Mainstreaming Climate Change Adaptation in Coastal Management Practice in Small Islands

Leonard Nurse CERMES, UWI-Cave Hill, Barbados leonard.nurse@cavehill.uwi.edu

Development challenges add complexity to risk...

Temperature Change (Reconstructed) for Northern Hemisphere Since 2000 AD

Source: Copenhagen Diagnostics, 2009

Sea Level Rise Projections

•IPCC AR4 projected a maximum sea level rise of 59 cm higher than the Pre-Industrial mean.

•Current projections are that by the end of this Century, global sea levels could be as much as 1.5 m higher than the Pre-industrial mean.

How Would Climate Change Affect Wave Energy?

Wave Energy (E) is proportional to the amplitude (α) of wave
α is also partly controlled by wind speed (V)

•As a general rule, *E* increases *exponentially* with increasing *V*• *E* also increases with *water depth* (*d*)

Wave Energy

 Energy (E) is the total of kinetic and potential energy in the wave → measure of capacity of the wave to perform 'work' along the coast:

 $E = \sum E_k + E_p$ Erosion/transport/deposition

- Water depth (d) and wave height (H) are also important controls on wave energy.
- The total energy in a wave is proportional to the square of the wave height ... 2 X H increases E by a factor of 4.
 - **Example:**
 - If energy in a wave of $H = 4m = 1200 \text{ cal/m}^2 \text{ ocean surface}$
 - Energy in a wave of $H = 8m = 4800 \text{ cal/m}^2 \text{ ocean surface}$
- Recall that *E* increases <u>exponentially</u> with increasing wind speed.
- IPCC AR4 projects 5-10% increase in maximum hurricane wind intensity by 2050's.

Regions of Highest Risk (IPCC AR4, 2007)

<u>Africa</u>: increasing H₂O scarcity & food insecurity; biodiversity loss in East- and South Africa; higher malaria incidence in highlands of East Africa <u>Asia</u>: lower crop yields in central and southern areas by 2050s; increased H₂O scarcity in east and south-east; higher incidence of flooding in mega-deltas (e.g. Ganges, Mekong); rapid glacier melt in Himalayas

Pacific

Atlantic

Latin America: loss of biodiversity in Amazonia; coral bleaching; salinization & desertification → declining crop yields especially in semi-arid areas; retreat of Andean glaciers

Caribbean

Indian Ocean

<u>Small Islands</u>: coral bleaching; SLR →damage to coastal ecosystems & infrastructure; more intense storms; greater H₂O stress; damaged infrastructure

Water Level Changes and Coastal Erosion

•Accelerated beach erosion will pose challenges for low-lying SIDS. While some present-day erosion is man-induced (sand mining, reef degradation), studies show that SLR can be a major contributory factor.

▶ Higher H₂O Levels → Higher
 Wave Amplitude → Increased
 Wave Energy = More Coastal
 Erosion

 Vulnerability assessments for various Caribbean islands (e.g. Barbados, Guyana & Grenada) show that elevated sea levels amplify coastal erosion. In October 1995, hurricanes Luis and Marilyn made landfall at St. Kitts within 2 weeks of each other

Prior to storms, the beach extended 15 m seaward of this marine stack.

Will Corals Be At Serious Risk?

•Bleaching of corals triggered by high SSTs –at current GHG emission rates bleaching could become an annual event by 2025-2050.

At 560 ppm CO₂ some corals likely to stop growing → little CaCO₃ accumulation.
14-30% decline in calcification rates by 2050

'Cultural Assets' Are Also At Great Risk

Inundated burial ground, Fiji Photo credit: Justin Hickes/Valerie Chute http://www.manystrongvoices.org/news/443.as

Laying the Foundation for Mainstreaming CC in ICM

Managing in the Face of Uncertainty

- Resource constraints dictate that it impossible to fill all knowledge & information gaps at once → prioritization:
 - Allows greater focus on research that help us to better define the really key concepts relating to vulnerability of coastal systems to CC, e.g. *risk, sensitivity.*
 - In regions such as the Caribbean, where adaptive capacity is considered low →risk and sensitivity are vital considerations in making decisions about future vulnerability, likely impacts and response strategies.
 - The extent to which mainstreaming of adaptation can be effectively achieved will be partly dependent on how well we can (i) quantify and (ii) represent *risk* and *sensitivity* in the CZM decisions we make.

'No Regrets' Measures are Integral to Mainstreaming <u>Example : Implementation of adequate *coastal setback* limits:</u>

- Provide effective buffer between the sea and the backshore;
- Ensure a minimum swash area → facilitates an uninterrupted cycle of shoreline advance and retreat. Important because:
- ✓ Wide beach is best mechanism for efficient absorption, reflection and dissipation of incident wave energy
- ✓ A wide swash zone renders the beach less susceptible to scour from extreme events
- Stringent application of setbacks is known positive factor in natural beach recovery after storms, swells, etc.
- Setbacks constitute a form of *risk reduction* → provide defense/protection from incident waves.

probability of abrupt rather than slow, onset change , i.e. 'surprises'.

Mainstreaming can be a 'hedge' against the effects of such highly probable, but unpredictable *non-linearities*.

Identification of Strategic Entry Points in Planning Process

Set goals at different scales → short-, medium- and longterm ; national, sector & subnational

Evaluate national & local capacities →needs, barriers, coping strategies, knowledge base etc Allocate resources → finance, information, personnel, equipment & technology, regulatory and legal support, etc.

Inclusive process: agreed goals → based on equity, gender, consideration of most vulnerable groups

CC impacts strongly felt at local level ; livelihoods affected →mainstreaming must link directly with local conditions.

Evidence-based measures → apply information from all sources, including local knowledge Tracking Progress→ Monitoring

Indispensable element of mainstreaming → Are strategies working? Are objectives being met? Are there barriers that were not previously identified? What adjustments need to be made?

Thank You

leonard.nurse@cavehill.uwi.edu
http://cavehill.uwi.edu/cermes