉が、実態や生成 機構の把握が不十分なまま、不適当な利用 を継続すれば、枯渇してしまう脆弱な資源 である。」等の内容盛り込めないでしょう か?

(対応): 温泉の賦損状況により異なり、 脆弱な資源であると断定できる科学的データが不足しているのが現状です。地域に よっては脆弱であると言い切れるかもし れませんが、まずは状況把握ができていな いとの現状を追加しました。

コメント [事務局3]: 委員指摘事項

「湧出」と「ゆう出」が混在しているので、 どちらかに統一

(対応)

法律の引用部分は「ゆう出」とし、原文の ままとしました。 分に係る情報提供の在り方等について検討を行っていた「中央環境審議会(自然環境部会温泉小委員会)」は、平成 19 年 2 月、環境省に対し「都道府県が温泉資源保護のための条例・要綱等を定めるに当たっての参考となり、対策を円滑に進めることができるよう、新規事業者による掘削や動力装置の許可等の基準の内容や、都道府県における温泉資源保護のための望ましい仕組みについて、国は、温泉は国民共有の資源であるという観点に立って、できるだけ具体的・科学的なガイドラインを作成すべきである」との答申を踏まえ行った。、この答申を踏まえ、環境省では、温泉を将来の世代においても引き継ぎ利用できるよう持続的な利用を可能とするための資源保護のあり方を示すものとして、温泉を将来世代のために持続可能な利用を目的とする環境省では温泉資源の保護に関するガイドラインを平成 21 年 3 月に策定した。このガイドライン策定の目的は、中央環境審議会での答申を踏まえると共に、将来世代に渡る持続可能な利用を目指すことにある。

今回の改訂は、温泉資源の保護に関するガイドラインにおいて「 \underline{v} なくとも5年ごとにガイドラインのの総点検を実施するとともに、随時、その更新を行っていく」としており、その後の温泉資源に関する各種調査の結果等を踏まえ、ガイドラインの総点検を実施し、 $\underline{21}$ 年更新・改訂(以下「更新等」という。)を行ったものである。主な更新等は、図表等の情報更新等を行うと共に、温泉の採取量に関する取り扱い(第二3.3-2)、条件付き許可(第二6.)、大深度掘削泉について(第六1.)、未利用源泉について(第六2 $_{+...}$)、近年の温泉利用形態について(第六3.)である。また、別紙として、温泉採取制限事例(別紙44)、影響調査事例(別紙66)、長期モニタリング事例(別紙88、揚湯試験事例(別紙12)、登録分析機関一覧(別紙13)等の更新等を行った。

2. 本ガイドラインのねらい

本ガイドラインの最大のねらいは、温泉の掘削等の不許可事由の判断基準について、一定の考え方を示すことである。その具体的な項目は、地域等による一律規制 (制限地域の設定、既存源泉からの距離規制)の在り方、個別判断のための影響調査の手法、公益侵害への該当性の判断等である。

この「考え方」の記述に当たっては、都道府県における<u>許可制度の運用掘削等の許可事務</u>において、人員や費用財政などの制約により十分な科学的調査の実施ができないために、不許可とするに当たっての科学的根拠が不足している状況がある。こういった状況において、既存源泉への悪影響が懸念されるにもかかわらず、人員や費用など調査上の制約により十分な科学的根拠が得られないために、不許可とする判断・説明が困難であるという実態があり、これらを踏まえて、不許可とするに当たって科学的根拠が不足していることにより、不許可とする判断・説明が困難であるという実態を踏まえ、許可又は不許可の区分の範囲をできるだけ明確にするこ

コメント [事務局4]: 委員指摘事項

全体に関連することとして、〈温泉資源の保 護>という時に、何を目指すのかを明確にす べき」といった主旨の文言を加えられない でしょうか。多くの温泉地で、多量の温泉 を採取・利用すること自体により、温泉資 源は影響を受け、場合によっては、枯渇が 危惧されるような状況に至ります。温泉の 利用は継続しながらの「温泉資源の保護」 だとすれば、現状維持を目指すのか、それ とも、無駄な利用を減らして、少しでも回 復を目指すのかによっても、とるべき行動 は変わってきます。何より、「何を目指すか」 を明らかにするために、まず現状把握くモニ タリング>が重要となると考えることもで きます。こうしたことも、このガイドライ ンの根本に関ることではないかと考えた次

(対応):ご指摘を踏まえ修文しました。

コメント [事務局5]: 委員指摘事項

きちんと書いておいたほうがよろしいのではないでしょうか。裁判でも一番問題になるところですから。つまり、まず行政として「悪影響の懸念」は感じているわけですね。それは当然といえば当然ですが、やはり書いておいたほうがよいと思います。それから人員や費用の制約です。これも、そういう制約があるから十分な科学的根拠が得られないのだということですから事者の協力」というところにつながってきますから、やはり書いておいたほうがよいと思います。

| とのが、本ガイドラインの基本的な方針ではある。しかしながら、の下、完全な科学的根拠を求めることは現時点では技術的に限界があるため、総論的な記述は減らし、現に運用事務処理の場面で問題になっている部分の詳述、科学的知見や具体的な取組事例を多く盛り込むことで、都道府県の担当者の参考資料として使いやすいものとすることを目指した。

今後、都道府県において、本ガイドラインを参考に、温泉の掘削等の許可等に関する業務を行うことを期待しているが、参考にするに当たっての留意点が3点ある。

留意点の1点目は、<u>それぞれの</u>地域の温泉資源の特性への配慮が必要なことである。本ガイドラインは、ごく一般的な温泉資源の状況を念頭に記述をしているが、地質の構造、泉脈の状態又は周辺での温泉の開発状況等に応じて、温泉資源の保護のために必要な対策の内容が、地域ごとに異なることは当然である。最終的には、地域の温泉資源の特性を十分に考慮し、許可等の判断に当たる必要がある。

2点目は、本ガイドラインは温泉保護の取組の「標準」を示すものではないという点である。ガイドラインの記述よりも先進的な取組を否定する意図はなく、本ガイドラインのねらいは、あくまで、都道府県がある一定の方法で温泉資源の保護対策を講じようと考えた場合に、有用便利な参考資料となることである。

3点目は、本ガイドラインは、現時点での限られた知見をもとに作成された、暫定的な性格のものという点である。環境省では、引き続き、温泉資源に関する各種調査を実施し、また、都道府県の温泉行政担当者等の意見を伺いながら、5年経過後にガイドラインの総点検を実施するとともに、随時、その更新等を行っていく予定である。

今回の本ガイドラインの総点検の実施を契機に、さらに温泉資源の保護に関する 議論が多方面で展開され、我が国の貴重な温泉資源が将来の世代に引き継がれる機 運がこれまで以上に高まることを期待したい。

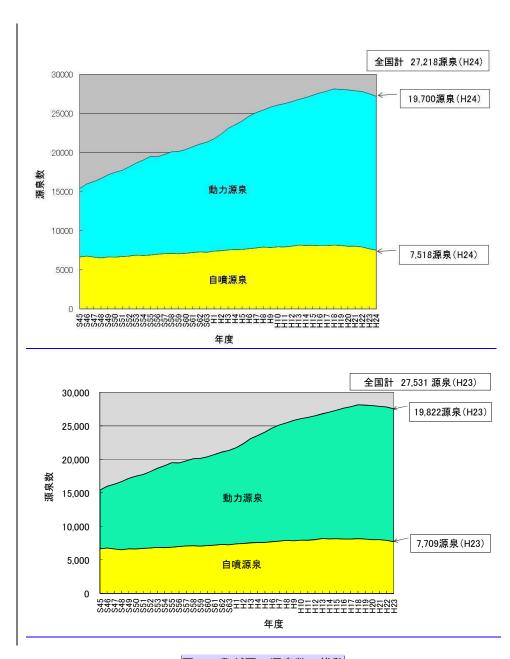


図1 我が国の源泉数の推移

コメント [事務局6]: 合計欄が消えてい たので修正

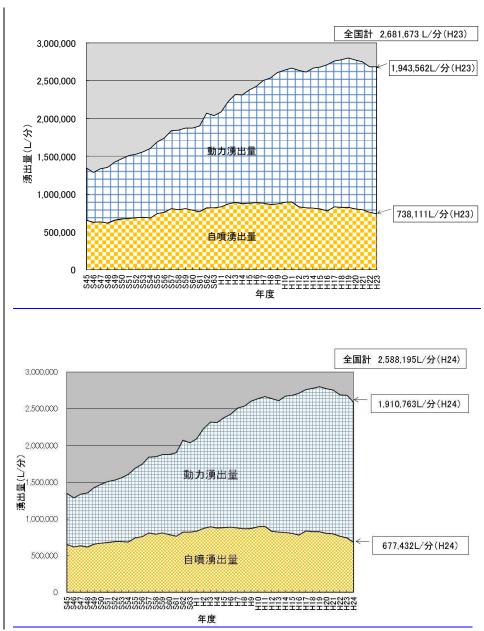


図2 我が国の温泉の湧出量の推移

(注:データの取扱いについて)

本ガイドラインで記載している都道府県ごとの規制 (要綱等)の内容 (表 $1\sim5$) については、「平成 25 年度「温泉資源の保護に関するガイドライン更新 (案)」

作成委託業務において各都道府県の温泉行政担当部署を対象に実施したアンケート調査の回答、任意に提供された資料を<mark>踏まえ基に</mark>、集計を行ったものである。アンケートの調査結果については、規制といえるものかどうか<u>判断の難しい微妙</u>なものであっても集計上は規制とみなしている場合がある等、本集計データが必ずしも現在の各都道府県の実情を正確に反映しているとは限らない点に留意されたい。

