22nd Asia Pacific Seminar on Climate Change, Hanoi, Vietnam "Measurement, Reporting and Verification (MRV) for Mitigation and, Monitoring and Evaluation (M&E) for Adaptation in the Asia Pacific Region" <Sofitel Plaza Hanoi - June 27, 2013>

MOEJ support for NAMA/MRV in Asian countries and Introduction of the NAMA Guidebook

-Bottom up approach taken in the MOEJ/OECC Capacity-building Programme-

MIGUEL JIRO OGAHARA, Senior Researcher Overseas Environmental Cooperation Center, Japan (OECC)

1. Support for NAMA / MRV in Asian Countries by the Ministry of the Environment, Japan

Background

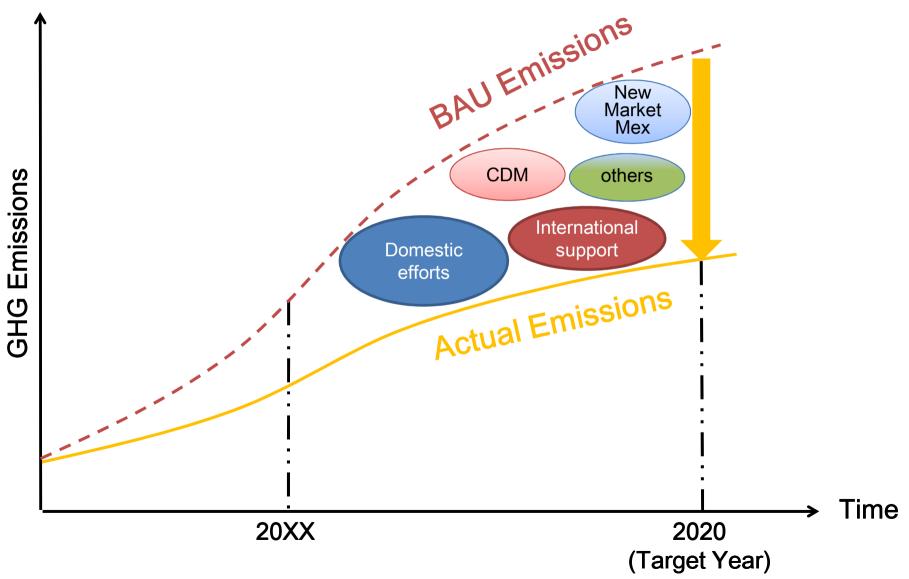
- In 2007, COP13 decided to start consideration on nationally appropriate mitigation actions (NAMAs) by developing countries in a measurable, reportable, and verifiable (MRV) manner, supported by technologies, financing, and capacity-building, followed by the Copenhagen Accord, the Cancun Agreement, etc.
- Ministries handling environmental issues in partner countries and the Ministry of the Environment, Japan (MOEJ), decided to cooperate on capacity building and joint studies on NAMAs in a MRV manner in different sectors according to priorities of host country.
- OECC acted as a joint Secretariat with host ministries, signed an Agreement in mid 2012.

Sample schedule of joint activities

Schedule on MOEC-MOEJ Cooperation on NAMAs								
	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Overall (WG Meeting)	х	Y	х	Y	х	Y	х	Y
Study on Baseline & NAMA Scenarios						\rightarrow	Wrap up	R
Draft Guidelines on NAMAs Selection				R and		\rightarrow	Wrap up	R
Draft Guidelines on MRV				Review		\rightarrow	Wrap up	R
Study on domestic institutional Arrangement				Work			Wrap up	R
Technology Information Study						\rightarrow	Wrap up	R
Study Tour to Japan			х					
Environmental Technology Mission from Japan						х		

* X: Cambodia-Japan Joint meeting, Y: Cambodia only

* R: Deliver a Report to OECC


NAMA capacity building outputs according to MOU

- Output 1: Identify BAU and NAMA Scenario
- Output 2: Implementation Plan for NAMAs
- Output 3: Report for MRV of NAMAs
- Output 4: Proposal of a Modalities for Domestic Institutional Arrangement for NAMA implementation
- Output 5: Collect information on appropriate mitigation technologies

2. OECC's approach to developing NAMAs in a MRV manner under the MOEJ Programme

Background of NAMAs in a MRV manner

Illustration of mitigation actions in relation to BAU

NB. The above graphic does not include how accounting of GHG should be sorted out, in relation to offset mechanisms.

