The State of Dioxin Accumulation in the Human Body, Blood, Wildlife, and Food:

Findings of the Fiscal 1998 Survey

December 27, 1999 (Monday)

Environmental Health and Safety Division, Environmental Health Department, Environment Agency of Japan

Hirozo Ueda, Director (Ext. 6350)

Tsuyoshi Nakayama, Senior Public Health Officer (Ext. 6352)

Office of Environmental Risk Evaluation

Masatoshi Kanai, Director (Ext. 6340)

Shin'ichi Araki, Deputy Director (Ext. 6341)

Dioxins present serious issues for environmental protection, as they concern human health and other issues.

Consequently, the government is now committed to a united effort to deal with these issues on the basis of the

Basic Guidelines of Japan for the Promotion of Measures against Dioxins (adopted in March 1999) and the Law

Concerning Special Measures Against Dioxins (approved and promulgated in July 1999).

The Environment Agency of Japan responded to this situation by implementing comprehensive monitoring of dioxins (Note 1) in the air, water, soil, and other environmental media throughout the country simultaneously in fiscal 1998. At the same time, it also implemented studies to grasp the actual state of dioxin accumulation in the human body, blood, wildlife, and food. The results of the comprehensive monitoring of dioxins in the air, water, soil, and other environmental media were compiled and publicly released in September 1999, and now this report presents findings in the other areas that have been compiled in their final form.

The findings of this survey may be summarized as follows:

I. As concerns dioxins in the human body, results from the survey of the mean values for accumulations in human

internal organs in Japan show that the median (Note 2) toxicity equivalency quantity (TEQ) per weight of fat in

adipose tissue, liver, testes and ovaries, and blood was 41–51 pg-TEQ/g fat, in the umbilical cord

was 12 pg-TEQ/g fat, and in the brain was 2.0 pg-TEQ/g fat. The findings from a study comparing testicular

weight and sperm production for different years of death show that testicular weight increased

over the years 1964-1980, then started to decline somewhat from the first half of 1990s, but has since been

increasing again. Sperm production levels were flat.

1/125

- II. The concentration of dioxins in the blood was measured in a total of 253 people, including 234 residents of six normal environmental regions throughout Japan, and 19 residents of one region located in the vicinity of waste incineration facilities. The results for the normal environmental regions showed a mean value of 18 pg-TEQ/g fat, a median value of 17 pg-TEQ/g fat, and a range of 1.3–53 pg-TEQ/g fat. The survey conducted in the region located in the vicinity of waste incineration facilities showed a mean value of 17 pg-TEQ/g fat, a median value of 14 pg-TEQ/g fat, and a range of 5.9–38 pg-TEQ/g fat. Thus no significant difference was detected between the region located in the vicinity of waste incineration facilities and the normal environmental regions. For reference purposes, the corresponding figures for the total of 253 subjects were a mean value of 18 pg-TEQ/g fat, a median value of 17 pg-TEQ/g fat, and a range of 1.3–53 pg-TEQ/g fat.
- III. The accumulation of dioxins in wildlife (fish, amphibians, birds, marine mammals, and land mammals) was studied as one indicator of environmental pollution. The results show that predators higher in the food chain in the ecosystem tend to have greater accumulations of dioxins than predators lower in the food chain.
 Terrestrial organisms had relatively high accumulations of PCDDs and PCDFs, while marine organisms tended to have higher accumulations of co-planar PCBs.
- IV. A survey of foods was implemented in fiscal 1997 and 1998 by the collection of food samples obtained using the duplicate method. A total of 48 samples were experimentally measured for brominated dioxins as well as for chlorinated dioxins (hereafter dioxins) for reference purposes. The results were as follows:

Brominated dioxins were at levels below the lower limit of determination in all samples analyzed.

The total daily intake of dioxins in fiscal 1997 was a mean value (Note 3) of 0.81 pg-TEQ/kg body weight, and the median value was 0.42 pg-TEQ/kg body weight, over a range of 0.015–4.8 pg-TEQ/kg body weight. In fiscal 1998, the mean value was 0.94 pg-TEQ/kg body weight, the median value was 0.78 pg-TEQ/kg body weight, and the range was 0.0070–3.6 pg-TEQ/kg body weight. Combining the values for fiscal 1997 and 1998, the mean value was 0.88 pg-TEQ/kg body weight, the median value was 0.65 pg-TEQ/kg body weight, and the range was 0.0070–4.8 pg-TEQ/kg body weight.

Notes

1 Here, the term "Dioxins" refers collectively to polychlorinated dibenzo-p-dioxins (hereafter PCDDs), polychlorinated dibenzofurans (hereafter PCDFs), and co-planar polychlorinated biphenyls (hereafter co-planar PCBs).

- 2 The "median values" are the values in the exact middle when data are listed according to magnitude.
- 3 Here "mean values" signify arithmetic means.

I. Findings of the Survey of the State of Dioxin Accumulation in the Human Body Summary

As concerns the human body, the results from the survey of mean values of dioxin accumulation in human internal organs in Japan show that the median toxicity per weight of fat in adipose tissue, liver, testes and ovaries, and blood was 41–51 pg-TEQ/g fat, and in the brain alone was 2.0 pg-TEQ/g fat. The survey showed accumulations in the umbilical cord of 12 pg-TEQ/g fat (according to WHO TEF, 1998).

In addition, the findings from a survey comparing testicular weight and sperm production for different years of death show that testicular weight increased over the years 1964–1980, then started to decline somewhat from the first half of 1990s, but has since been increasing again. Sperm production levels were flat.

1. Background

The impact of dioxins on human beings and ecosystems has become a matter public concern in recent years.

With regard to human beings, the people of Japan have felt particular uneasiness over the possibility that (1) extremely minute quantities of dioxins may have an impact on human health, (2) effects may be passed on to the next generation through the mother's body, and (3) dioxins may be causing lowered sperm counts and other reproductive abnormalities.

Accordingly, the Environment Agency formed research teams consisting of specialists in anatomy, forensic medicine, pathology, obstetrics and gynecology, public health, analytical chemistry, and other such fields to conduct surveys on these problems. The surveys examined (1) mean values of dioxin concentration in the internal organs of Japanese adults, and (2) the state of testicular weight and sperm production.

2. Summary of Research

(1) Survey of Dioxins in Internal Organs

(a) Survey Method

Dioxin levels taken from autopsy records and measured in cadaveric internal organs were used to grasp the average state of the internal organs in order to ascertain the mean values of dioxin accumulation in the Japanese people.

Subjects

The subjects were 22 men and women aged 20–50 studied within 24–48 hours of death (without regard to cause of death).

As thorough measures had not initially been taken at government autopsy facilities to obtain the consent of surviving relatives for this survey, the internal organs for which consent had not been obtained were ultimately returned. Therefore, the survey used only cadaveric internal organs acquired at the Tokyo Metropolitan Medical Examiner's Office after obtaining the consent of surviving relatives.

The subjects for this survey were further limited to those for whom the medical examiners had explained to surviving relatives the purposes of the survey and obtained their cooperation, and who during their lives had smoked no more than 20 cigarettes and drunk no more than about 541 mL of alcohol (3 *go* of Japanese *sake*) daily.

Persons who had been malnourished and for whom their history of residence could not be established were not included as survey subjects.

Internal Organs Studied (per Subject)

Liver (approximately 100 g), adipose tissue (subcutaneous abdominal fat, approximately 10 g), blood (whole blood, approximately 100 ml), brain (from the area near the hypothalamus, approximately 20 g), testes or ovaries (both sides).

Adipose tissue could not be obtained in one case, and reliable analytical results of gonads could not be obtained in five cases, so these were excluded from the survey results.

Items Measured

Dioxins: Concentration and toxicity

Analysis Method

See the report.

Calculation Method

By fat weight and wet weight.

Isomers that were detected at levels below the lower limit of determination were assigned zero value.

However, concentrations below the lower limit of determination were converted to TEQ values equivalent to the lower limit of determination or half of that lower limit and included in a separate table for reference.

(b) Findings

See appended materials.

• Evaluation of the median toxicity (TEF, WHO TEF 1998) of dioxins in each internal organ showed:

-Dioxins per fat weight in the internal organs (units: pg-TEQ/g fat) were as follows: liver (51), blood (49), adipose tissue (44), testes or ovaries (41), brain (2.0).

Internal organs apart from the brain showed similar values in the 41–51 range, while the brain showed the value of 2.0, extremely low compared to the other organs.

-Dioxins per wet weight in the internal organs (units: pg-TEQ/g wet weight) were as follows: adipose tissue (33), liver (3.7), testes or ovaries (0.87), brain (0.24), blood (0.17).

The concentrations in the different organs corresponded roughly to their fat content, so that organs that are high in fat tended to show higher concentrations of dioxins. However, the brain showed extremely low levels even though it contains about the same amount of fat as the liver.

- The toxicity of dioxins in the various organs tended to increase with the age of the subject.
- Comparing the concentration of dioxins in the blood with that in the other organs by fat
 weight, the blood:liver ratio (r) was 0.6089, blood:adipose tissue 0.5963, blood:brain 0.3964, and
 blood:gonad 0.1999.
- The proportion of PCDDs and PCDFs to co-planar PCBs in terms of toxicity was roughly equal
 in the adipose tissue and the testes and ovaries, but PCDDs and PCDFs were slightly higher in the liver and
 blood.
- The PCDD and PCDF isomers with the highest concentrations (mass basis) by their median values were OCDD, 1234678-HpCDD, and 123678HxCDD, in that order. In the co-planar PCBs, they were 23'44'5-PeCB (#118) and 233'44'5'-HxCB (#156).

(2) Survey of Dioxins in the Umbilical Cord

(a) Survey Method

The dioxins were measured in samples taken from umbilical cords obtained with the mothers' consent before they gave birth at medical institutions.

o Subjects

The subjects were 29 persons (4 specimens of PCDDs and PCDFs, 13 specimens of co-planar PCBs)

Items Measured

Dioxins: Concentration and toxicity

In the case of PCDDs and PCDFs, analysis of umbilical cords alone showed extremely low concentrations, mostly below the lower limit of determination. Therefore samples from 7–8 subjects were measured together. In the case of co-planar PCBs, samples from the first 10 subjects were measured separately, and from the eleventh subject on, samples from 7–8 subjects were measured together.

Analysis Method

See the report.

Calculation Method

By wet weight and fat weight.

Isomers that were detected at levels below the lower limit of determination were assigned zero value.

However, concentrations below the lower limit of determination were converted to TEQ values equivalent to the lower limit of determination or half of that lower limit and included in a separate table for reference.

(b) Findings

See appended materials.

Evaluation of the median toxicity (TEF, WHO TEF 1998) of dioxins in the umbilical cords showed a level by fat weight of 12 pg-TEQ/g fat. This value was low compared to those for the internal organs (except the brain) surveyed in part (1). The value by wet weight was 0.026 pg-TEQ/g wet weight.

(3) Survey of Testes (Testicular Weight, Pathology)

(a) Survey Method

Testicular weight was surveyed from autopsy records of adult males collected at government autopsy facilities, and a morphological study of sperm production was also carried out using histopathological specimens of cadaveric testicular tissue that had already been prepared.

- Subjects
- -Testicular Weight Survey:
 - 13,185 subjects who died at ages 20-69 during the years 1949-1998
- -Testicular Pathology Survey (State of Sperm Production)
 - 697 subjects who died at ages 20–69 during the years 1978–1998

Measurement Method

Johnsen's score count (see the report)

(b) Findings

See appended materials.

According to a 1997 report from Finland, a comparison of sperm production in 1981 and 1991 by year of death showed that sperm production had decreased. The below items were compared by year of death in order to verify those findings:

Testicular Weight

Height, weight, and liver weight showed increases over time, and testicular weight increased from 1964 to about 1980, then decreased somewhat in the first half of 1990s but subsequently has been increasing again.

Since the present survey conducted comparisons by year of death, it is to be hoped that a future survey can base its analysis upon the year of birth.

• Pathological Survey (State of Sperm Production)

Histopathological study of testicular tissue showed that the proportion of sperm production results that could be considered normal remained level over the 20-year period surveyed, as also did the proportion judged as deficient sperm production over the same period.

3. Future Continuation of this Research

The survey of internal organs conducted for this survey utilized human remains on which medical examiners had conducted autopsies for the purpose of determining cause of death under the Autopsy Law (hereafter referred to as government autopsies). These were used in order to determine the state of dioxin accumulation in the Japanese people from cadaveric internal organs. The use of human remains for research on internal organs involves social and ethical issues of human dignity. The survey was planned to determine the state of dioxin accumulation in human beings while taking full cognizance of the careful consideration that must be shown in conducting such research.

At the start of this survey researchers made efforts to obtain the consent of surviving relatives regarding survey to the extent possible in order to accord them the proper respect. There were cases, however, where practical problems made it difficult to obtain the consent of surviving relatives, as a result of which this requirement was not fully met in some of the cases.

For the future continuation of this research, scrutiny is being given the debate among academic societies concerned regarding procedures for obtaining the consent of surviving relatives in cases when cadaveric internal organs from government autopsies are to be used in research for environmental consideration. However, it is not presently possible to form an immediate social consensus on this matter. Therefore, the Environment Agency has for its part decided, on the basis of considerations including full consultation with the parties who participated in this research, to suspend for the time being the continuation of this survey into dioxins using cadaveric internal organs from government autopsies.

Dioxin concentration and TEQ in internal organs (summary) Table 1

	1	indiadon and 11		at weight	(00	per wet w	eight	
			unit	mean	median	unit	mean	median
liver(n=22)	PCDD+PCDF	Total PCDDs	pg/g(fat)	760	670	pg/g(wet)	59	55
11101(11–22)	I OBBIT OBI	Total PCDFs	pg/g(fat)	150	120	pg/g(wet)	10	11
		Total PCDD/DFs	pg/g(fat)	910	790	pg/g(wet)	69	68
		Total TEQ ¹	pg-TEQ/g(fat)	36	34	pg-TEQ/g(wet)	2.9	2.6
		Total TEQ ²	pg-TEQ/g(fat)	36	34	pg-TEQ/g(wet)	2.9	2.6
		Total TEQ ³		36	34		2.9	2.6
	C- DCD		pg-TEQ/g(fat)			pg-TEQ/g(wet)		
	Co-PCB	Total TEQ1	pg-TEQ/g(fat)	21	19	pg-TEQ/g(wet)	2.2	1.0
		Total TEQ ²	pg-TEQ/g(fat)	21	19	pg-TEQ/g(wet)	2.2	1.0
		Total TEQ ³	pg-TEQ/g(fat)	21	19	pg-TEQ/g(wet)	2.2	1.0
	PCDD+PCDF+	Total TEQ1	pg-TEQ/g(fat)	57	51	pg-TEQ/g(wet)	5.1	3.7
	Co-PCB	Total TEQ ²	pg-TEQ/g(fat)	57	51	pg-TEQ/g(wet)	5.1	3.7
		Total TEQ ³	pg-TEQ/g(fat)	57	51	pg-TEQ/g(wet)	5.1	3.7
adipose	PCDD+PCDF	Total PCDDs	pg/g(fat)	340	210	pg/g(wet)	280	180
tissure		Total PCDFs	pg/g(fat)	53	37	pg/g(wet)	44	31
(n=21)		Total PCDD/DFs	pg/g(fat)	390	250	pg/g(wet)	320	210
` /		Total TEQ1	pg-TEQ/g(fat)	23	19	pg-TEQ/g(wet)	19	16
		Total TEQ ²	pg-TEQ/g(fat)	23	19	pg-TEQ/g(wet)	19	16
		Total TEQ ³	pg-TEQ/g(fat)	23	19	pg-TEQ/g(wet)	19	16
	Co-PCB	Total TEQ ¹		23	18	pg-TEQ/g(wet)	19	14
	CO-PCB		pg-TEQ/g(fat)					
		Total TEQ ²	pg-TEQ/g(fat)	23	18	pg-TEQ/g(wet)	19	14
		Total TEQ ³	pg-TEQ/g(fat)	23	18	pg-TEQ/g(wet)	19	14
	PCDD+PCDF+	Total TEQ1	pg-TEQ/g(fat)	46	44	pg-TEQ/g(wet)	37	33
	Co-PCB	Total TEQ ²	pg-TEQ/g(fat)	46	44	pg-TEQ/g(wet)	37	33
		Total TEQ ³	pg-TEQ/g(fat)	46	44	pg-TEQ/g(wet)	37	33
blood	PCDD+PCDF	Total PCDDs	pg/g(fat)	510	410	pg/g(wet)	1.9	1.6
(n=22)		Total PCDFs	pg/g(fat)	88	90	pg/g(wet)	0.33	0.33
, ,		Total PCDD/DFs	pg/g(fat)	610	530	pg/g(wet)	2.3	1.8
		Total TEQ1	pg-TEQ/g(fat)	31	29	pg-TEQ/g(wet)	0.12	0.11
		Total TEQ ²	pg-TEQ/g(fat)	32	31	pg-TEQ/g(wet)	0.12	0.11
		Total TEQ3	pg-TEQ/g(fat)	33	33	pg-TEQ/g(wet)	0.12	0.12
	Co-PCB	Total TEQ1	pg-TEQ/g(fat)	19	16	pg-TEQ/g(wet)	0.082	0.068
		Total TEQ ²	pg-TEQ/g(fat)	19	16	pg-TEQ/g(wet)	0.082	0.068
		Total TEQ3	pg-TEQ/g(fat)	19	16	pg-TEQ/g(wet)	0.082	0.068
	PCDD+PCDF+	Total TEQ1	pg-TEQ/g(fat)	52	49	pg-TEQ/g(wet)	0.21	0.17
	Co-PCB	Total TEQ ²	pg-TEQ/g(fat)	52	49	pg-TEQ/g(wet)	0.21	0.17
		Total TEQ3	pg-TEQ/g(fat)	52	49	pg-TEQ/g(wet)	0.21	0.17
brain	PCDD+PCDF	Total PCDDs	pg/g(fat)	13	11	pg/g(wet)	1.3	1.2
(n=22)	. 022 / . 02 .	Total PCDFs	pg/g(fat)	2.6	1.6	pg/g(wet)	0.24	0.20
(==)		Total PCDD/DFs	pg/g(fat)	16	13	pg/g(wet)	1.5	1.4
		Total TEQ ¹	pg-TEQ/g(fat)	0.87	0.63	pg-TEQ/g(wet)	0.092	0.050
		Total TEQ ²	pg-TEQ/g(fat)	1.3	1.2	pg-TEQ/g(wet)	0.14	0.11
		Total TEQ ³	pg-TEQ/g(fat)	1.8	1.4	pg-TEQ/g(wet)	0.14	0.11
			pu-i = Q/u(iat)					
	O - DOD	T-1-1 TEO1						0.45
	Co-PCB	Total TEQ1	pg-TEQ/g(fat)	1.9	1.5	pg-TEQ/g(wet)	0.19	0.15
	Co-PCB	Total TEQ ²	pg-TEQ/g(fat) pg-TEQ/g(fat)	1.9 1.9	1.5 1.5	pg-TEQ/g(wet) pg-TEQ/g(wet)	0.19 0.19	
		Total TEQ ² Total TEQ ³	pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat)	1.9 1.9 1.9	1.5 1.5 1.5	pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet)	0.19 0.19 0.19	0.15
	Co-PCB PCDD+PCDF+	Total TEQ ² Total TEQ ³ Total TEQ ¹	pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat)	1.9 1.9	1.5 1.5 1.5 2.0	pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet)	0.19 0.19	0.15
		Total TEQ ² Total TEQ ³ Total TEQ ¹ Total TEQ ²	pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat)	1.9 1.9 1.9	1.5 1.5 1.5	pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet)	0.19 0.19 0.19	0.15
	PCDD+PCDF+	Total TEQ ² Total TEQ ³ Total TEQ ¹	pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat)	1.9 1.9 1.9 2.8	1.5 1.5 1.5 2.0	pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet)	0.19 0.19 0.19 0.28	0.15 0.24
testes, ovarv	PCDD+PCDF+ Co-PCB	Total TEQ ² Total TEQ ³ Total TEQ ¹ Total TEQ ² Total TEQ ²	pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat)	1.9 1.9 1.9 2.8 3.2 3.7	1.5 1.5 1.5 2.0 2.9 3.7	pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet)	0.19 0.19 0.19 0.28 0.33 0.37	0.15 0.24 0.29
testes, ovary	PCDD+PCDF+	Total TEQ ² Total TEQ ³ Total TEQ ¹ Total TEQ ² Total TEQ ³ Total TEQ ³ Total PCDDs	pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat)	1.9 1.9 1.9 2.8 3.2 3.7 350	1.5 1.5 1.5 2.0 2.9 3.7 230	pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg/g(wet)	0.19 0.19 0.19 0.28 0.33 0.37 6.3	0.15 0.24 0.29 0.35 4.9
testes, ovary (n=17)	PCDD+PCDF+ Co-PCB	Total TEQ ² Total TEQ ³ Total TEQ ¹ Total TEQ ² Total TEQ ² Total TEQ ³ Total PCDDs Total PCDFs	pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg/g(fat) pg/g(fat)	1.9 1.9 1.9 2.8 3.2 3.7 350 54	1.5 1.5 1.5 2.0 2.9 3.7 230 42	pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg/g(wet) pg/g(wet)	0.19 0.19 0.28 0.33 0.37 6.3	0.15 0.24 0.29 0.35 4.9 0.81
	PCDD+PCDF+ Co-PCB	Total TEQ ² Total TEQ ³ Total TEQ ¹ Total TEQ ² Total TEQ ³ Total PCDDs Total PCDFs Total PCDD/DFs	pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg/g(fat) pg/g(fat) pg/g(fat)	1.9 1.9 1.9 2.8 3.2 3.7 350 54 400	1.5 1.5 2.0 2.9 3.7 230 42 270	pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg/g(wet) pg/g(wet) pg/g(wet)	0.19 0.19 0.28 0.33 0.37 6.3 1.1	0.15 0.24 0.29 0.35 4.9 0.81 5.7
	PCDD+PCDF+ Co-PCB	Total TEQ ² Total TEQ ³ Total TEQ ¹ Total TEQ ² Total TEQ ² Total TEQ ³ Total PCDDs Total PCDFs Total PCDD/DFs Total PCDD/DFs Total TEQ ¹	pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg/g(fat) pg/g(fat) pg/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat)	1.9 1.9 1.9 2.8 3.2 3.7 350 54 400 29	1.5 1.5 1.5 2.0 2.9 3.7 230 42 270	pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg/g(wet) pg/g(wet) pg/g(wet) pg/g(wet) pg-TEQ/g(wet)	0.19 0.19 0.28 0.33 0.37 6.3 1.1 7.4	0.15 0.24 0.29 0.35 4.9 0.81 5.7 0.45
	PCDD+PCDF+ Co-PCB	Total TEQ ² Total TEQ ³ Total TEQ ¹ Total TEQ ² Total TEQ ³ Total PCDDs Total PCDFs Total PCDD/DFs Total TEQ ¹ Total TEQ ¹ Total TEQ ¹	pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg/g(fat) pg/g(fat) pg/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat)	1.9 1.9 1.9 2.8 3.2 3.7 350 54 400 29	1.5 1.5 1.5 2.0 2.9 3.7 230 42 270 19	pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg/g(wet) pg/g(wet) pg/g(wet) pg/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet)	0.19 0.19 0.28 0.33 0.37 6.3 1.1 7.4 0.54	0.15 0.24 0.29 0.35 4.9 0.81 5.7 0.45
	PCDD+PCDF+ Co-PCB	Total TEQ ² Total TEQ ³ Total TEQ ¹ Total TEQ ² Total TEQ ³ Total PCDDs Total PCDFs Total PCDD/DFs Total TEQ ¹ Total TEQ ¹ Total TEQ ² Total TEQ ² Total TEQ ³	pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg/g(fat) pg/g(fat) pg/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat)	1.9 1.9 2.8 3.2 3.7 350 54 400 29 29	1.5 1.5 1.5 2.0 2.9 3.7 230 42 270 19 22	pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg/g(wet) pg/g(wet) pg/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet)	0.19 0.19 0.28 0.33 0.37 6.3 1.1 7.4 0.54 0.56	0.15 0.24 0.29 0.35 4.9 0.81 5.7 0.45 0.45
	PCDD+PCDF+ Co-PCB	Total TEQ ² Total TEQ ³ Total TEQ ¹ Total TEQ ² Total TEQ ³ Total PCDDs Total PCDFs Total PCDD/DFs Total TEQ ¹ Total TEQ ¹ Total TEQ ² Total TEQ ² Total TEQ ² Total TEQ ³ Total TEQ ³	pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg/g(fat) pg/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat)	1.9 1.9 2.8 3.2 3.7 350 54 400 29 29 30 23	1.5 1.5 1.5 2.0 2.9 3.7 230 42 270 19 22 22	pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-G(wet) pg/g(wet) pg/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet)	0.19 0.19 0.28 0.33 0.37 6.3 1.1 7.4 0.54 0.56 0.57 0.48	0.15 0.24 0.29 0.35 4.9 0.81 5.7 0.45 0.45 0.48
	PCDD+PCDF+ Co-PCB	Total TEQ ² Total TEQ ³ Total TEQ ¹ Total TEQ ² Total TEQ ³ Total PCDDs Total PCDFs Total PCDD/DFs Total TEQ ¹ Total TEQ ² Total TEQ ² Total TEQ ³ Total TEQ ³ Total TEQ ³ Total TEQ ³ Total TEQ ¹ Total TEQ ¹	pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg/g(fat) pg/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat)	1.9 1.9 2.8 3.2 3.7 350 54 400 29 29 30 23	1.5 1.5 1.5 2.0 2.9 3.7 230 42 270 19 22 22 20	pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg/g(wet) pg/g(wet) pg/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet)	0.19 0.19 0.28 0.33 0.37 6.3 1.1 7.4 0.54 0.56 0.48	0.15 0.24 0.29 0.35 4.9 0.81 5.7 0.45 0.45 0.48 0.36
	PCDD+PCDF+ Co-PCB PCDD+PCDF Co-PCB	Total TEQ ² Total TEQ ³ Total TEQ ¹ Total TEQ ² Total TEQ ³ Total PCDDs Total PCDFs Total PCDD/DFs Total TEQ ¹ Total TEQ ² Total TEQ ² Total TEQ ³ Total TEQ ³ Total TEQ ³ Total TEQ ¹ Total TEQ ² Total TEQ ³ Total TEQ ³ Total TEQ ³ Total TEQ ³	pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg/g(fat) pg/g(fat) pg-TEQ/g(fat)	1.9 1.9 1.9 2.8 3.2 3.7 350 54 400 29 29 30 23 23	1.5 1.5 1.5 2.0 2.9 3.7 230 42 270 19 22 22 20 20	pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg/g(wet) pg/g(wet) pg/g(wet) pg-TEQ/g(wet)	0.19 0.19 0.28 0.33 0.37 6.3 1.1 7.4 0.54 0.56 0.48 0.48	0.15 0.24 0.29 0.35 4.9 0.81 5.7 0.45 0.45 0.36 0.36
	PCDD+PCDF+ Co-PCB PCDD+PCDF Co-PCB PCDD+PCDF+	Total TEQ ² Total TEQ ³ Total TEQ ¹ Total TEQ ² Total TEQ ³ Total PCDDs Total PCDDs Total PCDD/DFs Total TEQ ¹ Total TEQ ² Total TEQ ² Total TEQ ³ Total TEQ ³ Total TEQ ¹ Total TEQ ³ Total TEQ ² Total TEQ ² Total TEQ ² Total TEQ ² Total TEQ ³ Total TEQ ³	pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg/g(fat) pg/g(fat) pg-TEQ/g(fat)	1.9 1.9 1.9 2.8 3.2 3.7 350 54 400 29 29 30 23 23 23	1.5 1.5 2.0 2.9 3.7 230 42 270 19 22 22 20 20 41	pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg/g(wet) pg/g(wet) pg/g(wet) pg-TEQ/g(wet)	0.19 0.19 0.28 0.33 0.37 6.3 1.1 7.4 0.54 0.56 0.57 0.48 0.48 0.48	0.15 0.24 0.29 0.35 4.9 0.81 5.7 0.45 0.45 0.36 0.36
	PCDD+PCDF+ Co-PCB PCDD+PCDF Co-PCB	Total TEQ ² Total TEQ ³ Total TEQ ¹ Total TEQ ² Total TEQ ³ Total PCDDs Total PCDFs Total PCDD/DFs Total TEQ ¹ Total TEQ ² Total TEQ ² Total TEQ ³ Total TEQ ³ Total TEQ ³ Total TEQ ¹ Total TEQ ² Total TEQ ³ Total TEQ ³ Total TEQ ³ Total TEQ ³	pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg-TEQ/g(fat) pg/g(fat) pg/g(fat) pg-TEQ/g(fat)	1.9 1.9 1.9 2.8 3.2 3.7 350 54 400 29 29 30 23 23	1.5 1.5 1.5 2.0 2.9 3.7 230 42 270 19 22 22 20 20	pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg-TEQ/g(wet) pg/g(wet) pg/g(wet) pg/g(wet) pg-TEQ/g(wet)	0.19 0.19 0.28 0.33 0.37 6.3 1.1 7.4 0.54 0.56 0.48 0.48	0.15 0.24 0.29 0.35 4.9 0.81 5.7 0.45 0.45 0.36 0.36

WHO-TEF: Toxicity Equivalency Factor (WHO, 1998) is applied.

