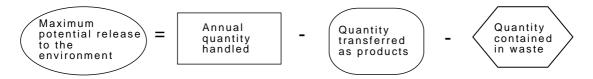
2. Procedure of calculating the released/transferred quantity and making notifications (→ pll-39)

The procedure of calculating/notifying the released/transferred quantity is described in the following sections.

Procedure of calculating the quantity released/transferred from a facility other than a specific requirement facility $(2-1 \rightarrow pII-41)$

Procedure of calculating the quantity released/transferred from a specific requirement facility $(2-2 \rightarrow pII-82)$


Procedure of notifying the quantity released/transferred $(2-3 \rightarrow pII-94)$

Refer to pI-33 to I-38 in Part I for the type of data to be notified under the PRTR system according to the Law and basic method of calculating the quantity released/transferred.

2-1 Procedure of calculating the quantity released/transferred from those other than specific requirement facilities

The procedure of calculating the quantity of a specified substance released/transferred is described based on Mass Balance. Figure 2-1 indicates the flow of the calculation.

The maximum potential release to the environment in the figure is the annual quantity handled minus the quantity transferred as products and the quantity contained in waste, as shown in the following formula.

Calculate the maximum potential release to the environment by using the above formula first, and then divide it into the quantities released to air, water and land.

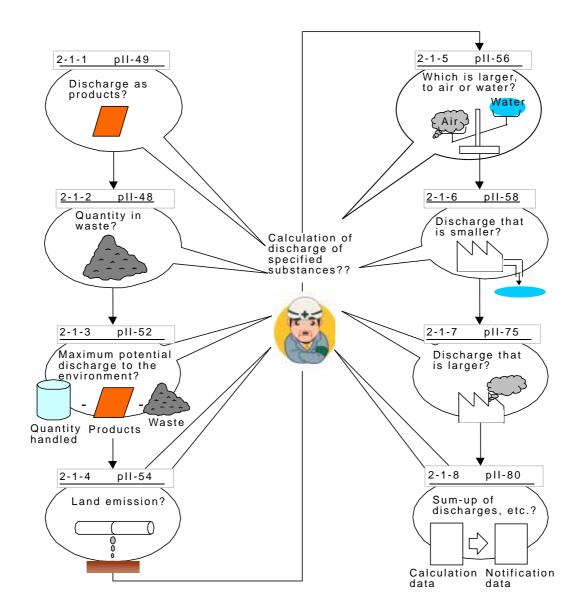


Fig. 2-1 Calculation procedure of releases and transfers

* If the waste generated in the business establishment is recycled and reused within the business establishment, you do not have to calculate the quantity in waste.

If the waste generated in the business establishment is sold to an external contractor, you must calculate the quantity in waste, but do not have to notify the quantity as "Quantity transferred to outside the pertinent business establishment."

Refer to 2-1-2 (\rightarrow pII-48) for details.

Reference page

• Part I 2-2-3 (1) Basic procedure of calculating released/transferred quantity (pI-39)

2-1-1 Calculate the discharge as products

The quantity of specified substances discharged as products (hereafter referred to as "manufactured goods"), which are manufactured in a process where specified substances are handled, is calculated using the following formula.

Specify 0 if no specified substances are contained in manufactured goods.

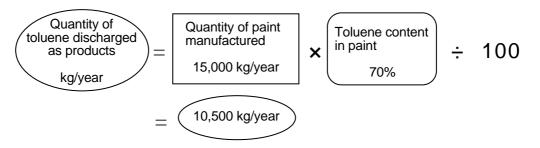
(NOTE)

When a specified substance is consumed in the process by chemical reaction, calculate the consumed quantity by using the reaction rate. (Refer to pIII-2 for the calculation of the released or transferred quantity in the reaction process.)

If it is difficult to assess the quantity of specified substances attached to individual products in a plating process, etc., calculate the quantity brought out as products by using the average coating quantity per 1t of products.

