

Utilizing species data to inform cost effective site level conservation: ASEAN Experiences

Some common Questions

- Where do we establish protected areas?
- What data sets are essential to PA establishment and management?
- How do we use species information to inform management practice?
- Are there examplese where these have worked?

Where do we establish protected areas?

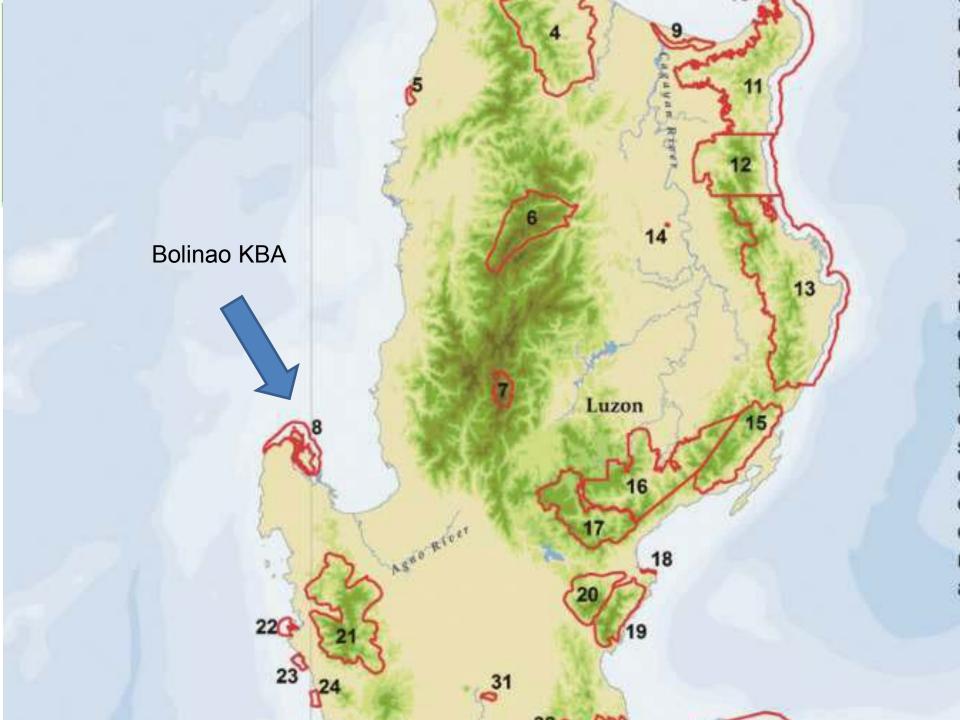
- Vulnerable sites are those holding one or more globally threatened species
- Irreplaceable sites are those holding a significant proportion of the global population of a species

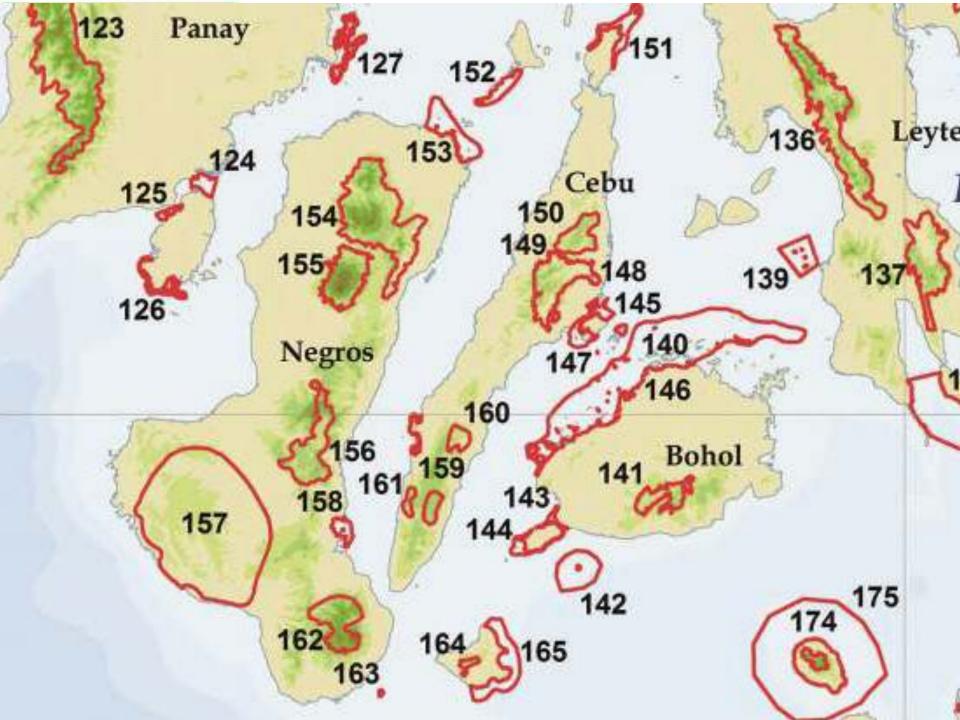
Graham, G.J. 2007. Key biodiversity areas as globally significant target sites for the conservation of marine biological diversity. Aquatic Conserv: Mar. Freshw. Ecosyst. 16pp.

