

Introduction to U.S. EPA's Integrated Environmental Strategies (IES) Co-Benefits Training Modules

16th AP Seminar on Climate Change Jakarta, 2006

Kong Chiu U.S. Environmental Protection Agency (EPA)

Overview

- Overview
- Hands-On Exercise: Thinking About Co-Benefits
- IES, EPA's Approach to Co-Benefits
- IES Tools and Resources
- IES Handbook & Training Modules
- IES Training Module Excerpt
- Hands-On Exercise: Thinking About Stakeholders

Hands-On Exercise # 1 Thinking About Co-Benefits

Key IES Term

• **Co-benefits:** Multiple (two or more) benefits that result from the same environmental measure or set of measures.

GHG Measure	LOCAL Benefits	GLOBAL Benefits
Landfill methane gas recovery and reuse for energy	Y reduces nuisance emissions and displaces fossil fuel emissions	Y removes a potent GHG, converting CH4 into H20 + CO
Wind power		
Installing a smokestack scrubber at a coal-Burning facility		
Energy Efficiency		
Particulate traps on diesel buses		
Manage forests for increased carbon conservation		
Reducing / eliminating the use of SF6 (high global warming potential gas, 22,000 X		
Setting stringent PM ₁₀ (particulate matter) targets.		
Setting stringent PM ₁₀ (particulate matter) targets.		

Environmental Strategies

5

What Are Integrated Measures?

Integrated

- Low-sulfur coal
- Smokestack controls
- Catalytic converters
- Inspection and maintenance (I&M) programs
- Diesel particle traps
- Evaporative controls
 - Local

- Clean fuels
- Renewable energy
- Energy efficiency programs
- Methane gas recovery
- Fuel switching
- Public transport and land use
- Retirement of older vehicles
- Efficiency standards for new vehicles/appliances

Integrated

Global

- Carbon capture/ sequestration
- Forest management
- Control of other GHGs (N₂O, HFCs, PFCs, SF₆)

Adapted from Jason West et al (2002)

ntegrated

nvironmenta

Introduction

What is IES? Introducing EPA's Co-Benefits Approach

U.S. EPA's Integrated Environmental Strategies (IES) Co-benefits Approach

Evaluates:

- Environmental benefits
- Human health benefits
- Economic benefits

Focuses on measures that simultaneously:

- Improve local air quality
- Reduce global greenhouse gas emissions

Key IES Terms

IES co-benefits approach targets emissions of:

Local air pollutants: These pollutants contribute to **local** and **regional** environmental and health risks.

• Examples: particulate matter (PM), ozone (O₃), nitrogen oxides (NO_x), sulfur dioxide (SO₂), lead (PB)

Greenhouse gases (GHGs): GHG emissions trap the sun's energy as heat in the Earth's atmosphere, with **global** effects on the Earth's climate and resources.

• Examples: carbon dioxide (CO_2) , methane (CH_4) , nitrous oxide (N_2O) , hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulfur hexafluoride (SF_6)

Countries with IES Projects

Chile

ntegrated

nvironmental

China ٠

South Korea •

•

IES Tools and Resources

Integrated Environmental Strategies (IES) Tools & Resources

ateole

- Comprehensive web page
- Journal articles
- Country case studies
- Workshop proceedings
- IES Handbook
- IES Training Modules

Support partners, share information & promote the program

Focus on: IES Handbook & Training Modules

IES Handbook & Training Module

- Increase geographic scope
- IES Handbook
 - Available on CD ROM / Online
 - Comprehensive IES Resource
 - Variety of audiences
 - Expands IES knowledgebase
- IES Training Modules
 - Used with Handbook
 - 2 Versions, Expandable / Collapsible
 - Customizable to audience
 - Basic IES concepts to detailed cobenefits training

IES Training Module Sample Excerpt

Version 1: Policymakers Module

• Section excerpted: Overview of the IES cobenefits approach

Overview of the IES Co-benefits Approach

Getting Started

 Obtain project "buy-in" from senior policymakers

• Assemble the project team

- Determine the scope of the project
- Develop the work plan

egrated

omenta

Training Module Demo

Obtain Project "Buy-in"

- What are the public policy priorities of the city or country?
- What relevant policies, regulations, decrees, and legislative acts are in place or expected?
- How can co-benefits projects be designed to support policy development or implementation?
- Which existing planning, policy review, or policymaking processes are most relevant to a co-benefits project?
- What institutional oversight or involvement is desired?

Getting Started (cont.)