Proposed steps for NAMA development

(1) Collection of Info on relevant policies and strategies

Collect and analyze relevant policy documents of development, climate change and related sector

> (2) Collection data for BAU in the sector

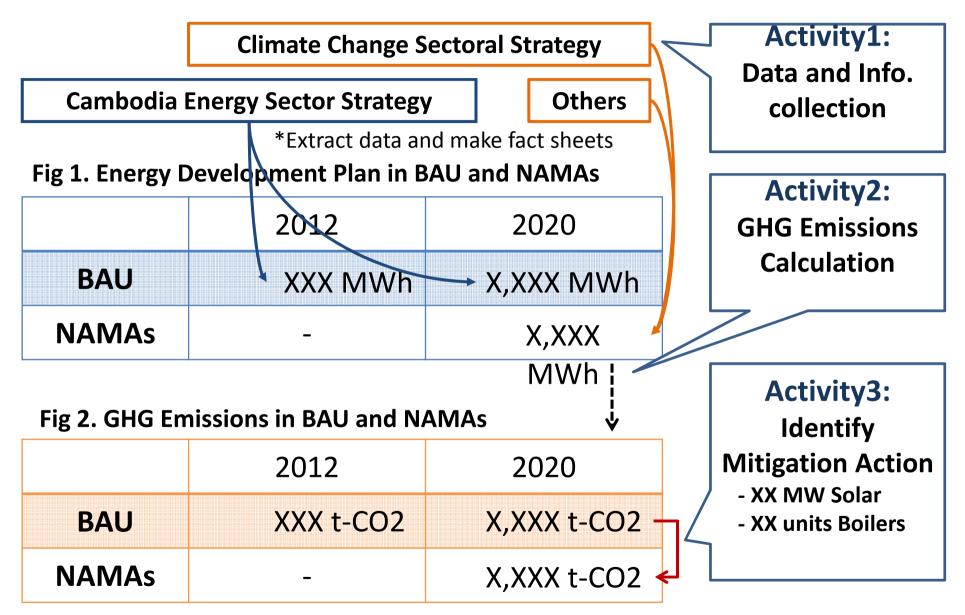
Collect data for calculating BAU emission with bottom-up approach (eg. List all individual landfills, and collect respective waste volumes in the waste sector)

(3) Quantification GHG emissions of BAU

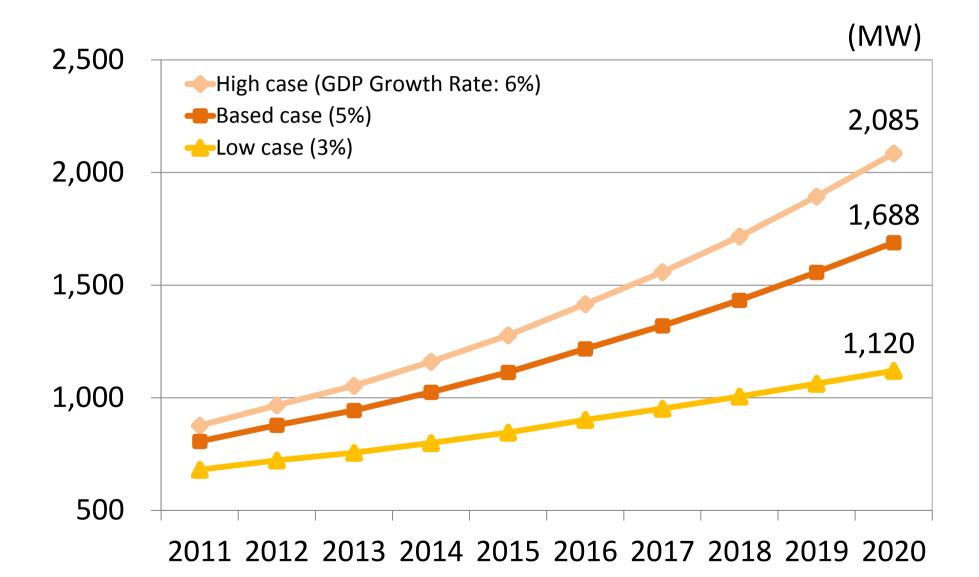
Quantify GHG emissions based on (2) data, and a) Identify the calculation formulas b) Calculate respective emission in BAU c) Aggregate respective emissions

(4) Examination and selection of NAMAs options

Select possible NAMAs options and technologies based on (1) policies and mitigation strategies and additional consideration.


