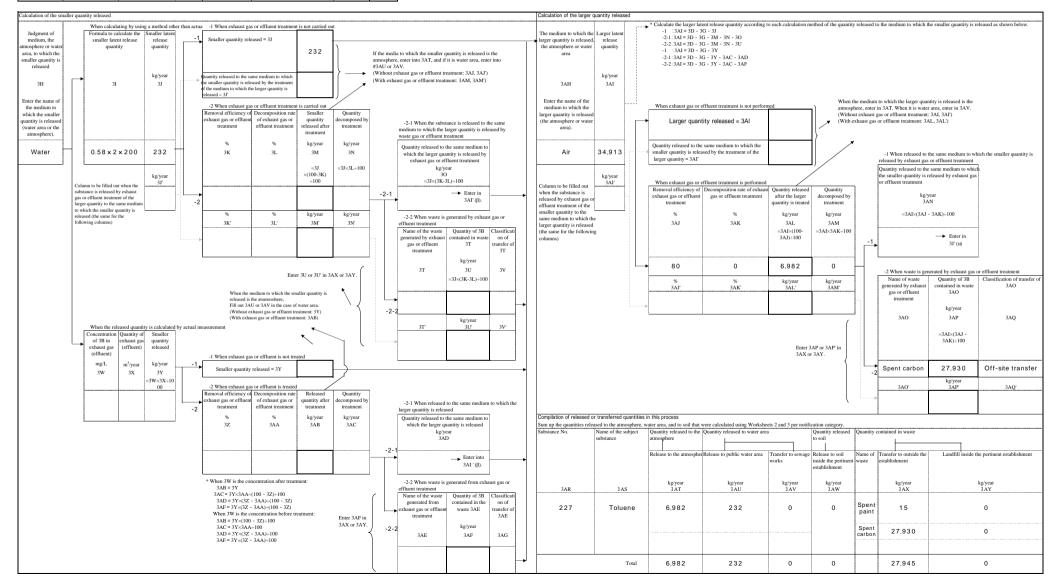
Worksheet

Worksheet 1 (Compilation of handled quantity and judgment of businesses and substances requiring notification)

This worksheet can be used for judging the necessity of notifying the quantity of a subject substance released or transferred on the basis of the calculation result and the presence of specific requirement facilities. By filling out the annual quantity of the subject substance handled, the quantity of the subject substance handled, the quantity of the subject substance handled.

Fill out the columns in order from 1A to 15 by referring to the Manual for Calculating the Quantity of Released Pollutant. You can calculate the annual quantity of a subject substance handled, check the presence of specific requirement facilities, and judge whether you must make a notification and which substance you must notify. State the quantity brought in, if raw materials are not purchased but only accepted in storage facilities.

Calculation of the annual quantity used of raw materials or materials Calculation of the annual quantity used of the subject substance contained in raw materials or materials Calculation of annual quantity of the subject substance handled ludoment of businesses and substances requiring notification Judgment of the business requiring notification ontaining the subject substance Serial Name of raw Annual Quantity Quantity of Annual AS No. of the Substance No. Name of the subject Individual name of Content of Coefficient Annual AS No. of the Substance No. Name of the subject Annual Annual Annual Annual Judgment according to the annual quantity of the udgment according to specific requirement No. materials or quantity of 1A 1A stored at quantity use subject of the subject substance contained in substances when 1A 1H0 (1H0') of quantity use subject of the subject substance quantity o quantity of quantity of quantity of subject substance handled materials of 1A stored a the ofIA substance substance 1A is a group of in 1A onversion of 1H0 substance substance 1H 1H in 1A 1H used 1H handled Category of substance Judgment of subject Name of specific Judgment according to kg/year kg kg kg/year % kg/year kg/year kg/year kg/year kg/year substance by annual requirement facility specific requirement quantity handled facilities 1.4 1B 1C1D 1E 160 1140 1110' 11 IJ 116 1E 16 111 11. 1N 10 10 15 150 1M10 112 When 1P is "Specific": =1B-1C+1D =1E×11÷100 In the case of a specific 1N (Sum of = 1L+1N Specific requirement When there are specific 1M) class 1 designated Enter "Notification facilities owned by the requirement facilities, enter chemical substance. required" when 10 - 0.5 business "Notification required." enter "Specific." t/vear. In the case of a class 1 When 1P is "Class 1": designated chemical Enter "Notification substance, enter "Class required" when 10 - 1 1." t*/year. mong businesses Notification 1 Paint A 10.000 500 1,200 10,700 108-88-3 227 Toluene 10 1,070 108-88-3 227 Toluene 1.070 35.160 Class 1 engaged in metal required mining or crude oil and natural gas mining, 63 Xylene 8 856 34,090 hose having buildings tructures and other facilities specified in Lead and Class 1 230 Lead sulfate 5 535 63 Xylene 856 856 Article 1. Chapter 8 of itscompounds the Mine Safety Law Among businesses Thinner Lead and 2|¹ B 50,000 ### 1.200 48.700 108-88-3 70 34.090 535 227 Toluene 230 535 Class 1 engaged in sewage itscompounds water treatment, those naving sewage water final treatment facilities Among businesses engaged in waste treatment or industrial waste treatment, those having general waste treatment facilities specified in Article 1, Chapter 8 of the Waste Disposal and Public Cleansing Law, and industrial waste reatment facilities specified in the same isinesses having pecific facilities Notification pecified in Article 1 Chapter 2 of the Law required Concerning Special Acasures for PCDDs