Reference page
Part I 2-2-3 (1) Step1-1 Calculate the discharge as products

(pI-40)
Part III 2.Q&A Q91 (pIII-148),
4-3-3 Emission factors listed in manuals of each industry
(pIII-249),
4-3-4 Painting method and painting adhesion efficiency
(pIII-281),
4-3-5 Current efficiency and electrochemical equivalent of metal precipitated in plating process (pIII-282)


(Example of calculation 1) When the content of a specified substance in products is known

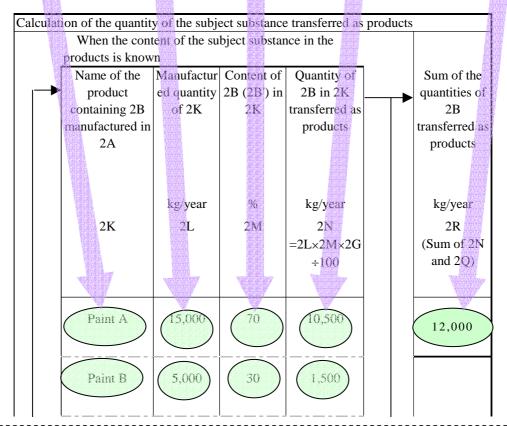
When a paint that contains toluene is manufactured

• Quantity of the paint manufactured and toluene content

Quantity of paint manufactured	15 t/year	(= 15,000 kg/year)
Toluene content in paint	70%	

· Calculation of the quantity discharged as products

Filling out the worksheet2

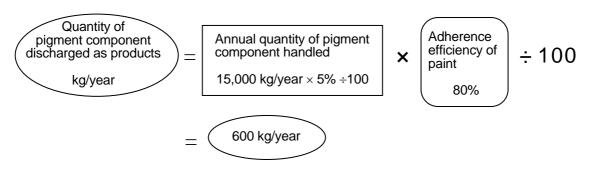

Name of the products manufactur ed in this process

Quantity of the products manufactured

Content of the subject substance

Quantity of the subject substance transferred per product $2L\times2M\div100$

Sum of the quantities of subject substance transferred as products, Sum of 2N


(Example of calculation 2) When the content of a specified substance in products is not known

When pigment component is coated on products in a coating process Calculate the quantity discharged as products by using the annual quantity handled and the adherence efficiency.

Annual quantity of pigment component handled and adherence efficiency

Annual quantity of pigment handled	15 t/year (= 15,000 kg/year)
Content of pigment component in paint	5%
Adherence efficiency of paint	80%

• Calculation of the quantity of pigment component discharged as products

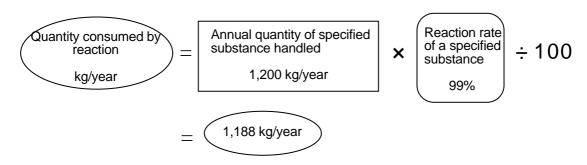
Filling out the worksheet2

Name of the product manufactur ed in this process Formula used to calculate the quantity of the substance transferred as products

Quantity of the subject substance transferred per product

When the content of the subject substance in the			
product is not kn	iown		
Name of the	Formula used to	Quantity of	
product	calculate the quantity of	2B	
containing 2B	2B transferred as	transferred as	
manufactured in	products 20	products 20	
2A			
		kg/year	
20	2P	2Q	
(Painted board)	15,000×5÷100	(600)	
	×80÷100		

Enter the sum in 2R.


(Example of calculation 3) When a specified substance is consumed or decomposed by reaction

When cyclohexane is manufactured using benzene as raw material Calculate the quantity of benzene consumed by the reaction of benzene by using the annual quantity of benzene handled and reaction rate. (When a specified substance is decomposed within the process, use the decomposition rate.)