(5) Quantification GHG emission reduction by NAMAs

Quantify GHG emissions with (4)NAMAs assumptions a) Set the calculation formulas b) Calculation c) Aggregate potential with reduction by NAMAs


> Low-carbon technology survey Examination MRV methods Capacity-buildings in a developing country for NAMAs implication 8

Source: OECC 2012

How we quantified emission reductions

BAU: Energy Demand Projection in County A

BAU: Power Development Plan in Country A

*Need to consider projects which may be developed in BAU out of the present plan.

No.	Project Name	Туре	Capacity (MW)	Year	Condition as of Dec. 2011	
1	XXXX	Heavy Fuel Oil	340	-		
2	ΥΥΥΥ	Coal	13	-	Operating	
3	ZZZZ	Hydro	13	-	Operating	
4	ΑΑΑΑ	Wood, Biomass	6	-		
5	Kamchay	Hydro	194	2012		
6	Kirirom III	Hydro	18	2012		
7	Stung Atay	Hydro	120	2012	Under	
8	Stung Tatay	Hydro	246	2013	Construction	
9	Lower Stung Russei Churum	Hydro	338	2013		
10	100 MW Coal Fired Power Plant	Coal	100	2013		
11	270 MW Phase 1 of the 700MW	Coal	270 2014	PPA singed		
	Coal Fired Power Plant	nt		~2015		
12	100 MW Coal Fired Power Plant	Coal	100	2016	PPA singed	
13	430 MW Phase 2 of the 700MW	Coal	430	2017	FS completed	
	Coal Fired Power Plant	CUai	430		i s completed	
	•••	Coal	α*	20XX	May be developed*	
	Total		2188+α			

Power Development Plan with mitigation options

No.	Project Name	Туре	Capacity (MW)	Year	
1	XXXX	Heavy Fuel Oil	340		Introduction
2	YYYY	Coal	13	-	of high-
3	ZZZZ	Hydro	13	-	•
4	AAAA	Wood, Biomass	6	-	performance
5	Kamchay	Hydro	194	2012	boiler
6	Kirirom III	Hydro	18	2012	
7	Stung Atay	Hydro	120	2012	
8	Stung Tatay	Hydro	246	2013	
9	Lower Stung Russei Churum	Hydro	338	2013	Promotion of
10	100 MW Coal Fired Power Plant	Coal	100	2013	renewable
11	270 MW Phase 1 of the 700MW	Coal	270	2014	energy
	Coal Fired Power Plant	COal	270	~2015	(hydro, solar,
12	100 MW Coal Fired Power Plant	Coal	100	20	
13	430 MW Phase 2 of the 700MW	Cool	420	017	biomass
13	Coal Fired Power Plant	Coal	430	_017	
	•••	Coal	α*	20XX	
	Total		2188+α		

GHG Emissions Reduction with mitigation measures

*All values are calculated on the assumption.