第二 掘削等の原則禁止区域の設定、既存源泉からの距離規制、<mark>採取</mark>

量制限における取り扱い温泉の採取量に関する取扱い

1. 現状

法では、温泉の掘削等の許可制度について、<mark>温泉資源の保護に関して</mark>「温泉のゆう出量、温度又は成分に影響を及ぼすと認めるとき」等を除いて許可をしなければならないことのみを定め、その具体的な判断基準は定めていない。

都道府県においては、このような法の趣旨を踏まえ、温泉保護のため掘削等を制限する特別な区域を定めたり、既存源泉から一定距離内での掘削を認めない距離規制を行ったりすることで、審査基準の具体化を図っている例が多い(表 1、表 2 参照)。

表 1 特別な区域等の設定状況

温泉保護のための特別な区域を設定している都道府県の数=26

(内訳-1) ~地域区分の段階数~

(都道府県数)

特別保護地区、保護地区、準保護地区等、3段階以上のカテゴリーを設定	7
保護地区と準保護地区等、2段階のカテゴリーを設定	1 0
保護地区等、単一のカテゴリーを設定	9

(内訳-2) ~特別な区域での主な規制内容~ (都道府県数 (重複有))

掘削の原則禁止	2 0
掘削の全面禁止をせず区域内で規制距離を設ける	1 4
増掘の禁止	7
掘削口径の規制	6
掘削深度規制	1 0
掘削工事及び動力申請時の影響調査義務	3
吐出口の断面積の規制	4
揚湯方式の指定	5

表 2 既存源泉からの距離規制の実施状況

既存源泉からの距離規制 (原則掘削禁止等) を実施している 都道府県の数=20

(内訳1) ~既存源泉からの距離~

(都道府県数)

1 0 0 0 m	0.5
8 0 0 m	1.5
7 0 0 m	0.5
6 0 0 m	0.5
5 0 0 m	7
4 0 0 m	0
3 0 0 m	3.5
2 0 0 m	2
1 5 0 m	1.5
1 0 0 m	1
6 0 m	0.5
5 0 m	1
2 5 m	0.5

(注:特別な地域(保護地区等)とその他の地域にカテゴリーを分割した上で異なる規制距離を設けている場合は0.5 ずつ計上。また、同一カテゴリー内で複数の規制距離を設けている場合は最も大きな数値を選択している。)

(内訳2) ~大深度掘削を実施する場合の既存源泉からの距離~(都道府県数)

2 0 0 0 m	1
1 0 0 0 m	4

(注:掘削深度が500mないし1000m以上の場合の規制距離)

それらの特別区域の設定や距離規制の内容は、要綱等として公となっている場合と、内規等として公になっていない場合がある。また、それらの規制の策定の経緯には、科学的な調査の結果を基にしているものや、他の都道府県の例や地域の慣例・経験則を参考にしているものが見られる(表3参照)。

表3 温泉の保護に関する要綱等の策定状況

温泉の保護に関する要綱等を策定している都道府県の数=40

(内訳1) ~要綱等の種類~

要綱	1 8
要綱と内規を併用	7
内規	1 5

(注:本表では、実際の取り決めの名称にかかわらず、温泉の保護に関す る規制の仕組みを<mark>原則</mark>公としている場合は「要綱」、原則公としていない 場合は「内規」として取りまとめている。)

(内訳2) ~要綱等の主な策定経緯~

(都道府県数 (重複有))

科学的な調査を基に策定	7
審議会委員や専門家の学術的意見を参考に策定	2 1
他の都道府県の事例を参考に策定	5
地域の慣例や過去の審議会の取り決めを明文化	6
調査時点において経緯が不明	1 3

2. 掘削等の原則禁止区域の設定

「温泉保護のため掘削等を制限する特別な区域」として都道府県が定めているも のには、様々な種類のものがある。以下では、その中で最も強い制限である掘削を 原則として禁止する区域について、どのような場合にどういった制限が許容される かの考え方を示すこととする。

(1) 考え方

法では、「温泉のゆう出量、温度又は成分に影響を及ぼすと認めるとき」に、掘 削等を不許可とすることを認めている。したがって、ある区域において掘削等を原 則として禁止するためには、原則として当該区域内で行われる掘削等の行為により、 区域内の既存源泉の温泉のゆう出量等に影響を及ぼすことが認められる必要があ

なお、判例では「温泉のゆう出量、温度又は成分に影響を及ぼすと認めるとき」 とは「少しでも既存の温泉井に影響を及ぼす限り、絶対に掘さく削を許可してはな らない、との趣旨を定めたものと解すべきではない」(昭和33年7月1日最高裁判 所判決) とされていることに留意する必要がある。

また、過去の温泉資源の枯渇化現象の発生には、例えば一定の区域内での採取可 能な限界量を超える温泉の採取が原因となったものがあることに鑑みれば、「一定 の区域内で既に採取可能な限界量の温泉を採取している場合には、その区域内での

コメント [事務局7]: 委員指摘事項

9ページ後半の行政手続法を意識しておら れるのであれば「公にしている」がいいと 思います。行政手続法5条は、審査基準を 「公にしておかなければならない」として いますが、それは「事務所などに備え置い て、見たいといって来られた方にはいつで も見せてあげられるようにしておく」とい う意味だと理解されています。もし、県の ホームページで公開されているかどうかと いうような観点からの整理でしたら、その ように正確に書いた方がよいと思います。

コメント [事務局8]: パブリックコメント 温泉の枯渇は過剰揚湯のみではない 「例えば」と追加させていただきました。 追加的な温泉の採取量の増加を伴う掘削等は原則として禁止する」という手法は、法においても、否定されるものではない。(それ以外の手法による原則禁止区域の設定についても否定するものではない。)ただし、こうした区域の設定は、あくまでも法第4条に示す不許可事由について、あらかじめ基準原則を示しているだけに過ぎない。実際の新規の掘削等の判断に際しては、掘削の深度、地質の構造又は泉脈の状態等を踏まえ、温泉のゆう出量等に影響を及ぼすか否かについて、個別の掘削等毎に検討を行う余地はあると考えられる。このような場合で、温泉採取量の増加を伴わない場合には、温泉資源へ影響が生じないとする考えに基づき、不許可事由に該当しないとする、いわゆる「代替掘削」及び「集中管理」については、「4.その他の掘削等」で記述する。

コメント [事務局9]: 委員指摘事項

法的にはその通りだが、そもそも、設定された区域内の温泉採取が過剰であることが明白な場合は、検討の余地はないので、誤解の生じないようにすべき。

(2) 具体的な区域の設定の方法

以下では、「一定の区域内で既に採取可能な限界量の温泉を採取している場合には、その区域内で採取可能な限界量を超える温泉の掘削等は原則として禁止する」という手法をとる場合について、その区域の設定方法の具体例を示すこととする。

① 区域の設定の基準

「既に採取可能な限界量を超える、もしくは限界量の温泉を採取している」区域 とは、例えば、以下のような区域が該当すると考えられる。

ア. 現に温泉資源の枯渇化現象が発生している区域

現に発生している「温泉資源の枯渇化現象」については、区域内の複数の源泉の湧出量、水位、温度及び主要成分を数年間以上にわたり測定した上で判断することが適当である。なお、具体的な測定方法については、「第四 温泉資源保護のためのモニタリング」で示すとおりとする。

測定の結果、湧出量、水位、温度又は主要成分のいずれか一項目でも継続的な低下傾向にある場合(成分は塩水化による濃度上昇も含む)は、枯渇化現象が発生していると判断し得る。この判断は、法第2条別表で示す温泉の定義に該当しなくなったり、温泉の採取・利用が困難となるほどの著しいものであることで必要性はなく、わずかであっても継続的な低下傾向を見逃さないことが必要である。これらの低下は、ごくわずかなものでは足りないが、法第2条別表で示す温泉の定義に該当しなくなったり、温泉の採取・利用が困難となるほどの著しいものであることは要しない。これは、低下傾向が長期的に継続すれば、いずれは具体的な温泉の採取・利用への支障が生じ得るためである。

イ.過去に温泉資源の枯渇化現象が発生し、その後の温泉の採取量の抑制により 現在では枯渇化現象が収まっている区域

過去に「温泉資源の枯渇化現象」が発生していたか否かについては、アと同

コメント [事務局10]: パブリックコメント (対応) ご指摘に基づき書きぶりを修正しました。 様、湧出量、水位、温度又は主要成分のいずれかの継続的な低下の有無により判 断すべきであるが、詳細な過去の測定データがない場合には、文献等により判断 することも一つの方法である。

具体的には、過去、温泉資源の枯渇化現象が発生し、その後、枯渇化現象の 防止抑制のために地域全体で温泉の集中管理等を行っている温泉地が該当する と考えられる。これは、集中管理の結果、現在の採取量は限界量以下となってい ても、新たな掘削等により採取量が増加すれば、再び枯渇化現象が発生する可能 性が高いためである。

ウ. 採取可能な限界量に達している区域

例として「1源泉当たり必要と推定される集水域の面積 × 源泉数 ≧ 区域 の面積」となっている区域等が考えられる。「1源泉当たり必要な集水域の面積」 の考え方の例については、「3 既存源泉からの距離規制」にて記述する。

これらの方法にかかわらず、他の知見等に基づき、掘削等の原則禁止区域の設定 を行うことも考えられる。たとえば、自然湧出泉が密集し、その湧出量や温度の低 <u>下傾向等が継続している区域等が、これにあたる当たる。</u>たとえば、自然湧出泉の 湧出量や温度の低下傾向が継続している場合などが、これにあたる。これは、動力 揚湯泉に比べ、自然湧出泉は、地下の僅かな圧力(水位)変化等により、特に著しい 影響を受けやすいためである。