Worksheet 2 (Calculation of the maximum latent quantity released to the environmen Use this worksheet to calculate the maximum latent quantity of a subject substance released to the environment requiring notification of the quantity released or transferred (one sheet for one process and one material). Fill out the columns one by one from 2A to calculate the maximum latent quantity released to the environment.

Name of the proce	ss where the subject su	bstance is handled	Calculation o	f the annual quant	tity of the sub	ject substance ha	ndled				Calcula	ation of the quant	ty of the sub	ject substand	ce transferred as prod	lucts	Calcula	tion of the qua	untity of the s	ubject substa	nce containe	ed in waste		Calculation of the
												When the con products is know		ubject substa	ince in the			When the	content of the	subject sub	stance in was	ste is known		maximum potential quantity of the subject substance released to the environment
Name of the process where raw materials or materials containing the subject substance are handled	in the raw materials or materials handled in 2A	Individual name of the substance when 2B is a group of substances	Annual quantity of 2B produced		 Annual quantity of 2D used 	Content of 2B (2B') in 2D	Coefficient of conversion from 2B' to 2B	Annual used quantity of 2B (2B') contained in 2D	Total annual quantity of 2B used				Manufactur ed quantity	Content of 2B (2B') in 2K	Quantity of 2B in 2K transferred as products	Sum of the quantities of 2B transferred as products kg/year, (Sum of 2N and 2Q)		Name of the waste containing 2B generated in 2A	2S generated	Content of 2B (2B') contained in 2S	Type of transfer of 2S	Quantity of 2B contained in 2S	Sum of the quantities of 21 contained in 25	Maximum potential quantity of 2B released to the environment
2A	2В	2B'	kg/year 2C	2D	kg/year 2E	% 2F	2G	kg/year 2H =2E×2F÷100	kg/year 2I (Sum of 2H)	kg/year 2J = 2C + 2I		2K	kg/year 2L	% 2M	kg/year 2N =2L×2M×2G÷ 100	kg/year 2R (Sum of 2N and 2Q)		28	kg/year 2T	% 2U	2V	kg/year 2W =2T×2U×2G÷10 0	kg/year 2AB (Sum of 2W and 2AA)	kg/year 2AC =2J-2R-2AB
Coating	Toluene		0	Paint A	10,700	10		1,070	35,160	35,160						0		Spent paint	100	15	Off-site transfer	1 5	15	35,145
				Thinner A	48,700	70		34,090																
												When the cor product is not k	nown									waste is not known		
												Name of the product containing 2B manufactured in 2A	calculate th 2B trans	a used to e quantity of sferred as acts 20	Quantity of 2B f transferred as products 2O, kg/year	•	L,	Name of the waste containing 2B generated in 2A	in	calculate the 2B contained 2X		Quantity of 2B contained in 2X	•	
												20	3	1P	kg/year 2Q			2X	2	Y	2Z	kg/year 2AA		
																							Enter "3AX" or "3AY" of Workshee 3 per classification of transfer.	21

Worksheet 3 (Calculation of the quantity released to each medium)

This worksheet can be used to give a breakdown of the maximum latert quantity released to the environment calculated by filling out worksheet 2 into individual quantities released to each medium (one sheet for one process and one material). Fill out the sheet step by step by referring to the Manual for Calculating the Quantity of Released Pollutant.

Name of the subject	substance and the process	where the substance is han	Calculation of the quantity released to soil					
Name of the process	Name of the subject	Name of the individual	Conversion	Maximum latent	Quantity of raw materials or materials	Content of 3B	Quantity of	
where raw materials	substance contained in	materials (when 3B is a	coefficient	quantity of 3B	containing 3B leaked to soil	(3B') in raw	3B released	
or materials	raw materials or	group of substances)	used to	released to the		materials or	to soil	
containing a subject	materials handled in 3A		convert 3B'	environment		materials	1	
substance is handled			to 3B					
				kg/year	kg/year	%	kg/year	
3A	3B	3B'	3C	3D	3E	3F	3G	
Post "2A" here.	Post "2B" here.	Post "2G" here.	Post "2G"	Post "2AC" here.			=3E×3F÷10	
			here.				0	
Coating	Toluene			35,145	0		0	

Worksheet 4 (Compilation of the quantity released or transferred) Use this worksheet to compile the quantities of the subject substance released and transferred calculated by using worksheets 2 and 3. Post the values in the relevant columns in worksheet 3 to this sheet to compile the quantities per substance.