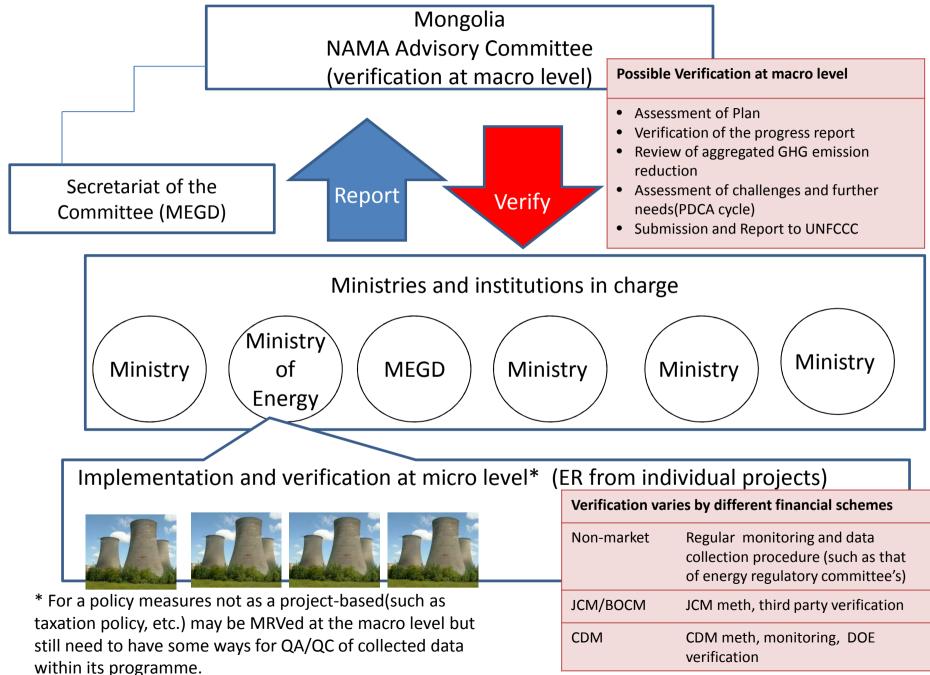
Mitigation measure	Calculation method	Emissions reduction
Introduction of high- performance boiler	Amount of energy conserved by high-performance boilers (50 kl oil-equivalent/unit) × Cumulative numbers of boilers introduced in target year 2020 (100 units) × Emission factor (2.62 tCO2/kl)	13,100 t-CO2
Promotion of renewable energy	The use of renewable energy in 2020 (1,000,000 MWh) × Grid emission factor (0.6257 t-CO2/MWh)	625,700 t-CO2

Elements of NAMA explained

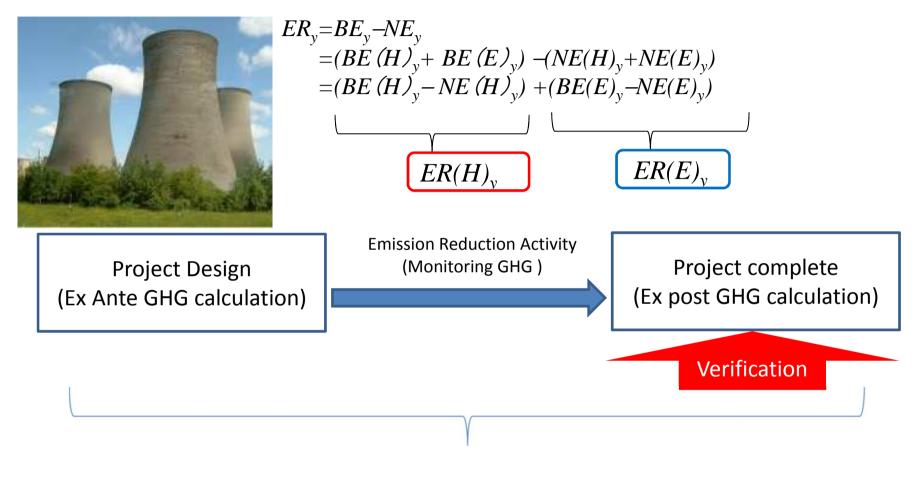
- Subject to <u>measurement, report, verification(MRV)</u> (differentiated MRVs for domestic and international finance)
- Supported by technology, financing, and capacity-building
- Aims (at least) at <u>deviation from business-as-usual emission (BAU) in</u> 2020
- Reported together with GHG Inventory in BUR and described <u>with</u> <u>quantitative goals and progress indicators</u>
- Encouraged to <u>link with low carbon development strategies and</u> planning

1/CP.13, 2/CP.15 Annex, 1/CP.16, and 2/17 and its Annex III (for detail slides 25 and later)

As long as with these elements, NAI Parties can decide NAMAs as they like, (while further elements may be agreed by the COP)