② 区域の設定、見直しの手続

掘削等の不許可事由の判断基準として掘削の原則禁止区域を設定するに当たっ ては、都道府県に設置されている審議会等の意見を聴いた上で実施することが望ま しく、また、このような区域を設定した場合には、行政手続法第5条第1項の審査 基準に該当し、同条第3項の規定により公にしておかなければならない点に留意す べきである ^(*)。さらに、その設定の根拠についても公にする<u>べきである</u>ことが望 ましい。

また、掘削等の原則禁止区域を設定した後も、区域内の既存源泉の湧出量、水位、 温度及び主要成分のモニタリング、その他各種調査結果を基に必要に応じて、区域 の設定の妥当性検証を行うべきである。モニタリングの具体的な方法については、 「第四 温泉資源保護のためのモニタリング」で記述する。

(※「行政手続法(平成5年11月12日法律第88号)」抜粋)

第二章 申請に対する処分

(審査基準)

第五条 行政庁は、審査基準を定めるものとする。

コメント [事務局11]: 委員指摘事項

「たとえば、自然湧出泉の湧出量や温度の 低下傾向が継続している場合などが、これ にあたる。」といった前振りが必要ではない でしょうか。

(対応)

修正させていただきました。

コメント [事務局12]: パブリックコメント (対広)

「公にするべきである」と修正しました。

- 2 行政庁は、審査基準を定めるに当たっては、許認可等の性質に照らしてできる限り具体的なものとしなければならない。
- 3 行政庁は、行政上特別の支障があるときを除き、法令により申請の提出先と されている機関の事務所における備付けその他の適当な方法により審査基準を 公にしておかなければならない。

3. その他の規制

3-1. 距離規制

(1) 考え方

新たに温泉の掘削等を行う場所と既存源泉との距離が、既存源泉の湧出量等に影響を及ぼすと<mark>科学的合理的に</mark>判断できる距離である場合には、掘削等を不許可とすることが可能である。

なお、こうした距離規制の設定は、あくまでも法第4条に示す不許可事由について、あらかじめ原則基準を示しているだけに過ぎない。実際の新規の掘削等の判断に際しては、掘削の深度、地質の構造又は泉脈の状態等を踏まえ、温泉の湧出量等に影響を及ぼすか否かについて、個別の掘削等毎に検討を行う余地はあると考えられる。

なお、大深度掘削を行うことで停滞性の化石水 (**1) を採取している場合 すること等、一つの源泉のみによって広範囲の温泉資源の枯渇化現象を招き起こすような場合は、大きな長い距離規制を課すことも認められ得る。

(※1)地層の堆積時に地層中につつみこまれ、そのまま閉じこめられた水。石油や天然ガスを採取する際に出てくる水などはこれにあたる。海成層は海底で形成されるため、地層中に海底付近の海水が残留している場合には、化石海水と呼ぶ場合もある。しかし、その後の続成作用により成分は変化する(地下水用語辞典,1986,山本荘毅責任編集 に一部加筆)。化石水とは堆積層の堆積(あるいは火成岩体の生成)と同時期の地下水が、水の循環とは隔離されて地層中に賦存している状態をいう。海洋の堆積物が封じ込められ、堆積物中に当時の海水が賦存している場合、化石海水と呼ぶ場合もある。長期のわたり隔離されていることから、溶存物質が高濃度で含まれることが多い。(地下水用語集(2011)、地下水学会編集)

(2) 都道府県が現に行っている距離規制の妥当性の検証

既存源泉からの距離規制の設定の方法は、地質の構造又は泉脈の状態等によって 多種多様なものが考えられる。したがって、本ガイドラインでは、特定の方法を例 コメント [事務局13]: パブリックコメント 合理的とは? (対応)

科学的と修正しました。※

コメント [事務局14]: 委員指摘事項

距離規制の基準(たとえば「500メートル以内での掘削は認められない」)を定めているのが法律そのものか、それとも県の要綱なのかによって基準の「硬さ」が違う。「基準」ではなく「原則」とすべき。
(対応)

原則と修正しました。

コメント [事務局15]: パブリックコメント (対応) 修正しました。

コメント [事務局16]: パブリックコメント (対応)

地下水用語集からの引用に「海水が残留している場合には、化石海水と呼ぶ場合もある。」を**加筆しました。**

として示すことはしないこととする。

本ガイドラインでは、全国的・平均的な観点から妥当性を検討したものであり、各地域においては、地質の構造又は、泉脈の状態<u>及び</u>新たな掘削等による地下からの温泉採取量で規制される距離は大きく変わってくるのが実態である。そのため、それぞれ異なる地域の温泉資源の特性を各種調査の結果や既存資料から勘案する必要があり、特に温泉採取量、地質構造によって大きく変わってくることに留意されたい。

① 深度を限定せずに行っている距離規制

都道府県が温泉の掘削深度を限定せずに行っている距離規制は、全20 例中10.5 例が $300\sim500$ m の範囲にある(表2参照)。なお、このような深度を限定しない距離規制は、掘削深度の浅い旧来からの温泉地を念頭に置いて設定される場合が多いと考えられる。

そこで、過去に温泉資源の著しい枯渇化現象が発生した3つの温泉地を例にとり、 枯渇化現象が生じていない時点の採取量と採取面積(=源泉が分布する面積)の関 係を基に源泉間の距離を考察した(別紙1参照)。

その結果、現状(資源保護のための対策実施後)又は枯渇化現象発生前の温泉採取量から、1源泉 $^{(*2)}$ 当たりの所要面積を計算すると $0.119\sim0.176\,\mathrm{k}$ ㎡となる。これが温泉資源の枯渇化現象を抑えるために必要な源泉密度となり、この面積を必要とする源泉を均等に配置するために必要な源泉間の距離 $^{(*3)}$ は $369\sim449\mathrm{m}$ となる。

- (※2) これらの事例で考慮した源泉数は、実際の源泉数ではなく、温泉地全体からの温泉採取量をまず捉え、その量を全国平均の分う湧出量(100 L/分)で除した源泉数に置き換えている(全温泉採取量/100=源泉数)。
- (※3) 距離規制の距離を α k m とした場合、最も高い密度で源泉を配置する方法は、一 辺 α k m の正三角形の各頂点に源泉がある形である。その場合の 1 源泉当たりの面積 は、0.866 α α k m (= $\sqrt{3}/2$ α α k m となる。逆に、 1 源泉当たりの面積として β k m を確保するためには、各源泉の間に $1.07\sqrt{\beta}$ k m 以上の距離を取れば十分となる。

次に、水収支の均衡の観点からの検討を試みる。我が国の平均地下水涵養量は1日1mm (年 365mm) とされており(「地下水学用語辞典」1986 山本荘毅責任編集)、そのすべてが浅深度の温泉となると仮定すると、1 k ㎡当たり年間 365,000 m 3 の温泉が生成される。一方、毎分 100 リットルの温泉を常時採取し続けると、年間 52,600 m 3 を採取することとなる。したがって、1 源泉当たり 0.144 k ㎡の面積が必要となる。この密度の源泉を均等に配置するために必要な源泉間の距離は 406m(1.07 × $\sqrt{0.144}$ k m)となる。

なお、ここでは、熱収支の均衡の観点からの検討は行わないこととする。これは、 火山地域の温泉の熱源は地域に特有のマグマ等であり、熱量が地域によらずおおむ ね一定である地殻熱ではないことから、試算が困難なためである。

これらは、深度を限定せずに行っている距離規制について、全国的・平均的な観点から妥当性を検討したものであり、各地域においては、地質の構造又は泉脈の状態等、それぞれ異なる地域の温泉資源の特性を勘案する必要がある。

② 大深度掘削泉を対象に行っている距離規制

都道府県が大深度の温泉に限定して行っている大深度掘削を実施する場合の 離規制は5 例あるが、うち4 例が1,000m、1 例が2,000m であり(表2 参照)、最も多い距離は、1,000m といえる。なお、この5 例のうち3 例では大深度掘削泉を掘削深度500m以上とし、他は1,000m 以上と定義している。

大深度掘削による温泉に関しては、検証する事例が十分でないことから、熱収支 及び水収支の均衡の観点からも検証を行うこととする。

まず、熱収支の均衡の観点からのおおまかな検討を試みる。平均気温 15℃の場所で加温を必要としない 45℃の温泉を毎分 100 リットル採取すると、地下から毎分 3,000kcal の熱量を獲得することとなる。一方、非火山地域における大深度の温泉の熱源はおおむね地殻熱と考えられる。るが、我が国の地殻熱流量は、非火山地域では $0.5\sim1.5$ HFU $(^{*4})$ と推定されており、毎分 3,000kcal の熱量を獲得するには $3.33\sim10$ k *0 の面積が必要となる。

(※4) HFU (heat flow unit)とは地球の熱流量の単位。10⁻⁶cal/cm²・秒。1平方cm当たり1秒間に通過する熱量(cal単位)を表し、1calは1gの水の温度を1℃上げるのに必要な熱量をいう。現在、標準的に使用が推奨されている単位は mW/㎡であり1HFU=41.9mW/㎡であるが、ここではわかりやすさの観点からHFUを用いる。毎分・k㎡当たりに換算すると、600kcal (600,000cal)となる。