1: Total TEQ calculated applying 0 as the concentration for the isomers below the detection limit.

^{2:} Total TEQ calculated applying 1/2 value of the detection limit as the concentration for the isomers below the detection limit.

^{3:} Total TEQ calculated applying the value of the detection limit as the concentration for the isomers below the detection limit.

Table 2 Dioxin concentration in umbilical cord (summary)

		mean	median
fat concentration	% (w/w)	0.1096	0.105
concentration per fat weight	unit		
PCDDs+PCDFs	pg/g (fat)	270	240
PCDDs+PCDFs WHO-TEQ1	pg-TEQ/g (fat)	10	11
PCDDs+PCDFs WHO-TEQ2	pg-TEQ/g (fat)	11	12
PCDDs+PCDFs WHO-TEQ3	pg-TEQ/g (fat)	13	12
COPCBs WHO-TEQ1	pg-TEQ/g (fat)	6.6	3.0
COPCBs WHO-TEQ2	pg-TEQ/g (fat)	7.7	6.1
COPCBs WHO-TEQ3	pg-TEQ/g (fat)	8.7	7.9
Total WHO-TEQ1 (PCDD+DF+COPCB)	pg-TEQ/g (fat)	14	12
Total WHO-TEQ2 (PCDD+DF+COPCB)	pg-TEQ/g (fat)	14	12
Total WHO-TEQ3 (PCDD+DF+COPCB)	pg-TEQ/g (fat)	15	13
concentration per wet weight			
PCDDs+PCDFs	pg/g (wet)	0.437	0.38
PCDDs+PCDFs WHO-TEQ ¹	pg-TEQ/g (wet)	0.019	0.015
PCDDs+PCDFs WHO-TEQ ²	pg-TEQ/g (wet)	0.020	0.016
PCDDs+PCDFs WHO-TEQ ³	pg-TEQ/g (wet)	0.021	0.017
COPCBs WHO-TEQ ¹	pg-TEQ/g (wet)	0.0087	0.0056
COPCBs WHO-TEQ ²	pg-TEQ/g (wet)	0.0098	0.0071
COPCBs WHO-TEQ ³	pg-TEQ/g (wet)	0.011	0.0080
Total WHO-TEQ1 (PCDD+DF+COPCB)	pg-TEQ/g (wet)	0.034	0.026
Total WHO-TEQ2 (PCDD+DF+COPCB)	pg-TEQ/g (wet)	0.036	0.027
Total WHO-TEQ3 (PCDD+DF+COPCB)	pg-TEQ/g (wet)	0.036	0.027

WHO-TEF: Toxicity Equivalency Factor (WHO, 1998) is applied

WHO-TEQ¹: Total TEQ calculated applying 0 as the concentration for the isomers below the detection limit.

WHO-TEQ²: Total TEQ calculated applying 1/2 value of the detection limit as the concentration for the isomers below the detection limit.

WHO-TEQ³: Total TEQ calculated applying the value of the detection limit as the concentration for the isomers below the detection limit.

Note: pg/g(fat); concentration per fat weight. pg-TEQ/g(fat); TEQ per fat weight. pg/g(wet); concentration per wet weight. pg-TEQ/g(wet); TEQ per wet weight

Fig.1 Change in Testis Weight in Japanese

Table 3 Histological Examination Results of Testis

Age: 20 to 69

Year	Arrest	Fair	Normal	N
1978	21.3% (16)	21.3% (16)	57.3% (43)	75
1988	28.1% (68)	15.7% (38)	56.2% (136)	242
1993	31.1% (41)	16.7% (22)	52.3% (69)	132
1998	26.6% (66)	14.5% (36)	58.9% (146)	248
Total	27.4% (191)	16.1% (112)	56.5% (394)	697

Age:20 to 39

Year	Arrest	Fair	Normal	N
1978	7.4% (2)	18.5% (5)	74.1% (20)	27
1988	14.3% (8)	8.9% (5)	76.8% (43)	56
1993	13.3% (2)	13.3% (2)	73.3% (11)	15
1998	14.7% (5)	8.8% (3)	76.5% (26)	34
Total	12.9% (17)	11.4% (15)	75.8% (100)	132

Age: 35 to 69

- · · · · · · · · · · · · · · · · · · ·				
Year	Arrest	Fair	Normal	N
1978	25.4% (15)	22.0% (13)	52.5% (31)	59
1988	31.7% (63)	17.1% (34)	51.3% (102)	199
1993	32.8% (40)	16.4% (20)	50.8% (62)	122
1998	28.3% (63)	15.2% (34)	56.5% (126)	223
Total	30.0% (181)	16.7% (101)	53.2% (321)	603

Note: Actual numbers examined are shown in ().

II. Findings of the Survey of Dioxins in the Blood in Normal Environmental Regions, Etc.

The concentration of dioxins in the blood was measured for a total of 253 subjects (122 women and 131 men), including 234 residents (113 women and 121 men) of six normal environmental regions (Note 1) throughout Japan, and 19 residents (9 women and 10 men) of one region located in the vicinity of waste incineration facilities.

In summary, the results from the total of 234 subjects in normal environmental regions showed a mean value of 18 pg-TEQ/g fat, a median value of 17 pg-TEQ/g fat, and a range of 1.3–53 pg-TEQ/g fat.

The survey conducted on a total of 19 subjects from the region located in the vicinity of waste incineration facilities showed a mean value of 17 pg-TEQ/g fat, a median value of 14 pg-TEQ/g fat, and a range of 5.9–38 pg-TEQ/g fat. Thus no significant difference was detected between the region located in the vicinity of waste incineration facilities and the normal environmental regions.

For reference purposes, the corresponding overall figures for the total of 253 subjects were a mean value of 18 pg-TEQ/g fat, a median value of 17 pg-TEQ/g fat, and a range of 1.3–53 pg-TEQ/g fat.

The findings from this survey cannot be compared easily with those from other surveys because the analytical methods are not necessarily the same. Overall, however, comparison shows that generally the same trends appear in these results as in those from preceding surveys implemented in Japan and other countries.

Note

1 Here, normal environmental region means regions that have no waste incineration facility within about 2 km and are not considered to be subject to any special environmental exposure.

The Environment Agency has collected baseline data for ascertaining the state of human exposure to dioxins in Japan by means of the title survey of dioxin concentrations in the blood conducted by the Environmental Health Department in fiscal 1998 on the residents of six normal environmental regions and other regions throughout Japan. The findings of this survey have recently been compiled.

The views of specialists on the attached materials were sought in the process of assembling this survey's findings.

1. Survey Content

(1) Objectives

The concentration of dioxins in blood was measured in order to obtain baseline data for ascertaining the state of human exposure to dioxins in normal environmental regions and other regions of Japan.

(2) Regions and Subjects Surveyed

(a) Survey Regions

Six regions throughout Japan were selected as normal environmental regions that "have no waste incineration facility within about 2 km and are not considered to be subject to any special environmental exposure."

In addition, one region was selected that is within about 2 km of waste incineration facilities.

Normal environmental regions: Six regions throughout Japan, with total of 234 subjects (113 women, 121 men)

Regions located in the vicinity of waste incineration facilities: One region, with total of 19 subjects (9 women, 10 men)

Total of 243 subjects (122 women, 131 men)

(b) Survey Subjects

As a rule, about 40 people (about 8 each from five age groups of 20s, 30s, 40s, 50s, and 60s and above, with about equal numbers of men and women from each) who meet the following conditions were recruited from each region (Table 1):

- Subjects who have lived in the region for at least ten years
- Subjects who are not thought to have experienced occupational exposure (workers at waste incineration facilities, etc.)
- Ages 20–65
 - (c) Items Surveyed

Dioxins, etc. in the blood (Regarding isomers and toxic equivalency factors (WHO TEF, 1998), see Table 2.)

Figures below the lower limit of determination (ND) were assigned zero value, and ND was converted to values equivalent to half of the lower limit of determination and included separately for reference.

The lower limits of determination for dioxin isomers were: 1 pg/g-fat for 4,5 chlorinated dioxins, 2 pg/g-fat for 6,7 chlorinated dioxins, 4 pg/g-fat for 8 chlorinated dioxins, and 10 pg/g-fat for co-planar PCBs.

(d) Survey Period

February-March 1999

2. Findings

The results of measurements are shown in Table 3.

Overview of Findings

(Figures in brackets are ND levels converted to half of the lower limit of determination.)

(1) In the normal environmental regions, blood from a total of 234 subjects was studied, and the mean value of dioxin concentration was 18 (19) pg-TEQ/g fat, the median value was 17 (18) pg-TEQ/g fat, and the range was 1.3–53 (3.6–53) pg-TEQ/g fat.

In the regions located in the vicinity of waste incineration facilities, blood from a total of 19 subjects was surveyed, and the mean value of dioxin concentration was 17 (18) pg-TEQ/g fat, the median value was 14 (14) pg-TEQ/g fat, and the range was 5.9–38 (7.5–38) pg-TEQ/g fat.

No significant difference was detected between the region located in the vicinity of waste incineration facilities and the normal environmental regions.

For reference purposes, the corresponding figures for the total of 253 subjects were a mean value of 18 (19) pg-TEQ/g fat, a median value of 17 (17) pg-TEQ/g fat, and a range of 1.3–53 (3.6–53) pg-TEQ/g fat.

(2) In addition, the difference between mean values for men and women (gender difference), different ages, and the number of years since birth were analyzed statistically in relation to the concentration of dioxins in the blood. No particularly significant gender difference was found (Table 4), and the correlation coefficients for the latter items were 0.45–0.50 (Table 5).

Evaluation of Findings

The dioxin levels in the blood measured by this survey cannot be compared easily with those from other surveys because the conditions of measurement, the preparation methods, and so on were not the same. Overall, however, comparison shows that generally the same trends appear in these results as in those from earlier surveys (see note) implemented in Japan and other countries.

Note: Findings of Fiscal 1998 Survey on Long-Term Impact of Exposure to Dioxins in the Air

(Environment Agency of Japan, released August 1999), Report on Findings of Fiscal

1997 Health Sciences Research (Ministry of Health and Welfare, released 1998), Report on Findings of Fiscal

1998 Health Sciences Research (Ministry of Health and Welfare, released November 1999), etc.

3. Conclusions

This survey obtained baseline data on the concentration of dioxins in the blood of people in normal environmental regions in Japan.

It will be necessary in the future to carry out a comprehensive analysis of this survey in combination with the

questionnaire survey on life histories that was conducted at the same time as well as with other related data.

List of members (omitted)

Table 1 Composition of Subjects (1)

	All R	egions	Normal Regions		Waste Incinerator Vicinity Region	
Age Group / Sex	Male	Female	Male	Female	Male	Female
20's	26	24	24	22	2	2
30's	23	27	23	25	0	2
40's	29	23	25	22	4	1
50's	27	23	26	21	1	2
60's	26	25	23	23	3	2
Sub-total	131	122	121	113	10	9
Total	2	253	234 1		19	

Table 1 Composition of Subjects (2)

		Normal Regions											Incin	aste erator
		3 · ·											inity gion	
	Reg	ion A	Reg	jion B	Reg	ion C	Regi	ion D	Reg	ion E	Reg	jion F	Reg	ion G
Sex	М	F	М	F	М	F	M	F	M	F	М	F	М	F
20's	4	5	4	2	4	5	5	5	2	0	5	5	2	2
30's	4	3	4	4	4	5	4	5	3	3	4	5	0	2
40's	4	5	4	3	4	4	5	5	3	1	5	4	4	1
50's	3	4	9	3	4	5	5	5	0	0	5	4	1	2
60's	4	3	4	3	4	5	4	5	3	3	4	4	3	2
Sub- total	19	20	25	15	20	24	23	25	11	7	23	22	10	9
Total	3	9	4	40	4	14	4	-8	1	18		45	1	19

Table 2 Isomers Measured

			TEF		
	No. of Chlorines	Isomers	I-TEF(1988) WHO/IPCS-TEF(1993)**	WHO-TEF1998	
		1,3,6,8-T ₄ CDD	_	_	
	4	1,3,7,9-T ₄ CDD	_	_	
		2,3,7,8-T ₄ CDD	1	1	
Р	5	1,2,3,7,8-P ₅ CDD	0.5	1	
С		1,2,3,4,7,8-H ₆ CDD	0.1	0.1	
D	6	1,2,3,6,7,8-H ₆ CDD	0.1	0.1	
		1,2,3,7,8,9-H ₆ CDD	0.1	0.1	
	7	1,2,3,4,6,7,8-H ₇ CDD	0.01	0.01	
	8	1,2,3,4,6,7,8,9-O ₈ CDD	0.001	0.0001	
	4	1,2,7,8-T ₄ CDF	_	_	
	4	2,3,7,8-T ₄ CDF	0.1	0.1	
	5	1,2,3,7,8-P ₅ CDF	0.05	0.05	
	5	2,3,4,7,8-P ₅ CDF	0.5	0.5	
Р		1,2,3,4,7,8-H ₆ CDF	0.1	0.1	
C D	6	1,2,3,6,7,8-H ₆ CDF	0.1	0.1	
F	6	1,2,3,7,8,9-H ₆ CDF	0.1	0.1	
		2,3,4,6,7,8-H ₆ CDF	0.1	0.1	
	7	1,2,3,4,6,7,8-H ₇ CDF	0.01	0.01	
	,	1,2,3,4,7,8,9-H ₇ CDF	0.01	0.01	
	8	1,2,3,4,6,7,8,9-O ₈ CDF	0.001	0.0001	
		3,4,4',5-T ₄ CB	_	0.0001	
	Nion outles	3,3',4,4'-T ₄ CB	0.0005	0.0001	
	Non-ortho	3,3',4,4',5-P ₅ CB	0.1	0.1	
С		3,3',4,4',5,5'-H ₆ CB	0.01	0.01	
o p		2',3,4,4',5-P ₅ CB	0.0001	0.0001	
I		2,3',4,4',5-P ₅ CB	0.0001	0.0001	
a		2,3,3',4,4'-P ₅ CB	0.0001	0.0001	
n a	Mana andlas	2,3,4,4',5-P ₅ CB	0.0005	0.0005	
r	Mono-ortho	2,3',4,4',5,5'-H ₆ CB	0.00001	0.00001	
P C		2,3,3',4,4',5-H ₆ CB	0.0005	0.0005	
В		2,3,3',4,4',5'-H ₆ CB	0.0005	0.0005	
		2,3,3',4,4',5,5'-H ₇ CB	0.0001	0.0001	
	Di codo -	2,2',3,4,4',5,5'-H ₇ CB	0.00001	_	
	Di-ortho	2,2',3,3',4,4',5-H ₇ CB	0.0001	_	

[※] PCDDs and PCDFs follow I-TEF(1988), Coplanar PCBs follow WHO/ICPS-TEF(1993)

10.00.00.10.00.00.00.00.00.00.00.00.00.0	All Regions	Normal Regions	Waste Incinerator Vicinity Region
n	253	234	19
Age			
mean	44	44	47
sd	14	13	16
median	44	44	47
range	20 ~ 76	20 ~ 69	22 ~ 76
PCDD+PCDF			
mean	11	11	9.2
s. d.	5.6	5.7	4.2
median	9.8	10	8.8
range	0.91 ~ 33	0.91 ~ 33	4.0 ~ 17
Co-PCB			
mean	7.0	7.3	8.1
s. d.	7.3	5.3	6.1
median	5.4	5.8	6.0
range	5.9 0.33 ~ 32	0.33 ~ 32	1.1 ~ 22
PCDD+PCDF+Co-PCB			
mean	18	18	17
s. d.	10	10	9.6
median	17	17	14
range	1.3 ~ 53	1.3 ~ 53	5.9 ~ 38

For reference, total TEQ calculated applying 1/2 value of the detection limit as the concentration for the isomers which actual measurements were below the detection limits is shown below.

<Reference value>

Table 3 Concentrations of PCDDs, PCDFs and Co-PCBs in Blood(pg-TEQ/g fat)

	All Regions	Normal Regions	Waste Incinerator Vicinity Region
n	253	234	19
PCDD+PCDF			
mean	12	12	10
s. d.	5.3	5.4	3.9
median	11	11	9.7
range	2.6 ~ 33	2.6 ~ 33	5.1 ~ 17
Co-PCB			
mean	7.4	7.3	8.2
s. d.	5.3	5.3	6.1
median	5.9	5.8	6.0
range	0.88 ~ 32	0.88 ~ 32	1.6 ~ 22
PCDD+PCDF+Co-PCB			
mean	19	19	18
s. d.	9.9	10	9.2
median	17	18	14
range	3.6 ~ 53	3.6 ~ 53	7.5 ~ 38

Note: Total TEQ calculated applying 1/2 value of the detection limit as the concentration for the isomers below the lower limit of detection (N. D.).

Frequency Distribution of Concentration in Blood (all Regions)

Frequency Distribution of Concentration in Blood (Normal Regions)

Frequency Distribution of Concentration in Blood (Waste Incinerator Vicinity Region)

Difference between regions:

The means, standard deviations, and medians of the blood analysis results for each regions are summarized below.

Table 3 Concentrations of PCDDs, PCDFs and Co-PCBs in Blood(pg-TEQ/g fat)

	Normal Regions							
	Region A	Region B	Region C	Region D	Region E	Region F	Region Region G	
n	39	40	44	48	18	45	19	
PCDD+PCDF								
mean	10.0	8.9	14	14	8.3	9.7	9.2	
s. d.	6.2	3.7	6.5	5.9	3.3	4.1	4.2	
median	7.6	8.3	13	13	8.5	8.8	8.8	
range	2.9 ~ 32	3.0 ~ 17	0.91 ~ 28	4.8 ~ 33	4.5 ~ 16	3.6 ~ 22	4.0 ~ 17	
Co-PCB								
mean	4.9	4.2	8.5	11	8.9	6.7	8.1	
s. d.	3.5	3.4	5.0	6.6	5.2	4.6	6.1	
median	5.3	3.9	8.6	8.6	7.6	5.6	6.0	
range	0.33 ~ 14	0.45 ~ 15	0.40 ~ 20	1.8 ~ 32	2.4 ~ 21	0.88 ~ 23	1.1 ~ 22	
PCDD+PCDF+								
Co-PCB								
mean	15	13	22	25	17	16	17	
s. d.	9.0	6.3	11	12	8.3	8.2	9.6	
median	13	12	21	23	17	15	14	
range	3.6 ~ 42	3.7 ~ 28	1.3 ~ 46	7.3~53	6.9 ~ 38	6.0 ~ 45	5.9 ~ 38	

For reference, total TEQ calculated applying 1/2 value of the detection limit as the concentration for the isomers which actual measurements were below the detection limits is shown below.

<Reference value>

Table 3 Concentrations of PCDDs, PCDFs and Co-PCBs in Blood(pg-TEQ/g fat)

	Normal Regions						
	Region A	Region B	Region C	Region D	Region E	Region F	Region G
n	39	40	44	48	18	45	19
PCDD+PCDF						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
mean	11	9.7	14	15	9.2	11	10
s. d.	5.9	3.5	6.2	5.6	3.0	3.9	3.9
median	8.4	9.1	14	14	9.4	9.5	9.7
range	4.0 ~ 32	4.1 ~ 17	2.6 ~ 29	6.0 ~ 33	5.6 ~ 16	4.7 ~ 22	5.1 ~ 17
Co-PCB							
mean	5.1	4.4	8.5	11	8.9	6.7	8.2
s. d.	3.3	3.3	5.0	6.6	5.2	4.5	6.1
median	5.3	3.9	8.6	8.6	7.6	5.6	6.0
range	0.88 ~ 14	1.0 ~ 15	0.95 ~ 20	2.3 ~ 32	2.4 ~ 21	1.4 ~ 23	1.6 ~ 22
PCDD+PCDF+							
Co-PCB							
mean	16	14	23	25	18	17	18
s. d.	8.6	6.0	11	11	8.1	8.1	9.2
median	14	13	22	24	18	16	14
range	5.2 ~ 42	5.3 ~ 29	3.6 ~ 46	8.5 ~ 53	8.1 ~ 38	7.1 ~ 45	7.5 ~ 38

Note: Total TEQ calculated applying 1/2 value of the detection limit as the concentration for the isomers below the lower limit of detection (N. D.) .

PCDD+PCDF+Co-PCB

Concentration in Blood (pg-TEQ/g-fat)

Frequency Distribution of Concentration in Blood (Region A: PCDD+PCDF+Co-PCB)

Concentration in Blood (pg-TEQ/g-fat)

Frequency Distribution of Concentration in Blood (Region B: PCDD+PCDF+Co-PCB)

Concentration in Blood (pg-TEQ/g-fat)

Frequency Distribution of Concentration in Blood (Region B: PCDD+PCDF+Co-PCB)

Concentraton in Blood (pg-TEQ/g-fat)

Frequency Distribution of Concentration in Blood (Region D: PCDD+PCDF+Co-PCB)

Concentration in Blood (pg-TEQ/g-fat)

Frequency Distribution of Concentration in Blood (Region D: PCDD+PCDF+Co-PCB)

Concentration of Blood (pg-TEQ/g-fat)

Frequency Distribution of Concentration in Blood (Region F: PCDD+PCDF+Co-PCB)

Concentration in Blood (pg-TEQ/g-fat)

Frequency Distribution of Concentration in Blood (Region G: PCDD+PCDF+Co-PCB)

Sex Difference:

Means for both sexes from all regions are shown below.

No significant difference is seen in the mean values of PCDD+PCDF, Co-PCB, or PCDD+PCDF+Co-PCB for the males and femals tested.

Concentrations of PCDD+PCDF+Co-PCB in Blood for both Sexes

OUTGOTHER ACTIONS OF TOOLS IT IS	DDI 1 00 1 0D III DI000	1 00 1 0D III DIOOG 101 DOUT OCXC3					
	Male	Female					
	n=131	n=122					
PCDD+PCDF							
mean	11	11					
s. d.	6.2	4.8					
median	9.8	9.8					
range	3.0 ~ 33	0.91 ~ 29					
Co-PCB							
mean	7.8	6.9					
s. d.	6.0	4.7					
median	6.1	5.7					
range	0.33 ~ 32	0.40 ~ 24					
PCDD+PCDF+Co-PCB							
mean	19	17					
s. d.	11	8.9					
median	17	16					
range	3.7 ~ 53	1.3 ~ 53					

Correlation between the Concentration in Blood and Age

Correlation between the concentration in Blood and Time after Giving Birth

Concentration in Blood in Existing Survey Results (Unit in pg-TEQ/g-fat)

	EA1	EA1	EA1	MHW 2	MHW 2	MHW 2	MHW3	Abroad 4
	Normal Regions	Waste	Waste	Fukuoka	Tokyo		Waste	
		Incinerator	Incinerator	Normal Region	Normal Regions	Normal Regions	Incinerator	
		Vicinity Region 1	Vicinity Region 2	S			Vicinity Region	
Survey Year	1998	1998	1998	1997	1997	1998	1998	1980's and 90's
n	32	15	16	39	13	80	95	
Age mean (year)	51	47	51					
range	38 ~ 69	33 ~ 67	40 ~ 60	20 ~ 73	21 ~ 51	30 ~40's	30∼40's	
PCDD+PCDF				•	•			•••••••••••••••••••••••••••••••••
mean	19	23	16	19.7	17.9	17.5	16.6	2.1 ~ 60.8
s. d.	11	18	6.2	7.3	20.7	9.4	7.32	
median	18	19	15			15.5	15.6	
range	7.4 ~ 64	2.7 ~ 66	7.7~28					5.2 ~ 114
Co-PCB								
mean	11	14	10	11 ⁵		6.9 ⁵	9.5⁵	
s. d.	5.8	12	5.2			4.1	7.2	
median	9.0	11	9.4			5.9	6.8	
range	3.9 ~ 27	2.1 ~ 47	2.9~ 19					
PCDD+PCDF								
+Co-PCB								
mean	30	37	26	30.9		24.4	26.1	
s. d.	15	28	11	11.4		11.9	11.4	
median	27	28	24			21.7	24.7	
range	11 ~ 78	4.8~ 100	11 ~ 46			4.8 ~ 60.3	9.7 ~ 70.3	

Note 1 EA: Findings of Fiscal 1998 "Survey on Long-Term Impact of Exposure to Dioxins in the Air" (Environment Agency of Japan, released August 1999),

Note 3 MHW: Report on Findings of Fiscal 1998 Health Sciences Research "Studies on Human Exposure and Health Effects of Dioxins (ad intrim Report on Concentration in Human Blood)" (Ministry of Health and Welfare, released November 1999). [WHO-TEF (1998) is used.]

Note 4 Extracted from: WHO: "IARC Monographs On The Evaluation Of Carcinogenic Risks To Humans" VOL69(1997). [I-TEF is used for calculation.] Note 5: Co-PCBs surveyed by Ministry of Health and Welfare are 3,3',4,4',5-PeCB, 3,3',4,4',5-PeCB, 3,3',4,4',5-S'-HxCB.

Note 2 MHW: Report on Findings of Fiscal 1997 Health Sciences Research "Survey on Human Exposure to Dioxins" (Ministry of Health and Welfare, released 1998). [I-TEF is used for calculation.]