MRV for describing the international process

* Guidelines decided by 2/CP.17 Annex III


** Details are not yet decided (subject to further negotiations)

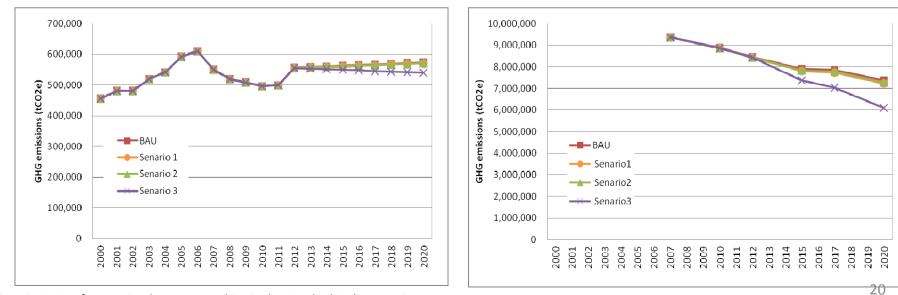
Possible Institutional Arrangement

MRV at Activity level (Project or entity level)

MRV

* Guidelines on methodologies are not decided by the UN

Preliminary results / outputs


- Identified <u>BAU and emission reduction potentials</u> (now thru 2020) by a bottom-up approach for quantifying GHGs
- 2. Identified useful <u>low carbon technologies</u> to be introduced for NAMAs
- Established an <u>inter-ministerial WG</u>, which may be a core group for national decision making process (and policy-level MRV)
- Elaborated <u>a possible mitigation action in a</u> <u>template</u>, which may be part of whole <u>implementation plan NAMAs</u>

3. Preliminary Results of Capacity-building Cooperation

Cambodia

Selected Sector: Agricultural Sector NAMAs: National Biodigester Programme Working Group: MOE, MPWT, MIME chaired by MOE DG Results:

- Calculated BAU and ER by NAMAs ex ante (Emission Reductions from Methane Reduction and NRB)
- Sorted out reporting procedure

(*) See Preliminary Results

CO2 reduction from non renewable biomass by different fuels

Lao PDR

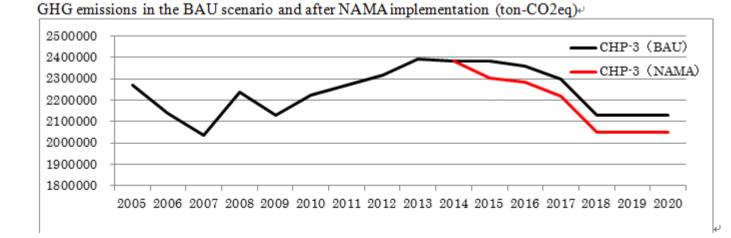
Selected Sector: Transport Sector

NAMAs: Replacement of conventional vehicle with EV Working Group: 7 Ministries participates, including MONRE, MPWT, MIME, MOIC, MOST, chaired by Results:

- Calculated BAU and ER by NAMAs ex ante
- Activity data (fuel economy data) originally collected and based on JICA Study
- Proposed institutional arrangements are planned to be a part of technical WG under the National Climate Change Committee

(*) See Preliminary
Results

Source: Basic Data Collection Study on Low-emission Public Transport System in Lao PDR, JICA, modified by OECC


	Motorcycle	Passenger car	Tuk Tuk / Mini bus	Song Thew / Middle size bus	Large bus	Total
Baseline Emissions						
Baseline fuel economy (km/liter)	40	13.0	20	6.5	2.5	
Baseline fuel economy (km/liter) (2020)	43.3	14.1	21.7	7.0	2.7	
Driving distance (km/day)	16	25	45	85	120	
CO ₂ emission factor (kgCO ₂ /liter)	2.18	2.18	2.70	2.70	2.70	
Days per year	365	365	365	365	365	
Baseline emission (tCO ₂ /year/vehicle)	0.3	1.4	2.0	11.9	43.8	
Project Emissions						
Driving distance (km/day)	16	25	45	85	120	
Project electricity economy (kWh/km)	0.080	0.130	0.130	0.310	1.000	
Grid electricity emission factor						
(tCO ₂ /MWh)	0.135	0.135	0.135	0.135	0.135	
Days per year	365	365	365	365	365	
Project emission (tCO ₂ /year/vehicle)	0.1	0.2	0.3	1.3	5.9	
Emission reduction (tCO ₂ /year/vehicle)	0.2	1.3	1.8	10.6	37.9	
Number of EV	698000	45000	12000	4000	1000	
					4	21
Total Emission Reduction (tCO ₂ /year)	161,204	56,280	21,065	42,537	37,887	318,973