Substanc e No.	Name of the subject substance	Name of the process where the substance is handled		erred quantity	Released quantity											
			Transfer to sewage works	Transfer to outside the pertinent establishment		Release to p	public water area	Release to soil inside the pertinent	Landfill inside the pertinent establishment							
			kg/year	kg/year	kg/year	Released quantity kg/year 4G Post "3AU" here.	Name of the river, lake or sea to which the substance is released	kg/year	Quantity disposed of in landfills kg/year	Classification of the landfill site (least controlled, controlled, or strictly controlled)						
4A Post "3AR" here.	4B Post "3AS" here.	4C Post "3A" here.	4D Post "3AV" here.	4E Post "3AX" here.	4F Post "3AT" here.		4H	4I Post "3AW" here.	4J Post "3AY" here.	4K						
227	Toluene	Coating	0	27,945	6,982	232		0	0							
		Adhesion	0	315	3,543	25		0	0							
		Total	0	28,260	10,525	257	river	0	0							

Worksheet 5 (Calculation of the quantity released or transferred from specific requirement facilities) Use this worksheet to calculate the quantity of a subject substance released from specific requirement facilities to each medium in the environment. Fill out the columns one by one from 5Aa or 5Ab by referring to the Manual for Calculating the Quantity of Released Pollutant to calculate the quantity released or transferred to each medium and compile them.

If the substance released is categorized as a PCDD, use a), and in the case of other substances, use b).

a) Substances categorized as PCDDs

						ntity of the su bhere	bject substance	Calculation of the su water area	ubject substanc	e released to	Calculation of the quantity of the subject substance contained in waste				
Seria	Name of the facility	CAS No. of the	Substance No.	Name of the subject	Quantity of exhaust	Quantity of	Quantity of PCDDs	Concentration of	Quantity of	Quantity of PCDDs	Name of waste	Concentration of	Quantity of	Classificatio	Quantity of PCDDs
No.	from which the	subject	of the subject	substance released	gas	exhaust gas	released to the	PCDDs in effluent	effluent	released to water	containing PCDDs	PCDDs in waste	waste	n of transfer	contained in waste
	subject substance is	substance	substance				atmosphere			area			generated	of waste	
					ng-TEQ/Nm ³	Nm ³ /year	mg-TEQ/year	pg-TEQ/L	m ³ /year	mg-TEQ/year		ng-TEQ/g	t/year		mg-TEQ/year
	5Aa	5Ba	5Ca	5Da	5Ea	5Fa	5Ga	5Ha	5Ia	5Ja	5Ka	5La	5Ma	5Na	5Oa
		Enter "-"	Enter "179"	Concentration of PCDDs			=5Ea×5Fa÷1,000,00			=5Ha×5Ia÷1,000,00					=5La×5Ma
				in exhaust gas			0			0					
1	Incinerator 1	-	179	PCDDs	5.0	48,000,000	240	1.0	30,000	0.030	Incineration ash	0.24	1,300	Off-site transfer	312
2	Incinerator 2	-	179	PCDDs	3.0	48,000,000	144	1.2	20,000	0.024	Incineration ash	0.15	1,200	Off-site transfer	180
	Total						384			0.054					492

b) Substances other than PCDDs

	Information on the su	bject substance	released		Calculation of the qua	ntity of the su	bject substance	Calculation of the st	ubject substance	ce released to	Calculation of the subject substance contained in waste					
					released to the atmosp	ohere		water area								
Serial No.	Name of the facility from which the subject substance is released	subject	Substance No. of the subject substance	Name of the subject substance released	Concentration of the subject substance in exhaust gas			Concentration of the subject substance in effluent	Quantity of effluent	Quantity of the subject substance released to water area	Name of waste containing the subject substance	Concentration of the subject substance in waste	waste	Classificatio n of transfer of waste	Quantity of the subject substance in waste	
	5Ab	5Bb	5Cb	5Db	mg/Nm ³ 5Eb	Nm ³ /year 5Fb	kg/year 5Gb	mg/L 5Hb	m ³ /year 5Ib	kg/year 5Jb	5Kb	mg/kg 5Lb	t/year 5Mb	5Nb	kg/year 50b	
	5110	500	500	500	510		=5Eb×5Fb÷1,000,00 0		510	=5Hb×5Ib÷1,000	510	520	51110	5110	=5Lb×5Mb÷1,000	