Average Concentration in Blood by Isomers in All Regions (WHO-TEF(1998) is used) (pg-TEQ/g-fat)

	2,3,7,8-T4CDD 1,2,3,7,8-P5CDD	0.27	0.53	_	_		
			0.55	0	0	2.0	1.47%
		4.0	2.3	4.0	0	20	21.76%
	1,2,3,4,7,8-H6CDD	0.11	0.15	0	0	0.60	0.61%
	1,2,3,6,7,8-H6CDD	2.1	1.2	1.8	0.30	8.1	11.34%
	1,2,3,7,8,9-H6CDD	0.34	0.26	0.30	0	1.5	1.85%
	1,2,3,4,6,7,8-H7CDD	0.16	0.090	0.14	0.030	0.55	0.87%
	O8CDD	0.034	0.039	0.022	0.0042	0.31	0.19%
Т	oatl: PCDDs	7.0	3.9	6.1	0.38	26	38.12%
DFs	2,3,7,8-T4CDF	0.010	0.037	0	0	0.30	0.06%
PC	1,2,3,7,8-P5CDF	0.0040	0.016	0	0	0.10	0.02%
PCDDs+PCDFs	2,3,4,7,8-P5CDF	3.1	1.6	3.0	0.50	8.5	17.10%
PG	1,2,3,4,7,8-H6CDF	0.30	0.17	0.30	0	0.80	1.64%
	1,2,3,6,7,8-H6CDF	0.39	0.20	0.40	0	1.1	2.16%
	1,2,3,7,8,9-H6CDF	0	0	0	0	0	0.00%
	2,3,4,6,7,8-H6CDF	0.12	0.16	0	0	0.80	0.66%
	1,2,3,4,6,7,8-H7CDF	0.039	0.019	0.040	0	0.17	0.21%
	1,2,3,4,7,8,9-H7CDF	0	0	0	0	0	0.00%
	O8CDF	0.000023	0.00037	0	0	0.0059	0.00%
Т	otal: PCDFs	4.0	2.0	3.6	0.53	11	21.82%
Т	otal: PCDDs+PCDFs	11	5.6	9.8	0.91	33	59.85%
	3,3',4,4'-T4CB	0.000043	0.00032	0	0	0.0040	0.00%
	3,4,4',5-T4CB	0	0	0	0	0	0.00%
	3,3',4,4',5-P5CB	3.7	3.1	3.0	0	14	20.16%
	3,3',4,4',5,5'-H6CB	0.31	0.20	0.30	0	1.2	1.68%
Т	otal: non-ortho PCBs	4.0	3.3	3.3	0	15	21.96%
	2,3,3',4,4'-P5CB	0.14	0.11	0.11	0.012	0.93	0.74%
BS	2,3,4,4',5-P5CB	0.20	0.16	0.15	0.015	1.30	1.07%
Co-PCBs	2,3',4,4',5-P5CB	0.89	0.70	0.74	0.087	5.7	4.86%
ان	2',3,4,4',5-P5CB	0.029	0.024	0.022	0.0020	0.15	0.16%
	2,3,3',4,4',5-H6CB	1.6	1.1	1.4	0.15	7.0	8.64%
	2,3,3',4,4',5'-H6CB	0.46	0.32	0.39	0.050	2.4	2.52%
	2,3',4,4',5,5'-H6CB	0.017	0.014	0.014	0.0019	0.11	0.09%
	2,3,3',4,4',5,5'-H7CB	0.046	0.034	0.038	0.0060	0.23	0.25%
Т	otal: mono-ortho PCBs	3.3	2.4	2.8	0.33	18	18.21%
Т	otal: Co-PCBs	7.3	5.4	5.9	0.33	32	40.09%
PCE	Total: DDs+PCDFs+Co-PCBs	18	10	17	1.3	53	100.00%

Average Concentration in Blood by Isomers in Normal Regions (WHO-TEF(1998) is used) (pg-TEQ/g-fat)

	Isomers	mean	s. d.	median	minimum	maximum	%
	2,3,7,8-T4CDD	0.27	0.53	0	0	2.0	1.46%
	1,2,3,7,8-P5CDD	4.0	2.3	4.0	0	20	21.92%
	1,2,3,4,7,8-H6CDD	0.12	0.15	0	0	0.60	0.63%
	1,2,3,6,7,8-H6CDD	2.1	1.2	1.9	0.30	8.1	11.64%
	1,2,3,7,8,9-H6CDD	0.35	0.26	0.30	0	1.5	1.91%
	1,2,3,4,6,7,8-H7CDD	0.16	0.088	0.15	0.030	0.55	0.89%
	O8CDD	0.035	0.039	0.023	0.0049	0.31	0.19%
	Toatl: PCDDs	7.1	4.0	6.2	0.38	26	38.68%
DFs	2,3,7,8-T4CDF	0.010	0.036	0	0	0.30	0.05%
+PC	1,2,3,7,8-P5CDF	0.0036	0.015	0	0	0.10	0.02%
PCDDs+PCDFs	2,3,4,7,8-P5CDF	3.1	1.6	3.0	0.50	8.5	16.98%
PC	1,2,3,4,7,8-H6CDF	0.31	0.16	0.30	0	0.80	1.68%
	1,2,3,6,7,8-H6CDF	0.41	0.19	0.40	0	1.1	2.21%
	1,2,3,7,8,9-H6CDF	0	0	0	0	0	0.00%
	2,3,4,6,7,8-H6CDF	0.13	0.17	0	0	0.80	0.69%
	1,2,3,4,6,7,8-H7CDF	0.040	0.018	0.040	0	0.17	0.22%
	1,2,3,4,7,8,9-H7CDF	0	0	0	0	0	0.00%
	O8CDF	0.000025	0.00039	0	0	0.0059	0.00%
	Total: PCDFs	4.0	2.0	3.7	0.53	11	21.80%
	Total: PCDDs+PCDFs	11	5.7	10	0.91	33	60.39%
	3,3',4,4'-T4CB	0.000038	0.00031	0	0	0.0040	0.00%
	3,4,4',5-T4CB	0	0	0	0	0	0.00%
	3,3',4,4',5-P5CB	3.6	3.0	3.0	0	14	19.85%
	3,3',4,4',5,5'-H6CB	0.30	0.19	0.30	0	1.0	1.64%
	Total: non-ortho PCBs	4.0	3.2	3.3	0	15	21.61%
	2,3,3',4,4'-P5CB	0.14	0.11	0.11	0.012	0.93	0.74%
ß	2,3,4,4',5-P5CB	0.19	0.16	0.15	0.015	1.3	1.05%
Co-PCBs	2,3',4,4',5-P5CB	0.89	0.70	0.75	0.087	5.7	4.83%
Ö	2',3,4,4',5-P5CB	0.029	0.024	0.022	0.0020	0.15	0.16%
	2,3,3',4,4',5-H6CB	1.6	1.1	1.4	0.15	7.0	8.55%
	2,3,3',4,4',5'-H6CB	0.46	0.32	0.39	0.050	2.4	2.49%
	2,3',4,4',5,5'-H6CB	0.017	0.013	0.014	0.0019	0.11	0.09%
	2,3,3',4,4',5,5'-H7CB	0.045	0.033	0.037	0.0060	0.23	0.24%
	Total: mono-ortho PCBs	3.3	2.4	2.8	0.33	18	18.04%
	Total: Co-PCBs	7.3	5.3	5.8	0.33	32	39.56%
Tota PCI	al: DDs+PCDFs+Co-PCBs	18	10	17	1.3	53	100.00%

Average Concentration in Blood by Isomers in Waste Incinerator Vicinity Region (WHO-TEF(1998) is used) (pg-TEQ/g-fat)

	Isomers	mean	s. d.	median	minimum	maximum	%
	2,3,7,8-T4CDD	0.26	0.45	0	0	1.0	1.51%
	1,2,3,7,8-P5CDD	3.4	1.5	3.0	2.0	7.0	19.64%
	1,2,3,4,7,8-H6CDD	0.053	0.11	0	0	0.30	0.30%
	1,2,3,6,7,8-H6CDD	1.3	0.68	1.1	0.40	2.9	7.49%
	1,2,3,7,8,9-H6CDD	0.17	0.19	0.20	0	0.60	1.00%
	1,2,3,4,6,7,8-H7CDD	0.12	0.11	0.070	0.050	0.50	0.68%
	O8CDD	0.024	0.036	0.011	0	0.16	0.14%
	Toatl: PCDDs	5.4	2.5	4.8	2.5	9.7	30.85%
PCDDs+PCDFs	2,3,7,8-T4CDF	0.016	0.050	0	0	0.20	0.09%
PC	1,2,3,7,8-P5CDF	0.0079	0.019	0	0	0.050	0.05%
-SQC	2,3,4,7,8-P5CDF	3.3	1.5	3.0	1.5	6.0	18.73%
PC	1,2,3,4,7,8-H6CDF	0.22	0.20	0.20	0	0.60	1.24%
	1,2,3,6,7,8-H6CDF	0.26	0.21	0.30	0	0.70	1.51%
	1,2,3,7,8,9-H6CDF	0	0	0	0	0	0.00%
	2,3,4,6,7,8-H6CDF	0.05	0.10	0	0	0.30	0.27%
	1,2,3,4,6,7,8-H7CDF	0.024	0.020	0.030	0	0.060	0.14%
	1,2,3,4,7,8,9-H7CDF	0	0	0	0	0	0.00%
	O8CDF	0	0	0	0	0	0.00%
	Total: PCDFs	3.8	1.9	3.5	1.5	7.4	21.99%
	Total: PCDDs+PCDFs	9.2	4.2	8.8	4.0	17	52.81%
	3,3',4,4'-T4CB	0.00011	0.00046	0	0	0.0020	0.00%
	3,4,4',5-T4CB	0	0	0	0	0	0.00%
	3,3',4,4',5-P5CB	4.2	3.7	3.0	0	12	24.17%
	3,3',4,4',5,5'-H6CB	0.38	0.25	0.3	0.10	1.2	2.21%
	Total: non-ortho PCBs	4.6	3.9	3.2	0.10	13	26.56%
	2,3,3',4,4'-P5CB	0.14	0.10	0.11	0.033	0.34	0.80%
BS	2,3,4,4',5-P5CB	0.21	0.16	0.15	0.055	0.65	1.23%
Co-PCBs	2,3',4,4',5-P5CB	0.92	0.65	0.72	0.24	2.3	5.26%
ပိ	2',3,4,4',5-P5CB	0.032	0.026	0.021	0.0060	0.088	0.18%
	2,3,3',4,4',5-H6CB	1.7	1.2	1.4	0.45	5.5	9.78%
	2,3,3',4,4',5'-H6CB	0.50	0.33	0.44	0.14	1.5	2.88%
	2,3',4,4',5,5'-H6CB	0.019	0.014	0.014	0.0057	0.054	0.11%
	2,3,3',4,4',5,5'-H7CB	0.055	0.039	0.045	0.014	0.18	0.32%
	Total: mono-ortho PCBs	3.6	2.3	2.9	0.98	10	20.39%
	Total: Co-PCBs	8.2	6.1	6.0	1.1	22	46.98%
Tota PCI	al: DDs+PCDFs+Co-PCBs	17	9.6	14	5.9	38	100.00%

Average Concentration in Blood by Isomers in Region A (WHO-TEF(1998) is used) (pg-TEQ/g-fat)

	Isomers	mean	s. d.	median	minimum	maximum	%
	2,3,7,8-T4CDD	0.15	0.43	0	0	2.0	1.03%
	1,2,3,7,8-P5CDD	4.2	3.7	3.0	1.0	20	28.17%
	1,2,3,4,7,8-H6CDD	0.10	0.16	0	0	0.60	0.65%
	1,2,3,6,7,8-H6CDD	1.7	0.8	1.5	0.60	3.8	11.46%
	1,2,3,7,8,9-H6CDD	0.29	0.17	0.30	0	0.70	1.98%
	1,2,3,4,6,7,8-H7CDD	0.12	0.064	0.11	0.030	0.39	0.83%
	O8CDD	0.021	0.016	0.015	0.0060	0.081	0.14%
	Toatl: PCDDs	6.6	4.9	4.9	1.7	26	44.27%
PCDDs+PCDFs	2,3,7,8-T4CDF	0.0077	0.027	0	0	0.10	0.05%
PC	1,2,3,7,8-P5CDF	0	0	0	0	0	0.00%
DDs	2,3,4,7,8-P5CDF	2.6	1.2	2.5	1.0	5.5	17.18%
P.C.	1,2,3,4,7,8-H6CDF	0.27	0.16	0.30	0	0.60	1.84%
	1,2,3,6,7,8-H6CDF	0.38	0.17	0.40	0	0.70	2.53%
	1,2,3,7,8,9-H6CDF	0	0	0	0	0	0.00%
	2,3,4,6,7,8-H6CDF	0.14	0.16	0	0	0.40	0.93%
	1,2,3,4,6,7,8-H7CDF	0.040	0.014	0.040	0	0.080	0.27%
	1,2,3,4,7,8,9-H7CDF	0	0	0	0	0	0.00%
	O8CDF	0	0	0	0	0	0.00%
	Total: PCDFs	3.4	1.6	3.0	1.0	6.9	22.71%
	Total: PCDDs+PCDFs	10	6.2	7.6	2.9	32	66.91%
	3,3',4,4'-T4CB	0.00015	0.00071	0	0	0.0040	0.00%
	3,4,4',5-T4CB	0	0	0	0	0	0.00%
	3,3',4,4',5-P5CB	2.5	2.1	2.0	0	8.0	16.66%
	3,3',4,4',5,5'-H6CB	0.24	0.16	0.20	0	0.60	1.60%
	Total: non-ortho PCBs	2.7	2.2	2.5	0	8.6	18.26%
	2,3,3',4,4'-P5CB	0.10	0.071	0.081	0.014	0.30	0.65%
Bs	2,3,4,4',5-P5CB	0.12	0.081	0.11	0.015	0.28	0.82%
Co-PCBs	2,3',4,4',5-P5CB	0.62	0.40	0.50	0.091	1.6	4.13%
Ö	2',3,4,4',5-P5CB	0.020	0.015	0.017	0.0030	0.066	0.13%
	2,3,3',4,4',5-H6CB	1.0	0.66	0.90	0.15	2.6	6.86%
	2,3,3',4,4',5'-H6CB	0.30	0.19	0.29	0.050	0.80	2.04%
	2,3',4,4',5,5'-H6CB	0.011	0.0071	0.011	0.0019	0.030	0.08%
	2,3,3',4,4',5,5'-H7CB	0.029	0.019	0.027	0.0060	0.082	0.19%
	Total: mono-ortho PCBs	2.2	1.4	2.2	0.33	5.4	14.82%
	Total: Co-PCBs	4.9	3.5	5.3	0.33	14	33.06%
Tota	al:	15	9.0	13	3.6	42	100.00%
PCI	DDs+PCDFs+Co-PCBs						

Average Concentration in Blood by Isomers in Region B (WHO-TEF(1998) is used) (pg-TEQ/g-fat)

	Isomers	mean	s. d.	median	minimum	maximum	%
	2,3,7,8-T4CDD	0.075	0.27	0	0	1.0	0.57%
	1,2,3,7,8-P5CDD	3.0	1.2	3.0	1.0	5.0	22.94%
	1,2,3,4,7,8-H6CDD	0.11	0.14	0	0	0.40	0.84%
	1,2,3,6,7,8-H6CDD	1.5	0.54	1.5	0.60	3.0	11.68%
	1,2,3,7,8,9-H6CDD	0.26	0.19	0.30	0	0.60	1.95%
	1,2,3,4,6,7,8-H7CDD	0.15	0.072	0.16	0.050	0.37	1.18%
	O8CDD	0.034	0.034	0.021	0.0049	0.16	0.26%
	Toatl: PCDDs	5.2	2.1	4.8	1.7	10	39.39%
DFs	2,3,7,8-T4CDF	0.0025	0.016	0	0	0.10	0.02%
124	1,2,3,7,8-P5CDF	0.0013	0.0079	0	0	0.050	0.01%
PCDDs+PCDFs	2,3,4,7,8-P5CDF	2.7	1.2	2.3	1.0	5.5	20.27%
PC	1,2,3,4,7,8-H6CDF	0.34	0.18	0.40	0	0.80	2.56%
	1,2,3,6,7,8-H6CDF	0.52	0.22	0.50	0.20	1.0	3.98%
	1,2,3,7,8,9-H6CDF	0	0	0	0	0	0.00%
	2,3,4,6,7,8-H6CDF	0.17	0.20	0.10	0	0.80	1.28%
	1,2,3,4,6,7,8-H7CDF	0.048	0.015	0.050	0.020	0.070	0.37%
	1,2,3,4,7,8,9-H7CDF	0	0	0	0	0	0.00%
	O8CDF	0	0	0	0	0	0.00%
	Total: PCDFs	3.7	1.7	3.4	1.2	8.2	28.53%
	Total: PCDDs+PCDFs	8.9	3.7	8.3	3.0	17	67.84%
	3,3',4,4'-T4CB	0	0	0	0	0	0.00%
	3,4,4',5-T4CB	0	0	0	0	0	0.00%
	3,3',4,4',5-P5CB	2.0	2.2	2.0	0	9.0	15.49%
	3,3',4,4',5,5'-H6CB	0.19	0.13	0.20	0	0.60	1.43%
	Total: non-ortho PCBs	2.2	2.3	2.2	0	9.6	16.92%
	2,3,3',4,4'-P5CB	0.074	0.063	0.055	0.012	0.27	0.57%
Bs	2,3,4,4',5-P5CB	0.12	0.086	0.088	0.020	0.43	0.91%
Co-PCBs	2,3',4,4',5-P5CB	0.46	0.37	0.36	0.087	1.6	3.55%
ŏ	2',3,4,4',5-P5CB	0.015	0.013	0.011	0.0020	0.061	0.11%
	2,3,3',4,4',5-H6CB	1.0	0.59	0.83	0.24	2.6	7.69%
	2,3,3',4,4',5'-H6CB	0.28	0.16	0.23	0.065	0.70	2.11%
	2,3',4,4',5,5'-H6CB	0.0093	0.0058	0.0074	0.0026	0.027	0.07%
	2,3,3',4,4',5,5'-H7CB	0.027	0.014	0.025	0.0090	0.061	0.21%
	Total: mono-ortho PCBs	2.0	1.2	1.7	0.45	5.7	15.09%
	Total: Co-PCBs	4.2	3.4	3.9	0.45	15	32.12%
Tota PCI	al: DDs+PCDFs+Co-PCBs	13	6.3	12	3.7	28	100.00%

Average Concentration in Blood by Isomers in Region C (WHO-TEF(1998) is used) (pg-TEQ/g-fat)

	Isomers	mean	s. d.	median	minimum	maximum	% %
	2,3,7,8-T4CDD	0.48	0.68	0	0	2.0	1.95%
	1,2,3,7,8-P5CDD	4.7	2.0	4.0	2.0	10	19.16%
	1,2,3,4,7,8-H6CDD	0.14	0.15	0.20	0	0.60	0.56%
	1,2,3,6,7,8-H6CDD	3.4	1.3	3.2	1.6	8.1	13.76%
	1,2,3,7,8,9-H6CDD	0.57	0.31	0.50	0	1.5	2.32%
	1,2,3,4,6,7,8-H7CDD	0.17	0.095	0.16	0.060	0.55	0.71%
	O8CDD	0.037	0.041	0.026	0.0077	0.21	0.15%
	Toatl: PCDDs	9.5	4.0	8.8	3.8	23	38.48%
PCDDs+PCDFs	2,3,7,8-T4CDF	0.010	0.031	0	0	0.10	0.04%
PC	1,2,3,7,8-P5CDF	0.0010	0.0072	0	0	0.050	0.00%
DDs	2,3,4,7,8-P5CDF	3.7	1.8	3.5	1.0	8.5	15.22%
P.C.	1,2,3,4,7,8-H6CDF	0.31	0.14	0.30	0	0.70	1.25%
	1,2,3,6,7,8-H6CDF	0.36	0.16	0.40	0	0.80	1.46%
	1,2,3,7,8,9-H6CDF	0	0	0	0	0	0.00%
	2,3,4,6,7,8-H6CDF	0.075	0.13	0	0	0.40	0.31%
	1,2,3,4,6,7,8-H7CDF	0.033	0.018	0.030	0	0.090	0.13%
	1,2,3,4,7,8,9-H7CDF	0	0	0	0	0	0.00%
	O8CDF	0	0	0	0	0	0.00%
	Total: PCDFs	4.5	2.1	4.4	1.0	10	18.36%
	Total: PCDDs+PCDFs	14	5.9	13	4.8	33	56.93%
	3,3',4,4'-T4CB	0.000042	0.00020	0	0	0.0010	0.00%
	3,4,4',5-T4CB	0	0	0	0	0	0.00%
	3,3',4,4',5-P5CB	5.3	3.6	4.0	0	14	21.36%
	3,3',4,4',5,5'-H6CB	0.36	0.19	0.30	0	0.80	1.45%
	Total: non-ortho PCBs	5.7	3.8	4.3	0.10	15	23.01%
	2,3,3',4,4'-P5CB	0.20	0.16	0.15	0.036	0.93	0.82%
Bs	2,3,4,4',5-P5CB	0.28	0.22	0.25	0.050	1.3	1.13%
Co-PCBs	2,3',4,4',5-P5CB	1.4	0.99	1.1	0.24	5.7	5.58%
ŭ	2',3,4,4',5-P5CB	0.044	0.032	0.034	0.0080	0.15	0.18%
	2,3,3',4,4',5-H6CB	2.3	1.4	2.3	0.39	7.0	9.26%
	2,3,3',4,4',5'-H6CB	0.68	0.41	0.68	0.14	2.4	2.78%
	2,3',4,4',5,5'-H6CB	0.027	0.019	0.024	0.0050	0.11	0.11%
	2,3,3',4,4',5,5'-H7CB	0.070	0.044	0.064	0.011	0.23	0.29%
	Total: mono-ortho PCBs	4.9	3.2	4.7	1.1	18	20.07%
	Total: Co-PCBs	11	6.6	8.6	1.8	32	42.99%
Tota PCI	al: DDs+PCDFs+Co-PCBs	25	12	23	7.3	53	100.00%

Average Concentration in Blood by Isomers in Region D (WHO-TEF(1998) is used) (pg-TEQ/g-fat)

	Isomers	mean	s. d.	median	minimum	maximum	% %
	2,3,7,8-T4CDD	0.26	0.45	0	0	1.0	1.51%
	1,2,3,7,8-P5CDD	3.4	1.5	3.0	2.0	7.0	19.64%
	1,2,3,4,7,8-H6CDD	0.053	0.11	0	0	0.30	0.30%
	1,2,3,6,7,8-H6CDD	1.3	0.68	1.1	0.40	2.9	7.49%
	1,2,3,7,8,9-H6CDD	0.17	0.19	0.20	0	0.60	1.00%
	1,2,3,4,6,7,8-H7CDD	0.12	0.11	0.070	0.050	0.50	0.68%
	O8CDD	0.024	0.036	0.011	0	0.16	0.14%
	Toatl: PCDDs	5.4	2.5	4.8	2.5	9.7	30.85%
DFs	2,3,7,8-T4CDF	0.016	0.050	0	0	0.20	0.09%
PC	1,2,3,7,8-P5CDF	0.0079	0.019	0	0	0.050	0.05%
PCDDs+PCDFs	2,3,4,7,8-P5CDF	3.3	1.5	3.0	1.5	6.0	18.73%
P.C.	1,2,3,4,7,8-H6CDF	0.22	0.20	0.20	0	0.60	1.24%
	1,2,3,6,7,8-H6CDF	0.26	0.21	0.30	0	0.70	1.51%
	1,2,3,7,8,9-H6CDF	0	0	0	0	0	0.00%
	2,3,4,6,7,8-H6CDF	0.05	0.10	0	0	0.30	0.27%
	1,2,3,4,6,7,8-H7CDF	0.024	0.020	0.030	0	0.060	0.14%
	1,2,3,4,7,8,9-H7CDF	0	0	0	0	0	0.00%
	O8CDF	0	0	0	0	0	0.00%
	Total: PCDFs	3.8	1.9	3.5	1.5	7.4	21.99%
	Total: PCDDs+PCDFs	9.2	4.2	8.8	4.0	17	52.81%
	3,3',4,4'-T4CB	0.00011	0.00046	0	0	0.0020	0.00%
	3,4,4',5-T4CB	0	0	0	0	0	0.00%
	3,3',4,4',5-P5CB	4.2	3.7	3.0	0	12	24.17%
	3,3',4,4',5,5'-H6CB	0.38	0.25	0.3	0.10	1.2	2.21%
	Total: non-ortho PCBs	4.6	3.9	3.2	0.10	13	26.56%
	2,3,3',4,4'-P5CB	0.14	0.10	0.11	0.033	0.34	0.80%
Bs	2,3,4,4',5-P5CB	0.21	0.16	0.15	0.055	0.65	1.23%
Co-PCBs	2,3',4,4',5-P5CB	0.92	0.65	0.72	0.24	2.3	5.26%
ŭ	2',3,4,4',5-P5CB	0.032	0.026	0.021	0.0060	0.088	0.18%
	2,3,3',4,4',5-H6CB	1.7	1.2	1.4	0.45	5.5	9.78%
	2,3,3',4,4',5'-H6CB	0.50	0.33	0.44	0.14	1.5	2.88%
	2,3',4,4',5,5'-H6CB	0.019	0.014	0.014	0.0057	0.054	0.11%
	2,3,3',4,4',5,5'-H7CB	0.055	0.039	0.045	0.014	0.18	0.32%
	Total: mono-ortho PCBs	3.6	2.3	2.9	0.98	10	20.39%
	Total: Co-PCBs	8.2	6.1	6.0	1.1	22	46.98%
Tota PCI	al: DDs+PCDFs+Co-PCBs	17	9.6	14	5.9	38	100.00%

Average Concentration in Blood by Isomers in Region E (WHO-TEF(1998) is used) (pg-TEQ/g-fat)

	Isomers	mean	s. d.	median	minimum	maximum	%
	2,3,7,8-T4CDD	0.17	0.38	0.0	0.0	1.0	0.96%
	1,2,3,7,8-P5CDD	3.3	1.4	3.0	1.0	6.0	19%
	1,2,3,4,7,8-H6CDD	0.022	0.065	0	0	0.20	0.13%
	1,2,3,6,7,8-H6CDD	1.2	0.54	1.1	0.60	2.5	7.0%
	1,2,3,7,8,9-H6CDD	0.14	0.19	0	0	0.50	0.80%
	1,2,3,4,6,7,8-H7CDD	0.12	0.063	0.11	0.060	0.28	0.71%
	O8CDD	0.024	0.025	0.015	0.0061	0.11	0.14%
	Toatl: PCDDs	5.0	2.1	4.8	2.4	9.7	29%
DFs	2,3,7,8-T4CDF	0.017	0.051	0	0	0.20	0.10%
PCDDs+PCDFs	1,2,3,7,8-P5CDF	0.0056	0.024	0	0	0.10	0.032%
DDs	2,3,4,7,8-P5CDF	2.9	1.1	2.8	1.5	5.0	16%
P.C.	1,2,3,4,7,8-H6CDF	0.21	0.15	0.25	0	0.50	1.2%
	1,2,3,6,7,8-H6CDF	0.25	0.15	0.30	0	0.60	1.4%
	1,2,3,7,8,9-H6CDF	0	0	0	0	0	0.0%
	2,3,4,6,7,8-H6CDF	0	0	0	0	0	0.0%
	1,2,3,4,6,7,8-H7CDF	0.026	0.015	0.030	0.0	0.060	0.15%
	1,2,3,4,7,8,9-H7CDF	0	0	0	0	0	0.0%
	O8CDF	0	0	0	0	0	0.0%
	Total: PCDFs	3.4	1.4	3.3	1.5	6.3	19%
	Total: PCDDs+PCDFs	8.3	3.3	8.5	4.5	16	48%
	3,3',4,4'-T4CB	0	0	0	0	0	0.0%
	3,4,4',5-T4CB	0	0	0	0	0	0.0%
	3,3',4,4',5-P5CB	4.7	3.3	4.0	1.0	14	27%
	3,3',4,4',5,5'-H6CB	0.41	0.23	0.35	0	0.80	2.4%
	Total: non-ortho PCBs	5.1	3.5	4.3	1.2	15	29%
	2,3,3',4,4'-P5CB	0.16	0.09	0.13	0.04	0.36	0.92%
Bs	2,3,4,4',5-P5CB	0.21	0.13	0.19	0.060	0.46	1.2%
Co-PCBs	2,3',4,4',5-P5CB	1.0	0.55	0.86	0.25	2.4	5.8%
ŭ	2',3,4,4',5-P5CB	0.034	0.024	0.028	0.012	0.10	0.20%
	2,3,3',4,4',5-H6CB	1.9	1.0	1.7	0.35	3.9	11%
	2,3,3',4,4',5'-H6CB	0.56	0.31	0.49	0.11	1.2	3.2%
	2,3',4,4',5,5'-H6CB	0.021	0.012	0.019	0.0056	0.044	0.12%
	2,3,3',4,4',5,5'-H7CB	0.063	0.039	0.057	0.0080	0.15	0.37%
	Total: mono-ortho PCBs	3.9	2.1	3.5	1.1	7.7	22%
	Total: Co-PCBs	8.9	5.2	7.6	2.4	21.0	51%
Tota PCI	al: DDs+PCDFs+Co-PCBs	17	8.3	17	6.9	38	100.00%