- Obtain project "buy-in" from senior policymakers
- Assemble the project team
- Determine the project scope
- Develop the work plan

Assemble the Project Team: Key Players

Assemble the Project Team: Key Players

Identifying Stakeholders

- Stakeholders may include:
 - Universities
 - Research institutes
 - Local and national government agencies involved in the environment, energy, transportation, public health, and economic development sectors.
 - Non-governmental organizations (NGOs)
 - Business groups
 - Trade associations
 - Representatives of key sectors that generate local air pollution
 - Labor unions
 - Public

ntegrated

wironmental

Ways Stakeholders Can Participate in a Co-benefits Project

- Provide political support
- Assist with project design
- Provide data
- Help with the analysis
- Review project plans and results and provide feedback
- Identify funding

egrated

ronmenta

Help disseminate project results

Getting Started (cont.)

- Obtain project "buy-in" from senior policymakers
- Assemble the project team
- Determine the project scope
- Develop the work plan

Key Scoping Decisions

- Project goals
- Desired outcomes and influence on policymakers
- Appropriate sector(s) to focus on
- Emissions included in analysis
- Health endpoints included in analysis
- Geographic boundaries
- Time line
- Specific measures that will be considered
- Data sources and potential gaps

Example: Scoping Decisions in Beijing IES Project

Energy sector categories initially considered:

- Power generation
- Industrial (steel, cement, petroleum, chemical)
- Residential
- Transportation
- Agriculture
- Commercial
- Construction

Policy scenarios analyzed:

- Business as usual (no change)
- Promote industrial and residential use of clean energy
- Transform industrial structure (relocation from urban locations)
- Improve residential energy efficiency and light vehicle fuel economy
- Promote green transportation and reduced private vehicle use

Example: Scoping Decisions in Beijing IES Project (cont.)

- Emissions examined:
 - Conventional pollutants
 - Particulate matter (PM₁₀)
 - Sulfur dioxide (SO₂)
 - Nitrous oxides (NO_x)

- Global GHGs

• Carbon dioxide (CO₂)

Health endpoints analyzed:

- Mortality

ntegrated

vironmental

- Respiratory hospital admissions
- Chronic bronchitis
- Outpatient visits (pediatrics)
- Emergency room visits
- Asthmatic disease in adults

Example: Scoping Participants in Philippines IES Project

- Filipino research team
- Philippines Department of the Environment and Natural Resources
- Philippines Department of Transportation and Communication
- Philippines Department of Energy
- U.S. Environmental Protection Agency
- U.S. Agency for International Development
- International experts from other co-benefits projects
- Non-governmental organizations (NGOs)
- Business representatives
- Academics

Getting Started (cont.)

- Obtain project "buy-in" from senior policymakers
- Assemble the project team
- Determine the project scope
- Develop the work plan

Develop the Work Plan

- Goals
- Management structure
- Schedule
- Tasks
- Products
- Desired outcomes
- Information gaps
- Research recommendations (in some cases)
- Outreach/communication plan

Overview of the IES Co-benefits Approach

Technical Analysis

Energy/Emissions Modeling

- Develop/identify base-year emissions inventory of local air pollutants and global GHGs
- Finalize set of scenarios for analysis
- Model future energy demand and resulting emissions for each scenario

Overview of Energy/Emissions Models Used in IES

Model	Description	Emissions Examined	IES Projects Used In
Energy and Power Evaluation Program—Model for Analysis of Energy Demand (ENPEP-MAED)	Bottom-up model that projects future electricity gen- eration of power plants within a study region and cal- culates corresponding future GHG emissions based on the Energy: Prospectiva 2000 Energy Report.	 SO₂ NO_x PM CO₂ 	Argentina
MARKAL (Market Allocation)	Bottom-up model that depicts the evolution of a spe- cific energy system at the national, regional, state, provincial, or community level over 40 to 50 years.	 SO₂ NO_X PM₁₀ CO₂ 	• China (Shanghai)
Long-range Energy Alternative Program (LEAP)	Bottom-up model that forecasts energy consumption by sector and projects national energy demand by summing sectoral energy consumption. Emission factors are used to calculate total emissions.	• TSP • PM ₁₀	 China (Beijing) Korea Brazil

Integrated Environmental Strategies

- Finalize list of emissions for analysis
- Collect local air quality monitoring and meteorological data

egrated

omenta

 Model future atmospheric concentrations of emissions for each scenario

Overview of Air Quality Models

- Project future atmospheric concentrations of pollutants and GHGs
- Two main classes of emissions-based air quality models typically used:
 - Primary

legrated

ronmenta

- Secondary

Primary Models

- Most frequently used type of air quality model
- Models primary pollutants
- Perform complex mathematical equations
- Advantage: fewer data inputs required
- Gaussian models
 - Commonly used dispersion model

egrated

An example of a Gaussian dispersion model is the U.S. EPA's Industrial Source Complex Model (ISC3), which can project emission concentrations from a variety of different industrial sources