• Annual quantity of benzene handled and reaction rate

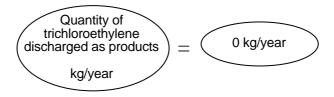
Annual quantity of benzene handled	1.2 t/year $(=1,200 \text{ kg/year})$
Reaction rate of benzene	99%

• Calculation of the quantity consumed by the reaction of benzene

Filling out the worksheet2

Formula used

to calculate

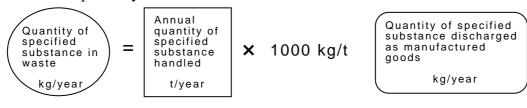

Quantity of

the subject

Enter "Consumed by reaction"	to calculate the consumed quantity	substance consumed	
When the con product is not kn	tent of the subject substa own	nce in the	
Name of the	Formula used to	Quantity of	
product containing 2B	calculate the quantity of 2B transferred as	2B transferred as	
manufactured in 2A	products 2O 2P	the products 2O kg/year	
(Consumed by reaction)	1,200×99÷100	1,188	

(Example of calculation 4) When a specified substance is not contained in products

When metallic parts are washed using trichloroethylene Since trichloroethylene used for washing is not contained in metallic parts, 0 is assumed for the quantity discharged as products.


Filling out the worksheet2

2-1-2 Calculate the quantity of the specified substance in waste

Calculate the quantity of specified substance in waste by using the following formula.

If no other discharge is observed, you can use the following formula to calculate the quantity.

* Waste such as collected dust and sludge generated as a result of exhaust gas/effluent treatment is ignored here. They are calculated in 2-1-6 (pII-58) and 2-1-7 (pII-75).

(NOTE)

Notify the quantity contained in waste based on the classification of treatment methods and other factors as shown below.

Type of Treatment of Waste*1	Classification of Notification	Remarks
Treated or disposed of outside the premises of the establishment *2	Off-site transfer in waste	
Waste of no value or minus value is recycled outside the premises of the establishment*2	Off-site transfer in waste	
Sold to external recycling service company*3	Notification not required	Calculate as the quantity transferred as products (2-1-1 pII-43)
Recycled of inside the establishment	Notification not required	
Landfill disposed of inside the establishment	Landfills in the business establishment	Notify the type of landfill site (least controlled, controlled, or strictly controlled)
(For references)		
Disposal such as incineration inside the establishment	Releases and Transfers	
Discharge of effluent to sewage works	Transfer to sewage	Caluculate as the transfer to water

- *1: When there are two or more transfer classifications, make the calculation, add up, and submit notifications as per the classification.
- *2: When metal chips are handed over to another business for treatment and the treatment fee is paid in addition to the transportation fee, it is regarded as the "waste" designated by the Waste Disposal and Public Cleaning law. Therefore, notify the transferred quantity as "off-site transfer in waste" in principle.

*3: Include the waste sold to an external recycling manufacturer in the quantity discharged as products; you do not have to submit notifications as "off-site transfer in waste."

Example:

When spent solvent generated in a business establishment is sold to a recycling manufacturer, it does not fall under the category of "waste" in the Waste Disposal and Public Cleaning Law. Therefore, you do not have to submit notifications as "off-site transfer in waste."

When spent solvent is handed over to an external recycling manufacturer at no charge or by receiving money, submit notifications as "off-site transfer in waste" as in the case of *2.

When waste is discharged from business establishment A to business establishment B of the same corporation that is not located within the same premises, the quantity in waste is classified as "off-site transfer in waste" transferred from business establishment A.

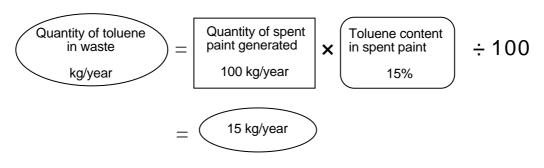
The elution test is used for measuring the quantity of heavy metals that elute from incineration ash into sample solution set at a certain pH (5.8 or higher and 6.3 or lower in the case of landfill waste). The value obtained through the elution test is different from the quantity of heavy metals actually contained in incineration ash. Therefore, it is not appropriate to use the result of the test for calculating the quantity contained in incineration ash.