Average Concentration in Blood by Isomers in Region F (WHO-TEF(1998) is used) (pg-TEQ/g-fat)

		,		r (WHO-TER	,	(10	· .
	Isomers	mean	s. d.	median	minimum	maximum	%
	2,3,7,8-T4CDD	0.16	0.42	0	0	2.0	0.95%
	1,2,3,7,8-P5CDD	3.6	1.6	3.0	1.0	9.0	22.28%
	1,2,3,4,7,8-H6CDD	0.076	0.12	0	0	0.30	0.46%
	1,2,3,6,7,8-H6CDD	1.8	0.61	1.7	0.80	3.4	10.90%
	1,2,3,7,8,9-H6CDD	0.31	0.19	0.30	0	0.60	1.92%
	1,2,3,4,6,7,8-H7CDD	0.17	0.080	0.16	0.050	0.53	1.06%
	O8CDD	0.035	0.046	0.027	0.0068	0.31	0.22%
	Toatl: PCDDs	6.2	2.7	5.1	1.9	15	37.87%
DFs	2,3,7,8-T4CDF	0.011	0.038	0	0	0.20	0.07%
PC	1,2,3,7,8-P5CDF	0.012	0.026	0	0	0.10	0.07%
PCDDs+PCDFs	2,3,4,7,8-P5CDF	2.7	1.2	2.5	1.0	6.0	16.44%
PC	1,2,3,4,7,8-H6CDF	0.28	0.13	0.30	0	0.50	1.70%
	1,2,3,6,7,8-H6CDF	0.36	0.14	0.40	0	0.60	2.20%
	1,2,3,7,8,9-H6CDF	0.0	0	0.0	0.0	0	0.00%
	2,3,4,6,7,8-H6CDF	0.14	0.17	0	0	0.40	0.88%
	1,2,3,4,6,7,8-H7CDF	0.043	0.022	0.040	0.020	0.17	0.26%
	1,2,3,4,7,8,9-H7CDF	0	0	0	0	0	0.00%
	O8CDF	0	0	0	0	0	0.00%
	Total: PCDFs	3.5	1.6	3.3	1.2	7.7	21.56%
	Total: PCDDs+PCDFs	9.7	4.1	8.8	3.6	22	59.21%
	3,3',4,4'-T4CB	0.000022	0.00015	0	0	0.0010	0.00%
	3,4,4',5-T4CB	0	0	0	0	0	0.00%
	3,3',4,4',5-P5CB	3.6	2.9	3.0	0	14	22.01%
	3,3',4,4',5,5'-H6CB	0.28	0.15	0.30	0	0.70	1.68%
	Total: non-ortho PCBs	3.9	3.1	3.2	0	15	23.85%
	2,3,3',4,4'-P5CB	0.14	0.098	0.13	0.026	0.51	0.83%
Bs	2,3,4,4',5-P5CB	0.17	0.10	0.14	0.045	0.41	1.02%
Co-PCBs	2,3',4,4',5-P5CB	0.83	0.57	0.76	0.16	2.8	5.09%
ပိ	2',3,4,4',5-P5CB	0.028	0.023	0.023	0.004	0.1	0.17%
	2,3,3',4,4',5-H6CB	1.3	0.69	1.2	0.33	3.0	7.68%
	2,3,3',4,4',5'-H6CB	0.37	0.20	0.36	0.10	0.90	2.24%
	2,3',4,4',5,5'-H6CB	0.014	0.008	0.014	0.0032	0.041	0.09%
	2,3,3',4,4',5,5'-H7CB	0.032	0.017	0.029	0.0090	0.076	0.20%
	Total: mono-ortho PCBs	2.8	1.6	2.8	0.78	7.9	17.18%
	Total: Co-PCBs	6.7	4.6	5.6	0.88	23	40.93%
Tota	al:						100.000
PCI	DDs+PCDFs+Co-PCBs	16	8.2	15	6.0	45	100.00%

Average Concentration in Blood by Isomers in Region G (WHO-TEF(1998) is used) (pg-TEQ/g-fat)

	Isomers	mean	s. d.	median	minimum	maximum	% /g raty
	2,3,7,8-T4CDD	0.26	0.45	0	0	1.0	1.51%
	1,2,3,7,8-P5CDD	3.4	1.5	3.0	2.0	7.0	19.64%
	1,2,3,4,7,8-H6CDD	0.053	0.11	0.0	0	0.30	0.30%
	1,2,3,6,7,8-H6CDD	1.3	0.68	1.1	0.40	2.9	7.49%
	1,2,3,7,8,9-H6CDD	0.17	0.19	0.20	0.40	0.60	1.00%
	1,2,3,4,6,7,8-H7CDD	0.12	0.11	0.070	0.050	0.50	0.68%
	08CDD	0.024	0.036	0.011	0.000	0.16	0.14%
	Toatl: PCDDs	5.4	2.5	4.8	2.5	9.7	30.85%
FS.	2,3,7,8-T4CDF	0.016	0.050	0	0	0.20	0.09%
PCD	1,2,3,7,8-P5CDF	0.0079	0.019	0	0	0.050	0.05%
Ds+l	2,3,4,7,8-P5CDF	3.3	1.5	3.0	1.5	6.0	18.73%
PCDDs+PCDFs	1,2,3,4,7,8-H6CDF	0.22	0.20	0.20	0	0.60	1.24%
ш.	1,2,3,6,7,8-H6CDF	0.26	0.21	0.30	0	0.70	1.51%
	1,2,3,7,8,9-H6CDF	0	0	0	0	0	0.00%
	2,3,4,6,7,8-H6CDF	0.05	0.10	0	0	0.30	0.27%
	1,2,3,4,6,7,8-H7CDF	0.024	0.020	0.030	0	0.060	0.14%
	1,2,3,4,7,8,9-H7CDF	0	0	0	0	0	0.00%
	O8CDF	0	0	0	0	0	0.00%
	Total: PCDFs	3.8	1.9	3.5	1.5	7.4	21.99%
	Total: PCDDs+PCDFs	9.2	4.2	8.8	4.0	17	52.81%
	3,3',4,4'-T4CB	0.00011	0.00046	0	0	0.0020	0.00%
	3,4,4',5-T4CB	0	0	0	0	0	0.00%
	3,3',4,4',5-P5CB	4.2	3.7	3.0	0	12	24.17%
	3,3',4,4',5,5'-H6CB	0.38	0.25	0.3	0.10	1.2	2.21%
	Total: non-ortho PCBs	4.6	3.9	3.2	0.10	13	26.56%
	2,3,3',4,4'-P5CB	0.14	0.10	0.11	0.033	0.34	0.80%
Bs	2,3,4,4',5-P5CB	0.21	0.16	0.15	0.055	0.65	1.23%
Co-PCBs	2,3',4,4',5-P5CB	0.92	0.65	0.72	0.24	2.3	5.26%
ပိ	2',3,4,4',5-P5CB	0.032	0.026	0.021	0.0060	0.088	0.18%
	2,3,3',4,4',5-H6CB	1.7	1.2	1.4	0.45	5.5	9.78%
	2,3,3',4,4',5'-H6CB	0.50	0.33	0.44	0.14	1.5	2.88%
	2,3',4,4',5,5'-H6CB	0.019	0.014	0.014	0.0057	0.054	0.11%
	2,3,3',4,4',5,5'-H7CB	0.055	0.039	0.045	0.014	0.18	0.32%
	Total: mono-ortho PCBs	3.6	2.3	2.9	0.98	10	20.39%
	Total: Co-PCBs	8.2	6.1	6.0	1.1	22	46.98%
Tota PCI	al: DDs+PCDFs+Co-PCBs	17	9.6	14	5.9	38	100.00%

Average Concentration in Blood by Isomers in All Regions (WHO-TEF(1998) is used) (pg-TEQ/g-fat) 1/2 value of the detection limit is applied to as the concentration for the isomers below the detection limit.

.,_	Isomers	mean	s. d.	median	minimum	maximum	%
	2,3,7,8-T4CDD	0.65	0.34	0.50	0.50	2.0	3.42%
	1,2,3,7,8-P5CDD	4.0	2.3	4.0	0.50	20	20.86%
	1,2,3,4,7,8-H6CDD	0.17	0.11	0.10	0.10	0.60	0.90%
	1,2,3,6,7,8-H6CDD	2.1	1.2	1.8	0.30	8.1	10.87%
	1,2,3,7,8,9-H6CDD	0.36	0.23	0.30	0.10	1.5	1.89%
	1,2,3,4,6,7,8-H7CDD	0.16	0.090	0.14	0.030	0.55	0.84%
	O8CDD	0.034	0.039	0.022	0.0042	0.31	0.18%
	Toatl: PCDDs	7.4	3.7	6.6	1.6	26	38.95%
PCDDs+PCDFs	2,3,7,8-T4CDF	0.056	0.025	0.050	0.050	0.30	0.29%
1 O4	1,2,3,7,8-P5CDF	0.027	0.010	0.025	0.025	0.10	0.14%
DDs	2,3,4,7,8-P5CDF	3.1	1.6	3.0	0.50	8.5	16.39%
PC	1,2,3,4,7,8-H6CDF	0.31	0.15	0.30	0.10	0.80	1.65%
	1,2,3,6,7,8-H6CDF	0.40	0.19	0.40	0.10	1.1	2.10%
	1,2,3,7,8,9-H6CDF	0.10	0	0.10	0.10	0.10	0.52%
	2,3,4,6,7,8-H6CDF	0.18	0.12	0.10	0.10	0.80	0.95%
	1,2,3,4,6,7,8-H7CDF	0.039	0.018	0.040	0.010	0.17	0.21%
	1,2,3,4,7,8,9-H7CDF	0.010	0.0000000064	0.010	0.010	0.010	0.05%
	O8CDF	0.00022	0.00036	0.00020	0.00020	0.0059	0.00%
	Total: PCDFs	4.3	1.9	3.9	1.0	11	22.30%
	Total: PCDDs+PCDFs	12	5.3	11	2.6	33	61.28%
	3,3',4,4'-T4CB	0.00053	0.00026	0.00050	0.00050	0.0040	0.00%
	3,4,4',5-T4CB	0.00050	0	0.00050	0.00050	0.00050	0.00%
	3,3',4,4',5-P5CB	3.7	3.0	3.0	0.50	14	19.62%
	3,3',4,4',5,5'-H6CB	0.31	0.19	0.30	0.050	1.2	1.63%
	Total: non-ortho PCBs	4.1	3.1	3.3	0.55	15	21.25%
	2,3,3',4,4'-P5CB	0.14	0.11	0.11	0.012	0.93	0.71%
Bs	2,3,4,4',5-P5CB	0.19	0.15	0.15	0.015	1.3	1.01%
Co-PCBs	2,3',4,4',5-P5CB	0.89	0.70	0.74	0.087	5.7	4.66%
Ö	2',3,4,4',5-P5CB	0.029	0.024	0.022	0.0020	0.15	0.15%
	2,3,3',4,4',5-H6CB	1.6	1.1	1.4	0.15	7.0	8.19%
	2,3,3',4,4',5'-H6CB	0.46	0.32	0.39	0.050	02	2.40%
	2,3',4,4',5,5'-H6CB	0.017	0.014	0.014	0.0019	0.11	0.09%
	2,3,3',4,4',5,5'-H7CB	0.046	0.034	0.038	0.0060	0.23	0.24%
	Total: mono-ortho PCBs	3.3	2.4	2.8	0.33	18	17.45%
	Total: Co-PCBs	7.4	5.3	5.9	0.88	32	38.74%
Tota PCI	al: DDs+PCDFs+Co-PCBs	19	9.9	17	3.6	53	100.00%

Average Concentration in Blood by Isomers in Normal Regions (WHO-TEF(1998) is used) (pg-TEQ/g-fat) 1/2 value of the detection limit is applied to as the concentration for the isomers below the detection limit.

	Isomers	mean	s. d.	median	minimum	maximum	%
	2,3,7,8-T4CDD	0.66	0.34	0.50	0.50	2.0	3.42%
	1,2,3,7,8-P5CDD	4.0	2.3	4.0	0.50	20	21.01%
	1,2,3,4,7,8-H6CDD	0.18	0.11	0.10	0.10	0.60	0.92%
	1,2,3,6,7,8-H6CDD	2.1	1.2	1.9	0.30	8.1	11.15%
	1,2,3,7,8,9-H6CDD	0.37	0.23	0.30	0.10	1.5	1.94%
	1,2,3,4,6,7,8-H7CDD	0.16	0.088	0.15	0.030	0.55	0.85%
	O8CDD	0.035	0.039	0.023	0.0049	0.31	0.18%
	Toatl: PCDDs	7.6	3.7	6.8	1.6	26	39.47%
PCDDs+PCDFs	2,3,7,8-T4CDF	0.056	0.024	0.050	0.050	0.30	0.29%
+PC	1,2,3,7,8-P5CDF	0.027	0.010	0.025	0.025	0.10	0.14%
DDs-	2,3,4,7,8-P5CDF	3.1	1.6	3.0	0.50	8.5	16.27%
PCI	1,2,3,4,7,8-H6CDF	0.32	0.14	0.30	0.10	0.80	1.67%
	1,2,3,6,7,8-H6CDF	0.41	0.18	0.40	0.10	1.1	2.14%
	1,2,3,7,8,9-H6CDF	0.10	0	0.10	0.10	0.10	0.52%
	2,3,4,6,7,8-H6CDF	0.19	0.12	0.10	0.10	0.80	0.97%
	1,2,3,4,6,7,8-H7CDF	0.041	0.017	0.040	0.010	0.17	0.21%
	1,2,3,4,7,8,9-H7CDF	0.010	0.0000000037	0.010	0.010	0.010	0.05%
	O8CDF	0.00022	0.00037	0.00020	0.00020	0.0059	0.00%
	Total: PCDFs	4.3	1.9	3.9	1.0	11	22.26%
	Total: PCDDs+PCDFs	12	5.4	11	2.6	33	61.74%
	3,3',4,4'-T4CB	0.00053	0.00025	0.00050	0.00050	0.0040	0.00%
	3,4,4',5-T4CB	0.00050	0	0.00050	0.00050	0.00050	0.00%
	3,3',4,4',5-P5CB	3.7	3.0	3.0	0.50	14	19.32%
	3,3',4,4',5,5'-H6CB	0.30	0.19	0.30	0.050	1.0	1.59%
	Total: non-ortho PCBs	4.0	3.1	3.3	0.55	15	20.91%
	2,3,3',4,4'-P5CB	0.14	0.11	0.11	0.012	0.93	0.71%
Bs	2,3,4,4',5-P5CB	0.19	0.15	0.15	0.015	1.3	1.00%
Co-PCBs	2,3',4,4',5-P5CB	0.89	0.70	0.75	0.087	5.7	4.63%
ŭ	2',3,4,4',5-P5CB	0.029	0.024	0.022	0.0020	0.15	0.15%
	2,3,3',4,4',5-H6CB	1.6	1.1	1.4	0.15	7.0	8.11%
	2,3,3',4,4',5'-H6CB	0.46	0.32	0.39	0.050	2.4	2.37%
	2,3',4,4',5,5'-H6CB	0.017	0.013	0.014	0.0019	0.11	0.09%
	2,3,3',4,4',5,5'-H7CB	0.045	0.033	0.037	0.0060	0.23	0.23%
	Total: mono-ortho PCBs	3.3	2.4	2.8	0.33	18	17.29%
	Total: Co-PCBs	7.3	5.3	5.8	0.88	32	38.24%
Tota PCI	al: DDs+PCDFs+Co-PCBs	0.66	0.34	0.50	0.50	2.0	3.42%

Average Concentration in Blood by Isomers in Waste Incinerator Vicinity Region (WHO-TEF(1998) is used) (pg-TEQ/g-fat)

,, <u>_</u>	Isomers	mean	s. d.	median	minimum	maximum	%
	2,3,7,8-T4CDD	0.63	0.23	0.50	0.50	1.0	3.47%
	1,2,3,7,8-P5CDD	3.4	1.5	3.0	2.0	7.0	18.82%
	1,2,3,4,7,8-H6CDD	0.13	0.067	0.10	0.10	0.30	0.72%
	1,2,3,6,7,8-H6CDD	1.3	0.68	1.1	0.40	2.9	7.18%
	1,2,3,7,8,9-H6CDD	0.22	0.15	0.20	0.10	0.60	1.22%
	1,2,3,4,6,7,8-H7CDD	0.12	0.11	0.070	0.050	0.50	0.65%
	O8CDD	0.024	0.036	0.011	0.0042	0.16	0.13%
	Toatl: PCDDs	5.9	2.3	5.4	3.2	9.8	32.20%
DFs	2,3,7,8-T4CDF	0.061	0.036	0.050	0.050	0.20	0.33%
PC	1,2,3,7,8-P5CDF	0.029	0.0094	0.025	0.025	0.050	0.16%
PCDDs+PCDFs	2,3,4,7,8-P5CDF	3.3	1.5	3.0	1.5	6.0	17.95%
PCI	1,2,3,4,7,8-H6CDF	0.25	0.16	0.20	0.10	0.60	1.39%
	1,2,3,6,7,8-H6CDF	0.29	0.18	0.30	0.10	0.70	1.59%
	1,2,3,7,8,9-H6CDF	0.10	0	0.10	0.10	0.10	0.55%
	2,3,4,6,7,8-H6CDF	0.13	0.056	0.10	0.10	0.30	0.69%
	1,2,3,4,6,7,8-H7CDF	0.027	0.016	0.030	0.010	0.060	0.15%
	1,2,3,4,7,8,9-H7CDF	0.010	0	0.010	0.010	0.010	0.06%
	O8CDF	0.00020	0	0.00020	0.00020	0.00020	0.00%
	Total: PCDFs	4.2	1.8	3.9	2.0	7.6	22.87%
	Total: PCDDs+PCDFs	10	3.9	9.7	5.1	17	55.36%
	3,3',4,4'-T4CB	0.00058	0.00034	0.00050	0.00050	0.0020	0.00%
	3,4,4',5-T4CB	0.00050	0	0.00050	0.00050	0.00050	0.00%
	3,3',4,4',5-P5CB	4.3	3.6	3.0	0.50	12	23.45%
	3,3',4,4',5,5'-H6CB	0.38	0.25	0.30	0.10	1.2	2.11%
	Total: non-ortho PCBs	4.6	3.8	3.2	0.60	13	25.57%
	2,3,3',4,4'-P5CB	0.14	0.10	0.11	0.033	0.34	0.77%
Bs	2,3,4,4',5-P5CB	0.21	0.16	0.15	0.055	0.65	1.17%
Co-PCBs	2,3',4,4',5-P5CB	0.92	0.65	0.72	0.24	2.3	5.04%
Ö	2',3,4,4',5-P5CB	0.032	0.026	0.021	0.0060	0.088	0.17%
	2,3,3',4,4',5-H6CB	1.7	1.2	1.4	0.45	5.5	9.27%
	2,3,3',4,4',5'-H6CB	0.50	0.33	0.44	0.14	1.5	2.75%
	2,3',4,4',5,5'-H6CB	0.019	0.014	0.014	0.0057	0.054	0.10%
	2,3,3',4,4',5,5'-H7CB	0.055	0.039	0.045	0.014	0.18	0.30%
	Total: mono-ortho PCBs	3.6	2.4	2.9	0.98	10	19.58%
	Total: Co-PCBs	8.2	6.1	6.0	1.6	22	45.31%
Tota PCI	al: DDs+PCDFs+Co-PCBs	18	9.2	14	7.5	38	100.00%

Average Concentration in Blood by Isomers in Region A (WHO-TEF(1998) is used) (pg-TEQ/g-fat)

.,_	Isomers	mean	s. d.	median	minimum	maximum	%
	2,3,7,8-T4CDD	0.59	0.28	0.50	0.50	2.0	3.73%
	1,2,3,7,8-P5CDD	4.2	3.7	3.0	1.0	20	26.57%
	1,2,3,4,7,8-H6CDD	0.17	0.12	0.10	0.10	0.60	1.05%
	1,2,3,6,7,8-H6CDD	1.7	0.75	1.5	0.60	3.8	10.81%
	1,2,3,7,8,9-H6CDD	0.31	0.14	0.30	0.10	0.70	1.96%
	1,2,3,4,6,7,8-H7CDD	0.12	0.064	0.11	0.030	0.39	0.78%
	O8CDD	0.021	0.016	0.015	0.0060	0.081	0.14%
	Toatl: PCDDs	7.1	4.7	5.5	2.4	26	45.04%
DFs	2,3,7,8-T4CDF	0.054	0.013	0.050	0.050	0.10	0.34%
+PC	1,2,3,7,8-P5CDF	0.025	0	0.025	0.025	0.025	0.16%
PCDDs+PCDFs	2,3,4,7,8-P5CDF	2.6	1.2	2.5	1.0	5.5	16.20%
PCI	1,2,3,4,7,8-H6CDF	0.29	0.13	0.30	0.10	0.60	1.83%
	1,2,3,6,7,8-H6CDF	0.38	0.15	0.40	0.10	0.70	2.43%
	1,2,3,7,8,9-H6CDF	0.10	0	0.10	0.10	0.10	0.63%
	2,3,4,6,7,8-H6CDF	0.19	0.11	0.10	0.10	0.40	1.22%
	1,2,3,4,6,7,8-H7CDF	0.040	0.014	0.040	0.010	0.080	0.25%
	1,2,3,4,7,8,9-H7CDF	0.010	0	0.010	0.010	0.010	0.06%
	O8CDF	0.00020	0.0000000000091	0.00020	0.00020	0.00020	0.00%
	Total: PCDFs	3.7	1.5	3.3	1.5	7.0	23.13%
	Total: PCDDs+PCDFs	11	5.9	8.4	4.0	32	68.10%
	3,3',4,4'-T4CB	0.00063	0.00060	0.00050	0.00050	0.0040	0.00%
	3,4,4',5-T4CB	0.00050	0	0.00050	0.00050	0.00050	0.00%
	3,3',4,4',5-P5CB	2.6	1.9	2.0	0.50	8.0	16.45%
	3,3',4,4',5,5'-H6CB	0.24	0.16	0.20	0.050	0.60	1.55%
	Total: non-ortho PCBs	2.8	2.1	2.5	0.55	8.6	18.00%
	2,3,3',4,4'-P5CB	0.10	0.071	0.081	0.014	0.30	0.61%
Bs	2,3,4,4',5-P5CB	0.12	0.080	0.11	0.015	0.28	0.76%
Co-PCBs	2,3',4,4',5-P5CB	0.62	0.40	0.50	0.091	1.6	3.90%
ŏ	2',3,4,4',5-P5CB	0.020	0.015	0.017	0.0030	0.066	0.13%
	2,3,3',4,4',5-H6CB	1.0	0.65	0.90	0.15	2.6	6.41%
	2,3,3',4,4',5'-H6CB	0.30	0.19	0.29	0.050	0.80	1.91%
	2,3',4,4',5,5'-H6CB	0.011	0.0071	0.011	0.0019	0.030	0.07%
	2,3,3',4,4',5,5'-H7CB	0.029	0.019	0.027	0.0060	0.082	0.18%
	Total: mono-ortho PCBs	2.2	1.4	2.2	0.33	5.4	13.98%
	Total: Co-PCBs	5.1	3.3	5.3	0.88	14	31.96%
Tota PCE	ıl: DS+PCDFs+Co-PCBs	16	8.6	14	5.2	42	100.00%

Average Concentration in Blood by Isomers in Region B (WHO-TEF(1998) is used) (pg-TEQ/g-fat)

.,_	Isomers	mean	s. d.	median	minimum	maximum	%
	2,3,7,8-T4CDD	0.54	0.13	0.50	0.50	1.0	3.84%
	1,2,3,7,8-P5CDD	3.0	1.2	3.0	1.0	5.0	21.46%
	1,2,3,4,7,8-H6CDD	0.17	0.10	0.10	0.10	0.40	1.22%
	1,2,3,6,7,8-H6CDD	1.5	0.54	1.5	0.60	3.0	10.92%
	1,2,3,7,8,9-H6CDD	0.29	0.15	0.30	0.10	0.60	2.04%
	1,2,3,4,6,7,8-H7CDD	0.15	0.072	0.16	0.050	0.37	1.11%
	O8CDD	0.034	0.034	0.021	0.0049	0.16	0.24%
	Toatl: PCDDs	5.7	2.0	5.4	2.4	10	40.83%
DFs	2,3,7,8-T4CDF	0.051	0.0079	0.050	0.050	0.10	0.37%
PC	1,2,3,7,8-P5CDF	0.026	0.0040	0.025	0.025	0.050	0.18%
PCDDs+PCDFs	2,3,4,7,8-P5CDF	2.7	1.2	2.3	1.0	5.5	18.95%
PCE	1,2,3,4,7,8-H6CDF	0.35	0.16	0.40	0.10	0.80	2.49%
	1,2,3,6,7,8-H6CDF	0.52	0.22	0.50	0.20	1.0	3.72%
	1,2,3,7,8,9-H6CDF	0.10	0	0.10	0.10	0.10	0.72%
	2,3,4,6,7,8-H6CDF	0.22	0.16	0.15	0.10	0.80	1.56%
	1,2,3,4,6,7,8-H7CDF	0.048	0.015	0.050	0.020	0.070	0.34%
	1,2,3,4,7,8,9-H7CDF	0.010	0	0.010	0.010	0.010	0.07%
	O8CDF	0.00020	0.00000000000000	0.00020	0.00020	0.00020	0.00%
	Total: PCDFs	4.0	1.6	3.6	1.6	8.3	28.39%
	Total: PCDDs+PCDFs	9.7	3.5	9.1	4.1	17	69.46%
	3,3',4,4'-T4CB	0.00050	0	0.00050	0.00050	0.00050	0.00%
	3,4,4',5-T4CB	0.00050	0	0.00050	0.00050	0.00050	0.00%
	3,3',4,4',5-P5CB	2.2	2.0	2.0	0.50	9.0	15.47%
	3,3',4,4',5,5'-H6CB	0.20	0.12	0.20	0.050	0.60	1.40%
	Total: non-ortho PCBs	2.4	2.1	2.2	0.55	9.6	16.88%
	2,3,3',4,4'-P5CB	0.074	0.063	0.055	0.012	0.27	0.53%
Bs	2,3,4,4',5-P5CB	0.12	0.085	0.088	0.020	0.43	0.84%
Co-PCBs	2,3',4,4',5-P5CB	0.46	0.37	0.36	0.087	1.6	3.32%
ŏ	2',3,4,4',5-P5CB	0.015	0.013	0.011	0.0020	0.061	0.11%
	2,3,3',4,4',5-H6CB	0.99	0.58	0.83	0.24	2.6	7.11%
	2,3,3',4,4',5'-H6CB	0.27	0.16	0.23	0.065	0.70	1.96%
	2,3',4,4',5,5'-H6CB	0.0093	0.0058	0.0074	0.0026	0.027	0.07%
	2,3,3',4,4',5,5'-H7CB	0.027	0.014	0.025	0.0090	0.061	0.20%
	Total: mono-ortho PCBs	2.0	1.2	1.7	0.45	5.7	14.12%
	Total: Co-PCBs	4.4	3.3	3.9	1.0	15	31.11%
Tota PCE	l: Ds+PCDFs+Co-PCBs	14	6.0	13	5.3	29	100.00%