Where do we establish protected areas?

- Areas (aquatic) characterized by high productivity and/or high biodiversity, established to protect breeding and juvenile fishes, guard against overfishing and ensure a sustainable supply of fish stock
- In degraded area in order to promote the rehabilitation and recovery of degraded coral reefs

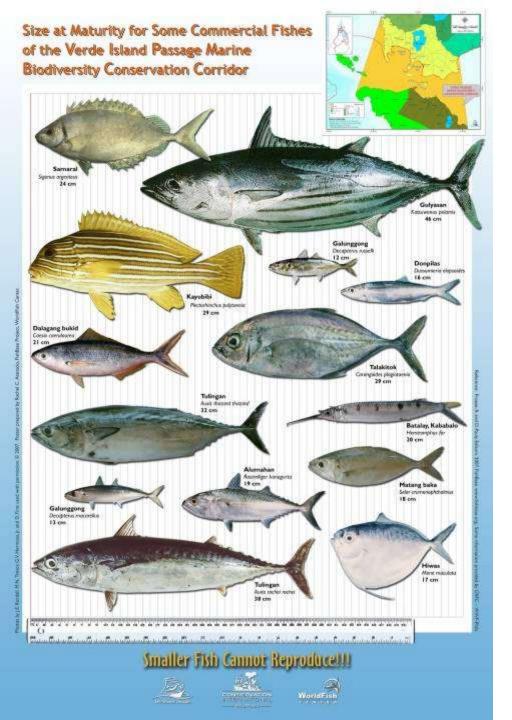
Casia, M. et al. 2000. Introduction to the establishment of a community-based marine sanctuary. USAID - CRM Document No. 24-CRM/2000.


Use of species information to inform management practice: Trigger Species


Analysis of trigger species based on

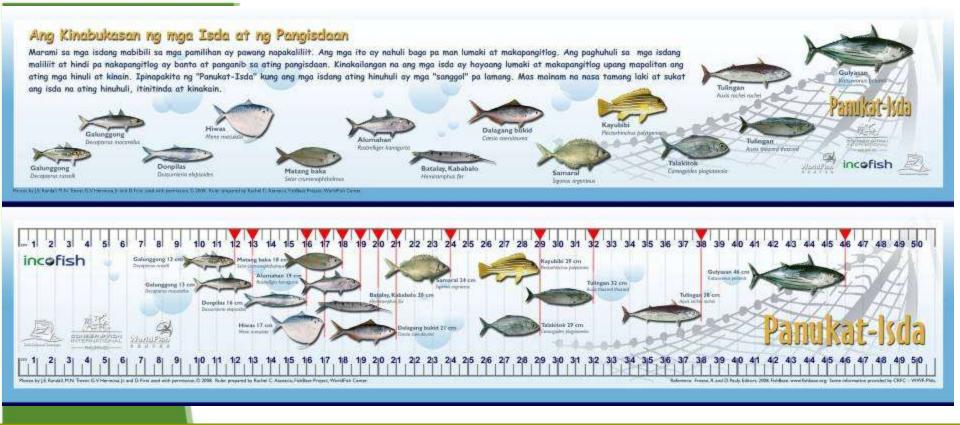
- literature review, expert validation
- Species occurrence and distribution data were obtained from survey/assessment reports, scientific reports, published literature, museum records and expert accounts
- Point locality data for each trigger species were then plotted on a map and overlaid with data for other trigger species belonging to the same taxonomic group.
- KBA boundaries were delineated primarily based on available information (IBA, CPA), on habitat requirements and affinities of the trigger species.

