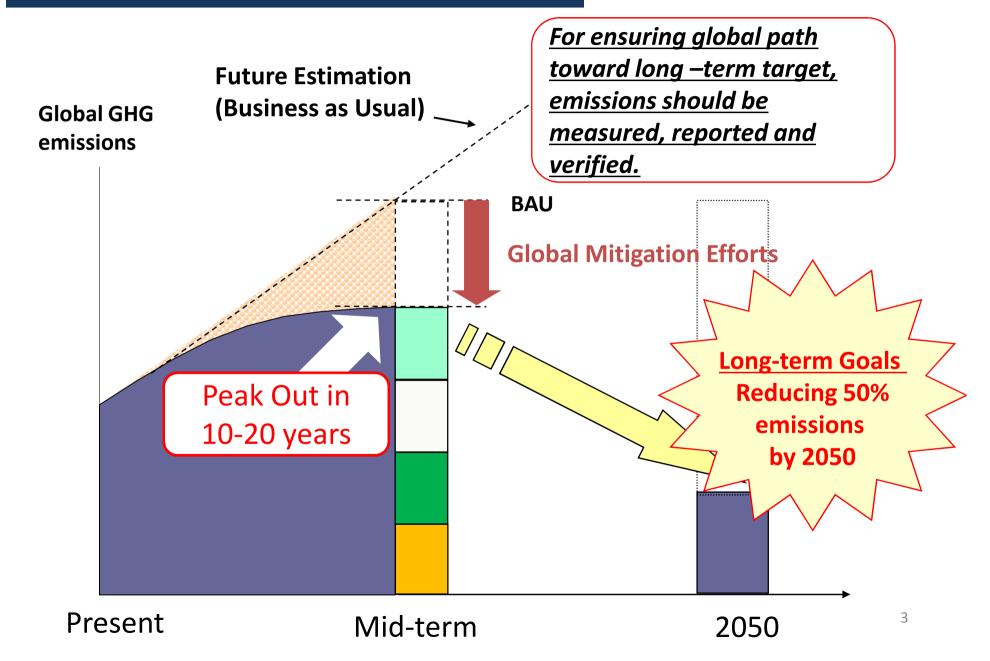
Perspectives on Measurable, Reportable, and Verifiable actions

Kotaro Kawamata Ministry of the Environment Japan

The 18th Asia Pacific Seminar on Climate Change March 2-3, 2009 Hanoi, Vietnam

1. Introduction


- To avoid dangerous impact by climate change, global mitigation efforts are necessary.
- Developed countries take a lead, but DCs also need to act in accordance with CbDR/RC.
- Bali Action Plan 1(b)(ii) required NAMAs by DCs in MRV manner with MRV support by developed countries.

NAMAs: Nationally Appropriate Mitigation Actions

DCs: Developing countries

CbDR/RC: Common but Differentiated Responsibilities and Respected Capabilities

2. Importance of MRV

3. Principles for MRV

MRV Framework should;

- > Focus on Quantitative information (GHG emissions)
 - → MRV aims to ensure reduction of GHG emissions.
- Facilitate effective actions
 - → Support should link to effective actions
- Be developed based on current system
 - → Unnecessary administrative burden should be avoided
- > Be differentiated based on principles of CbDR/RC
 - > Each country should contribute within its capability

4-1. Measurability: What should be measured?

Developed countries

QELROs

Developing countries

National action plan

- > including policies and measures for mitigation
- >quantitative to the extent possible in terms of GHG
- China, Indonesia, South Africa, Brazil have already made its national action plan
 - South Africa and Korea propose "Registry of NAMAs"
 - EC proposes "Low-carbon development strategies"

Example of MRV indicators

[Existing sectoral indicators]

	Iron & Steel	Cement	Power			
China -target in 2020 -Mid & Long-term Energy Saving Plan (2004) - Based on China's 11 th Five- Year Plan (2006- 2010)	700 kg-ce*/t-steel ≈ 1.82 t-CO2/t-steel *ce= coal equivalent	129 kg-ce/t- cement ≈ 0.34 t-CO2/t- cement	<coal fired="" plant="" power=""> 320 g-ce/kWh ≈ 0.83 kg-CO2/kWh Ex. Raise the proportion of renewable energy (inc. hydro) in primary energy supply up to 10% by 2010 From "China's National Climate Change Program" (2007)</coal>			
Japan -target in 2010 -Voluntary action plan under Kyoto Protocol	2,274 Pjour ≈ 1.53 t-CO2/t-steel* *Supposing that iron & steel output in2010 will be 100Mt.	3,451 MJ/t-cement ≈ 0.23 t-CO2/t- cement	<pre><electric a="" as="" industry="" power="" whole=""></electric></pre>			

<Reference>

[•]CO2 intensity of Coal: 3.7620 Gg-CO2/10¹⁰kcal

[•]CO2 intensity of Crude oil : 2.8641 Gg-CO2/10¹⁰kcal

^{•1} MJ = 2.58258 x 10⁻⁵ kiloliter of crude oil equivalent

[•]Calorific value of Coal: 6,928 kcal/kg

[•]Calorific value of Crude oil: 9,126 kcal/L

^{•1} MJ = 2.58258 x 10⁻⁵ kiloliter of crude oil equivalent

4-2. Possible 3 Components of Voluntary National Action Plan

1. Autonomous mitigation actions

- Its primary purpose is development
- negative-cost or low-cost actions
- Energy efficiency improvement in major sectors for major DCs
- 2. Additional mitigation actions
 - high-cost actions
- 3. Flexibility mechanisms such as CDM

