Innovative System for the E-Scrap Treatment at Naoshima Smelter and Refinery

Masayuki Kawasaki
Mitsubishi Materials Corporation

for Workshop 2014 of the Asian Network for Prevention of Illegal Transboundary Movement of Hazardous Wastes
Copper Smelters of Mitsubishi Materials Corp.

Naoshima (E’Cu:20,000t/m)

1917 Establishmet
1974 Commencement of 1st Mitsubishi Process
1989 Commencement of Precious Metal Process
1991 Commencement of Larger Mitsubishi Process
2002 Certificate the “Eco-Island Naoshima”
2004 Introduce the Incinerating Process

Onahama (E’Cu:25,000t/m)

1963 Establishment
1965 Commission of #1 Reverberatory Furnace
1973 Commission of #2 Reverberatory Furnace
1980 Treatment of used tire
1993 Treatment of the shredder dust
2007 Introduce the Mitsubishi S-Furnace
General Flow of the Copper Smelter and Refinery

Raw Materials
- Copper Concentrate
- Silica Sand

Matte Production
- Flash Furnace
 - 1250°C

Blister Making
- P.S. Converter

Mitsubishi Continuous Process

Anode Production
- Anode Furnace
 - 1200°C

Electrolytic Refining
- 65°C
 - Tank House

Differentiate

Electrolytic Copper

Slime

Precious Metal Process
Mitsubishi Continuous Copper Smelting Process

\[\text{S-F’ce: } \text{CuFeS}_2 + O_2 + \text{SiO}_2 \rightarrow \text{SO}_2 + \text{Slag FeO-SiO}_2 + \text{Matt Cu}_2S-\text{FeS} \]

\[\text{C-F’ce: } O_2 + \text{CaCO}_3 \rightarrow \text{SO}_2 + \text{Slag CaO-Fe}_3\text{O}_4-\text{Cu}_2\text{O} + \text{Metal Cu} \]

Large solubility of Fe\(_3\)O\(_4\)
Electrolytic Refining

-0.26 | Ni/Ni$^{2+}$
-0.14 | Sn/Sn$^{2+}$
-0.13 | Pb/Pb$^{2+}$

0.21 | Sb/SbO$^+$, Bi/Bi$^{3+}$
0.25 | As/AsO$^+$
0.34 | Cu/Cu$^{2+}$
0.47 | Te/TeO$^{4-}$

0.74 | Se/H$_2$SeO$_3$
0.80 | Ag/Ag$^+$
0.83 | Pd/Pd$^{2+}$
1.19 | Pt/Pt$^{2+}$
1.52 | Au/Au$^{3+}$

E^o (V vs. SHE)

<table>
<thead>
<tr>
<th>Anode</th>
<th>Cathode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni$^{2+}$</td>
<td>Cu$^{2+}$</td>
</tr>
<tr>
<td>SnO$_2$</td>
<td>BiAsO$_4$</td>
</tr>
<tr>
<td>PbSO$_4$</td>
<td>SbAsO$_4$</td>
</tr>
<tr>
<td>Coating</td>
<td>Suspended Solid</td>
</tr>
<tr>
<td>Peeling</td>
<td>(to Slime)</td>
</tr>
</tbody>
</table>

Suspended Solid (to Slime)

Cu$_2$Te, Ag$_2$Se
Pd, Pt, Au

Slime

Electrolytic Refining
Precious Metals Process

- De-copperized slime
- Flotation
- Tale
- Concentration
- Wet chlorination
- Se Reduction
- Se distillation
- 3N-Selenium
- Au Reduction
- Solvent Extraction
- Drying
- Washing
- Roasting and smelting furnace
- Cupellation furnace
- Silver electrolysis
- Silver electrolysis slime

Recovery of platinum and palladium

Favorable for Recycling

Mitsubishi Materials
Advantage of the Mitsubishi Process

1. Top Blowing Technology
 - High productivity
 - Chemical equilibrium condition
 - Very low copper loss

2. Lance and lumpy chute
 - Blowing air makes strong turbulence.
 - Vary shape of the scraps can be treated.

3. Continuous operation and closed melt launder.
 - Minimum fugitive gas
 - Sulfur recovery ratio is over than 99.99% !!
Combination of the Incinerator

- Effective usage of the melting capacity by reducing the E-Scrap volume.
- Continuous treatment of the Slag/Metal in the Mitsubishi Process.
- Minimize the metal loss by linkage treatment in the same plant area.

E-Scrap → Incinerator → Slag/Metal → Mitsubishi Process → Electrolytic Refinery → Precious Metals Plant

LBMA Certificated Au,Ag LPPM Certificated Pt,Pd

Incinerating Plant in Naoshima
Customer Satisfaction — high reliability sampling

E-Scrap → Primary Crusher → Divider → Secondary Crusher → Rotary Divider → Analyze

Low Grade: < 20 mmφ < 10 mmφ < 5 mmφ
High Grade: < 20 mmφ

E-Scraps Primary Crusher Secondary Crusher
E-Scrap from all over the World

World E-Scrap Demand
Domestic: 84,000tpa Overseas: 455,000tpa

Collecting amount of Mitsubishi Materials
Domestic: 25,700tpa Overseas: 68,100tpa
(from 30 countries, 124 plants)
Conclusion - Conviction of the E-Scrap Business Global Player

Mitsubishi Materials Corporation established strong E-Scrap treatment business with environmental friendly process.

• Zero Emission
 – Recover the metals / precious metals under the low metal loss.
 – All of the materials are fixed into the product.
 – Keep the strict environmental regulation in Japan.

• Advanced Technology
 – High efficiency treatment at the Mitsubishi Process
 – Combination of the Incinerator and the Mitsubishi Process

• Customer Satisfaction
 – Established the high reliability sampling technology.
 – Developed the automatic sample preparation for the assay.
 – Minimize the environmental impact by the Mitsubishi Process.