Use of species information to inform management practice: Trigger Species


ID	Name	Location					Estimated Area	Trigger encoice	
		Region	Province	Municipality	Long	Lat	(has)	Trigger species	
	MARINE KBAs								
1	Bolinao Peninsula	I	Pangasinan	Bolinao, Anda	119.979015	16.354908	13937.75	Goniastrea deformis (VU)	
								Nemenzophyllia turbida (VU)	
								Euphyllia paraancora (VU)	
								Euphyllia divisa (VU) - type locality	
								Pavona cactus (VU)	
								Acropora caroliniana (VU)	
								Porites eridarii (EN)	
								Acanthastrea nemprichii (VU)	
2	Northern Sierra	Π	Isabela	Palanan, Ilagan,	122.428786	17.206832	36849.06	Goniopora albiconus (VU);	
	Madre National			Divilacan,				Montipora vietnamensis (VU);	
	Park			Maconacon				Seriatopora aculeata (VU)	
3	Salvador Island	=	Zambales	Masinloc	119.901385	15.520949	323.89	Turbinaria peltata (VU)	
								Galaxea astreata (VU)	
4	Grande Island	=	Zambales	Subic	120.226868	14.767786	148.94	Catalaphyllia jardinei (VU)	
5	Baler	=	Aurora	Baler	121.603417	15.759978	583.24	Pavona decussata (vu)	
6	Jomalig Island	IV	Quezon	Burdeos	122.417733	14.698865	2731.51	Hydnophora bonshi (EN)	
7	Padre Burgos	IV	Quezon	Padre Burgos	121.845200	13.888058	1732.91	Goniopora burgosi 🙌	
8	Pagbilao	IV	Quezon	Pagbilao	121.750279	13.905579	1023.95	Catalaphyllia jardinei (VU)	
9	Mabini	IV	Batangas	Mabini	120.890781	13.715815	525.24	Alveopora excelsa (EN)	
								Alveopora minuta (EN)	
								Hydnophora bonsai (EN)	
								Lobophyllia <mark>serratus (</mark> EN)	
								Montipora setosa (EN)	
								Pectinia maxima (EN)	
								Porites eridani (EN)	
								Porites ornata (EN)	

Mabini & Tingloy KBA

.6



Species data for PA management: LfM

Promote fish harvests at sizes beyond their length at first maturity.

This poster shows the length at first maturity of commercially important fish in the Verde Island Passage. Fish represented here were sourced from the information collected in the surveys and through market interviews

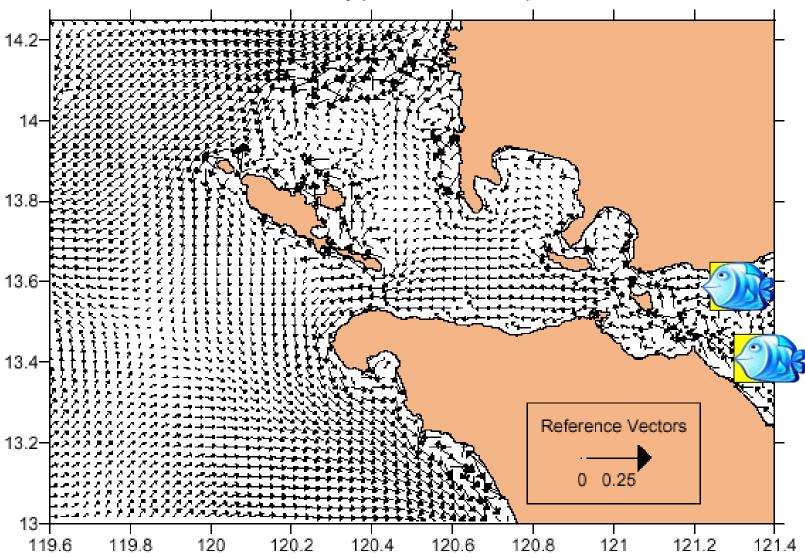
CI and FishBase collaboration

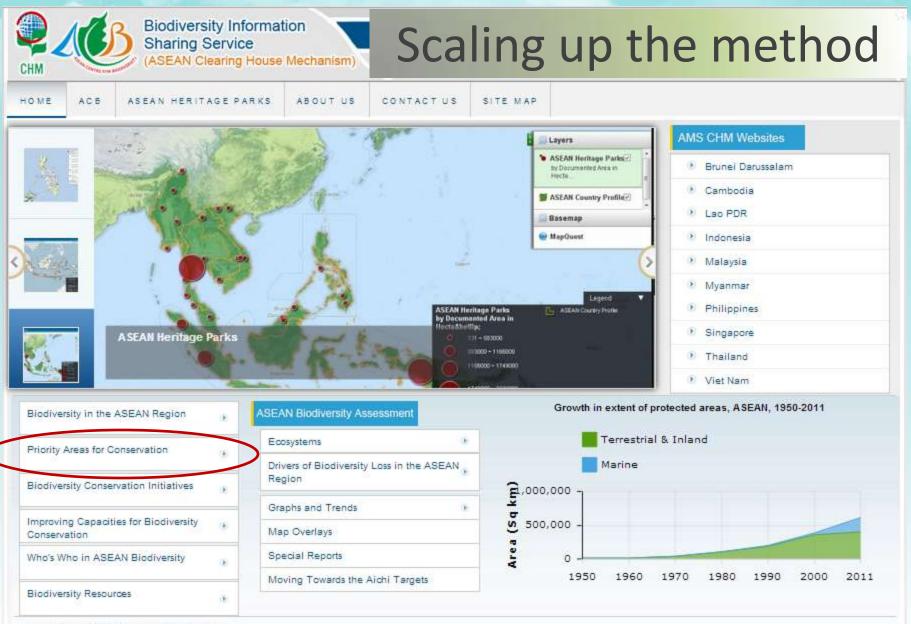
In collaboration with the INCOFISH project based at the WorldFish Center, the use of *Panukat Isda*, a simple fish ruler to help fishers measure the minimum length of fish ready for harvest is advised. The ruler has been introduced at some of the enforcement training workshops. A useful tool for advanced fisheries management, *Panukat Isda* helps ensure that we have more fish for the future by simply avoiding catching and eating baby fishes.