*What action is Autonomous actions and what is additional depends on capability of each country

4-3. Reportability

- All Parties have obligations to submit national communication incl. inventory (Convention Articles 4.1, 12.1)
- Current situation

Annex I: National communication every 4-5 years and Inventories every year

Non-Annex I: Most of countries submit only once

- Need to strengthen the current National Communication
 - Contents (guideline for NAMAs is required)
 - Frequency (yearly is desirable for inventories)
 - →Capacity building is necessary (Japan hosts series of WS on GHG Inventories in Asia)

4-4. Verification

Review by own country for autonomous mitigation actions

- Review by COP for supported mitigation actions
 - A country achieving more effective reductions should get more support.
 - Facilitating actions rather than punishing fault.
- Review by CDM Executive Board for CDM

5. MRV Support

- Financial support to effective mitigation actions
 - ➤ Linking support to quantitative actions give incentives to take effective mitigation actions
- Focusing on areas not covered by private investment and leveraging private investment (private investment account for 86% of all investment)
- Including support from carbon market

6. MRV framework (example)

National action plans /support to UNFCCC, report to COP, verification

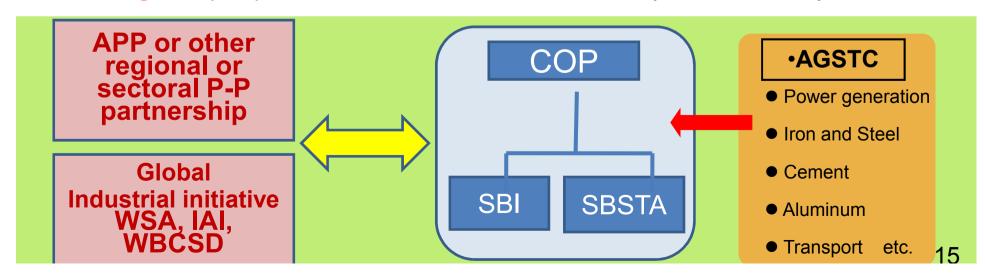
Developing Developed National action plan Support Countries **Countries** Support under the Convention **Autonomous mitigation actions** *Negative/low-cost actions * Financial support to effective mitigation *Major developing countries actions **UNFCCC** energy/GHG intensity improvement in * Including additional finance major sectors -Report to COP * Focusing on areas not covered by Mitigation by flexibility mechanism -Verification private investment * Verification by CDM Executive Board * Implement in MRV manner Support outside the Convention Additional mitigation actions * High-cost actions * Measurement and report of (Additional contribution outside the Convention * Countries get financial support (incl. ODA) finance) according to their mitigation actions

Conclusion

- MRV is a key to ensure global reduction toward longterm target.
- MRV should quantify GHG emissions.
- MRV actions by DCs should be differentiated based on the principles of CbDR/RC.
- Linking support and actions can provide incentives for effective mitigation actions.
- MRV is not new. We should build on our experience from current system.
- Capacity building is necessary.

ANNEX

Table 1. Energy Consumption Index per Unit of Major Products


Items	Unit	2000	2005	2010	2020
Coal consumption of power supply	gce/kWh	392	377	360	320
Comprehensive energy consumption per tone steel	kgce/t	906	760	730	700
Comparable energy consumption per ton steel	kgce /t	784	700	685	640
Comprehensive energy consumption of 10 types of non- ferrous metals	tce/t	4.809	4.665	4.595	4.45
Comprehensive energy consumption of aluminum	tce/t	9.923	9.595	9.471	9.22
Comprehensive energy consumption of copper	tce/t	4.707	4.388	4.256	4
Energy consumption of unit energy factor of oil refining	kgoe/t.factor	14	13	12	10
Comprehensive energy consumption of ethylene	kgoe/t	848	700	650	600
Comprehensive energy consumption of large scaled synthetic ammonia	kgce/t	1372	1210	1140	1000
Comprehensive energy consumption of caustic soda	kgce /t	1553	1503	1400	1300
Comprehensive energy consumption of cement	kgce /t	181	159	148	129
Comprehensive energy consumption of plate glass	kgce /weighting box	30	26	24	20
Comprehensive energy consumption of architectural ceramics	kgce /m 2	10.04	9.9	9.2	7.2
Comprehensive energy consumption of railway transportation	tce/million t-km	10.41	9.65	9-4	9

Source: China Medium and Long Term Energy Conservation Plan (2004)

Establishment of an Advisory Group for Sectoral Technology Cooperation (AGSTC)

AGSTC can contribute to both transfer and development of the key technologies.

- Consists of representatives of industrial community and experts (IEA, etc) by each sector
- Analyze the current situation of development and transfer of the technologies by each sector.
 - For development: government R&D budget, international roadmaps for key tech., latest development outcomes, international cooperation activities
 - For transfer: the BAT, the BP, reduction potentials, barriers and solutions
- Formulate advice for further actions by each sector based on the analysis
- Regularly report on outcomes to the COP/equivalent body