ここで、大深度掘削泉の距離規制は、一定の区域内に多数の源泉があるという前提ではないとして、周辺の源泉の密度が高くなければ、源泉の集水域同士に重なりがあっても、それのみで問題とはならない。したがって、源泉を中心とする $3.33 \sim 10 \, \mathrm{k} \, \mathrm{m}^2$ の円内に他の源泉がなければよいという考え方も成り立ち、その場合の距離規制は $1.03 \sim 1.78 \, \mathrm{k} \, \mathrm{m}$ となる(別紙 $2 \, \mathrm{sm}$)。

次に、水収支の均衡の観点からの検討を試みる。我が国の年平均降水量は 1,690mm であるが (平成 25 年版「日本の水資源」国土交通省)、その<u>うち</u>どの程度の割合が大深度の温泉となるかは明らかではない。したがって、逆に、1,000m の規制 距離を設けることでが、降水量の何%が大深度の温泉となることに相当するかを試算し、それが現実のデータに矛盾しないかという観点からの検証を行うこととする。

源泉間の規制距離 (α)を 1,000m とした場合、一つの源泉が集水し得る面積は

 $0.866 \,\mathrm{k}\,\mathrm{m}^3$ となる $(\sqrt{3}/2\,\alpha^{2}\,^{(**5)})$ 。 その範囲における 1 年間の降水量は、わが国の年平均降水量 $1,690\mathrm{mm}\,(=1.690\mathrm{m})$ を用いると、約 $1,463,500\mathrm{m}^3$ となる。 $100\mathrm{L}/\bigcirc$ $(=0.1\,\mathrm{m}^3/\bigcirc)$ の揚湯を行う大深度温泉井が 1 年間に採取する温泉の量は、52,560 m^3 $(=0.1\,\mathrm{m}^3/\bigcirc)$ × 24 時間×365 日)であり、規制範囲内の降水量に対する比率は、52,560 m^3 ÷ $1,463,500\mathrm{m}^3$ = 0.0359= 3.59%に相当する。

ここで、温泉の水収支に関するデータとしては、箱根カルデラ及び湯河原カルデラにおいて温泉の水位、温度、成分が経年的に低下していた時期に、降水量のそれぞれ 4.6%、5.5%程度の温泉を採取していたという事例がある(別紙3参照)、

(※5) 多様な視点からの検討を試みるため、ここでは集水域同士の重なりを考慮し、 ※2で用いた最も高い密度で源泉を配置する方法で計算することとした。ちなみに、 熱収支に関する検討で用いた手法(半径1,000m)をとった場合、規制範囲内の降 水量に対する比率は0.99%相当となる。

これらは、大深度掘削泉を対象に行っている距離規制について、全国的・平均的な観点から降水起源の温泉についての妥当性を検討したものであり、各地域においては、地質の構造又は泉脈の状態、新たな掘削等による温泉採取量等で規制される距離も異なるため、それぞれ異なる地域の温泉資源の特性を勘案する必要がある。 なお、実際の大深度掘削泉における距離規制の設定に<u>当たってあたって</u>は、周辺における既存源泉の揚湯試験結果、影響調査結果、採取開始後のモニタリング結果等の調査結果に基づいて、各都道府県のこれまでの距離規制の考え方を応用することが望ましい。

(3) 距離規制の基点となる「既存源泉」と未利用源泉等の関係

距離規制の設定に<u>当たってあたって</u>は将来にわたって温泉の採取を行わない源泉は、距離規制の基点となる「既存源泉」として取り扱うべきではない。

①未利用休止源泉

ここで、現時点では温泉の採取を行っていないが、将来採取が再開される可能性 が完全には否定できない状態の源泉を「既存源泉」として取り扱うべきか否かが問 題となる。

この点については、いくつかの都道府県において、過去の一定期間に採取を行っていなかった場合には、「既存源泉」として取り扱わないという方法で解決している例がある(表4参照)。

このような方法は、温泉のゆう出量等に影響を及ぼすものでない限り許可するという法の原則に整合的であり、法においても、特に問題となるものではない。また、一定期間の体止後の採取の再開が少ないことや、法に基づく報告徴収又は立入検査を通じて、再開する可能性が乏しいことが確認できれば、より確実な判断をするこ

とができよう。なお、一定期間の休止後の採取の再開が少ない場合もあり得るので、 都道府県知事は採取の状況等を法に基づく報告徴収又は立入検査たちいちを通じて、適時適切に把握することが望ましい。

コメント [事務局17]: パブリックコメント (対応) 修正しました。

②未利用放流源泉

なお、全国的な未利用放流源泉に関する精確なデータは、現時点では存在しておらず、各都道府県において、未利用源泉に関する詳細なデータ及び現状を報告徴収や立入検査等を通じて積極的に把握することが必要である。これらのデータを踏まえ、温泉源を保護するため必要があると認めるときは、法第 12 条に基づく採取制限命令を適用する等し、温泉資源の特性等を踏まえた温泉採取量の調整が実施されるべきである。

表 4 距離規制における未利用源泉の取扱い

距離規制において、一定期間利用していない源泉を 既存源泉とみなさない都道府県の数=6

(内訳) ~既存源泉とみなさなくなる未利用期間~ (都道府県数)

10年	0
5年	2
3年	0
未利用となった時点	4

3-2. 温泉の採取量に関する取リ扱い

(1) 考え方

温泉は自噴、動力装置による揚湯にかかわらず、当該源泉からの温泉の採取量に 応じて源泉の水位(孔口圧力)は低下し、その結果、より広範囲から温泉を採取集 水することになる必要が生じるため、その影響は広範囲に及ぶこととなる。

特に動力の装置に際し採取量の設定制限値を条件とする場合には、に関しては、地域の温泉の賦存量を把握するとともに、及び井戸の能力を評価することが重要である。これには、地域の温泉賦存量を各種調査がにより評価することが必要でありるため、平時から長期を見据えたモニタリングを実施し、その結果を基礎データとして解析することが有効な手法のひとつである(別紙4参照)。

コメント [事務局18]: 委員指摘事項

源泉の水位が低下して必然的に周辺から水 を集めることになるので、「必要」の語に ちょっと違和感を感じました (対応)

修正しました。

(2) 具体的な設定方法

動力の装置温泉のの条件としての採取量制限の規制の設定内容や規制範囲は、地域の特性や実情を踏まえ、温泉資源動向等のの状況に基づいて評価・検討し設定判断すべきである。加えて、利用目的に応じた必要量以上の採取は行わないように、事業者に協力を求めること等も考えられる。

4. その他の掘削等

掘削等の原則禁止区域や距離規制は、温泉採取量の増加に伴い温泉資源の枯渇化 現象が発生することを未然に防止するために行われている。したがって、温泉の採 取量の増加を伴う掘削等は認めるべきでないことは当然であるが、採取量の増加が 生じない掘削等の取り扱いが問題となる場合がある。

具体的に検討が必要なケースには、既存源泉の1つを埋め戻してその近くに新たな源泉を掘削するいわゆる「代替掘削」と、一定区域内において、新たな源泉を掘削し、複数の既存源泉を埋め戻してより少数の源泉に集約するいわゆる「集中管理方式」がある。

(1) いわゆる「代替掘削」について

既存源泉の埋め戻しを行い、その近くに新たな源泉を掘削するいわゆる「代替掘削」については、安定した量の温泉を採取していた井戸が物理的に故障する等、新たな源泉の獲得を認めないことがで当該事業者に著しい損失が生じる場合等の際には、従来の採取量を上回らないことを前提に、新規の掘削等として許可等の判断を行う余地はあると考えられる。

(2) いわゆる「集中管理方式」について

一定区域内において、新たな源泉を掘削し、複数の既存源泉を埋め戻してより少数の源泉に集約するいわゆる「集中管理方式」については、温泉資源の保護を目的として行われる場合には、積極的に認めるべきと考えられる。

なお、従来の採取量を上回っていないこと、区域内の大多数の既存源泉所有者の参加があること等、温泉資源の保護の目的と効果を確認した上で新規の掘削等として許可等の判断を行うことが期待される。

5. 既存源泉の所有者等の同意書を得る方式の取り扱い

温泉の掘削等の許可の申請に際し、周辺の既存源泉の所有者からの同意書を得るよう指導している都道府県が見受けられる(表 5 参照)。これには様々な歴史的背景があると考えられるが、判決判例(平成 18 年 8 月 31 日東京高等裁判所)ではにより、申請者が周辺の既存源泉の所有者との同意書の取り交わしに応じなかったとしても、このことが不許可事由に該当すると解することはできないとされた事例が

ある。

一方、同意書を得る行為は申請者が温泉資源の保護の必要性を認識する上で重要な契機となり、その結果として、同意書を求める方式が温泉資源の枯渇化現象を招くような過剰な開発の防止に一定の役割を果たしてきたことも否定できない。

したがって、申請時に同意書を得ることを求める場合には、<u>都道府県担当者は</u>あくまで当該行為が行政指導であることを認識した上で、温泉資源の保護等の目的のために有効かつ必要なものか否かを検証するとともに、都道府県における行政手続に関する条例等に定める行政指導に関する規定^(※)を遵守することが求められる。

表 5 源泉所有者等の同意書添付指導状況

掘削申請時等に既存源泉所有者等の同意書を添付するよう 求めている都道府県の数=36

(内訳) ~同意書添付を求める既存源泉からの距離~ (都道府県数)

3 0 0 0 m	2
2 0 0 0 m	1
1 0 0 0 m	1 4
7 0 0 m	0
5 0 0 m	1 6
3 0 0 m	1
2 0 0 m	2

(注:特別な地域(保護地区等)とその他の地域にカテゴリーを分割した上で異なる規制設定を設けている場合は最も大きな数値を選択している。)

(※(参考)「東京都行政手続条例」抜粋)