Average Concentration in Blood by Isomers in Region C (WHO-TEF(1998) is used) (pg-TEQ/g-fat)

	Isomers	mean	s. d.	median	minimum	maximum	%
	2,3,7,8-T4CDD	0.77	0.41	0.50	0.50	2.0	3.40%
	1,2,3,7,8-P5CDD	4.8	2.3	5.0	0.5	9.0	21.03%
	1,2,3,4,7,8-H6CDD	0.23	0.14	0.20	0.10	0.60	1.03%
	1,2,3,6,7,8-H6CDD	2.5	1.1	2.5	0.30	6.6	10.84%
	1,2,3,7,8,9-H6CDD	0.40	0.21	0.40	0.10	1.0	1.74%
	1,2,3,4,6,7,8-H7CDD	0.20	0.11	0.18	0.060	0.47	0.88%
	O8CDD	0.049	0.046	0.029	0.0065	0.21	0.22%
	Toatl: PCDDs	8.9	3.9	8.9	1.6	18.8	39.14%
OFs	2,3,7,8-T4CDF	0.059	0.039	0.050	0.050	0.30	0.26%
PCDDs+PCDFs	1,2,3,7,8-P5CDF	0.026	0.0053	0.025	0.025	0.050	0.11%
DS4	2,3,4,7,8-P5CDF	3.9	1.9	3.5	0.50	8.5	17.24%
PCL	1,2,3,4,7,8-H6CDF	0.39	0.18	0.35	0.10	0.80	1.72%
	1,2,3,6,7,8-H6CDF	0.49	0.22	0.40	0.10	1.1	2.16%
	1,2,3,7,8,9-H6CDF	0.10	0.0000000025	0.10	0.10	0.10	0.44%
	2,3,4,6,7,8-H6CDF	0.22	0.14	0.20	0.10	0.60	0.95%
	1,2,3,4,6,7,8-H7CDF	0.044	0.017	0.040	0.020	0.10	0.19%
	1,2,3,4,7,8,9-H7CDF	0.010	0	0.010	0.010	0.010	0.04%
	O8CDF	0.00033	0.00086	0.00020	0.00020	0.0059	0.00%
	Total: PCDFs	5.3	2.4	5.0	1.0	11	23.12%
	Total: PCDDs+PCDFs	14	6.2	14	2.6	29	62.17%
	3,3',4,4'-T4CB	0.00050	0	0.00050	0.00050	0.00050	0.00%
	3,4,4',5-T4CB	0.00050	0	0.00050	0.00050	0.00050	0.00%
	3,3',4,4',5-P5CB	4.1	2.7	4.0	0.50	11	17.94%
	3,3',4,4',5,5'-H6CB	0.38	0.20	0.40	0.050	1.0	1.68%
	Total: non-ortho PCBs	4.5	2.8	4.3	0.55	12	19.62%
	2,3,3',4,4'-P5CB	0.15	0.089	0.14	0.019	0.34	0.64%
Bs	2,3,4,4',5-P5CB	0.25	0.16	0.26	0.015	0.60	1.11%
Co-PCBs	2,3',4,4',5-P5CB	1.0	0.61	0.97	0.11	2.7	4.38%
ŏ	2',3,4,4',5-P5CB	0.030	0.020	0.027	0.0040	0.075	0.13%
	2,3,3',4,4',5-H6CB	2.0	1.2	1.9	0.19	4.9	8.75%
	2,3,3',4,4',5'-H6CB	0.57	0.34	0.55	0.055	1.6	2.49%
	2,3',4,4',5,5'-H6CB	0.020	0.013	0.016	0.0019	0.063	0.09%
	2,3,3',4,4',5,5'-H7CB	0.053	0.030	0.047	0.0080	0.14	0.23%
	Total: mono-ortho PCBs	4.1	2.4	4.1	0.40	10	17.81%
	Total: Co-PCBs	8.5	4.9	8.6	0.95	20	37.43%
Tota PCE	ıl: DS+PCDFs+Co-PCBs	23	11	22	3.6	46	100.00%

Average Concentration in Blood by Isomers in Region D (WHO-TEF(1998) is used) (pg-TEQ/g-fat)

.,_	Isomers	mean	s. d.	median	minimum	maximum	%
	2,3,7,8-T4CDD	0.79	0.47	0.50	0.50	2.0	3.15%
	1,2,3,7,8-P5CDD	4.7	2.0	4.0	2.0	10	18.71%
	1,2,3,4,7,8-H6CDD	0.19	0.10	0.20	0.10	0.60	0.74%
	1,2,3,6,7,8-H6CDD	3.4	1.3	3.2	1.6	8.10	13.43%
	1,2,3,7,8,9-H6CDD	0.58	0.30	0.50	0.10	1.5	2.28%
	1,2,3,4,6,7,8-H7CDD	0.17	0.10	0.16	0.060	0.55	0.69%
	O8CDD	0.037	0.041	0.026	0.0077	0.21	0.15%
	Toatl: PCDDs	9.9	3.8	9.2	4.5	23	39.14%
DFs	2,3,7,8-T4CDF	0.055	0.015	0.050	0.050	0.10	0.22%
PC	1,2,3,7,8-P5CDF	0.026	0.004	0.025	0.025	0.050	0.10%
PCDDs+PCDFs	2,3,4,7,8-P5CDF	3.7	1.8	3.5	1.0	8.5	14.86%
PCE	1,2,3,4,7,8-H6CDF	0.31	0.12	0.30	0.10	0.70	1.25%
	1,2,3,6,7,8-H6CDF	0.36	0.14	0.40	0.10	0.80	1.45%
	1,2,3,7,8,9-H6CDF	0.10	0.000000036	0.10	0.10	0.10	0.40%
	2,3,4,6,7,8-H6CDF	0.15	0.08	0.10	0.10	0.40	0.58%
	1,2,3,4,6,7,8-H7CDF	0.034	0.016	0.030	0.010	0.090	0.13%
	1,2,3,4,7,8,9-H7CDF	0.010	0	0.010	0.010	0.010	0.04%
	O8CDF	0.00020	0.0000000000052	0.00020	0.00020	0.00020	0.00%
	Total: PCDFs	4.8	2.0	4.6	1.5	10	19.03%
	Total: PCDDs+PCDFs	15	5.6	14	6.0	33	58.17%
	3,3',4,4'-T4CB	0.00052	0.00010	0.00050	0.00050	0.0010	0.00%
	3,4,4',5-T4CB	0.00050	0	0.00050	0.00050	0.00050	0.00%
	3,3',4,4',5-P5CB	5.3	3.6	4.0	0.5	14	20.90%
	3,3',4,4',5,5'-H6CB	0.36	0.19	0.30	0.05	0.80	1.42%
	Total: non-ortho PCBs	5.62	3.73	4.30	0.60	15	22.32%
	2,3,3',4,4'-P5CB	0.20	0.16	0.15	0.036	0.93	0.80%
Bs	2,3,4,4',5-P5CB	0.28	0.21	0.25	0.050	1.3	1.09%
Co-PCBs	2,3',4,4',5-P5CB	1.4	0.99	1.10	0.24	5.7	5.45%
ŏ	2',3,4,4',5-P5CB	0.044	0.032	0.034	0.008	0.15	0.17%
	2,3,3',4,4',5-H6CB	2.3	1.4	2.3	0.39	7.0	8.96%
	2,3,3',4,4',5'-H6CB	0.68	0.41	0.68	0.14	2.4	2.69%
	2,3',4,4',5,5'-H6CB	0.027	0.019	0.024	0.0050	0.11	0.11%
	2,3,3',4,4',5,5'-H7CB	0.070	0.044	0.064	0.011	0.23	0.28%
	Total: mono-ortho PCBs	4.9	3.1	4.7	1.1	18	19.55%
	Total: Co-PCBs	11	6.6	8.6	2.3	32	42.04%
Tota PCE	l: Ds+PCDFs+Co-PCBs	25	11	24	8.5	53	100.00%

Average Concentration in Blood by Isomers in Region E (WHO-TEF(1998) is used) (pg-TEQ/g-fat)

	Isomers	mean	s. d.	median	minimum	maximum	%
	2,3,7,8-T4CDD	0.58	0.19	0.50	0.50	1.0	3.2%
	1,2,3,7,8-P5CDD	3.3	1.4	3.0	1.0	6.0	18%
	1,2,3,4,7,8-H6CDD	0.11	0.032	0.10	0.10	0.20	0.61%
	1,2,3,6,7,8-H6CDD	1.2	0.54	1.1	0.60	2.5	6.7%
	1,2,3,7,8,9-H6CDD	0.20	0.15	0.10	0.10	0.50	1.1%
	1,2,3,4,6,7,8-H7CDD	0.12	0.063	0.11	0.060	0.28	0.68%
	O8CDD	0.024	0.025	0.015	0.0061	0.11	0.13%
	Toatl: PCDDs	5.5	1.9	5.4	3.0	9.7	30%
PCDDs+PCDFs	2,3,7,8-T4CDF	0.061	0.037	0.050	0.050	0.20	0.33%
+PC	1,2,3,7,8-P5CDF	0.029	0.018	0.025	0.025	0.10	0.16%
DDs-	2,3,4,7,8-P5CDF	2.9	1.1	2.8	1.5	5.0	16%
PCI	1,2,3,4,7,8-H6CDF	0.24	0.11	0.25	0.10	0.50	1.31%
	1,2,3,6,7,8-H6CDF	0.27	0.13	0.30	0.10	0.60	1.46%
	1,2,3,7,8,9-H6CDF	0.10	0.000000013	0.10	0.10	0.10	0.55%
	2,3,4,6,7,8-H6CDF	0.10	0.000000013	0.10	0.10	0.10	0.55%
	1,2,3,4,6,7,8-H7CDF	0.028	0.012	0.030	0.010	0.060	0.15%
	1,2,3,4,7,8,9-H7CDF	0.010	0.0000000011	0.010	0.010	0.010	0.055%
	O8CDF	0.00020	0	0.00020	0.00020	0.00020	0.0%
	Total: PCDFs	3.7	1.3	3.6	2.0	6.5	20%
	Total: PCDDs+PCDFs	9.2	3.0	9.4	5.6	16	50.21%
	3,3',4,4'-T4CB	0.00050	0	0.00050	0.00050	0.00050	0.00%
	3,4,4',5-T4CB	0.00050	0	0.00050	0.00050	0.00050	0.00%
	3,3',4,4',5-P5CB	4.7	3.3	4.0	1.0	14	25.55%
	3,3',4,4',5,5'-H6CB	0.41	0.23	0.35	0.05	0.80	2.27%
	Total: non-ortho PCBs	5.1	3.4	4.3	1.2	15	27.82%
	2,3,3',4,4'-P5CB	0.16	0.089	0.13	0.043	0.36	0.87%
Bs	2,3,4,4',5-P5CB	0.21	0.12	0.19	0.060	0.46	1.16%
Co-PCBs	2,3',4,4',5-P5CB	1.0	0.55	0.86	0.25	2.4	5.51%
Ö	2',3,4,4',5-P5CB	0.034	0.024	0.028	0.012	0.10	0.19%
	2,3,3',4,4',5-H6CB	1.8	1.0	1.7	0.35	3.9	10.04%
	2,3,3',4,4',5'-H6CB	0.55	0.30	0.48	0.11	1.2	3.00%
	2,3',4,4',5,5'-H6CB	0.021	0.012	0.019	0.0056	0.044	0.12%
	2,3,3',4,4',5,5'-H7CB	0.063	0.039	0.057	0.0080	0.15	0.35%
	Total: mono-ortho PCBs	3.9	2.1	3.5	1.1	7.7	21.23%
	Total: Co-PCBs	8.9	5.2	7.6	2.4	21.0	48.72%
Tota PCE	l: Ds+PCDFs+Co-PCBs	18	8.1	18	8.1	38	100.00%

Average Concentration in Blood by Isomers in Region F (WHO-TEF(1998) is used) (pg-TEQ/g-fat)

	Isomers	mean	s. d.	median	minimum	maximum	%
	2,3,7,8-T4CDD	0.59	0.27	0.50	0.50	2.0	3.42%
	1,2,3,7,8-P5CDD	3.6	1.6	3.0	1.0	9.0	21.14%
	1,2,3,4,7,8-H6CDD	0.15	0.079	0.10	0.10	0.30	0.85%
	1,2,3,6,7,8-H6CDD	1.8	0.61	1.7	0.80	3.4	10.34%
	1,2,3,7,8,9-H6CDD	0.33	0.16	0.30	0.10	0.60	1.92%
	1,2,3,4,6,7,8-H7CDD	0.17	0.080	0.16	0.050	0.53	1.00%
	O8CDD	0.035	0.046	0.027	0.0068	0.31	0.21%
	Toatl: PCDDs	6.7	2.5	5.7	2.6	15	38.87%
DFs	2,3,7,8-T4CDF	0.057	0.025	0.050	0.050	0.20	0.33%
PCDDs+PCDFs	1,2,3,7,8-P5CDF	0.032	0.017	0.025	0.025	0.10	0.19%
DDs-	2,3,4,7,8-P5CDF	2.7	1.2	2.5	1.0	6.0	15.60%
PC	1,2,3,4,7,8-H6CDF	0.29	0.10	0.30	0.10	0.50	1.68%
	1,2,3,6,7,8-H6CDF	0.36	0.12	0.40	0.10	0.60	2.11%
	1,2,3,7,8,9-H6CDF	0.10	0.00	0.10	0.10	0.10	0.58%
	2,3,4,6,7,8-H6CDF	0.20	0.12	0.10	0.10	0.40	1.15%
	1,2,3,4,6,7,8-H7CDF	0.043	0.022	0.040	0.020	0.17	0.25%
	1,2,3,4,7,8,9-H7CDF	0.010	0	0.010	0.010	0.010	0.06%
	O8CDF	0.00020	0	0.00020	0.00020	0.00020	0.00%
	Total: PCDFs	3.8	1.5	3.5	1.6	7.8	21.94%
	Total: PCDDs+PCDFs	11	3.9	9.5	4.7	22	61.00%
	3,3',4,4'-T4CB	0.00051	0.000075	0.00050	0.00050	0.0010	0.00%
	3,4,4',5-T4CB	0.00050	0.0	0.00050	0.00050	0.00050	0.00%
	3,3',4,4',5-P5CB	3.6	2.8	3.0	0.50	14	21.08%
	3,3',4,4',5,5'-H6CB	0.28	0.15	0.30	0.050	0.70	1.61%
	Total: non-ortho PCBs	3.9	3.0	3.2	0.55	15	22.69%
	2,3,3',4,4'-P5CB	0.14	0.098	0.13	0.026	0.51	0.79%
Bs	2,3,4,4',5-P5CB	0.16	0.10	0.14	0.045	0.41	0.96%
Co-PCBs	2,3',4,4',5-P5CB	0.83	0.57	0.76	0.16	2.8	4.83%
ŭ	2',3,4,4',5-P5CB	0.028	0.023	0.023	0.0040	0.12	0.16%
	2,3,3',4,4',5-H6CB	1.2	0.68	1.2	0.33	3.0	7.20%
	2,3,3',4,4',5'-H6CB	0.36	0.20	0.36	0.10	0.90	2.11%
	2,3',4,4',5,5'-H6CB	0.014	0.0085	0.014	0.0032	0.041	0.08%
	2,3,3',4,4',5,5'-H7CB	0.032	0.017	0.029	0.0090	0.076	0.19%
	Total: mono-ortho PCBs	2.8	1.6	2.8	0.78	7.9	16.31%
	Total: Co-PCBs	6.7	4.5	5.6	1.4	23	39.06%
Tota	d:	17	8.1	16	7.1	45	100.00%
PCE	DDs+PCDFs+Co-PCBs	17	0.1	10	7.1	40	100.00%

Average Concentration in Blood by Isomers Region G (WHO-TEF(1998) is used) (pg-TEQ/g-fat)

.,_	Isomers	mean	s. d.	median	minimum	maximum	%
	2,3,7,8-T4CDD	0.63	0.23	0.50	0.50	1.0	3.47%
	1,2,3,7,8-P5CDD	3.4	1.5	3.0	2.0	7.0	18.82%
	1,2,3,4,7,8-H6CDD	0.13	0.067	0.10	0.10	0.30	0.72%
	1,2,3,6,7,8-H6CDD	1.3	0.68	1.1	0.40	2.9	7.18%
	1,2,3,7,8,9-H6CDD	0.22	0.15	0.20	0.10	0.60	1.22%
	1,2,3,4,6,7,8-H7CDD	0.12	0.11	0.070	0.050	0.50	0.65%
	O8CDD	0.024	0.036	0.011	0.0042	0.16	0.13%
	Toatl: PCDDs	5.9	2.3	5.4	3.2	9.8	32.20%
PCDDs+PCDFs	2,3,7,8-T4CDF	0.061	0.036	0.050	0.050	0.20	0.33%
PC	1,2,3,7,8-P5CDF	0.029	0.0094	0.025	0.025	0.050	0.16%
DS-	2,3,4,7,8-P5CDF	3.3	1.5	3.0	1.5	6.0	17.95%
PC	1,2,3,4,7,8-H6CDF	0.25	0.16	0.20	0.10	0.60	1.39%
	1,2,3,6,7,8-H6CDF	0.29	0.18	0.30	0.10	0.70	1.59%
	1,2,3,7,8,9-H6CDF	0.10	0	0.10	0.10	0.10	0.55%
	2,3,4,6,7,8-H6CDF	0.13	0.056	0.10	0.10	0.30	0.69%
	1,2,3,4,6,7,8-H7CDF	0.027	0.016	0.030	0.010	0.060	0.15%
	1,2,3,4,7,8,9-H7CDF	0.010	0	0.010	0.010	0.010	0.06%
	O8CDF	0.00020	0	0.00020	0.00020	0.00020	0.00%
	Total: PCDFs	4.2	1.8	3.9	2.0	7.6	22.87%
	Total: PCDDs+PCDFs	10	3.9	9.7	5.1	17	55.36%
	3,3',4,4'-T4CB	0.00058	0.00034	0.00050	0.00050	0.0020	0.00%
	3,4,4',5-T4CB	0.00050	0	0.00050	0.00050	0.00050	0.00%
	3,3',4,4',5-P5CB	4.3	3.6	3.0	0.50	12	23.45%
	3,3',4,4',5,5'-H6CB	0.38	0.25	0.30	0.10	1.2	2.11%
	Total: non-ortho PCBs	4.6	3.8	3.2	0.60	13	25.57%
	2,3,3',4,4'-P5CB	0.14	0.10	0.11	0.033	0.34	0.77%
Bs	2,3,4,4',5-P5CB	0.21	0.16	0.15	0.055	0.65	1.17%
Co-PCBs	2,3',4,4',5-P5CB	0.92	0.65	0.72	0.24	2.3	5.04%
ŏ	2',3,4,4',5-P5CB	0.032	0.026	0.021	0.0060	0.088	0.17%
	2,3,3',4,4',5-H6CB	1.7	1.2	1.4	0.45	5.5	9.27%
	2,3,3',4,4',5'-H6CB	0.50	0.33	0.44	0.14	1.5	2.75%
	2,3',4,4',5,5'-H6CB	0.019	0.014	0.014	0.0057	0.054	0.10%
	2,3,3',4,4',5,5'-H7CB	0.055	0.039	0.045	0.014	0.18	0.30%
	Total: mono-ortho PCBs	3.6	2.4	2.9	0.98	10	19.58%
	Total: Co-PCBs	8.2	6.1	6.0	1.6	22	45.31%
Tota PCI	al: DDs+PCDFs+Co-PCBs	18	9.2	14	7.5	38	100.00%

III. Findings of the Survey of the State of Dioxin Accumulation in Wildlife Summary

The accumulation of dioxins in wildlife (fish, amphibians, birds, marine mammals, and land mammals) was studied as one indicator of environmental pollution. The results show that predators higher in the food chain in the ecosystem tend to have greater accumulations of dioxins than predators lower in the food chain. Terrestrial organisms had relatively high accumulations of PCDDs and PCDFs, while marine organisms tended to have higher accumulations of co-planar PCBs.

1. Background

The problem of dioxins is not only an urgent issue of environmental conservation in relation to human health; it also raises concerns about the impact on wildlife.

Reports on incidents of accidental environmental pollution with chemicals show that the effects may be observed in wildlife and livestock before they are seen in human beings. In addition, it will be possible to ascertain the impact of future measures to reduce dioxins by means of the exposure experienced by living organisms. All this suggests that wildlife offer the potential to serve as a valuable indicator of environmental pollution.

Given these circumstances, the Environment Agency established a Research Team to Survey the State of Pollution by Dioxins in Wildlife in fiscal 1998, and conducted surveys of the state of dioxin accumulation in wildlife (fish, amphibians, birds, marine mammals, and land mammals) as an indicator of environmental pollution. The team's report was recently completed, and its findings will be presented here.

In its first fiscal year, the present survey analyzed the state of dioxin accumulation in numerous species, partly for the purpose of selecting indicator organisms to serve as subjects for long-term monitoring. The survey thus included fish (carp), amphibians (frogs), birds (domestic pigeons, kites, raptors), marine mammals (cetaceans, seals), and land mammals (Japanese wood mice, Japanese macaques, bears, raccoon dogs, sika deer).

2. Summary of Research

(1) Fish (Carp)

Habitat

Carp inhabit the midstream, downstream, and estuaries of rivers, ponds, lakes, and marshes, where they have a liking for the lower regions of deep pools where the current is slow, for muddy sand bottoms, and for places in and among rocks, concrete blocks, randomly placed stakes, and so on in downstream areas.

Feeding Habits

Carp are omnivores that feed mainly on benthic organisms. In their larval stage, carp ingest plankton and sessile organisms found on water plants growing in still water. In the fry stage, they feed mostly on the larvae of midges. The adult fish feed on shellfish such as pond snails and corbiculae, midge larvae, tubifex, lugworms, sessile diatoms, etc.

(a) Number of Specimens

48 specimens

(b) Method of Collection

Net capture

(c) Test Samples

Muscle tissue

(d) Items Measured

Dioxins: Concentration and toxicity (TEQ)

(e) Calculation Method

Wet weight (fat weight figures appended for reference)

The toxic equivalency factors (TEFs) used were from WHO TEF, 1998.

Isomers that were detected at levels below the lower limit of determination were assigned a zero value.

Concentrations below the lower limit of determination were converted to TEQ values equivalent to the lower limit of determination or half of that lower limit, and those TEQ values are shown in a separate table for reference.

(f) Analysis Method

Refer to the manual.

(g) Findings

See appended materials.

Evaluation of the toxicity (fish TEF, figures in brackets calculated by mammal TEF) of dioxins showed:

The mean value was 1.3 (3.0) pg-TEQ/g wet weight, and the median value was 1.1 (2.8) pg-TEQ/g wet weight.

The range detected was 0.20 (0.56)–5.9 (11) pg-TEQ/g wet weight.

Co-planar PCBs accounted for 6.0% (57%) of the total TEQ value when compared in terms of overall mean values, and 5.7% (52%) when the median values were compared.

(2) Amphibians (Frogs)

Habitat

The brown frogs that were the subject of this survey largely inhabit marshes, ponds, and surrounding areas, overgrown areas around paddy fields, fallow paddy fields, and bogs. However, they are also found in fairly dry grassy locations and sunlit forest floors. They live primarily on land.

Feeding Habits

The larvae are omnivorous but the adults are carnivorous, feeding on spiders, flies, beetles, butterfly larvae, worms, slugs, etc.

(a) Number of Specimens

80 specimens

(b) Method of Collection

Net traps or net capture

(c) Test Samples

Whole body

(d) Items Measured

Dioxins: Concentration and toxicity

(e) Calculation Method

Wet weight (fat weight figures appended for reference)

The toxic equivalency factors (TEFs) used were from WHO TEF, 1998.

Isomers that were detected at levels below the lower limit of determination were assigned a zero value.

Concentrations below the lower limit of determination were converted to TEQ values equivalent to the lower limit of determination or half of that lower limit, and those TEQ values are shown in a separate table for reference.

(f) Analysis Method

Refer to the manual.

(g) Findings

See appended materials.

Evaluation of the toxicity (fish TEF, figures in brackets calculated by mammal TEF) of dioxins showed:

The mean value was 2.7 (4.1) pg-TEQ/g wet weight, and the median value was 2.6 (4.0) pg-TEQ/g wet

weight.

The range detected was 0.20 (0.50)–7.5 (11) pg-TEQ/g wet weight.

Co-planar PCBs accounted for 2.5% (34%) of the total TEQ value when compared in terms of overall mean values, and 2.5% (33%) when the median values were compared.

(3) Birds (Domestic Pigeons)

Habitat

These birds are presently observed throughout Japan in urban areas, rural areas, offshore islands, and so on.

Recently, in particular, their distribution has shown a conspicuous expansion from city centers toward suburbs.

Feeding Habits

Domestic pigeons are herbivorous and feed mainly on the ground, but an important part of their diet is thought to be provided by human beings in the form of mixed birdseed, bread, raw and cooked rice, confectioneries, etc. They are also known to eat berries from trees and small land snails.

(a) Number of Specimens

15 specimens

(b) Method of Collection

Individual specimens from nuisance wildlife extermination activity

(c) Test Samples

Muscle tissue, liver (some samples included fat tissue and kidneys)

(d) Items Measured

Dioxins: Concentration and toxicity

(e) Calculation Method

Wet weight (fat weight figures appended for reference)

The toxic equivalency factors (TEFs) used were from WHO TEF, 1998.

Isomers that were detected at levels below the lower limit of determination were assigned a zero value.

Concentrations below the lower limit of determination were converted to TEQ values equivalent to the lower limit of determination or half of that lower limit, and those TEQ values are shown in a separate table for reference.

(f) Analysis Method

Refer to the manual.

(g) Findings

See appended materials.

Evaluation of the toxicity (avian TEF, figures in brackets calculated by mammal TEF) of dioxins showed:

-Muscle tissue and liver: 5 specimens

The mean value was 0.98 (0.79) pg-TEQ/g wet weight, and the median value was 0.99 (0.67) pg-TEQ/g wet weight.

The range detected was 0.55 (0.40)-1.3 (1.3) pg-TEQ/g wet weight.

-Muscle tissue, liver, and kidney: 2 specimens

The mean value was 4.7 (4.7) pg-TEQ/g wet weight, and the median value was 4.7 (4.7) pg-TEQ/g wet weight.