Mongolia

Selected Sector: Energy Supply Sector NAMAs: Improvement of CHP Plants Working Group: MEDG, Ministry of Energy, other key institutes and experts, chaired by Climate Change Special Envoy Results:

- Calculated BAU and ER by NAMAs ex ante both for power and heat supplies for CHP3 and CHP4
- Sorted out reporting process of activity data (ie Energy Regulatory Committee)
- Discussed technology options for application in NAMAs, including process diagnosis in CHP

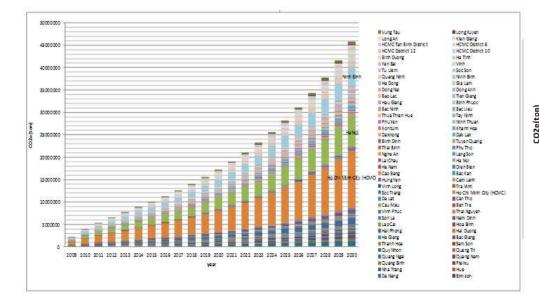
(*) See Preliminary Results

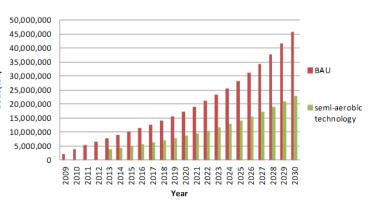
Diagnosis by energy technology experts from Japan at CHP

Viet Nam

Selected Sector: Waste Sector

NAMAs: CH4 Reduction from Landfill (semi aerobic technology) Working Group: MONREE, MOC, MPI, VEA, IMHEN, chaired by IMHEN


Results:


• Collected historical activity data from all landfills in Viet Nam

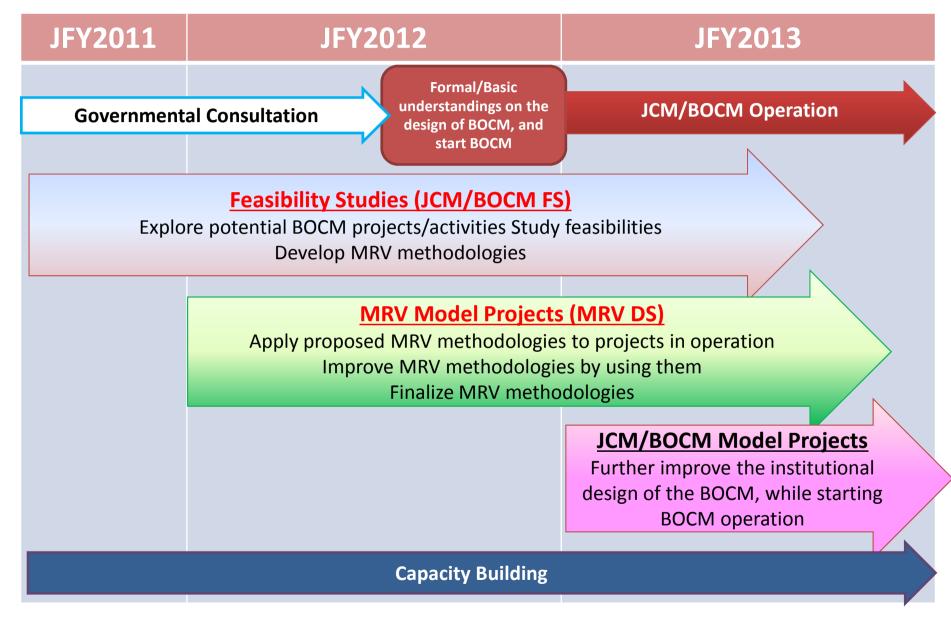
•Calculated BAU and reduction by NAMA candidates (Emission Reductions from Methane Emission from LFs)

- •Discussed possible reporting procedures
- Jointly reported at COP18 Side Event