第四章 行政指導

(行政指導の一般原則)

- 第三十条 行政指導にあっては、行政指導に携わる者は、いやしくも当該都 の機関の任務又は所掌事務の範囲を逸脱してはならないこと及び行政指導 の内容があくまでも相手方の任意の協力によってのみ実現されるものであることに留意しなければならない。
- 2 行政指導に携わる者は、その相手方が行政指導に従わなかったことを理由として、不利益な取扱いをしてはならない。

6. 条件付き許可

都道府県知事は、法第4条第3項の規定に基づき、温泉の掘削等の許可には、温泉資源の保護、可燃性天然ガスによる災害の防止その他公益上必要な条件を付し、及びこれを変更できるとしている。現在、各都道府県が付している条件には、以下のようなものがある。

① ①掘削許可処分に関する条件付けの事例

- ・(掘削行為中に) 周辺既存源泉に影響を及ぼさないこと
- ・(掘削行為中に) 周辺の水源井戸、湧水へ影響を及ぼさないよう措置すること
- ・(掘削行為中に) 周辺の生活環境を害するおそれが無いようにすること
- ・(掘削行為中に) 河川、農業用水路への水質汚染防止措置を講ずること

②動力装置許可処分に関する条件付けの事例

- ・観測機器の設置、記録
- 再分析の実施(湧出量が試験時と利用時で大きく異なる場合)
 - ・周辺の生活環境等への影響確認
 - ・ 揚湯量の上限の設定

こういった条件が履行されているかの確認に<u>当たってあたって</u>は、都道府 県の温泉担当部局のみならず、<u>必要に応じて部局間の連携を図ることが望ま</u> れるその他の関係部局との連携のもと行うことが考えられる。

なお、掘削等の行為が完了した後において、法とは別に各都道府県が条例等により、源泉所有者等がモニタリングを実施すること等を定めることは否定されるものではない。

第三 個別的許可判断のための影響調査等

「第二 掘削等の原則禁止区域の設定、既存源泉からの距離規制、<u>温泉の</u>採取量制限におけるに関する取扱い」では、掘削等を個別の事情によらず、掘削等を行う位置により一律に制限する手法についての考え方を示した。本項では、個別の事情に応じた制限の手法についての考え方を示すこととする。

ここで、掘削等の<u>許可</u>処分のうち「掘削」「増掘」については、<u>特に温泉賦存量等の科学的データが不足している場合にはおいて、</u>その実施段階での温泉資源への 影響の把握が難しいこと、実施方法においても工夫により影響を軽減する手法が乏しいことという2つの理由により、個別の事情に応じた制限を行うことは難しい。

一方、「動力の装置」については、掘削工事中等に行われる試験的な動力の稼働 による調査も可能であり、また、動力の能力や温泉の場場場上採取量の制限という手 法により影響を軽減する方法が可能である。

したがって、ここでは、動力の装置に当たっての、温泉資源への影響に関する調査の手法と、その結果を動力装置設置許可処分に関する条件付け<u>にへの</u>反映<u>するための</u>の考え方を示すこととする。

なお、ここでは、掘削工事中等において行われる動力の装置に当たってののための温泉資源への影響調査について述べることとするが、自噴泉が他の温泉のゆう出量等への影響調査を不要とすることではない。なお、自噴泉に対する影響調査については、水位の代わりに湧出量を測定するか、孔口圧力(静止水頭)を測定することにより、調査することが可能であり、影響回避のためには温泉資源の特性等を踏まえ、自噴量を制限する等の方法も考えられる。

|1. 影響調査等の実施対象及び実施方法

(1) 影響調査等の実施対象

動力の装置に当たっての温泉資源への影響の調査の手法は、掘削工事中等において、試験的に動力を稼働して温泉を揚湯し、その影響を把握することが一般的である。把握すべき影響の内容により、周辺の既存源泉への影響を把握する「影響調査」と、その源泉自体の集湯能力の限界を把握する「揚湯試験(集湯能力調査)」の二種類に区分される。

このうち「影響調査」については、当然、周辺に既存源泉がある場合に限って行うものである。この「周辺」をどの程度の距離とするかについては、様々な考え方があり得る。具体的な判断においては地域の特性や地質の構造又は泉脈の状態、新たな掘削動力の装置等にの許可に伴うよる温泉採取量等を考慮すべきである。地域

コメント [事務局19]: モニタリングを実施し科学的根拠を把握することで、影響が把握できるとしている記載と矛盾するため、「特に~」を追記。

<u>の特性(例えば地質の構造や泉脈の状態)及び地域における温泉の賦存量等を考慮すべきである。</u>

一方、「揚湯試験(集湯能力調査)」については、あらゆる<u>動力揚湯</u>源泉<u>(自然湧出泉は除く。)</u>に集湯能力の限界があり得ることから、周辺源泉の有無に<u>拘わらず</u> 関わらず、動力の装置の際にはすべて実施されることが望ましい。

(2) 影響調査等の実施手法

影響調査及び揚湯試験(集湯能力調査)の具体的な方法としては、別紙5「動力装置の際の影響調査実施手法及び揚湯試験実施手法」に示す手法が考えられる。その結果を、動力の装置許可申請書(例として法施行規則第6条第2項第5号に基づき都道府県知事が審査するために必要と認める書類として)へ添付させるか否かは個々の事情に応じて判断することが必要である。

なお、周辺源泉への影響調査を実施するに当たっては、既存源泉の所有者等の協力が不可欠であり、どのように協力を得るかが問題となる場合がある。既存源泉所有者は、こういった影響調査を通じて、源泉の健全性状態把握や異常の有無等により、自己が所有する源泉の状態把握健全性の確認や井戸の適切な維持・管理が可能となる。また併せて、将来、近傍で新たな温泉掘削等が行われる場合において、当該温泉掘削等により所有源泉に影響が生じた際の科学的根拠となる貴重なデータともなる。なお、既存源泉所有者はが調査に協力しない場合に、所有源泉に何らかの影響が生じたことを主張する際には、源泉所有者自身らが影響関係を科学的に証明しなければならないこともある。

また、影響調査に関する趣旨の説明は、事前に周知するほか、都道府県が既存源泉所有者に協力を依頼する際に個々に説明を実施する方法も考えられる、またそれらに併せて、説明の経緯や調査への協力の有無経緯をについて記録しておくこともあり得る。どうしても協力が得られない場合は、例えば揚湯試験結果から単一井による推定を行ったり、他源泉への影響量から推定する等、他の方法により検討を行うことも可能であると考えられる。なお、既存源泉所有者は可能な限り協力することが重要であり、所有源泉をはじめとする地域の温泉資源保護のためにもこうした協力は源泉所有者に求められることである。

(3) 影響調査における注意点

透水性が低い場合、既存源泉との採取層が異なる場合及び井戸の位置関係等によっては、影響量の確認影響調査の結果を得るまでの時間差<u>がも</u>大きいこと<u>もが</u>ある (別紙6参照)。この場合、揚湯試験日数や影響調査日数が通常の源泉よりもと比較して、長期間を必要とする場合があるため、動力装置設置許可申請者及び影響調

コメント [事務局20]: 委員指摘事項

たいへん重要な記述だと思います。裁判になった場合でも、行政がどの時点でどのような点を解明しようとしたのか、それに対して事業者はどの程度協力的であったか、ということが重要なポイントになると考えられます。何時どういう点について協力を求め、どういう点で協力が得られなかったかをしっかり記録しておかないと、「事業者、裁判所も納得してくれないと思います。そのことを強調しておくのがよいと思います。(対応)

ご指摘を受けて追記。

査実施者等は対象地域の透水性や採取層を考慮して、<mark>影響</mark>調査計画を策定する必要がある。

また、<u>調査後の留意点として、</u>調査期間中に影響が現れない場合でも、調査終了後、徐々に影響が出現する場合もあるので、源泉所有者は定期的に温泉湧出等状況をモニタリングし記録することが必要である。<u>温泉</u>資源動向に合わせ影響を拡大させないよう、採取量を自主的に調整・管理することが望まれる。

2. 調査結果の反映

前述の影響調査等の結果、動力装置による温泉の<mark>揚湯採取</mark>が温泉のゆう出量等に 影響を及ぼすと認めるときに、これを不許可とすることはもとより適法である。ま た、揚湯試験(集湯能力調査)の結果から適正揚湯量というものを算出し、当該適 正揚湯量の範囲内とする動力の能力や温泉の揚湯量の制限を条件に動力装置の許 可処分を行っている事例場合が見受けられる。

このうち、動力装置の種類、出力等は許可申請事項そのものであるため、その条件は許可手続により完結する。一方、都道府県知事が揚湯量制限の設定を法に基づく許可条件に付するということは、許可対象である動力の装置完了後の行為を制限するものである。当該許可行為完了後においては、その許可条件違反に対しての許可の取消しが行えるものではないが、条件とした揚湯量制限を超えた採取を行うことは、法第12条で示す規定する</u>温泉の採取の制限に関する命令のひとつの目安ともなることを採取する者にあらかじめ知らせる契機ともなる。

<u>これらを通じて、</u>この結果として、源泉所有者自ら<mark>にがに対して</mark>温泉資源<u>の</u>動向に応じた調整及び管理を自主的に行うことの重要性を認識させる<u>とともに、ことが可能となり、これらを踏まえて、源泉所有者が</u>過度な採取を行わないように促す<u>こ</u>とができると考えられる<u>べきである</u>。