Reference page

• Part I 2-2-3 (1) Step1-2 Calculate the quantity of the specified substance in waste (pI-41)

Part III 2.Q&A Q63 (<u>pIII-138</u>), Q78-Q82 (<u>pIII-141-145</u>), Q86-Q87 (<u>pIII-146-147</u>), Q93 (<u>pIII-149</u>), 4-3-3 Emission factors listed in manuals of each industry (<u>pIII-249</u>)

(Example of calculation 1) When content of a specified substance in waste is known

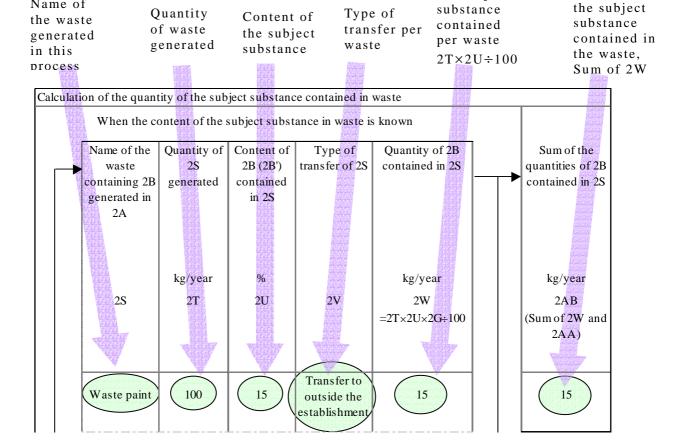

When spent paint containing toluene is generated

• Quantity of spent paint generated and toluene content

Quantity of spent paint	100 kg/year	Handed over to an industrial waste management contractor
Toluene content in spent paint	15%	

• Calculation of the quantity of toluene in waste

Name of


Filling out the worksheet2

Sum of the

quantities of

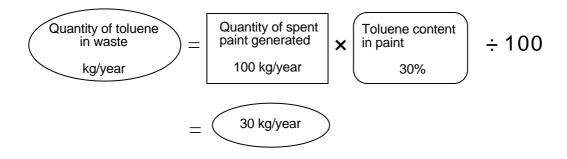
Quantity of

the subject

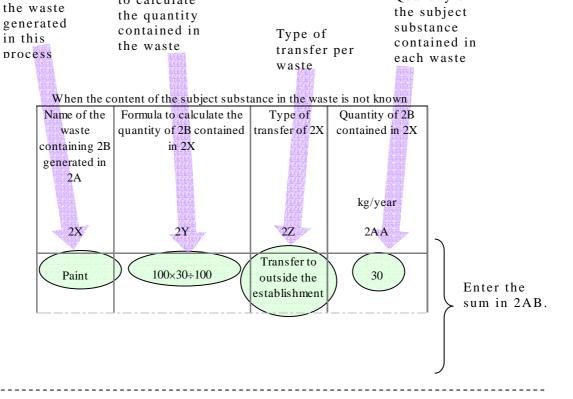
(Example of calculation 2) When the content of a specified substance in waste is not known

When spent paint containing toluene is generated Calculate the quantity in waste by using the quantity of spent paint generated and the toluene content in the paint used as raw material.

• Quantity of spent paint generated and toluene content in the paint used as raw material

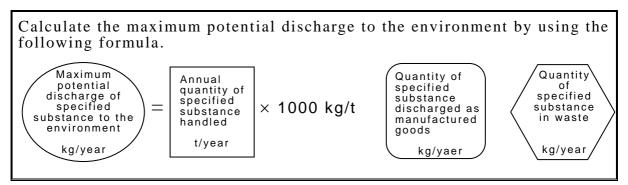

Quantity of spent paint generated	100 kg/year	Handed over to an industrial waste management contractor
Toluene content in paint	30%	

• Calculation of the quantity of toluene in waste


Formula used

to calculate

Name of



Filling out the worksheet2

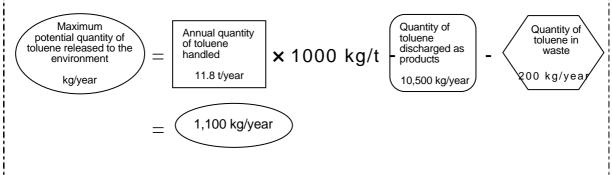
Quantity of

2-1-3 Calculate the maximum potential discharge to the environment

* "The maximum potential discharge to the environment," which is calculated using the above formula, is the maximum quantity that could be discharged to the environment.