The range detected was 4.5 (4.4)–4.9 (5.0) pg-TEQ/g wet weight.

-Muscle tissue, liver, kidney, and fat tissue: 8 specimens

The mean value was 4.1 (4.2) pg-TEQ/g wet weight, and the median value was 2.5 (2.6) pg-TEQ/g wet weight.

The range detected was 0.99(1.1)-10(10) pg-TEQ/g wet weight.

Co-planar PCBs accounted for 29% (29%) of the total TEQ value when compared in terms of overall mean values, and 10% (14%) when the median values were compared.

(4) Birds (Kites)

Habitat

Kites are seen from plains up into mountainous areas throughout Japan. Although their primary habitat is in the regions extending outward from cities into farmland, they also live near bodies of water in mountainous areas. They prefer to be near rivers, lakes, and bogs, or locations near open water in harbors and so on. They ordinarily live near where they feed, with an activity range of about 1–3 km, but may travel approximately 10 km when in passage or when dispersed.

Feeding Habits

Kites are carnivorous, feeding on small to medium-sized mammals, birds, reptiles, amphibians, fish, insects, arachnids, worms, etc.

(a) Number of Specimens

28 specimens

(b) Method of Collection

Individual specimens that were killed accidents or died after being rescued

(c) Test Samples

Muscle tissue, fat tissue

(d) Items Measured

Dioxins: Concentration and toxicity

(e) Calculation Method

Wet weight (fat weight figures appended for reference)

The toxic equivalency factors (TEFs) used were from WHO TEF, 1998.

Isomers that were detected at levels below the lower limit of determination were assigned a zero value.

Concentrations below the lower limit of determination were converted to TEQ values equivalent to the lower limit of determination or half of that lower limit, and those TEQ values are shown in a separate table for reference.

(f) Analysis Method

Refer to the manual.

(g) Findings

See appended materials.

Evaluation of the toxicity (avian TEF, figures in brackets calculated by mammal TEF) of dioxins showed:

-Muscle tissue: 8 specimens

The mean value was 89 (100) pg-TEQ/g wet weight, and the median value was 40 (42) pg-TEQ/g wet weight.

The range detected was 9.4 (11)–390 (470) pg-TEQ/g wet weight.

-Muscle tissue, fat tissue: 20 specimens

The mean value was 99 (86) pg-TEQ/g wet weight, and the median value was 92 (78) pg-TEQ/g wet weight.

The range detected was 22 (13)-220 (220) pg-TEQ/g wet weight.

Co-planar PCBs accounted for 69% (64%) of the total TEQ value when compared in terms of overall mean values, and 67% (66%) when the median values were compared.

(5) Birds (Raptors)

Habitat

Blakiston's fish-owl: A resident bird that inhabits forests along rivers and lakes in portions of Hokkaido.

Other raptors: Of the species used for this survey, the brown hawk-owl is a summer bird while the others are resident birds that are distributed throughout Japan from Kyushu to the north and inhabit forests from plains to mountainous regions. Their feeding areas include forests, farmland, flood plains along rivers, golf courses, etc.

Feeding Habits

Raptors are carnivorous, feeding on small mammals, birds, reptiles, amphibians, fish, insects, etc. The Blakiston's fish-owl feeds mainly on fish, while the brown hawk-owl, a small bird, feeds mainly on insects.

Other species included in this survey eat mainly mammals and birds.

(a) Number of Specimens

9 specimens

(b) Method of Collection

Recovered carcasses

(c) Test Samples

Muscle and fat tissue, liver

(d) Items Measured

Dioxins: Concentration and toxicity

(e) Calculation Method

Wet weight (fat weight figures appended for reference)

The toxic equivalency factors (TEFs) used were from WHO TEF, 1998.

Isomers that were detected at levels below the lower limit of determination were assigned a zero value.

Concentrations below the lower limit of determination were converted to TEQ values equivalent to the lower limit of determination or half of that lower limit, and those TEQ values are shown in a separate table for reference.

(f) Analysis Method

Refer to the manual.

(g) Findings

See appended materials.

Evaluation of the toxicity (avian TEF, figures in brackets calculated by mammal TEF) of dioxins showed:

-Muscle and fat tissue: 4 specimens

The mean value was 79 (49) pg-TEQ/g wet weight, and the median value was 76 (45) pg-TEQ/g wet weight.

The range detected was 66 (37)–96 (70) pg-TEQ/g wet weight.

-Liver: 5 specimens

The mean value was 160 (120) pg-TEQ/g wet weight, and the median value was 74 (63) pg-TEQ/g wet weight.

The range detected was 14 (10)-530 (380) pg-TEQ/g wet weight.

Co-planar PCBs accounted for 32% (37%) of the total TEQ value when compared in terms of overall mean values, and 45% (63%) when the median values were compared.

(6) Marine Mammals (Cetaceans)

Habitat

Most of the species in this study were pelagic, but the porpoise and finless black porpoise are coastal species.

Feeding Habits

Cetaceans are carnivorous, and the baleen whale feeds on small schooling fish, krill and other plankton, while the beaked whale feeds mainly on cephalopods (cuttlefish, etc.) and fish. The finless black porpoise, which belongs to the beaked whale category, feeds on small schooling fish and shallow-water bottom-dwelling invertebrates.

(a) Number of Specimens

22 specimens

(b) Method of Collection

Stranded carcasses, etc.

(c) Test Samples

Fat tissue

(d) Items Measured

Dioxins: Concentration and toxicity

(e) Calculation Method

Wet weight (fat weight figures appended for reference)

The toxic equivalency factors (TEFs) used were from WHO TEF, 1998 (mammals).

Isomers that were detected at levels below the lower limit of determination were assigned a zero value.

Concentrations below the lower limit of determination were converted to TEQ values equivalent to the lower limit of determination or half of that lower limit, and those TEQ values are shown in a separate table for reference.

(f) Analysis Method

Refer to the manual.

(g) Findings

See appended materials.

Evaluation of the toxicity of dioxins showed:

The mean value was 88 pg-TEQ/g wet weight, and the median value was 81 pg-TEQ/g wet weight.

The range detected was 1.3-200 pg-TEQ/g wet weight.

Co-planar PCBs accounted for 94% of the total TEQ value when compared in terms of overall mean values, and 93% when the median values were compared.

(7) Marine Mammals (Seals)

Habitat

In seas adjacent to Japan, seals are distributed along the Pacific, Sea of Okhotsk, and Japan Sea coasts of Hokkaido.

o Feeding Habits

Seals are carnivorous and prefer the coastal giant Pacific octopus but also feed on fish (sculpin, fluke, gunnel, etc.).

(a) Number of Specimens

13 specimens

(b) Method of Collection

Carcasses from incidental catch, stranded carcasses, etc.

(c) Test Samples

Fat tissue

(d) Items Measured

Dioxins: Concentration and toxicity

(e) Calculation Method

Wet weight (fat weight figures appended for reference)

The toxic equivalency factors (TEFs) used were from WHO TEF, 1998 (mammals).

Isomers that were detected at levels below the lower limit of determination were assigned a zero value.

Concentrations below the lower limit of determination were converted to TEQ values equivalent to the lower limit of determination or half of that lower limit, and those TEQ values are shown in a separate table for reference.

(f) Analysis Method

Refer to the manual.

(g) Findings

See appended materials.

Evaluation of the toxicity of dioxins showed:

The mean value was 17 pg-TEQ/g wet weight, and the median value was 17 pg-TEQ/g wet weight.

The range detected was 8.6-27 pg-TEQ/g wet weight.

Co-planar PCBs accounted for 84% of the total TEQ value when compared in terms of overall mean values, and 82% when the median values were compared.

(8) Land Mammals (Japanese Wood Mice)

o Habitat

The Japanese wood mouse is distributed in shrine and temple groves, wooded areas bordering farmland, river flood plains, and so on from lowland to alpine regions. It has an activity range several hectares.

Feeding Habits

It is an omnivorous animal that feeds on plant roots and stems, seeds, nuts and berries, insects, etc.

(a) Number of Specimens

37 specimens

(b) Method of Collection

Caught in traps

(c) Test Samples

Whole body

(d) Items Measured

Dioxins: Concentration and toxicity

(e) Calculation Method

Wet weight (fat weight figures appended for reference)

The toxic equivalency factors (TEFs) used were from WHO TEF, 1998 (mammals).

Isomers that were detected at levels below the lower limit of determination were assigned a zero value.

Concentrations below the lower limit of determination were converted to TEQ values equivalent to the lower limit of determination or half of that lower limit, and those TEQ values are shown in a separate table for reference.

(f) Analysis Method

Refer to the manual.

(g) Findings

See appended materials.

Evaluation of the toxicity of dioxins showed:

The mean value was 39 pg-TEQ/g wet weight, and the median value was 35 pg-TEQ/g wet weight.

The range detected was 0.52–120 pg-TEQ/g wet weight.

Co-planar PCBs accounted for 29% of the total TEQ value when compared in terms of overall mean values, and 21% when the median values were compared.

(9) Land Mammals (Japanese Macaques)

Habitat

Japanese macaques are distributed in the forests from Aomori Prefecture in the north to Kagoshima Prefecture in the south, but sometimes are also seen on agricultural land. The activity range (area of free movement) of macaque troops is an area of about 2–25 km².

Feeding Habits

The Japanese macaque is omnivorous and feeds on fruit, seeds, leaves, and shoots in trees and on the ground, insects, and small animals, but plants form the bulk of its diet. It will sometimes also eat farm produce.

(a) Number of Specimens

30 specimens

(b) Method of Collection

Individual specimens from nuisance wildlife extermination activity and others captured for scientific purposes

(c) Test Samples

Fat tissue, liver, muscle tissue

(d) Items Measured

Dioxins: Concentration and toxicity

(e) Calculation Method

Wet weight (fat weight figures appended for reference)

The toxic equivalency factors (TEFs) used were from WHO TEF, 1998 (mammals).

Isomers that were detected at levels below the lower limit of determination were assigned a zero value.

Concentrations below the lower limit of determination were converted to TEQ values equivalent to the lower limit of determination or half of that lower limit, and those TEQ values are shown in a separate table for reference.

(f) Analysis Method

Refer to the manual.

(g) Findings

See appended materials.

Evaluation of the toxicity of dioxins showed:

-Fat tissue: 6 specimens

The mean value was 13 pg-TEQ/g wet weight, and the median value was 13 pg-TEQ/g wet weight.

The range detected was 5.4–27 pg-TEQ/g wet weight.

-Muscle tissue: 4 specimens

The mean value was 7.1 pg-TEQ/g wet weight, and the median value was 3.0 pg-TEQ/g wet weight.

The range detected was 0.48–22 pg-TEQ/g wet weight.

-Muscle and fat tissue: 10 specimens

The mean value was 4.4 pg-TEQ/g wet weight, and the median value was 2.9 pg-TEQ/g wet weight.

The range detected was 0.33–18 pg-TEQ/g wet weight.

-Fat tissue and liver: 5 specimens

The mean value was 5.6 pg-TEQ/g wet weight, and the median value was 2.3 pg-TEQ/g wet weight.

The range detected was 1.7-19 pg-TEQ/g wet weight.

-Fat tissue, liver, and muscle: 5 specimens

The mean value was 4.2 pg-TEQ/g wet weight, and the median value was 2.2 pg-TEQ/g wet weight.

The range detected was 0.82–9.4 pg-TEQ/g wet weight.

Co-planar PCBs accounted for 31% of the total TEQ value when compared in terms of overall mean values, and 30% when the median values were compared.

(10) Land Mammals (Bears)

o Habitat

Bears primarily inhabit deciduous broad-leaved forests (Japanese beech groves) in the cool temperate zones in Hokkaido, Honshu, and Shikoku. Their living range extends from several to 80 km². They hibernate in burrows and hollow trees during the winter.

Feeding Habits

Bears are omnivorous but mainly herbivorous, eating the shoots, nuts, and berries of trees, and plant stems, roots, and berries. Sometimes they also feed on insects such as bees and ants, carrion deer and serow, and the young of deer. The brown bear is more carnivorous, and in some parts of the Shiretoko Peninsula, it also catches salmon to eat.

(a) Number of Specimens

16 specimens

(b) Method of Collection

Individual specimens from nuisance wildlife extermination activity

(c) Test Samples

Fat tissue, liver

(d) Items Measured

Dioxins: Concentration and toxicity

(e) Calculation Method

Wet weight (fat weight figures appended for reference)

The toxic equivalency factors (TEFs) used were from WHO TEF, 1998 (mammals).

Isomers that were detected at levels below the lower limit of determination were assigned a zero value.

Concentrations below the lower limit of determination were converted to TEQ values equivalent to the lower limit of determination or half of that lower limit, and those TEQ values are shown in a separate table for reference.

(f) Analysis Method

Refer to the manual.

(g) Findings

See appended materials.

Evaluation of the toxicity of dioxins showed:

-Fat tissue: 10 specimens

The mean value was 0.45 pg-TEQ/g wet weight, and the median value was 0.29 pg-TEQ/g wet weight.

The range detected was 0.080–2.1 pg-TEQ/g wet weight.

-Fat tissue and liver: 6 specimens

The mean value was 0.45 pg-TEQ/g wet weight, and the median value was 0.29 pg-TEQ/g wet weight.

The range detected was 0.18–1.1 pg-TEQ/g wet weight.

Co-planar PCBs accounted for 33% of the total TEQ value when compared in terms of overall mean values, and 24% when the median values were compared.

(11) Land Mammals (Raccoon Dogs)

Habitat

Raccoon dogs inhabit wooded areas, forest fringes, and semi-cultivated hillsides near human habitation from plains to sub-alpine regions. They are also seen sometimes in suburban residential areas.

Feeding Habits

The raccoon dog is an omnivorous animal that feeds on fruit, nuts, grains, insects, worms, crustaceans, snakes, frogs, field mice, birds, etc. Beetle larvae, worms, and other creatures that burrow in the earth form a relatively large part of its diet.

Its activity range is restricted near urban areas, but in mountainous regions may extend from several dozen to several hundred hectares.

(a) Number of Specimens

11 specimens

(b) Method of Collection

Individual specimens that died after being rescued and others from nuisance wildlife extermination activity

(c) Test Samples

Fat tissue, Liver (some muscle tissue included)

(d) Items Measured

Dioxins: Concentration and toxicity

(e) Calculation Method

Wet weight (fat weight figures appended for reference)

The toxic equivalency factors (TEFs) used were from WHO TEF, 1998 (mammals).

Isomers that were detected at levels below the lower limit of determination were assigned a zero value.

Concentrations below the lower limit of determination were converted to TEQ values equivalent to the lower limit of determination or half of that lower limit, and those TEQ values are shown in a separate table for reference.

(f) Analysis Method

Refer to the manual.

(g) Findings

See appended materials.

Evaluation of the toxicity of dioxins showed:

-Fat tissue: 1 specimen

28 pg-TEQ/g wet weight

-Liver: 4 specimens

The mean value was 23 pg-TEQ/g wet weight, and the median value was 21 pg-TEQ/g wet weight.

The range detected was 9.7-42 pg-TEQ/g wet weight.

-Fat tissue and liver: 5 specimens

The mean value was 34 pg-TEQ/g wet weight, and the median value was 19 pg-TEQ/g wet weight.

The range detected was 13–100 pg-TEQ/g wet weight.

-Fat tissue, liver, and muscle tissue: 1 specimen

9.7 pg-TEQ/g wet weight

Co-planar PCBs accounted for 31% of the total TEQ value when compared in terms of overall mean values,

and 33% when the median values were compared.

(12) Land Mammals (Sika Deer)

Habitat

Sika deer mainly inhabit forests and forest fringes in mountainous areas. In areas with snow cover, they go through seasonal migration, so their activity range varies by region, from as little as 0.6–1.4 km² to as much as 20 km² in some regions.

Feeding Habits

This herbivorous animal feeds on the leaves of pasania, *tabu* (*Machilus thunbergii*) and other trees, grasses, acorns from evergreen oaks, bamboo grass, etc.

(a) Number of Specimens

78 specimens

(b) Method of Collection

Individual specimens from nuisance wildlife extermination activity and others captured for scientific purposes

(c) Test Samples

Liver, kidney, fat tissue

(d) Items Measured

Dioxins: Concentration and toxicity

(e) Calculation Method

Wet weight (fat weight figures appended for reference)

The toxic equivalency factors (TEFs) used were from WHO TEF, 1998 (mammals).

Isomers that were detected at levels below the lower limit of determination were assigned a zero value.

Concentrations below the lower limit of determination were converted to TEQ values equivalent to the lower limit of determination or half of that lower limit, and those TEQ values are shown in a separate table for reference.

(f) Analysis Method

Refer to the manual.

(g) Findings

See appended materials.

Evaluation of the toxicity of dioxins showed:

-Liver: 25 specimens

The mean value was 3.5 pg-TEQ/g wet weight, and the median value was 3.3 pg-TEQ/g wet weight.

The range detected was 0.93-10 pg-TEQ/g wet weight.

-Fat tissue and liver: 5 specimens

The mean value was 4.5 pg-TEQ/g wet weight, and the median value was 5.2 pg-TEQ/g wet weight.

The range detected was 1.4–6.1 pg-TEQ/g wet weight.

-Kidney: 28 specimens

The mean value was 1.9 pg-TEQ/g wet weight, and the median value was 0.71 pg-TEQ/g wet weight.

The range detected was 0.43–11 pg-TEQ/g wet weight.

-Fat tissue and kidney: 20 specimens

The mean value was 5.3 pg-TEQ/g wet weight, and the median value was 4.8 pg-TEQ/g wet weight.

The range detected was 2.0–10 pg-TEQ/g wet weight.

Co-planar PCBs accounted for 36% of the total TEQ value when compared in terms of overall mean values, and 32% when the median values were compared.

3. Research Team Evaluation of Findings

The results of this survey point to a tendency for predators that are higher in the ecosystem food chain, such as kites and raptors, to show higher accumulations of dioxins than animals that feed from lower in the food chain. In addition, terrestrial organisms had relatively higher accumulations of PCDDs and PCDFs, while marine organisms tended to have higher accumulations of co-planar PCBs.

With the present survey, however, individual specimens and samples were collected under varying conditions, the species also varied in their body size and the amount of fat they contained, and the number of samples was small. Therefore it was not possible to fully ascertain the relevant differences between species and regions.

4. Future Plans

Future plans call for narrowing the focus of study to certain species in light of the present findings, in order to verify the impact of measures that are implemented on the basis of the Law Concerning Special Measures

Against Dioxins and the Basic Guidelines of Japan for the Promotion of Measures against Dioxins. By targeting

for further study those birds, marine mammals, and other species that are thought to have shown high concentrations of dioxins, future surveys will at the same time make it possible to track the state of accumulation of dioxins.

State of Dioxin Accumulation in Wildlife (FY. 1998) (TEQ by wet weight) The values in () for carp, frogs, birds are calculated using TEF for mammals

	o. oa.p, .		nus are calcul		1		DODD DODD
Species		fat	PCDDs	PCDFs	PCDDs+PCDFs	Coplanar PCBs	PCDDs+PCDFs
unit		content %	pgTEQ/g	pgTEQ/g	pgTEQ/g	pgTEQ/g	+Co-PCBs pgTEQ/g
		1.8	0.72(0.70)	0. 50 (0. 56)	1. 2 (1. 3)	0.078(1.7)	1. 3 (3. 0)
Carp	mean	1. 3	0. 60 (0. 60)	0. 37 (0. 43)	1. 2 (1. 3)	0.065(1.5)	1. 1 (2. 8)
N=48	median	4. 9	2. 9 (2. 9)	2.7(2.8)	5. 6 (5. 7)	0. 32 (6. 5)	5. 9(11)
N-40	maximum minimum	0. 49	0. 11 (0. 11)	0. 056 (0. 066)	0. 20 (0. 20)	0. 0069 (0. 34)	0. 20 (0. 56)
D.							
Frogs	mean median	1. 1 1. 0	1. 3 (1. 2) 1. 2 (1. 1)	1. 3 (1. 5) 1. 3 (1. 5)	2.6(2.7) 2.5(2.6)	0. 066 (1. 4) 0. 064 (1. 3)	2. 7 (4. 1) 2. 6 (4. 0)
N=80	maximum	2.8	3.6(3.3)	3.7(4.0)	7. 3 (7. 3)	0. 15 (3. 3)	7. 5(11)
N-00	minimum		0. 00057 (0. 0060)	0. 18 (0. 23)	0. 18 (0. 24)	0. 13 (3. 3)	0. 20 (0. 50)
Domostic Discon		5. 3		0. 18 (0. 25)	0. 76 (0. 45)	0. 23 (0. 34)	0. 20 (0. 30)
Domestic Pigeon	mean	5. 0	0. 0048 (0. 053)	0. 54 (0. 28)	0. 76 (0. 45)	0. 12 (0. 19)	0. 98 (0. 79)
(muscle, liver)	median	6. 1	0. 20 (0. 24)	1. 0 (0. 53)	1. 2(0. 77)	0. 71 (1. 1)	1. 3 (1. 3)
N=5	maximum minimum	5. 0	<0. 27 (0. 00027)	0. 35 (0. 18)	0. 35 (0. 18)	0.71(1.1)	0. 55 (0. 40)
		4. 9	2.7(3.4)	1.9(1.1)	4. 6 (4. 5)	0. 18 (0. 23)	4. 7 (4. 7)
(mussle liver bidney)	mean median	4. 9	2. 7 (3. 4)	1.9(1.1)	4. 6 (4. 5)	0. 18 (0. 23)	4. 7 (4. 7)
(muscle, liver, kidney) N=2	maximum	5. 7	3. 1 (3. 6)	2. 4(1. 5)	4. 7 (4. 8)	0. 23 (0. 27)	4. 9 (5. 0)
11-2	minimum	4. 2	2. 3 (3. 3)	1. 3 (0. 70)	4. 4. (4. 3)	0. 12 (0. 18)	4. 5 (4. 4)
	mean	7.8		1. 2 (0. 75)	2.6(2.8)	1. 5 (1. 5)	4. 1 (4. 2)
(muscle, liver, kidney,	median	7.5	0. 86 (1. 4)	1. 1 (0. 63)	2. 3 (2. 4)	0. 14 (0. 22)	2. 5 (2. 6)
fat)	maximum	11	3. 1 (4. 4)	2. 3 (1. 4)	5. 4 (5. 7)	6. 3 (5. 9)	10 (10)
N=8	minimum	4.4	0. 35 (0. 50)	0. 36 (0. 24)	0.88(0.80)	0. 0050 (0. 024)	0. 99 (1. 1)
Kite	mean	6.0	11(11)	6. 4 (3. 2)	17 (15)	72 (89)	89 (100)
(muscle)	median	4. 5	4. 9 (5. 1)	3. 3 (1. 6)	9. 7 (7. 3)	26 (27)	40 (42)
N=8	maximum	14	27 (28)	29 (15)	51 (38)	340 (430)	390 (470)
14-0	minimum	1.8	1. 0 (1. 1)	0. 86 (0. 41)	2.8(2.2)	6. 6 (8. 9)	9. 4(11)
	mean	16	21 (22)	14 (7. 2)	35 (29)	65 (57)	99 (86)
(muscle, fat)	median	16	14 (14)	12 (5. 5)	25 (20)	60 (58)	92 (78)
N=20	maximum	28	100 (110)	28 (15)	130 (120)	150 (100)	220 (220)
11 20	minimum	7.6	3. 3 (3. 4)	5. 1 (2. 4)	8. 5 (5. 8)	13 (7. 0)	22 (13)
Raptors: Blakiston's		23	6. 3 (6. 5)	16 (4. 4)	23(11)	56 (39)	79 (49)
Fish-owl	median	21	6. 3 (6. 4)	15 (4. 0)	20 (10)	57 (36)	76 (45)
(muscle, fat)	maximum	43	7. 5 (7. 7)	26 (6. 3)	33 (14)	76 (59)	96 (70)
N=4	minimum	7. 5	5. 3 (5. 5)	10 (3. 3)	17 (9. 3)	33 (23)	66 (37)
Raptors: Others	mean	10	20 (24)	110 (59)	130 (83)	25 (33)	160 (120)
(liver)	median	11	16 (20)	31 (16)	58 (46)	16 (17)	74(63)
N=5	maximum	13		410 (220)	460 (270)	70 (110)	530 (380)
	minimum	8.3	1.5(1.8)	6.8(3.4)	8. 3 (5. 1)	5. 6 (5. 2)	14(10)
Whales	mean	77	2. 4	3. 1	5. 5	83	88
(fat)	median	82	2. 1	3. 2	5. 6	75	81
N=22	maximum	98	10	7. 5	16	200	200
	minimum	36	0.082	<0.05	0. 19	0. 92	1. 3
Seals	mean	86	2. 1	0.66	2. 7	14	17
(fat)	median	83	2. 2	0.63		14	17
N=13	maximum	98	3. 0	0.95	3. 9	24	27
	minimum	77	0.95	0.33		7. 3	8. 6
Wood mouse	mean	4. 7		24		11	39
(Whole body)	median	4. 1	1. 3	18	20	7.4	35
N=37	maximum	11	22	71	77	60	120
	minimum	2. 2	0. 00088	0.32	0. 32	0. 11	0. 52
Japanese Macaque	mean	75	4.6	4. 4	9. 1	4. 2	13
(fat)	median	74	5. 1	4. 4	9. 5	3. 6	13
N=6	maximum	90	8. 5	8. 2	17	10	27
	minimum	53	1. 5	2. 1	3. 6	1.8	

State of Dioxin Accumulation in Wildlife (FY. 1998) (TEQ by wet weight)