コメント [事務局21]: パブリックコメント (対応) 修正しました。

第四 温泉資源保護のためのモニタリング

「第三 個別的許可判断のための影響調査等」で記述したとおり、特に温泉賦存量等の科学的データが不足している場合には「掘削」「増掘」については、その実施段階での温泉資源への影響の把握が難しい。また、動力の装置に当たっての温泉資源への影響の調査は、温泉資源への短期的な影響のみを把握できるものである。このため、温泉の採取開始後においては、井戸の水位や採取量場場量等について定期的なモニタリングを行うことが、地域の温泉資源の状況を把握確認し、過剰な採取を抑制し、その保護を図る上うえで極めて重要となる。

また、既存源泉所有者等にとっては、温泉資源保護のためのモニタリングを通じて、源泉の<u>状態把握</u>健全性や異常の有無等により、自己が所有する源泉の<u>健全性の確認状態把握</u>や井戸の適切な維持・管理が可能となる。また併せて、将来、近傍で新たな温泉掘削等が行われる場合において、当該温泉掘削等により所有源泉に影響が生じた際の科学的根拠となる貴重なデータともなる。

こうしたことから、すべての源泉において水位等のモニタリングを行うことを基本とし、特に水位計等の設置が比較的容易と考えられる新規掘削源泉においては、必要な測定機器の設置又はモニタリングの実施を容易にするような井戸設計を行うよう指導すべきである。また、既存源泉においても、観測機器の有無にかかわらず水位等の定期的な測定を促すとともに、都道府県は法に基づいて、報告徴収や立入検査権限を積極的に活用し、モニタリングデータを収集することも検討すべきである。

さらには、都道府県が、未利用源泉等を観測井として活用する等、自治体と源泉 所有者等が協力しながら、地域の温泉資源の保護対策を推進するためのデータを収 集することが望ましい。

1. モニタリングの実施方法

温泉資源の状況を的確に把握するためには、温泉に係る数多くのデータを常時把握しておくことが望ましく、モニタリング手法の原則は「自動観測(自動測定・自動記録装置による常時観測)」とする。しかしながら、経済的な理由や源泉の構造上の理由によりこれが実現できない場合には「現地観測(人による定期的な観測)」を実施することを促すも可能である。具体的な実施手法は別紙7「温泉モニタリング実施手法」に記載した。

モニタリングの項目としては、温泉の湧出量、温度及び水位(自噴の場合は孔口圧力)が適当であるが、法第2条の温泉の定義に該当するための成分がの基準値との差が小さい場合や有害物質を含む場合には、温泉としての維持管理もしくは健康被害防止のため、温泉の主要成分やガス成分濃度の確認や電気伝導率の測定が必要な場合もある。また、観測の頻度については、自動観測の場合は原則として1時間

コメント [事務局22]: パブリックコメント 蒸気の測定法についても追記すべき。 (対応) 別紙7に蒸気測定法について加筆しました。 に1回、現地観測については、原則として1ヶ月に1回以上の頻度で測定し、その 結果を定期的に行政指導もしくは都道府県が独自に制定する条例等により都道府 県に報告させる仕組みをつくることが望ましく、必要に応じ、法に基づく報告徴収 または又は立入検査の実施も行うべきである。

なお、温泉法の一部を改正する法律(平成 19 年法律第 31 号)により、定期的に 実施されることとなった温泉成分の分析結果についても温泉資源の状況を把握す る上で極めて貴重なデータであり、他のモニタリング項目とともに記録が適切に保 管・活用されるべきである。

2. モニタリング結果の反映

温泉の特性上、短期間のモニタリングでは把握することができない事例があるため、実態の把握には長期間のモニタリングが重要である。また、資源動向を捉えるためには、モニタリングデータを記録・整理し、集計・グラフ化する等の解析が必要である(別紙8参照)。

都道府県は、上記モニタリングの結果を積み重ねることにより、掘削等の許否の 判断、掘削等の原則禁止区域の範囲や規制距離の設定の見直しに活用すべきである。

モニタリングを実施するなか中で、水位の急激な低下や低下傾向の継続が確認された場合には原因を究明した上で、必要に応じて、法に基づき、温泉源の保護を図るために必要があると認めるときは、必要な温泉の採取制限命令を適時・適切に実施すべきである。

なお、行政のみならず源泉所有者等が自らモニタリングを行いその結果に基づいて、自ら温泉資源保護に資するような採取量の調整・管理を行うこと、及び源泉の維持・管理を行うことの重要性を周知し、自主的に実行されることが強く望まれる。

コメント [事務局23]: パブリックコメント (対応) 修正しました。

第五 公益侵害の防止

法では、従来より、温泉のゆう出量、温度又は成分等への影響を及ぼすと認めるときのほか、「公益を害するおそれがあると認めるとき」は、掘削等を不許可にできることとされ、都道府県により許否の判断が積み重ねられてきた。

温泉の掘削等に伴う公益侵害の類型、発生の態様は個々の状況ごとに様々であり、一律の判断基準を設けることは困難である。そこで、本ガイドラインでは、公益侵害への対応の在り方について、共通する考え方を示すとともに、典型的な類型への対応の具体例を示すこととした。

今後、掘削等の不許可事務処理に当たっては、引き続き本ガイドラインが示す考え方や具体例を参考にしつつ、掘削工事方法等の個々の事情、従来からの不許可<mark>の運用事由</mark>等を総合的に勘案した上での判断がなされることが期待される。なお、公益侵害の有無の確認等に<u>当たってあたって</u>は、都道府県の温泉担当部局のみならず、必要に応じて部局間の連携を図ることが望まれる他の部局の連携のもと行うことが重要である。

1. 公益侵害への対応についての考え方

(1) 不許可に反映できる公益侵害の範囲

掘削等の不許可に反映できる公益侵害の範囲は、原則として、掘削等に直接に起因するものに限定される。ただし、間接的な事柄であっても密接不可分の関係にあるものは含み得る。なお、「間接的であるが密接不可分の関係にあるもの」に該当する例としては、掘削工事中等に湧出した温泉の放流に伴う公共用水域等の水質への影響等が挙げられる。

(2) 公益侵害への対応についての考え方

(1)手続面(不許可又は許可に付する条件)について

公益侵害のおそれがあると認められる場合は、都道府県知事は掘削等を不許可とすることができる。一方で、公益侵害を回避するための条件を付した上で、許可をすることも考えられる。許可に付する条件の例としては、以下のようなものが考えられる。

- ・ 一定の行為(公益侵害発生に対する対策等)を行う旨の条件
- 一定の行為(公益侵害を発生させる行為等)を行わない旨の条件
- ・ 公益侵害の発生の有無を監視 (モニタリング)

コメント [事務局24]: 委員指摘事項

従来より、「温泉のゆう出量、温度又は成分」 →「ゆう出量等へのに影響を」 と修正すべき

(対応)

ご指摘に基づいて修正しました。

コメント [事務局25]: 委員指摘事項

温泉部局と水質部局の連携態勢ができていないということだと推測されますので、「第 五 公益侵害の防止」のどこかで、「必要に応じて部局間の連携を図ることが望まれる」 と書いておいてもいい

(対応)

加筆修正しました。

これらの条件に違反した場合は、都道府県知事は、法9条第1項第4号第3 項に基づき、許可の取消しができる。

ただし、上述の許可の取消し等は、法上、許可の対象となった掘削等の完了後には行うことはできない。掘削等の完了後に実施すべき内容については、各都道府県が独自に定める条例、業者と締結する協定等の手法により、掘削等完了後に法とは別に定められた内容の履行を担保することは可能と考えられる。

なお、許可に付した条件に関するこれらの考え方は、公益侵害の回避のための条件だけでなく、温泉のゆう出量等への影響の防止のための条件についても同様である。

② 実体面(公益侵害の判断基準と対策の内容)について

どのような場合が公益侵害に該当するか、また、どのような対策を行わせるべきかは、最終的には個々の事情ごとに判断するほかないが、以下のような例により判断することが考えられる。

- ・他の規制法令の適用を受ける場合に、その法令を遵守しているか<u>否か</u>で判断する。
- ・温泉の掘削等に類似する行為に対する規制がある場合に、その規制基準を援用して、温泉の掘削等がその基準の範囲内に保たれているか否かで判断する。
- ・地域の社会環境、自然環境等に関する目標・基準等が定められている場合に、 温泉の掘削等によりその目標・基準等の達成が妨げられないか<u>否か</u>で判断する。

2. 具体的な公益侵害の類型と対応

温泉の掘削等に伴い発生する公益侵害の類型としては、がけ崩れ、溢水、有毒ガスの発生、地盤沈下、近隣の水井戸や湧水の枯渇、水質への影響、騒音・振動等が挙げられる。

以下では、それらの様々な類型の公益侵害のうち、具体的な対応の例がある「騒音・振動」「温泉の放流に伴う水質への影響」「地盤沈下」について、公益侵害に該当するか否かの判断基準と対応の具体例を示すこととする。

なお、可燃性天然ガスの発生については、平成 19 年 11 月の法の改正により、温泉の掘削、増掘及び採取は一定の技術基準に従って対応されることとなった。したがって、「公益侵害」の一類型として個々の事情ごとに対応するのではなく、技術基準に適合するか否かで許否を判断することとなる。

コメント [事務局26]: 温泉法

(許可の取消し等)

第九条 都道府県知事は、次に掲げる場合には、第三条第一項の許可を取り消すことができる。

- 第三条第一項の許可に係る掘削が第四条第一項第一号から第三号までのいずれかに該当するに至つたとき。
- 二 第三条第一項の許可を受けた者が第四条第一項第四号又は第六号のいずれかに該当するに至つたとき。
- 三 第三条第一項の許可を受けた者がこ の法律の規定又はこの法律の規定に基づく 命令若しくは処分に違反したとき。
- 四 第三条第一項の許可を受けた者が第四条第三項(第七条の二第二項において準用する場合を含む。)の規定により付された許可の条件に違反したとき。