Reference page

Part I 2-2-3 (1) Step1-3 Calculate the maximum potential discharge to the environment (pI-44)


(Example of calculation)

In paint manufacturing process

• Annual quantity of toluene handled in the paint manufactured

Annual quantity of toluene handled	11.8 t/year
Quantity of toluene discharged as product (paint)	10,500 kg/year
Quantity of toluene in waste (waste liquid)	200 kg/year

• Calculation of the maximum potential quantity of toluene released to the environment

Filling out the worksheet2

Maximum latent quantity released to the environment 2J-2R-2AB

			Calculation of the
			maximum potential
			quantity of the
			subject substance
			released to the
			environment
Annual	Sum of the	Sum of the	Maximum
quantity of	quantities of	quantities of 2B	potential quantity
2B handled	2B	contained in	of 2B released to
	transferred as	waste	the environment
	products		
kg/year	 kg/year	 kg/year	kg/year
2J	2R	2AB	2AC
=2C+	(Sum of 2N	(Sum of 2W	=2J-2R-2AB
2I	and 2Q)	and 2AA)	VIII.
		•	
11,800	 10,500	 200	1,100

2-1-4 Calculate the land emission of the specified substance

Calculate the land emission of specified substance by using the following formula. Quantity of raw materials or Content of Land emission specified of specified materials substance in ÷ 100 substance X raw materials discharged to or materials land kg/year kg/year

* If there is no leakage to land, land emission can be regarded as 0.

(NOTE)

The land emission includes the leakage of liquid from ground or underground storage facilities in the handling process, spilling of liquid or solid material at the time of moving from one container to another, and penetration of effluent containing specified substance.

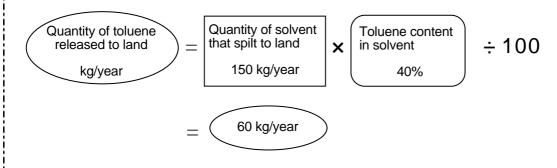
When waste is disposed in a landfill site (least controlled, controlled or strictly controlled landfill site), make notifications not as the land emission but as "landfills in the business establishment."

Strictly speaking, it is assumed that metal fumes released when welding is performed and metallic compounds released from combustion facilities are released to air first and then fall on land. However, the whole quantity can be regarded as release to air, and need not be classified as release to land.

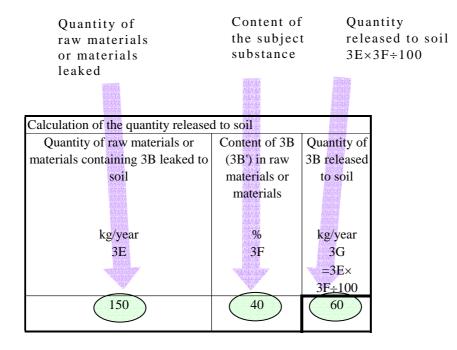
Reference page

• Part I 2-2-3 (1) Step1-4 Calculate the land emission of the specified substance (pI-46)

· Part III 2. Q&A Q84–Q85 (pIII-146)


(Example of calculation)

When solvent is spilt while being transferred within the premises of business establishment


• Quantity of solvent that spilt and toluene content in solvent

Quantity of solvent that spilt	150 kg/year
Toluene content in solvent	40%

• Calculation of the quantity of toluene released to land

Filling out the worksheet3