(*) See Preliminary Results

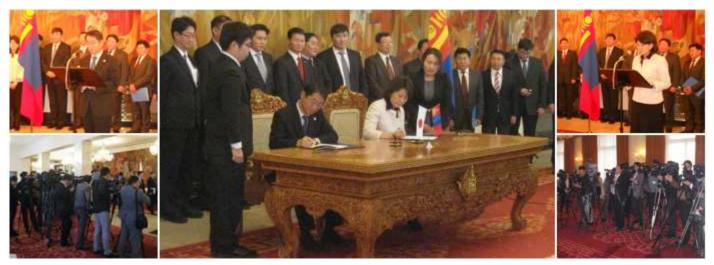
Next steps

- 1. Expanding sectors/subsectors for designing NAMAs
- 2. Drafting and Implementation Plan (national level), which contains institutional framework and process for domestic PDCA Cycle
- 3. Linking with existing domestic reporting procedures
- 4. Elaboration on different financial options, such as multilateral and bilateral finance, including the Joint Crediting Mechanism (JCM)


Recent development on Joint
Crediting Mechanism (JCM) between
Japan and Host Countries

Proposed Joint Crediting Mechanism (JCM)

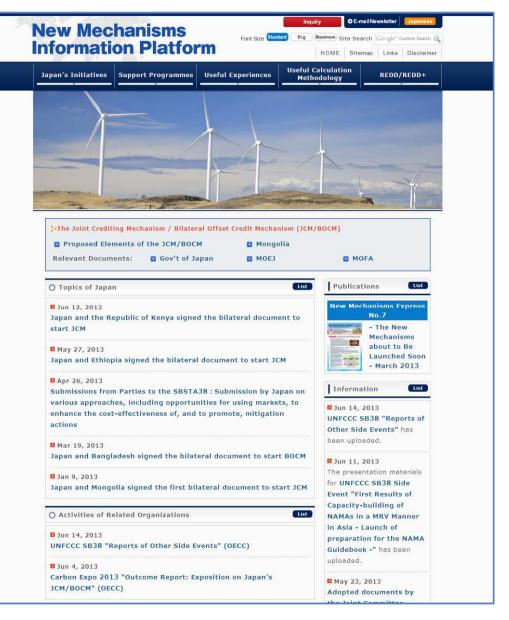
- JCM: A financial and technology transfer option for NAMAs.
- Facilitates diffusion of leading low carbon technologies, products, systems, services, and infrastructure as well as implementation of mitigation actions, and contributing to sustainable development of developing countries.
- Appropriately evaluates contributions to GHG emission reductions or removals from developed countries in a quantitative manner, through mitigation actions implemented in developing countries and use those emission reductions or removals to achieve emission reduction targets of the developed countries.
- Contributes to the ultimate objective of the UNFCCC by facilitating global actions for emission reductions or removals.



Schedule of JCM activities

JCM as a financial and technology driver for NAMAs

- In January 8, 2013, Mongolia and Japan signed a Memorandum of Understanding on JCM
- In March 19, Bangladesh and Japan signed a MOU on JCM/BOCM
- In May 29, Ethiopia and Japan signed a MOU on JCM
- In June 12, Kenya and Japan signed a Memorandum of Cooperation for JCM

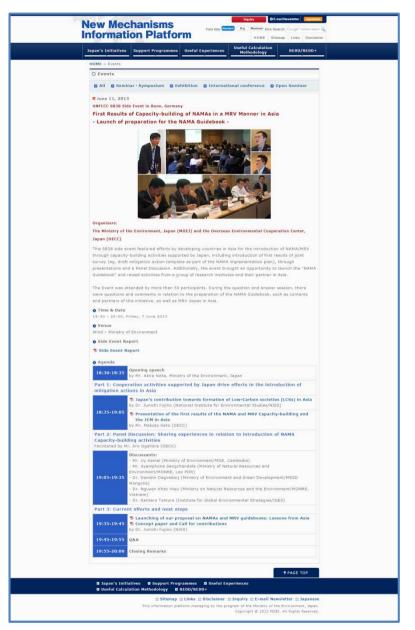


Source: New Mechanisms Information Platform: http://www.mmechanisms.org/e/initiatives/130108_mongolia.html

Japan and MOEJ Initiatives window

OECC also manages the "New Information Mechanism Platform" webpage and publishes a quarterly booklet, the "New Mechanism Express" with information containing all recent developments in relation to initiatives from Japan and the Ministry of the Environment, Japan (MOEC), including a network of Japanese organizations.