Species		fat content	PCDDs	PCDFs	PCDDs+PCDFs	Coplanar PCBs	PCDDs+PCDFs +Co-PCBs
	unit	%	pgTEQ/g	pgTEQ/g	pgTEQ/g	pgTEQ/g	pgTEQ/g
Japanese Macaque	mean	25	2. 9	2.0	4. 9	2.2	7. 1
(muscle)	median	16	0.96	1. 2	2. 2	0. 81	3. 0
N=4	maximum	59	9. 5	5. 4	15	7. 0	22
	minimum	11	0. 16	0.13	0. 28	0. 20	0.48
	mean	38	1. 6	1. 4	3. 1	1. 3	4. 4
(fat, muscle)	median	35	0.63	1. 1	1.8	1.0	2. 9
N=10	maximum	63	7. 5	5. 2	13	5. 5	18
	minimum	20	0. 039	0. 21	0. 24	0.082	0. 33
	mean	35	2.0	1. 9	3.8	1.7	5. 6
(muscle, liver)	median	36	0.81	0.83	1. 7		2. 3
N=5	maximum	55	7. 2	6. 2	13		19
	minimum	3. 6	0. 44	0. 73	1. 2	pgTEQ/g 2. 2 3. 2 3. 8 3. 8 3. 8 3. 8 3. 8 3. 9 3. 8 3. 1. 0 3. 8 3. 1. 0 3. 8 3. 1. 0 3. 8 3. 1. 0 3. 8 3. 1. 0 3. 8 3. 8 3. 9 3. 8 3. 1. 7 3. 8 3. 8 3. 9 3. 13 3. 8 3. 10 3.	1. 7
	mean	39	1. 7	1. 3	2. 9		4. 2
(fat, liver, muscle)	median	36	0. 59	1. 0	1. 6		2. 2
N=5	maximum	57	3. 9	2. 8	6. 6		9. 4
., .	minimum	26	0. 28	0. 23	0. 51		0.82
Bears	mean	88	0. 13	0. 13	0. 26		0. 45
(fat)	median	91	0. 097	0. 083	0. 19		0. 29
(140)	maximum	96	0. 50	0. 47	1. 0		2. 1
N=10	minimum	70	0. 000055	0. 044	0. 057		0. 080
11 10	mean	77	0. 061	0.30	0.36		0.45
(fat, liver)	median	82	0. 070	0. 16	0. 24		0. 49
N=6	maximum	90	0.11	0. 71	0. 24		1. 1
1,-0	minimum	49	0. 0023	0. 13	0.15		0. 18
Racoon Dog		10	4. 2	17			23
(liver)	mean median	11	3. 3	12			23
N=4	maximum	14	8. 6	35			42
N-4	minimum	4. 1	1. 4	7. 4			9. 7
		76	1.4	6. 0			34
(fat, liver)	mean median	76	8. 6	4. 6			19
N=5		97	43	11			100
N-9	maximum minimum	55	5. 6	2. 1			130
(fat) N=1	IIIIIIIIIIIIIII	82		6. 3			28
(fat, liver, muscle)	N-1	66	5. 6	1. 7			9. 7
Sika Deer							
(liver)	mean median	7. 1 6. 8	0. 61 0. 40	1. 9			3. 5
							3. 3
N=25	maximum	11	2. 1	6. 6			10
	minimum	4. 0	0.0031	0. 29			0.93
(c + 1:)	mean	23	0. 52	2. 7			4. 5
(fat, liver)	median	26	0. 62	2. 8			5. 2
N=5	maximum	29	0.81	3. 6			6. 1
	minimum	10	0.00025	0.72	0.72		1.4
(1-: -1)	mean	5. 9	0.90	0.60			1. 9
(kidney)	median	4. 4	0.36	0. 28	0.60		0.71
N=28	maximum	15	5. 8	3. 1	8. 9		11
	minimum	2.0	0. 19	0.14	0.37		0. 43
(C + 1 : 1	mean	34	1. 4	1. 2	2. 6		5. 3
(fat, kidney)	median	37	1. 2	1. 1	2. 3		4. 8
N=20	maximum	54	2. 7	2. 3	4. 9	5. 5	10
	minimum	12	0.47	0.49	0.99	0. 98	2. 0

State of Dioxin Accumulation in Wildlife (FY. 1998) (TEQ by fat weight) The values in () for carp, frogs, birds are calculated using TEF for mammals

The values in ()	for carp,						Γ= ===
Species		fat	PCDDs	PCDFs	PCDDs+PCDFs	Coplanar PCBs	PCDDs+PCDFs
	unit	content %	n «TEO /	ngTEO /	maTEO /	n cTEO /	+Co-PCBs
0			pgTEQ/g	pgTEQ/g 29 (32)	pgTEQ/g 78(81)	pgTEQ/g	pgTEQ/g
Carp	mean	1.8	49 (48)		63 (65)	5. 0 (130)	83 (210)
N=48	median maximum	1. 3 4. 9	36 (36) 270 (260)	24 (28) 110 (110)	370 (360)	3. 8 (91) 18 (550)	66 (150) 380 (840)
N-40	minimum	0. 49	7. 9 (7. 9)	6. 1 (6. 4)	14(14)	0. 50 (28)	14 (42)
Examp		1. 1	120 (110)	130 (48)	240 (160)	6. 1 (130)	250 (290)
Frogs	mean median	1. 1	97 (93)	110(1.2)	210 (99)	5. 5 (120)	210 (230)
N=80	maximum	2. 8	340 (310)	320 (340)	660 (640)	19 (390)	680 (970)
IV-00	minimum	0. 50	0. 088 (0. 93)	18 (0. 20)	28 (1. 3)	0. 57 (12)	30 (28)
Domestic Pigeon	mean	6.6	19 (26)	20 (12)	39 (38)	13 (13)	51 (51)
Domestic Ligeon	median	5. 7	7. 4 (9. 8)	14 (7. 2)	21 (16)	2. 4(4. 0)	22 (22)
N= 1 5	maximum	11	54(78)	58 (36)	110 (110)	77 (73)	150 (150)
N- 1 0	minimum	4. 2	<4. 4 (0. 0050)	3. 2 (2. 1)	6. 5 (3. 3)	0. 047 (0. 23)	9. 0 (7. 4)
Kite	mean	13	210 (220)	130 (66)	340 (280)	1,000(1,100)	1, 400 (1, 400)
Kite	median	14	80 (83)	78 (41)	180 (130)	450 (380)	580 (490)
N=28	maximum	28	950 (990)	1, 100 (575)	1,900 (1,400)	13, 000 (16, 000)	15, 000 (18, 000)
11 20	minimum	1.8	10 (10)	10 (5. 3)	20 (15)	47 (45)	66 (78)
Raptors	mean	16	110 (130)	580 (290)	680 (420)	280 (270)	970 (690)
Raptors	median	11	71 (73)	200 (56)	270 (130)	300 (170)	480 (400)
N=9	maximum	43	380 (450)	3, 200 (1, 700)	3, 500 (2, 100)	620 (820)	4, 100 (2, 900)
	minimum	7. 5	17 (18)	56 (13)	77 (33)	65 (54)	150 (86)
Whales	mean	77	3. 0	4. 0	6. 9	113	120
minutes.	median	82	2. 6	4. 2	7. 0	93	99
N=22	maximum	98	10	9. 7	19	450	470
	minimum	36	0.10	<0.07	0. 22	2.6	3. 5
Seals	mean	86	2. 5	0.77	3. 2	16	20
	median	83	2. 5	0.71	3. 2	16	20
N=13	maximum	98	3. 7	1. 2	4. 6	28	31
	minimum	77	1. 1	0.40	1. 5	8.9	10
Wood mouse	mean	4. 7	81	620	710	260	970
	median	4. 1	24	440	480	180	860
N=37	maximum	11	540	1, 900	2,000	1, 500	2, 900
	minimum	2. 2	0. 021	7. 7	7. 7	1. 7	12
Japanese Macaque	mean	43	8. 6	7. 1	16	6.8	23
	median	40	3. 5	3. 1	6. 6	3.2	10
N=30	maximum	90	83	47	130	61	190
	minimum	3.6	0. 12	0.21	0.48	0. 26	0.82
Bears	mean	84	0.12	0.26	0.39	0. 26	0.65
	median	87	0.11	0.17	0. 26		0.34
N=16	maximum	96	0. 56	1. 5	1. 6	1. 7	3. 3
	minimum	49	0. 000059	0.048	0. 082	0.026	0.12
Raccoon Dog	mean	51	36	76	110	26	140
	median	66	12	10	20	10	34
N=11	maximum	97	210	370	470	150	620
	minimum	4. 1	7. 3	2.6	11	3. 6	15
Sika Dear	mean	15	11	17	28	10	38
1	median	8	6. 1	7. 8	14	6. 7	18
N=78	maximum	54	180	170	280	69	330
	minimum	2.0	0.0012	1.2	2.8	0.46	3. 2

State of Dioxin Accumulation in Wildlife (FY. 1998) (1) (TEQ by wet weight)

The values in () for carp, frogs, birds are calculated using TEF for mammals

	The values in () fo		<u> </u>				
Species	Compounds analyzed	unit	*Note	mean	median	maximum	minimum
Carp	fat content	%		1.8	1. 3	4. 9	0.49
N=48			ND=0*QL	0.72(0.70)	0.60(0.60) 2.9(2.9)	0.11(0.11)	
	PCDDs	pgTEQ/g		2.9(2.9)	0. 16 (0. 15)		
			ND=1*QL	0.74(0.72)	0. 62 (0. 61)	2.9(2.9)	0. 21 (0. 19)
	DCDC	TIPO /	ND=0*QL	0. 50 (0. 56)	0. 37 (0. 43)	2.7(2.8)	0.056(0.066)
	PCDFs	pgTEQ/g	ND=1/2*QL ND=1*QL	0. 52 (0. 58) 0. 53 (0. 59)	0. 39 (0. 44) 0. 40 (0. 45)	2. 7 (2. 8) 2. 7 (2. 8)	0. 077 (0. 088) 0. 098 (0. 11)
			ND=1*QL ND=0*QL	1. 2(1. 3)	1. 1(1. 1)	5. 6 (5. 7)	0. 20 (0. 20)
	PCDDs+PCDFs	pgTEQ/g	ND=1/2*QL	1. 2 (1. 3)	1. 1(1. 1)	5. 6 (5. 7)	0. 27 (0. 26)
	1 0000 1 001 0	PS1E4/ S	ND=1*QL	1. 3 (1. 3)	1. 1 (1. 1) 5. 6 (5. 7) 0. 065 (1. 5) 0. 32 (6. 5)	0. 34 (0. 33)	
			ND=0*QL	0.078(1.7)			0.0069(0.34)
	Coplanar PCBs	pgTEQ/g	ND=1/2*QL	0.078(1.7)	0.065(1.5)	0.32(6.5)	0.0069(0.34)
			ND=1*QL	0.078(1.7)	0.065(1.5)	0. 32 (6. 5)	0.0069(0.34)
			ND=0*QL	1.3(3.0)	1.1(2.8)	5.9(11)	0. 20 (0. 56)
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=1/2*QL	1. 3 (3. 0)	1. 1(2. 9)	5. 9(11)	0. 27 (0. 62)
			ND=1*QL	1.4(3.0)	1.2(2.9)	5.9(11)	0. 35 (0. 68)
Frogs	fat content	%		1. 1	1. 0	2.8	0.50
N. 00			ND=0*QL	1.3(1.2)	1.2(1.1)	3.6(3.3)	0.00057 (0.0060)
N=80	PCDDs	pgTEQ/g	ND=1/2*QL	1.3(1.2)	1. 3(1. 2)	3. 6 (3. 3)	0. 27 (0. 27)
			ND=1*QL	1.4(1.3)	1.4(1.2)	3.6(3.3)	0. 37 (0. 34)
	DODE	mpo /	ND=0*QL	1.3(1.5)	1.3(1.5)	3.7(4.0)	0. 18 (0. 23)
	PCDFs	pgTEQ/g	ND=1/2*QL	1.4(1.5)	1.3(1.5)	3.7(4.0)	0. 29 (0. 33)
			ND=1*QL ND=0*QL	1. 4 (1. 6) 2. 6 (2. 7)	1. 4(1. 5) 2. 5(2. 6)	3.8(4.0) 7.3(7.3)	0. 34 (0. 39) 0. 18 (0. 24)
	PCDDs+PCDFs	pgTEQ/g	ND=0*QL ND=1/2*QL	2.7(2.7)	2. 6(2. 7)	7. 3 (7. 3)	0. 18 (0. 24)
	1 CDD3 11 CD1 3	pgilw/g	ND=1*QL	2. 8 (2. 8)	2.8(2.8)	7. 3 (7. 4)	0. 72 (0. 73)
			ND=0*QL	0.066(1.4)	0.064(1.3)	0. 15 (3. 3)	0.012(0.26)
	Coplanar PCBs	pgTEQ/g	ND=1/2*QL	0.066(1.4)	0.064(1.3)	0. 15 (3. 3)	0.012(0.26)
			ND=1*QL	0.066(1.4)	0.064(1.3)	0.15(3.3)	0.012(0.26)
	PCDDs+PCDFs+Co-PCBs		ND=0*QL	2.7(4.1)	2.6(4.0)	7.5(11)	0. 20 (0. 50)
		pgTEQ/g	ND=1/2*QL	2.8(4.1)	2.7(4.1)	7.5(11)	0. 62 (0. 88)
			ND=1*QL	2.8(4.2)	2.9(4.3)	7.5(11)	0.73(1.0)
Domestic Pgeon	fat contetn	%		5. 3	5. 0	6. 1	5. 0
(muscle,		pgTEQ/g	ND=0*QL	0.077(0.11)	0. 0048 (0. 053)	0. 20 (0. 24)	<0.27(0.00027)
liver) N=5	PCDDs		ND=1/2*QL	0. 26 (0. 30)	0. 27 (0. 32)	0. 31 (0. 36)	0. 16 (0. 18)
14-0			ND=1*QL	0. 44 (0. 50)	0. 37 (0. 41)	0. 63 (0. 71)	0. 32 (0. 37)
	PCDFs	pgTEQ/g	ND=0*QL ND=1/2*QL	0. 68 (0. 35) 0. 85 (0. 43)	0. 54 (0. 28) 0. 79 (0. 40)	1. 0 (0. 53) 1. 2 (0. 60)	0. 35 (0. 18) 0. 49 (0. 24)
			ND=1*QL	1. 0 (0. 52)	1. 1 (0. 53)	1. 4 (0. 71)	0. 49 (0. 24)
	PCDDs+PCDFs	pgTEQ/g	ND=0*QL	0. 76 (0. 45)	0. 74 (0. 51)	1. 2 (0. 77)	0. 35 (0. 18)
			ND=1/2*QL	1. 1 (0. 74)	1. 1 (0. 76)	1. 5 (0. 93)	0. 65 (0. 43)
		104/0	ND=1*QL	1.5(1.0)	16(1.0)	2.0(1.3)	0. 95 (0. 68)
				0. 12 (0. 19)	0.71(1.1)	0.012(0.060)	
	Coplanar PCBs	pgTEQ/g	ND=1/2*QL	0.25(0.34)	0.14(0.19)	0.71(1.1)	0.074(0.085)
			ND=1*QL	0. 27 (0. 35)	0. 15 (0. 19))	0.71(1.1)	0.14(0.11)
			ND=0*QL	0. 98 (0. 79)	0. 99 (0. 67)	1. 3 (1. 3)	
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=1/2*QL	1.4(1.1)	1.5(1.0)	1.8(1.8)	0. 85 (0. 65)
/ 1	6	0/	ND=1*QL	1.7(1.4)	1.7(1.2)	2.4(2.3)	1.1(0.90)
(muscle,	fat contetnt	%	MD=040I	4.9	4.9	5. 7	4. 2
liver, kidnev)	PCDDs	pgTEQ/g	ND=0*QL ND=1/2*QL	2. 7 (3. 4) 2. 7 (3. 4)	2. 7 (3. 4) 2. 7 (3. 4)	3. 1 (3. 6) 3. 1 (3. 6)	2. 3 (3. 3) 2. 3 (3. 3)
N=2	I CDDS	pgrew/g	ND=1*QL	2. 7 (3. 4)	2. 7 (3. 4)	3. 1 (3. 6)	2. 3 (3. 3)
11 2			ND=0*QL	1.9(1.1)	1. 9(1. 1)	2. 4(1. 5)	1.3(0.70)
	PCDFs	pgTEQ/g	ND=1/2*QL	1. 9 (1. 1)	1.9(1.1)	2. 5 (1. 5)	1. 4(0. 72)
	TUPS	134/0	ND=1*QL	2. 0 (1. 1)	2. 0(1. 1)	2.6(1.6)	1.4(0.73)
		+ +	ND=0*QL	4.6(4.5)	4.6(4.5)	4.7(4.8)	4.4(4.3)
	PCDDs+PCDFs	pgTEQ/g	ND=1/2*QL	4.6(4.5)	4.6(4.5)	4.8(4.8)	4.5(4.3)
		<u> </u>	ND=1*QL	4.7(4.6)	4.7(4.6)	4.9(4.8)	4.5(4.3)
			ND=0*QL	0. 18 (0. 23)	0. 18 (0. 23)	0. 23 (0. 27)	0. 12 (0. 18)
	Coplanar PCBs	pgTEQ/g	ND=1/2*QL	0. 19 (0. 23)	0. 19 (0. 23)	0. 25 (0. 27)	0. 13 (0. 18)
			ND=1*QL	0. 20 (0. 23)	0. 20 (0. 23)	0. 26 (0. 27)	0. 14 (0. 18)
	DODD (DODD (C. DOD	mpo /	ND=0*QL	4.7(4.7)	4.7(4.7)	4. 9 (5. 0)	4.5(4.4)
1	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=1/2*QL	4. 8 (4. 8) 4. 9 (4. 8)		5. 0 (5. 1)	4. 6 (4. 5) 4. 6 (4. 5)
			ND=1*QL				

*Note ND=0*QL : calculated applying 0 as the concentration for the isomers below the detection limit

ND=1/2*QL: calculated applying 1/2 value of the detection limit as the concentration for the isomers below the detection limit. ND=1*QL: calculated applying the value of the detection limit as the concentration for the isomers below the detection limit.

State of Dioxin Accumulation in Wildlife (FY. 1998) (2) (TEQ by wet weight)

The values in () for carp, frogs, birds are calculated using TEF for mammals

C :	The values in () io		*Note				
Species	Compounds analyzed	unit	*NOTE	mean	median	maximum	minimum
Domestic	fat content	%		7.8	7. 5	11	4.4
Pigeon			ND=0*QL	1.4(2.0)	0.86(1.4)	3. 1 (4. 4)	0. 35 (0. 50)
(muscle,	PCDDs	pgTEQ/g	ND=1/2*QL	1. 4(2. 1)	0.90(1.5)	3. 2 (4. 4)	0.40(0.55)
liver, kidney,			ND=1*QL	1.5(2.1)	0.95(1.5)	3. 2 (4. 4)	0.45(0.60)
fat)			ND=0*QL	1. 2 (0. 75)	1.1(0.63)	2.3(1.4)	0.36(0.24)
N=8	PCDFs	pgTEQ/g	ND=1/2*QL	1.3(0.77)	1.2(0.65)	2.4(1.4)	0.41(0.25)
			ND=1*QL	1.3(0.78)	1.2(0.67)	2.4(1.4)	0.47(0.27)
			ND=0*QL	2.6(2.8)	2.3(2.4)	5. 4 (5. 7)	0.88(0.80)
	PCDDs+PCDFs	pgTEQ/g		2.7(2.8)	2.4(2.5)	5. 5 (5. 8)	0. 99 (0. 87)
			ND=1*QL	2.8(2.9)	2.5(2.5)	5. 6 (5. 8)	1.1(0.94)
			ND=0*QL	1.5(1.5)	0. 14 (0. 22)	6. 3 (5. 9)	0. 0050 (0. 024)
	Coplanar PCBs	pgTEQ/g		1.5(1.5)	0. 14 (0. 22)	6. 3 (5. 9)	0. 030 (0. 034)
			ND=1*QL	1.5(1.5)	0. 15 (0. 22)	6. 3 (5. 9)	0. 055 (0. 044)
	Dann Dann a Dan	mp.o./	ND=0*QL	4. 1 (4. 2)	2.5(2.6)	10(10)	0.99(1.1)
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=1/2*QL	4. 2 (4. 3)	2.6(2.7)	11(10)	1. 1(1. 2)
			ND=1*QL	4. 3 (4. 3)	2.7(2.7)	11(10)	1.2(1.2)
Kite	fat content	%		6. 0	4.5	14	1.8
(muscle)			ND=0*QL	11(11)	4.9(5.1)	27 (28)	1.0(1.1)
N=8	PCDDs	pgTEQ/g	ND=1/2*QL	11(11)	4.9(5.1)	27 (28)	1.0(1.1)
			ND=1*QL	11(11)	4.9(5.1)	27 (28)	1.0(1.2)
			ND=0*QL	6.4(3.2)	3.3(1.6)	29(15)	0.86(0.41)
	PCDFs	pgTEQ/g		6.4(3.3)	3.2(1.6)	29 (15)	0.89(0.44)
			ND=1*QL	6.5(3.3)	3.3(1.6)	29 (15)	0. 93 (0. 47)
			ND=0*QL	17 (15)	9.7(7.3)	51 (38)	2.8(2.2)
	PCDDs+PCDFs	pgTEQ/g	ND=1/2*QL	17 (15)	9.5(7.3)	51 (38)	3.0(2.2)
			ND=1*QL	17 (15)	9.5(7.3)	51 (38)	3.1(2.3)
			ND=0*QL	72 (89)	26(27)	340 (430)	6.6(8.9)
	Coplanar PCBs	pgTEQ/g		72 (89)	26 (27)	340 (430)	6.6(8.9)
			ND=1*QL	73 (89)	27 (27)	350 (430)	6.3(9.0)
		,	ND=0*QL	89 (100)	40 (42)	390 (470)	9. 4(11)
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g		89 (100)	40 (42)	390 (470)	9.6(11)
		-,	ND=1*QL	90 (100)	41 (42)	400 (470)	9.4(11)
(muscle, fat)	fat contetn	%		16	16		7. 6
N=20			ND=0*QL	21 (22)	14(14)	100 (110)	3.3(3.4)
	PCDDs	pgTEQ/g	ND=1/2*QL	21 (22)	14 (14)	100 (110)	3. 3 (3. 4)
			ND=1*QL	21 (22)	14 (14)	100 (110)	3. 3 (3. 4)
			ND=0*QL	14(7.2)	12 (5. 5)	28 (15)	5. 1 (2. 4)
	PCDFs	pgTEQ/g		14(7.3)	12 (5. 5)	28 (15)	5. 1 (2. 4)
			ND=1*QL	14(7.3)	12 (5. 5)	28 (15)	5. 1 (2. 4)
	Dann Dann	mpo /	ND=0*QL	35 (29)	25 (20)	130 (120)	8. 5 (5. 8)
	PCDDs+PCDFs	pgTEQ/g		35 (29)	25 (20)	130 (120)	8. 5 (5. 8)
			ND=1*QL	35 (29)	25 (20)	130 (120)	8.5(5.9)
	Conlone DCD-	n aTEO /	ND=0*QL ND=1/2*QL	65 (57)	60 (58)	150 (100)	13 (7. 0)
	Coplanar PCBs	pgTEQ/g	ND=1/2*QL ND=1*QL	65 (57) 65 (57)	60 (58) 60 (58)	150 (100) 150 (100)	13 (7. 0)
]			ND=1*QL ND=0*QL	99 (86)	92 (78)	220 (220)	13 (7. 0) 22 (13)
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g		99 (86)	92 (78)	220 (220)	22 (13)
	I CDIS+I CDI STCOTICDS	hg1⊑A/8	ND=1/2*QL ND=1*QL	99 (86)	92 (78)	220 (220)	22 (13)
Dontors	fot contains	%	IND-I-MID	23	92 (18)	43	7.5
Raptors Blakiston's	fat contetnt	7/0	ND=0*QL	6. 3 (6. 5)	6. 3 (6. 4)	7. 5 (7. 7)	5. 3 (5. 5)
Fish-owl (PCDDs	pgTEQ/g	ND=1/2*QL	6. 3 (6. 5)	6. 3 (6. 4)	7.5(7.7)	5. 3 (5. 5)
muscle, fat)	נ מעט	hRIE@\ &	ND=1/2*QL ND=1*QL	6. 3 (6. 5)	6. 3 (6. 4)	7. 5 (7. 7)	5. 3 (5. 5)
N=4			ND=0*QL	16(4.4)	15 (4. 0)	26 (6. 3)	10 (3. 3)
	PCDFs	pgTEQ/g	ND=0**QL ND=1/2*QL	16(4.4)	15 (4. 0)	26 (6. 3)	10 (3. 3)
	1 001 0	1011d/8	ND=1*QL	16(4.4)	15 (4. 0)	26 (6. 3)	10 (3. 3)
			ND=0*QL	23(11)	20(10)	33(14)	17 (9. 3)
	PCDDs+PCDFs	pgTEQ/g	ND=1/2*QL	23 (11)	20 (10)	33(14)	17 (9. 4)
	1 021 0	F0-24/8	ND=1*QL	23 (11)	20 (10)	33(14)	17 (9. 4)
			ND=0*QL	56 (39)	57 (36)	76 (59)	33 (23)
	Coplanar PCBs	pgTEQ/g		56 (39)	57 (36)	77 (59)	33 (23)
		F0-24/8	ND=1*QL	56 (39)	57 (36)	77 (59)	33 (23)
			ND=0*QL	79 (49)	76 (45)	96 (70)	66 (37)
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=1/2*QL	79 (49)	76 (45)	97 (70)	66 (37)
	1 3220 1 021 0 00 1 020	10.174/ S	ND=1*QL	79 (49)	76 (45)	97 (70)	66 (37)
	coloulated applying 0 as		ntrotion for the		he detection lim		00 (01)

 ${\tt ND=0*QL} \quad : \quad calculated \ applying \ 0 \ as \ the \ concentration \ for \ the \ isomers \ below \ the \ detection \ limit$

State of Dioxin Accumulation in Wildlife (FY. 1998) (3) (TEQ by wet weight) The values in () for carp, frogs, birds are calculated using TEF for mammals

Species	Compounds analyzed	unit	*Note	mean	median	maximum	minimum
Raptors:	fat content	%		10	11	13	8.3
Others			ND=0*QL	20 (24)	16 (20)	49 (58)	1.5(1.8)
(liver) N=5	PCDDs	pgTEQ/g	ND=1/2*QL	20 (24)	16 (20)	49 (58)	1.5(1.8)
11-0			ND=1*QL ND=0*QL	21 (24) 110 (59)	16 (20) 31 (16)	48 (58) 410 (220)	1.5(1.8) 6.8(3.4)
	PCDFs	pgTEQ/g	ND=0*QL ND=1/2*QL	110 (59)	31(16)	410 (220)	6.8(3.4)
	1 021 0	P8124/ 8	ND=1*QL	110 (59)	31 (16)	410 (220)	6. 9 (3. 4)
			ND=0*QL	130 (83)	58 (46)	460 (270)	8. 3 (5. 1)
	PCDDs+PCDFs	pgTEQ/g	ND=1/2*QL	130 (83)	59 (46)	460 (270)	8. 3 (5. 2)
			ND=1*QL ND=0*QL	130 (83) 25 (33)	59 (46) 16 (17)	460 (270) 70 (110)	8. 4 (5. 2) 5. 6 (5. 2)
	Coplanar PCBs	pgTEQ/g	ND=1/2*QL	25 (33)	16(17)	70 (110)	5. 6 (5. 2)
		104/0	ND=1*QL	25 (33)	16(17)	70 (110)	5. 6 (5. 2)
			ND=0*QL	160 (120)	74 (63)	530 (380)	14(10)
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=1/2*QL	160 (120)	74 (63)	530 (380)	14(10)
XX71 - 1	Calana	0/	ND=1*QL	160 (120)	75 (63)	530 (380)	14(10)
Whales (fat)	fat content	%	ND 0.0I	77	82	98	
N=22	PCDDs	pgTEQ/g	ND=0*QL ND=1/2*QL	2. 4 2. 4	2. 1 2. 2	10 10	0. 082 0. 14
	I CDDS	pgir4/g	ND=1*QL	2. 4	2. 2	10	
			ND=0*QL	3. 1	3. 2	7. 5	
	PCDFs	pgTEQ/g	ND=1/2*QL	3. 1	3. 2	7. 5	
			ND=1*QL	3. 1	3. 2	7. 5	
	PCDDs+PCDFs	pgTEQ/g	ND=0*QL ND=1/2*QL	5. 5 5. 5	5. 6 5. 7	16 16	
	I CDDS I CDI'S	pgrr4/g	ND=1*QL	5. 5	5. 7	16	
			ND=0*QL	83	75	200	
	Coplanar PCBs	pgTEQ/g	ND=1/2*QL	83	75	200	
			ND=1*QL	83	75	200	
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=0*QL ND=1/2*QL	88 89	81 81	200 200	
	T CDDS T CDFS CO T CDS	pgir4/g	ND=1*QL	89	81	200	
Seals	fat contetn	%	·	86	83	98	
(fat)			ND=0*QL	2. 1	2. 2	3.0	0.95
N=13	PCDDs	pgTEQ/g	ND=1/2*QL	2. 1	2. 2	3.0	
			ND=1*QL	2. 1	2. 2	3.0	
	PCDFs	pgTEQ/g	ND=0*QL ND=1/2*QL	0. 66 0. 67	0. 63 0. 64	0. 95 0. 98	
	I CDI'S	pgrr4/g	ND=1*QL	0.67	0. 64	0. 98	0. 37
			ND=0*QL	2. 7	2. 9	3.9	
	PCDDs+PCDFs	pgTEQ/g	ND=1/2*QL	2.8	2.9	3.9	
			ND=1*QL	2.8	3.0	3.9	
	Coplanar PCBs	pgTEQ/g	ND=0*QL ND=1/2*QL	14 14	14 14	24 24	7. 3 7. 3
	Copialiai i CDS	pgir4/g	ND=1*QL	14	14	24	7.3
			ND=0*QL	17	17	27	8.6
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=1/2*QL	17	17	27	8.6
		0/	ND=1*QL	17	17	27	8.7
Wood Mouse (whole body)	fat contetnt	%	ND=0*QL	4.7	4.1	11 22	2. 2 0. 00088
N=37	PCDDs	pgTEQ/g	ND=0*QL ND=1/2*QL	3. 9	2. 0	22	
1. 0.	1 0000	P81124/8	ND=1*QL	4. 5	2.8	23	
			ND=0*QL	24	18	71	0.32
	PCDFs	pgTEQ/g	ND=1/2*QL	25	18	71	0.50
			ND=1*QL	25	18	71	0. 67
	PCDDs+PCDFs	pgTEQ/g	ND=0*QL ND=1/2*QL	28 28	20 20	77 78	0. 32 1. 1
	נ זעט זי טעעט ז	PRILIG/ 8	ND=1*QL	29	21	78	
			ND=0*QL	11	7.4	60	
	Coplanar PCBs	pgTEQ/g	ND=1/2*QL	11	7.4	60	
]			ND=1*QL	11	7. 4	60	
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=0*QL ND=1/2*QL	39 40	35 36	120 120	
	T ODD 1 TODES TOO TODS	hRir#\8	ND=1/2*QL ND=1*QL	40	37	120	
		1	דאיי.דמיד	10	J	120	1. 3

*Note ND=0*QL : calculated applying 0 as the concentration for the isomers below the detection limit

ND=1/2*QL: calculated applying 1/2 value of the detection limit as the concentration for the isomers below the detection limit.