Scaling Up: Where do we establish protected areas?

- Abundance and species richness in seagrass beds in near mangroves was at least 2x compared to seagrass beds that were distant from mangroves
- Mangroves may enhance fish assemblages of nearby seagrass beds by increasing the availability of food and shelter
- Seagrasses play an important fish nursery role that can be enhanced by the close proximity of coral reefs and mangroves

Unsworth, R.K.F. 2008. High connectivity of Indo Pacific seagrass fish assemblages with mangrove and coral reef habitats. Mar. Ecol. Prog. Ser. Vol. 353: 213 - 224

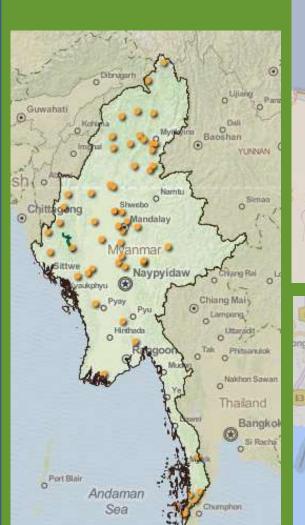

Mangrey Marfiner Rob Breafs for do Sisagrassa sin the ASEAN

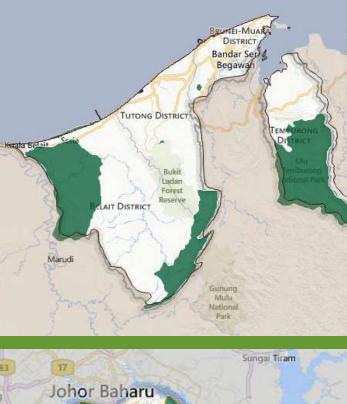

Unsworth, et. al. 2008. "Fish abundance and species richness in seagrass beds in close proximity to mangroves was at least 2x that found in seagrass beds that were distant from mangrove habitats"

Areas where all three habitats overlap (coral reef + seagrass + mangroves)

Use connectivity Pattern information to increase data resoluton

January (NE winds + HYCOM)

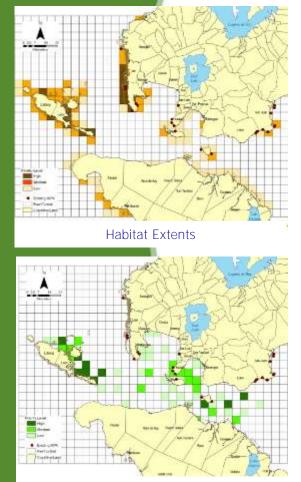




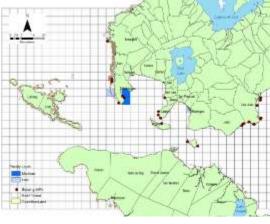
ASEAN CENTRE FOR BIODIVERSITY

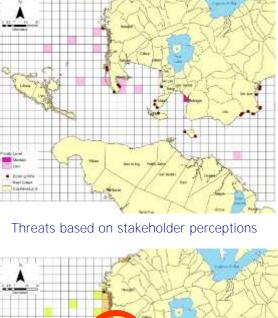
3F ERDB Building Forestry Campus, College, Laguna, Philippines 4031 Telefax: +83.49.5382885 | E-mail: contact.us@aseanbiodiversity.org Copyright @ ASEAN Centre for Biodiversity All rights reserved

Priority Sites for Conservation: using IBA points and polygons in **Myanmar, Brunei Darussalam, Singapore, Thailand**






Completing the Story


Replenishment Potential

MPA Status in the Verde Island Passage

Threats based on assessment

Best MPA Options

CI, UPMSI collaboration in the Sulu Sulawesi Seascape

Thank You!