(1)騒音・振動

騒音規制法 (昭和 43 年法律第 98 号) 及び振動規制法 (昭和 51 年法律第 64 号) では、著しい騒音・振動を発する建設工事 (特定建設作業) を規制対象として指定し、規制基準を設定して、規制対象地域 (生活環境を保全する地域) 内ではその遵守を義務付けている。

温泉の掘削工事は、騒音及び振動規制法の規制対象とはなっていないが、<u>削さく</u> 岩機を使用する作業などの規制対象となっている工事と類似した工事であり、また、発生させる騒音・振動の性質も類似している。したがって、温泉の掘削工事についても、これらの規制基準を超える騒音・振動の発生を一律に公益侵害に該当すると解し、<u>法9条第1項第1号に基づく</u>許可の取消しを行うことは可能である。また、騒音・振動の規制基準を法に基づく条件の基準の目安とすることも可能である。

その場合、騒音規制法及び振動規制法は区域ごとに異なる規制基準を適用しているため、その区域ごとの規制基準を超える場合を公益侵害に該当すると解することが原則と考えられる。ただし、個々の掘削工事の場所の事情に応じて、異なる区域の規制基準を適用することも認められ得る。

具体的な手続は、騒音・振動を一定基準以下にすることを許可条件とし、工事中に基準を超える騒音・振動の発生が判明した場合は、行政指導による改善措置(工事方法の改良、工事時間の変更等)を求める、又は法9条第1項第4号に基づく許可の取消し及び同条第2項に基づく措置命令が可能である。

(2) 温泉の放流に伴う水質への影響

水質汚濁については、水質汚濁に係る環境上の条件につき人の健康を保護し、及び生活環境を保全する上で維持することが望ましい基準(以下「環境基準」という。)が定められている。

したがって、掘削工事中等の温泉の放流により、公共用水域等において、環境基準に定める項目の濃度が相当程度に上昇し、環境基準値超となる場合には、公益侵害に該当すると解することが可能である。

ただし、環境基準では、塩分濃度に関する基準値は定められていない。塩分濃度については、水道法(昭和32年法律第177号)の水質基準に塩化物イオン濃度の基準値が、農業(水稲)用水基準(昭和45年農林省公害研究会、昭和46年10月4日農林水産技術会議)に電気伝導度の基準値が定められている(別紙9参照)。このため塩分濃度については、水道法の水質基準や農業(水稲)用水基準を参考に、公益侵害に該当するかどうかを実際に発生する影響の程度に応じて判断することが考えられる。

具体的な手続は、動力装置の許可の条件として、掘削工事中等の温泉の放流に関

コメント [**事務局27**]: 温泉法

(許可の取消し等)

第九条 都道府県知事は、次に掲げる場合には、第三条第一項の許可を取り消すことができる。

四 第三条第一項の許可を受けた者が第四条第三項(第七条の二第二項において準用する場合を含む。)の規定により付された許可の条件に違反したとき。

2 都道府県知事は、前項第一号、第三 号又は第四号に掲げる場合には、第三条第 一項の許可を受けた者に対して、温泉の保 護、可燃性天然ガスによる災害の防止その 他公益上必要な措置を講ずべきことを命ず ることができる。

コメント [事務局28]: 委員指摘事項

法第9条第2項に基づく措置命令の記述は 不要でしょうか?

(対応)

ご指摘に基づき加筆修正しました。

して、公共用水域等への影響がない場所への放流を求めることや、影響があり得るのおそれがある場所に放流する場合には継続的な水質のモニタリングと公益侵害となる程度の影響が発生した場合のには放流方法の変更を求めること等が考えられる。なお、これらの条件は、許可の対象である動力の装置の完了後に行うものであるため、条件違反があっても許可の取消しはできないことに留意が必要である。

なお、類似の例として塩分を含む温泉の放流に伴う水質への影響を調査した例としては、別紙10「沖縄県宮古島市における塩化物イオン濃度の上昇に係る原因究明調査事例」がある。

(3) 地盤沈下

地盤沈下については、その発生のおそれがある地域において、工業用水法(昭和 31 年法律第 146 号)及び建築物用地下水の採取の規制に関する法律(昭和 37 年法 律第 100 号)により、地下水の採取に対する規制が行われている。規制基準は、ストレーナーの位置及び揚水機の吐出口の断面積により定められている。なお、これらの法律で採取が規制される「地下水」からは、温泉は除かれている。

また、<u>自治体においては独自に</u>、地方公共団体の</u>条例等による地下水の採取に対する規制が行われている場合も相当数ある。

一般に、温泉は地下水と採取の深度が異なり、採取量の面からも多くはないため、 地盤沈下のおそれは小さいと考えられるが、地下水の採取に対する規制が行われて いる地域では、地盤沈下や地下水採取の状況等を踏まえ、温泉の採取を地下水の採 取に類似した行為として捉え、地下水の採取に対する規制基準をそのまま 援用する ことも不当とは言えない。

具体的な手続は、ストレーナーの位置、揚水機の吐出口の断面積、採取量等の何の項目に着目した規制を行うかで異なるが、掘削又は動力装置等の許可に条件を付することが考えられる。いずれにしても、地盤沈下の特性からみて個々の掘削等の事情に応じた対応は不要と考えられるため、事前に審査基準を定め明らかにしておくことが適当である。

地盤沈下の防止を理由に、温泉の採取の規制を行っている例としては、別紙11 「動力装置の許可の審査基準(東京都)」の例がある。 コメント [事務局29]: 下記の記載との整合性は図った。本部分の記載はあくまで掘削工事中等の話。

「法上、許可の対象となった掘削等の完了後には行うことはできない。掘削等の完了後に実施すべき内容については、各都道府県が独自に定める条例、業者と締結する協定等の手法により、掘削等完了後に法とは別に定められた内容の履行を担保することは可能と考えられる。」

コメント [事務局30]: 委員指摘事項 援用するでよいか?

(対応)

基準をあてはめる話なので「援用する」の まま。

第六 その他

温泉資源の保護及び公益侵害のおそれに対する的確な対応を図るため、また、関係者や国民に対し所要の対策等について協力を求めるためには、温泉の湧出量、温度及び水位等のモニタリング並びに温泉に関する多種多様なデータの収集・整理及び解析を推進するとともに、こうしたデータの公表を行うことが極めて重要である。

また、科学的なデータだけでなく、法に関する<u>事務処理</u>運用事例の体系的な収集 及び法学的な面からの議論・研究を推進することが、関係者や国民の温泉行政に対 する理解を深めることにつながると考える。

他方、都道府県においてもこれまで以上にデータの収集・整理及び解析や法的議 論を進める必要がある。

これらを踏まえ、環境省では平成21年3月に策定した温泉資源の保護に関するガイドラインにおいて示された課題について検討を行った。以下にその検討内容を記載する。

1. 大深度掘削泉について

(1) 大深度掘削泉の資源的特性

大深度掘削泉の定義については、各都道府県の地域の特性や実情により異なっている。ここではおおむね 1000m以上の掘削を行っているような掘削源泉に対して大深度掘削泉と定義する。

大深度掘削泉に特化した調査事例はまだ少なく温泉の賦存量に関わる詳細な地質・水理データの情報は少ないが、大深度掘削泉では、掘削後数年で湧出量や泉質等の状況が大きく変化する事例がいくつか報告されている(別紙4参照)。この根本的な原因としては、短期間の揚湯試験や影響調査では、適正揚湯量の判断が正確に行えない場合があり、過剰揚湯となっているケースが多いためである。地層の透水性が低く、停滞性の温泉(化石水等)を採取している場合、水位の安定を得ることが困難な場合もあり、適正揚湯量の判断が難しい特徴がある。

また、大深度掘削泉における揚湯試験(集湯能力調査)及びおよび影響調査については、安定水位を得て影響の確認を行うまでに、一般的な大深度掘削温泉以外との場合と比較して長期間を要することが多い多く、。また、試験日数も一般的な温泉の場合と大深度掘削泉以外と比較して長期の日数を要する。なお、採取開始後においても、温泉資源動向把握のためにモニタリングを実施し、その結果に基づいの動向に応じて、場場量(採取量)について温泉資源保護に資するよう採取量の調整・

管理を行うことが重要であり、必要に応じて当初に設定された揚湯量(採取量)を 見直すことがも求められる。 資源保護のために適宜、適正な揚湯量に見直すことが 重要である(別紙8参照)。

(2) 大深度掘削泉の採取に伴う地盤環境への影響実態

温泉採取が地盤沈下を引き起こしたとされる事例はほとんどないと考えられる。 しかしながら、温泉の採取量は地上に揚水又は揚湯される地下水全体量のうち約1 割程度を占めていることに鑑みれば、一部では地盤沈下の原因に温泉が関係する可能性もあると指摘されている。地盤沈下が問題となっている地域では、既に地盤沈下に対する条例等も存在するが、広域で過度な水位低下が発生しないよう温泉も対策が必要とされる場合もある。

(3) 大深度掘削泉における揚湯試験(集湯能力調査)

特異な水位変化をきたす場合、段階・連続揚湯試験結果による解析ができない場合は、別紙5「動力装置の際の影響調査実施手法及び揚湯試験実施手法」を参考に試験日数を長くすること、回復試験結果を<mark>参照参照とすることにと、他の規制や基準を活用すること等により総合的に解析することが望ましく、何らかの他何らかの方法で適正揚湯量の検討を行うべきである。調査で明確に判断できない場合には、採取開始後の長期モニタリング結果に基づき、必要に応じて指導を行うことも考えられる。</mark>