Please click below: http://www.mmechanisms.org /e/initiatives/index.html

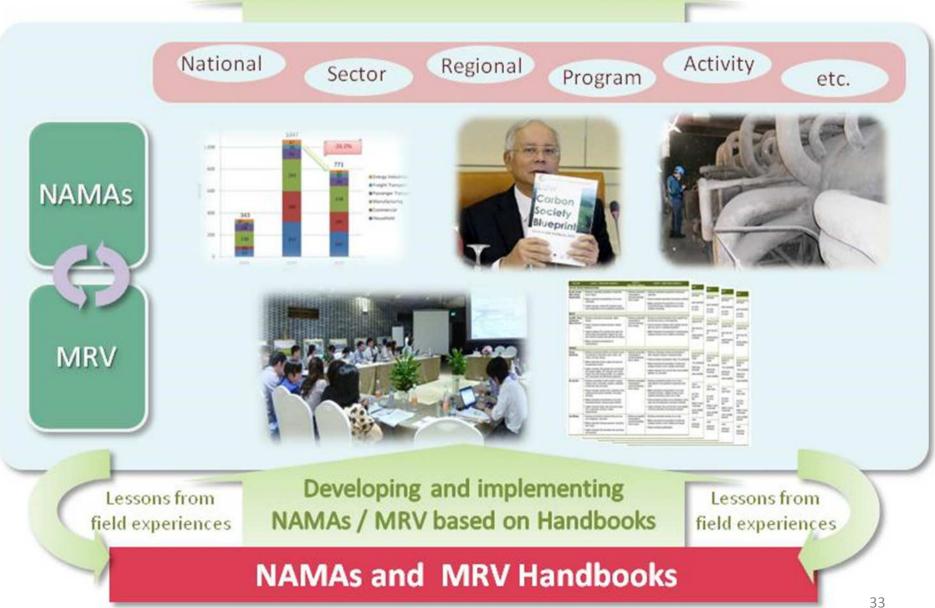


OECC's side event at the SB38

On June 7, 2013 OECC has organized a side event at the recent SB38 meetings in Bonn (UNFCCC), in order to present the "First results of capacity-building of NAMAs in a MRV manner in Asia and Launch of preparation for the NAMA Guidebook" as well as progress on the JCM initiative, attracting more than 50 people.

In the same venue, OECC opened a booth with the aim to distribute information on MOEJ initiatives, NAMAs, JCM, NAMA/MRV Guidebook, etc.

Detailed information can be found at: <u>http://www.mmechanisms.org/e/event/de</u> tails 130607SB38sideevent.html


5. Introduction of a Plan for NAMA and MRV Guidebooks

Initiative of the NAMA and MRV Guidebooks

The Ministry of the Environment, Japan, through a network of Japanese organizations has launched the proposal to write NAMA and MRV Guidebooks.

Net Global Reduction for Sustainable Development

Characteristics of our Guidebooks

- Comprehensive understanding of NAMAs and MRV (e.g. project-based bottom-up approach and policy-based top-down approach)
- Based on case studies in Asia and the world that we have conducted together with Asian and global experts
- Inviting any kind of volunteer efforts to create "NAMAs and MRV Guidebooks" as a common goods to achieve net global GHG reduction and sustainable development

Call for Contributions!

We are looking for any technical contributions to the Guidebook series from those involved in NAMAs and MRV projects at the local or national levels. Your inputs on experiences, implementation results, and good practices will be highly appreciated. While authorship will be recognized, participation will be voluntary.

For NAMA Guidebook:

Mr. Miguel Jiro OGAHARA Overseas Environmental Cooperation Center, Japan Phone: +81-3-5472-0144 Email: ogahara@oecc.or.jp

For MRV Guidebook:

Ms. Chisa UMEMIYA, Ph.D Institute for Global Environmental Strategies Phone: +81-46-826-9612 Email: umemiya@iges.or.jp

Mitsubishi UFJ Research and Consulting

Thank You!

MIGUEL JIRO OGAHARA

Senior Researcher

Overseas Environmental Cooperation Center, Japan (OECC)

E: <u>ogahara@oecc.or.jp</u> T: +81-3-5472-0144