Secondary Models

- Models both primary and secondary pollutants
- Includes photochemical reactions
- More data inputs required
- 3-D Eulerian grid model
 - Commonly used photochemical grid model

egrated

The U.S. EPA developed the Comprehensive Air Quality Mode (CAMx) and Urban Airshed Model (UAM), which project atmospheric concentrations of both primary and secondary pollutants for each discrete cell grid in a given airshed

Health Benefits Modeling

Finalize health endpoints for analysis

- Determine how to analyze relationship between pollutant concentrations and health effects
- Collect health data
- Analyze public health benefits for each scenario

What is a Health Effects Model?

- IES Air Quality Analysis Output: projected air pollutant concentrations
- Health Analysis: Translate projected air pollutant concentrations into health impacts (mortality / morbidity)
- Tool used: Health Effects Model
- Additional Data will be required

Economic Valuation of Health Benefits

• Calculate economic value of health benefits for each scenario

Training Module Demo

45

Economic Valuation—Background

- Assigns monetary values to avoided health endpoints
- Critical input to benefit-cost analysis
- Does not value GHG emission reductions
- To date, IES projects have only performed economic valuation for health benefits
- Still not fully mature
- Can be controversial

"The IES project was the first attempt to assign estimates of economic value to health impacts of energy and emission control options. This is a major achievement in China."

> —Bai Guoqiang, Shanghai Environmental Protection Bureau, China

Training Module Demo

Overview of the IES Co-benefits Approach

Moving From Analysis to Implementation

- Estimate costs for implementing each scenario
- Compare scenarios and develop a recommendation
- Share results

Sample IES Results – Beijing, China

Moving From Analysis to Implementation

- Estimate costs for implementing each scenario
- Compare scenarios and develop a recommendation
- Share results

Moving From Analysis to Implementation (cont.)

- Estimate costs for implementing each scenario
- Compare scenarios and develop a recommendation
- Share results

Example IES Results

Santiago, Chile

In 2020, the public health benefits of improved air quality are estimated to be worth \$700 million U.S. dollars.

teorated

ironmenta

Shanghai, China

By 2010, the potential annual carbon reductions could equal the carbon dioxide emitted from the combustion of more than 100 million barrels of oil.

Between 2000 and 2010, improved air quality could save as many as 4,000 lives each year.

Training Module Demo

52

Share Results – Typical Next Steps

IES Benefits

- IES supports countries in developing cost-effective strategies for reducing both local air pollution and GHG emissions.
- IES can assist countries that are parties to the UNFCCC to meet their national communications commitments.
- IES promotes implementation of measures with multiple benefits.
- IES builds and enhances technical and institutional capacity in integrated energy and environmental analysis.
- IES promotes collaboration within and among countries.

eorated

omenta

IES Benefits (cont.)

- IES supports countries in developing cost-effective strategies for reducing both local air pollution and GHG emissions.
- IES can assist countries that are parties to the UNFCCC to meet their national communications commitments.
- IES promotes implementation of measures with multiple benefits.
- IES builds and enhances technical and institutional capacity in integrated energy and environmental analysis.
- IES promotes collaboration within and among countries.
- IES is flexible and iterative.

orated

Hands-On Exercise # 2 Thinking About Stakeholders

GHG measure	Stakeholders	Stakeholders
Wind Power in China	Y National Development & Reform Commission (NDRC), Center for Renewable Energy Development (CRED), Provincial DRCs	Y China Wind Energy Association (CWEA), Gold Wind, GE Wind, China Renewable Egy Society
Renovation of aging taxicab fleets to current year models [<i>Chile, Philippines</i>]		
Expansion of subway, rail (light/heavy), trolley and bus lines [<i>Argentina, China, Philippines</i>]		
Improvements in consumer appliance Energy Efficiency [<i>Argentina, S. Korea</i>]		
Use of residential and commercial solar water heaters [<i>China,</i> <i>Mexico, S. Korea</i>]		
Improved vehicle inspection and maintenance programs [<i>Brazil, China, Mexico, Philippines</i>]		
Increasing building energy efficiency (residential and commercial) [Argentina, Chile]		

ntegrated

trategies

57

Resources

- IES Program Manager:
 - Katherine Sibold, sibold.katherine@epa.gov
- EPA IES Web site: www.epa.gov/ies

• Thank You !