コメント [事務局31]: パブリックコメント (対応)

ご指摘に基づいて修正しました。

(4) 大深度掘削泉<u>の特性把握等のにおいて</u>参考となる<mark>科学的地質・化学</mark>資料

大深度掘削泉に関する情報収集<u>は</u>が未だ不十分である。地域の大深度掘削泉の特性を捉えるには調査等を実施し、以下に想定される情報例えば下記のような情報 収集することで、大深度も含めた地域の温泉の賦存量等を把握することが望ましい。 **コメント [事務局**32]: パブリックコメント (対応)

ご指摘に基づいて修正しました。

① ①地質柱状図、検層図、揚湯試験結果、モニタリングデータ

地質柱状図は作成精度を高める工夫が必要(作成を地質関係技術者に付託すること等)であり、検層図、揚湯試験結果<u>及びモニタリングデータ</u>等各種データは、比較しやすいよう各都道府県において、統一様式<u>を用いる</u>等の整理しやすい形式にして、収集に努めるべきであるすることが重要である。

② その他(必要に応じて行う調査、分析結果等)

②その他(必要に応じて行う調査、分析結果等)

温泉の特性を詳細に調べるには下記のような資料化学資料、モニタリングデータも参考となる。

コメント [事務局33]: パブリックコメント (対応) ご指摘事項を参考に修正しました。

i 化学資料

- ・水質変化の時系列データ
- ・同位体分析等によるによるとは不必起源水の推定
 - ・温泉水の年代測定結果<mark>等</mark>

等 ii ・ エニタリングデータ

2. 未利用源泉について

(1) 未利用源泉の問題

現在、温泉を利用せずに河川等に放流している場合(未利用放流源泉)が存在する(自然湧出泉は除く)。これは温泉資源保護の観点だけでなく、含有成分、高温等により河川等の水質、生態系等へも影響があると考えられる。加えて、温泉の掘削等許可申請の処分に際して、既存の温泉のゆう出量等に影響を及ぼすか否かを考慮する必要があることから、未利用源泉の存在が都道府県知事の許否の判断の際に考慮する事項となる場合もある。

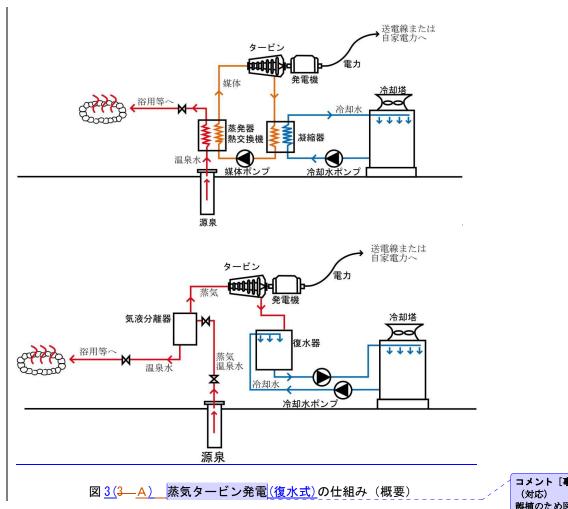
(2) 未利用源泉における指導の在り方

現在、未利用源泉に対する調査は現状で十分ではなく、その対策等を実施するに <u>当たってあたって</u>は、その実態を把握する必要がある。利用されずに長期間放置されている場合は、温泉資源の保護、河川の水質の汚染防止及び可燃性天然ガス等^(※) による事故の防止等という観点からは、未利用放流源泉は<u>直ちにただちに</u>放流を停止させることが望ましい。また、将来にわたって温泉の採取を行わない場合は、土地掘削者、温泉採取者等に対し埋め戻しを指導することが望ましい。こういった観点からも、都道府県担当者は未利用放流源泉の成分や放流状況を把握しておくことが重要である。なお、未利用源泉の既存源泉としての取り扱いに関しては第二3.3-1 (3) 距離規制の起点となる「既存源泉」と未利用源泉等の関係も参照とすること。

※可燃性天然ガスによる災害を防止するため、温泉採取の事業廃止の届出に関する規定が設けられている(法第14条の8第1項)が、改正法の施行前(平成20年10月1日)に温泉採取の事業廃止をしている場合には、本規定は適用されないため、可燃性天然ガスの噴出のおそれがある場合は指導による安全な埋め戻し等の早急な対処が必要である。

3. 近年の温泉利用形態について

(1) 温泉を用いた発電


環境省では温泉資源の保護を図りながら再生可能エネルギーの導入が促進されるよう、地熱発電の開発のための温泉の掘削等を対象とした「温泉資源の保護に関するガイドライン(地熱発電関係)」を平成24年3月に策定した。これは現在稼働している地熱発電所に相当する規模の地熱発電の一般的な開発段階における考え方を示したものであるが、本項目ではそれよりも小規模な温泉を用いた発電(以下「温泉発電」という)について記載する。

温泉発電は既に湧出している温泉を浴用可能な温度 (50℃程度) まで冷ます温度 差のエネルギーを用いて発電を行う場合もあり、このような場合では既存の温泉を 活用し、二酸化炭素排出量の少ない発電を天候等に左右されずに発電することが可能となる。

温泉を利用する発電には主に以下の方式がある。

- ・ 蒸気タービン発電 (フラッシュ発電) (図 3(A))
- バイナリー発電 (図 3(B))

この中でも「バイナリー発電」は、温泉井戸から蒸気が湧出しない、あるいは弱い勢いの蒸気のみが湧出するといった蒸気タービン発電ができない場合に用いられる発電方式である。今後、温泉発電施設は増加する可能性があり、様々な知見が蓄積されていくと考えられる。温泉発電は、浴用利用等と比較して高温かつ多量の温泉を必要とするため、新規掘削による発電の場合や採取量を増加させる等の場合には事前の賦存量の把握などの調査及びおよび発電開始前後のモニタリング等が持続的に利用するために重要となる。地域の特性や実情に沿った温泉資源の保護の観点からも、必要に応じて都道府県は温泉発電に関する知見を収集することが重要である。

コメント [事務局34]: パブリックコメント・委員 (対応)

製植のため図面差し替えを行いました。 タイトルを変更しました。

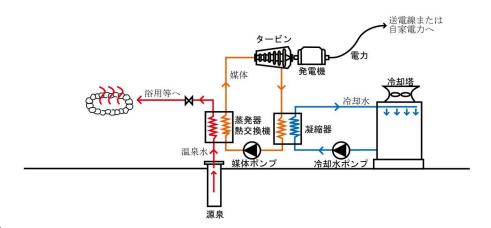


図 <u>3(4—B)</u>バイナリー発電の仕組み(概要)

Dickson and Fanelli 著 日本地熱学会 I G A 専門部会 訳・編 「地熱エネルギー 入門」を参考に作成

備考

・平成19年度温泉資源保護ガイドライン検討会委員名簿(50音順)

池田 茂 東京都環境局自然環境部水環境課長

板寺 一洋 神奈川県温泉地学研究所 主任研究員

嶋田 純 国立大学法人 熊本大学大学院自然科学研究科 教授

高橋 保 財団法人 中央温泉研究所 副所長

〈座長〉田中 正 国立大学法人 筑波大学大学院生命環境科学研究科 教授

原田 純孝 国立大学法人 東京大学社会科学研究所 教授

船田 一夫 群馬県健康福祉局薬務課長

(役職は平成19年度当時のもの)

・平成25年度温泉資源保護ガイドライン検討会委員名簿(50音順)

秋田 藤夫 地方独立行政法人 北海道立総合研究機構環境・地質研究 本部企画調整部長

阿部 雅弘 秋田県生活環境部自然保護課長

板寺 一洋 神奈川県温泉地学研究所 主任研究員

交告 尚史 国立大学法人 東京大学大学院法学政治学研究科 教授

須野原 修 群馬県健康福祉部薬務課長

〈座長〉田中 正 国立大学法人 筑波大学名誉教授

由佐 悠紀 国立大学法人 京都大学名誉教授

(役職は平成25年度時のもの)

• 参考文献

石川理夫(2007)温泉資源保護をめぐる各都道府県の現状と取り組み,温泉地域研究,第8号.

環境省 (2000) 平成12年度 温泉の大深度掘さくの基準作成等検討調査,委託先:日本温泉協会.

水収支研究グループ編 (1973) 地下水資源学 - 広域地下水開発と保全の科学, 共立出版.

水収支研究グループ編 (1993) 地下水資源・環境論ーその理論と実践, 共立出版.

農業農村整備事業計画研究会編(2003)農業農村整備事業計画作成便覧,地球社.

山本荘毅(1962)揚水試験と井戸管理、昭晃堂、

山本荘毅(1983)新版地下水調査法,古今書院.

平成 25 年版「日本の水資源について」, 国土交通省水管理・国土保全局水資源 部. 改訂地下水ハンドブック編集委員会編(1998)改訂地下水ハンドブック,建設 産業調査会.

山本荘毅責任編集(1986),地下水学用語辞典,古今書院.

大里和己(2012)温泉発電,第 52 回温泉保護・管理研修会テキスト,p8-1~ p8-40.

公益社团法人日本地下水学会編(2011)地下水用語集,理工図書.

Mary H. Dickson, Mario Fanelli 著 日本地熱学会 IGA 専門部会 訳・編(2008) 地熱エネルギー入門【第2版】.

http://grsj.gr.jp/iga/bukai-files/what-is-geothermal-j-2008.pdf