State of Dioxin Accumulation in Wildlife (FY. 1998) (4) (TEQ by wet weight)

The values in () for carp, frogs, birds are calculated using TEF for mammals

Species	Compounds analyzed	unit	*Note	mean	median	maximum	minimum
Japanese Maca	fat content	%		75	74	90	53
que (fat) N=6	PCDDs	pgTEQ/g	ND=0*QL ND=1/2*QL ND=1*QL	4. 6 4. 6 4. 6	5. 1 5. 1 5. 1	8. 5 8. 5 8. 5	1.5 1.7 1.9
	PCDFs	pgTEQ/g	ND=0*QL ND=1/2*QL ND=1*QL	4. 4 4. 4 4. 4	4. 4 4. 4 4. 4	8. 2 8. 2 8. 2	2. 1 2. 1 2. 1
	PCDDs+PCDFs	pgTEQ/g	ND=0*QL ND=1/2*QL ND=1*QL	9. 1 9. 1 9. 1	9. 5 9. 5 9. 5	17 17 17	3. 6 3. 9 4. 0
	Coplanar PCBs	pgTEQ/g	ND=0*QL ND=1/2*QL ND=1*QL	4. 2 4. 2 4. 2	3. 6 3. 6 3. 6	10 10 10	1. 8 1. 8 1. 8
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=0*QL ND=1/2*QL ND=1*QL	13 13 13	13 13 13	27 27 27	5. 4 5. 7 5. 8
(muscle)	fat content	%		25	16	59	11
N=4	PCDDs	pgTEQ/g	ND=0*QL ND=1/2*QL ND=1*QL	2. 9 2. 9 2. 9	0. 96 0. 96 0. 96	9. 5 9. 5 9. 5	0. 16 0. 22 0. 27
	PCDFs	pgTEQ/g	ND=0*QL ND=1/2*QL ND=1*QL	2. 0 2. 0 2. 0	1. 2 1. 2 1. 2	5. 4 5. 4 5. 4	0. 13 0. 16 0. 19
	PCDDs+PCDFs	pgTEQ/g	ND=0*QL ND=1/2*QL ND=1*QL	4. 9 4. 9 4. 9	2. 2 2. 2 2. 2 2. 2	15 15 15	0. 28 0. 37 0. 46
	Coplanar PCBs	pgTEQ/g	ND=0*QL ND=1/2*QL ND=1*QL	2. 2 2. 2 2. 2	0. 81 0. 81 0. 81	7. 0 7. 0 7. 0	0. 20 0. 20 0. 20
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=0*QL ND=1/2*QL ND=1*QL	7. 1 7. 1 7. 1	3. 0 3. 0 3. 0	22 22 22	0. 48 0. 57 0. 66
(fat,muscle)	fat contetn	%		38	35	63	20
N=10	PCDDs	pgTEQ/g	ND=0*QL ND=1/2*QL ND=1*QL	1. 6 1. 7 1. 7	0. 63 0. 65 0. 67	7. 5 7. 5 7. 5	0. 039 0. 094 0. 15
	PCDFs	pgTEQ/g	ND=0*QL ND=1/2*QL ND=1*QL	1. 4 1. 4 1. 4	1. 1 1. 1 1. 1	5. 2 5. 2 5. 2	0. 21 0. 21 0. 22
	PCDDs+PCDFs	pgTEQ/g	ND=0*QL ND=1/2*QL ND=1*QL	3. 1 3. 1 3. 1	1. 8 1. 8 1. 8	13 13 13	0. 24 0. 31 0. 37
	Coplanar PCBs	pgTEQ/g	ND=0*QL ND=1/2*QL ND=1*QL	1. 3 1. 3 1. 3	1. 0 1. 0 1. 0	5. 5 5. 5 5. 5	0. 082 0. 082 0. 082
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=0*QL ND=1/2*QL ND=1*QL	4. 4 4. 4 4. 5	2. 9 2. 9 2. 9	18 18 18	0. 33 0. 39 0. 45
(fat,liver)	fat contetnt	%		35	36	55	3.6
N=5	PCDDs	pgTEQ/g	ND=0*QL ND=1/2*QL ND=1*QL	2. 0 2. 0 2. 0	0. 81 0. 81 0. 81	7. 2 7. 2 7. 2	0. 44 0. 44 0. 44
	PCDFs	pgTEQ/g	ND=0*QL ND=1/2*QL ND=1*QL	1. 9 1. 9 1. 9	0. 83 0. 83 0. 83	6. 2 6. 2 6. 2	0. 73 0. 75 0. 76
	PCDDs+PCDFs	pgTEQ/g	ND=0*QL ND=1/2*QL ND=1*QL	3. 8 3. 9 3. 9	1. 7 1. 7 1. 7	13 13 13	1. 2 1. 2 1. 2
	Coplanar PCBs	pgTEQ/g	ND=0*QL ND=1/2*QL	1. 7 1. 8 1. 8	0. 89 0. 89	5. 8 5. 8 5. 8	0. 50 0. 50 0. 50
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=1*QL ND=0*QL ND=1/2*QL	5. 6 5. 6	0.89 2.3 2.3	19 19	1. 7 1. 7
*Note ND=0*QL :	calculated applying 0 as	the comes	ND=1*QL	5.6	2.3	19	1. 7

*Note ND=0*QL $\,$ calculated applying 0 as the concentration for the isomers below the detection limit

State of Dioxin Accumulation in Wildlife (FY. 1998) (5) (TEQ by wet weight) The values in () for carp, frogs, birds are calculated using TEF for mammals

	in () for carp, frogs,	1		using ILI IO			
Species	Compounds analyzed	unit	*Note	mean	median	maximum	minimum
Japanese Maca	fat content	%		39	36	57	26
que			ND=0*QL	1. 7	0. 59	3.9	
(fat, kidney, m	PCDDs	pgTEQ/g	ND=1/2*QL	1. 7	0. 59	3. 9	
uscle) N=5			ND=1*QL	1. 7	0. 59	3.9	
N-5	Dana	mpo /	ND=0*QL	1. 3	1.0	2.8	
	PCDFs	pgTEQ/g	ND=1/2*QL	1. 3 1. 3	1.0	2.8	
			ND=1*QL ND=0*QL	2.9	1. 0 1. 6	2. 8 6. 6	
	PCDDs+PCDFs	pgTEQ/g	ND=1/2*QL	2. 9	1. 6	6.6	
	I CDDS I CDI'S	pg1EQ/g	ND=1*QL	3. 0	1.6	6.6	
			ND=0*QL	1. 3	0.61	2.8	
	Coplanar PCBs	pgTEQ/g	ND=1/2*QL	1. 3	0. 61	2.8	
	-		ND=1*QL	1. 3	0.61	2.8	
			ND=0*QL	4. 2	2. 2	9.4	
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=1/2*QL	4. 2	2. 2	9.4	
			ND=1*QL	4. 2	2.2	9.4	0.88
Bears	fat content	%		88	91	96	70
(fat)			ND=0*QL	0.13	0.097	0.50	0.000055
N=10	PCDDs	pgTEQ/g	ND=1/2*QL	0. 17	0. 13	0.50	0.067
			ND=1*QL	0.21	0. 17	0.51	0.13
			ND=0*QL	0. 13	0.083	0.47	0.044
	PCDFs	pgTEQ/g	ND=1/2*QL	0. 15	0. 10	0.48	
			ND=1*QL	0.17	0. 13	0.49	0.093
	DCDD - + DCDD	TEO /	ND=0*QL	0. 26	0. 19	1.0	
	PCDDs+PCDFs	pgTEQ/g	ND=1/2*QL	0. 32 0. 38	0. 24	1.0	
			ND=1*QL ND=0*QL	0. 38	0. 31 0. 10	1.0	
	Coplanar PCBs	pgTEQ/g	ND=0*QL ND=1/2*QL	0. 18	0. 10	1. 1	0. 023
	Copianai i CDS	pgilw/g	ND=1*QL	0.18	0. 10	1. 1	0. 024
			ND=0*QL	0. 45	0. 29	2. 1	0.080
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=1/2*QL	0.50	0. 35	2.1	0. 17
			ND=1*QL	0.56	0.43	2.1	0. 26
(fat,liver)	fat contetn	%		77	82	90	49
N=6			ND=0*QL	0.061	0.070	0.11	0.0023
	PCDDs	pgTEQ/g	ND=1/2*QL	0. 11	0. 11	0. 14	
			ND=1*QL	0.16	0. 16	0.18	0.13
			ND=0*QL	0.30	0. 16	0.71	0.13
	PCDFs	pgTEQ/g	ND=1/2*QL	0.31	0. 17	0. 74	
			ND=1*QL	0. 32	0. 19	0. 75	
	DODD - DODD	TEO /	ND=0*QL	0.36	0. 23	0.80	
	PCDDs+PCDFs	pgTEQ/g	ND=1/2*QL	0. 42 0. 48	0. 28 0. 34	0. 87 0. 93	
			ND=1*QL ND=0*QL	0.48	0. 34	0. 93	
	Coplanar PCBs	pgTEQ/g	ND=0*QL ND=1/2*QL	0.086	0.051	0. 28	
	Cobranar 1002	PRIEW/ 8	ND=1*QL	0. 080	0.051	0. 28	
			ND=0*QL	0.45	0. 29	1.1	
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=1/2*QL	0.50	0. 33	1. 1	0. 26
			ND=1*QL	0.56	0. 38	1. 2	
Racoon Dog	fat contetnt	%	<u> </u>	10	11	14	
(liver)		, -	ND=0*QL	4. 2	3. 3	8.6	
N=4	PCDDs	pgTEQ/g	ND=1/2*QL	4. 2	3.3	8.6	1.4
			ND=1*QL	4. 2	3.3	8.6	
			ND=0*QL	17	12	35	
	PCDFs	pgTEQ/g	ND=1/2*QL	17	12	35	
			ND=1*QL	17	12	35	
	DODD - DODD	mpo /	ND=0*QL	20	17	40	
	PCDDs+PCDFs	pgTEQ/g	ND=1/2*QL	20	17	40	
			ND=1*QL	20	17	6.2	
	Coplanar PCBs	pgTEQ/g	ND=0*QL ND=1/2*QL	2. 5 2. 5	1.6	6. 2 6. 2	
	copianar PCDS	bg1⊑ 6 /g	ND=1/2*QL ND=1*QL	2. 5	1. 6 1. 6	6. 2	
			ND=0*QL	23	21	42	
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=1/2*QL	23	21	42	
	1 0000 1 001 0 00 1 005	PPIDA/8	ND=1*QL	23	21	42	
*Note ND-0*0I	calculated applying 0 as	l					0.1

State of Dioxin Accumulation in Wildlife (FY. 1998) (6) (TEQ by wet weight) The values in () for carp, frogs, birds are calculated using TEF for mammals

	s in () for carp, frogs,						
Species	Compounds analyzed	unit	*Note	mean	median	maximum	minimum
Raccoon Dog	fat content	%		76	76	97	55
(fat, liver) N=5	n on n	mp.c./	ND=0*QL	14	8.6	43	5. 6
N-9	PCDDs	pgTEQ/g	ND=1/2*QL	14	8.6	43	5. 6
			ND=1*QL ND=0*QL	6.0	8. 6 4. 6	43 11	5. 6 2. 1
	PCDFs	pgTEQ/g	ND=1/2*QL	6.0	4.6	11	2. 1
	1 021 5	P8124/ 8	ND=1*QL	6. 0	4. 6	11	2. 1
			ND=0*QL	20	13	54	10
	PCDDs+PCDFs	pgTEQ/g	ND=1/2*QL	20	13	54	10
			ND=1*QL	20	13	54	10
	Coplanar PCBs	pgTEQ/g	ND=0*QL ND=1/2*QL	14 14	6. 4 6. 4	46 46	2. 7 2. 7
	Copianai i CBS	pg1E4/g	ND=1*QL	14	6. 4	46	2. 7
			ND=0*QL	34	19	100	13
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=1/2*QL	34	19	100	13
			ND=1*QL	34	19	100	13
(fat)	fat content	%		82			
N=1			ND=0*QL	10			
	PCDDs	pgTEQ/g	ND=1/2*QL	10			
			ND=1*QL ND=0*QL	10 6. 3			
	PCDFs	pgTEQ/g	ND=1/2*QL	6. 3			
	T ODI S	PSILW/S	ND=1*QL	6. 3			
			ND=0*QL	17			
	PCDDs+PCDFs	pgTEQ/g	ND=1/2*QL	17			
			ND=1*QL	17			
	C1 DCD-	TEO /	ND=0*QL ND=1/2*QL	11			
	Coplanar PCBs	pgTEQ/g	ND-1/2*QL ND=1*QL	11 11			
			ND=0*QL	28			
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=1/2*QL	28			
			ND=1*QL	28			
(fat,liver,	fat contetn	%		66			
muscle)			ND=0*QL	5. 6			
N=1	PCDDs	pgTEQ/g	ND=1/2*QL	5. 6			
			ND=1*QL ND=0*QL	5. 6 1. 7			
	PCDFs	pgTEQ/g	ND=1/2*QL	1. 7			
	I CDI'S	pg1E4/g	ND=1*QL	1.7			
			ND=0*QL	7. 3			
	PCDDs+PCDFs	pgTEQ/g	ND=1/2*QL	7. 3			
			ND=1*QL	7. 3			
	Conlon DCD-	n aTEO /	ND=0*QL	2.4			
	Coplanar PCBs	pgTEQ/g	ND=1/2*QL ND=1*QL	2. 4 2. 4			
			ND=0*QL	9. 7			
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=1/2*QL	9. 7			
			ND=1*QL	9. 7			
Sika Deer	fat contetnt	%		7. 1	6.8	11	4. 0
(liver)	DODD	mpo /	ND=0*QL	0.61	0.40	2. 1	0.0031
N=25	PCDDs	pgTEQ/g	ND=1/2*QL ND=1*QL	0. 62 0. 64	0. 42 0. 43	2. 1 2. 1	0. 081 0. 16
			ND=0*QL	1. 9	1. 3	6.6	0. 16
	PCDFs	pgTEQ/g	ND=1/2*QL	1. 9	1. 3	6.8	0. 30
			ND=1*QL	1.9	1. 3	6.8	0.31
			ND=0*QL	2. 5	1.7	8.7	0.39
	PCDDs+PCDFs	pgTEQ/g	ND=1/2*QL	2. 5		8.9	0. 44
			ND=1*QL	2. 5	1.7	8.9	0.49
	Coplanar PCBs	pgTEQ/g	ND=0*QL ND=1/2*QL	1.0	0. 96	4. 2	0.38
	Copianar PODS	bg1⊑€/ g	ND=1/2*QL ND=1*QL	1. 1 1. 1	0. 99 0. 99	4. 2 4. 2	0. 39 0. 39
			ND=0*QL	3. 5	3. 3	10	0. 93
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=1/2*QL	3. 5	3. 3	10	0. 98
			ND=1*QL	3.6	3.3	10	1.0
*Note ND=0*QL	: calculated applying 0 as	+lan anman	stuation for the	icomore bolow t	he detection lim	24.	

 $^{*\!\!\text{ND}=0}*\text{QL}$: calculated applying 0 as the concentration for the isomers below the detection limit

State of Dioxin Accumulation in Wildlife (FY. 1998) (7) (TEQ by wet weight) The values in () for carp, frogs, birds are calculated using TEF for mammals

				using ter ioi			
Species	Compounds analyzed	unit	*Note	mean	median	maximum	minimum
Sika Deer	fat content	%		23	26	29	10
(fat, liver)			ND=0*QL	0. 52	0. 62	0.81	0.00025
N=5	PCDDs	pgTEQ/g	ND=1/2*QL	0. 59	0.62	0.81	0.33
			ND=1*QL	0.66	0.66	0.81	0.48
			ND=0*QL	2. 7	2.8	3.6	0.72
	PCDFs	pgTEQ/g	ND=1/2*QL	2. 7	2.8	3.6	0.77
			ND=1*QL	2. 7	2.8	3.6	0.84
			ND=0*QL	3. 2	3.6	4. 2	0.72
	PCDDs+PCDFs	pgTEQ/g	ND=1/2*QL	3. 3	3.6	4. 2	1.1
			ND=1*QL	3. 4	3.6	4. 2	1. 5
			ND=0*QL	1. 3	1. 2	2.0	0.64
	Coplanar PCBs	pgTEQ/g	ND=1/2*QL	1. 3	1.2	2. 1	0.65
			ND=1*QL	1. 3	1. 2	2. 1	0.65
			ND=0*QL	4. 5	5. 2	6. 1	1.4
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=1/2*QL	4. 6	5. 2	6. 1	1. 7
			ND=1*QL	4. 7	5. 2	6. 2	2. 1
(kidney)	fat content	%		5. 9	4. 4	15	2.0
N=28			ND=0*QL	0.90	0. 36	5.8	0. 19
	PCDDs	pgTEQ/g	ND=1/2*QL	0.91	0.39	5.8	0. 22
			ND=1*QL	0.94	0.41	5.8	0.24
			ND=0*QL	0.60	0. 28	3. 1	0.14
	PCDFs	pgTEQ/g	ND=1/2*QL	0.63	0.32	3. 1	0.16
			ND=1*QL	0.66	0.35	3. 1	0.18
			ND=0*QL	1.5	0.60	8.9	0.37
	PCDDs+PCDFs	pgTEQ/g	ND=1/2*QL	1. 5	0. 66	8.9	0. 40
			ND=1*QL	1.6	0.72	8.9	0. 44
	a 1 pap	mn o /	ND=0*QL	0.35	0. 11	1.9	0.044
	Coplanar PCBs	pgTEQ/g	ND=1/2*QL	0.35	0. 11	1.9	0.045
			ND=1*QL	0.35	0.11	1.9	0.046
	DODD (DODE (C. DOD	TEO /	ND=0*QL	1. 9	0.71	11	0. 43
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=1/2*QL	1. 9	0.77	11	0. 46
(6 (1:1)	6	0/	ND=1*QL	1.9	0.83	11	0.50
(fat,kidney) N=20	fat contetn	%	ND 010I	34	37	54	12
11 20	DCDD	TEO /	ND=0*QL	1. 4	1.2	2.7	0. 47
	PCDDs	pgTEQ/g	ND=1/2*QL	1. 4	1. 2	2.8	0. 47
			ND=1*QL	1. 4	1.2	2.8	0.48
	DODE	TEO /	ND=0*QL	1. 2	1. 1	2.3	0.49
	PCDFs	pgTEQ/g	ND=1/2*QL	1. 2	1. 1	2.3	0.49
			ND=1*QL ND=0*QL	1. 2 2. 6	1. 1 2. 3	2.3	0. 50 0. 99
	DCDD - + DCDC -	TEO /					
	PCDDs+PCDFs	pgTEQ/g	ND=1/2*QL ND=1*QL	2. 6 2. 6	2. 3 2. 3	4. 9 4. 9	1.0
			ND=1*QL ND=0*QL	2. 6	2. 3	5.5	1. 0 0. 98
	Conlone- DCD-	n aTEO /	•				
	Coplanar PCBs	pgTEQ/g	ND=1/2*QL	2. 7	2. 3	5. 5	0. 98
		\vdash	ND=1*QL	2. 7	2. 3	5. 5	0.98
	DCDD - I DCDE I C DCD	TPO /	ND=0*QL	5. 3	4.8	10	2.0
	PCDDs+PCDFs+Co-PCBs	pgTEQ/g	ND=1/2*QL	5. 3	4.8	10	2.0
*Note ND=0*0I ·	calculated applying 0 as	Ļ	ND=1*QL	5. 3	4.8	10	2.0

*Note ND=0*QL $\,$: calculated applying 0 as the concentration for the isomers below the detection limit

State of Dioxin Accumulation in Wildlife (FY. 1998) (TEQ by wet weight)

State of Dioxin Accumulation in Wildlife (FY. 1998) (TEQ by wet weight)

V. Findings of the Survey of the State of Accumulation of Brominated Dioxins

in Foods

Overview of Findings

A survey of foods was implemented in fiscal 1997 and 1998 by the collection of food samples obtained using the duplicate method (in which a study subject prepares an identical extra serving of a meal and provides it for the purposes of the study). A total of 48 samples were experimentally measured for brominated dioxins as well as for chlorinated dioxins (hereafter dioxins) for reference purposes.

The results were as follows:

Brominated dioxins were at levels below the lower limit of determination in all samples analyzed.

The mean total daily intake of dioxins in fiscal 1997 was 0.81 pg-TEQ/kg body weight, the median 0.42 pg-TEQ/kg body weight, and the range 0.015–4.8 pg-TEQ/kg body weight. In fiscal 1998, the mean was 0.93 pg-TEQ/kg body weight, the median 0.78 pg-TEQ/kg body weight, and the range 0.0070–3.6 pg-TEQ/kg body weight. Combining fiscal 1997 and 1998, the mean was 0.88 pg-TEQ/kg body weight, the median 0.65 pg-TEQ/kg body weight, and the range 0.0070–4.8 pg-TEQ/kg body weight.

1. Background

Recent studies suggest that, on the average, food is the pathway for over 90% of human exposure to dioxins. On the other hand, almost nothing is known about the state of human exposure to brominated dioxins, which are suspected of having toxicity similar to (chlorinated) dioxins.

Accordingly, an experimental attempt was made in fiscal 1997 and 1998, with the cooperation of local governments, to measure brominated dioxins and other substances in food samples obtained by the duplicate method.

The opinions of the specialists identified in Attachment 1 were solicited in the process of finalizing the findings of this survey.

2. Background

(1) Overview

The level of brominated dioxins was experimentally measured in a total of 48 samples of food collected in fiscal 1997 and 1998 (22 samples in fiscal 1997 and 26 samples in fiscal 1998).

Research into the state of dioxin intake was also conducted in conjunction with this survey.

(2) Test Samples

The survey used food samples that were collected by the duplicate method with the cooperation of local

governments in fiscal 1997 and 1998.

The samples are of all the foods taken by mouth by the same subjects at the morning, mid-day, and evening

meals, and they were collected using the duplicate method. Upon collection, the foods were combined and

homogenized using mixers, with three days' worth of food for a single household being taken as a single sample.

(3) Substances Analyzed

(a) Brominated Dioxins (PBDDs and PBDFs)

-4 brominated compounds: 2 compounds

-5 brominated compounds: 3 compounds

-6 brominated compounds: 3 compounds

(b) Dioxins (See Table 1)

-PCDDs and PCDFs: 28 compounds

-Co-planar PCBs: 12 compounds

(4) Evaluation Method

The results from analyses of dioxins under all items were evaluated together with their toxicity equivalency

quantities (TEQs), which were converted using the WHO (1998) toxic equivalency factors (TEF). Dioxin levels

below the lower limit of determination (ND) were assigned a zero value, and ND was converted to values

equivalent to half of the lower limit of determination and included separately for reference.

The lower limits of determination were as follows:

(a) Brominated Dioxins (PBDDs and PBDFs)

-4 brominated compounds: 0.1 pg/g

-5 brominated compounds: 0.5 pg/g

-6 brominated compounds: 5 pg/g

(b) Dioxins

-4,5 chlorinated compounds: 0.01 pg/g

-6,7 chlorinated compounds: 0.02 pg/g

-8 chlorinated compounds: 0.05 pg/g

82/125

-Non-ortho PCBs: 0.1 pg/g

-Mono-ortho PCBs: 1 pg/g

3. Findings

The results of analysis are as shown in Table 2 (brominated dioxins) and Table 3 (dioxins). These results are summarized as follows:

(1) Brominated Dioxins

All isomers analyzed were at levels below the lower limit of determination.

(2) Dioxins

(Figures in brackets are ND levels converted to half of the lower limit of determination.)

The results of conversion to toxicity equivalency quantities (TEQs) show that the total daily quantity of dioxins taken in during fiscal 1997 (total of 22 samples) had a mean value of 0.81 (1.6) pg-TEQ/kg body weight, a median value of 0.42 (1.4) pg-TEQ/kg body weight, and a range of 0.015–4.8 (0.94–5.4) pg-TEQ/kg body weight.

In fiscal 1998 (total of 26 samples), the mean value was 0.93 (1.7) pg-TEQ/kg body weight, a median value of 0.78 (1.4) pg-TEQ/kg body weight, and the range was 0.0070–3.6 (0.88–4.0) pg-TEQ/kg body weight.

Combining the values for fiscal 1997 and 1998 (total of 48 samples), the mean value was 0.88 (1.7) pg-TEQ/kg body weight, the median value was 0.65 (1.4) pg-TEQ/kg body weight, and the range was 0.0070-4.8 (0.88-5.4) pg-TEQ/kg body weight.

This survey did not show any significant differences between fiscal 1997 and 1998.

In addition, 32 (9) out of the total of 48 samples showed levels of 1 pg-TEQ/kg body weight or lower, 12 (29) samples showed levels of 1–2 pg-TEQ/kg body weight, 2 (8) samples showed levels of 2–3 pg-TEQ/kg body weight, 1 (1) sample showed a level of 3-4 pg-TEQ/kg body weight, and 1 (1) showed a level above 4 pg-TEQ/kg body weight.

4. Conclusions and Evaluation

This survey used samples of food collected using the duplicate method in fiscal 1997 and 1998 in an attempt to determine the actual status of intake of brominated dioxins and other compounds.

The results of analysis of brominated dioxins showed that all isomers were at levels below the lower limit of determination. However, the analysis of brominated dioxins is still at an experimental stage, and it is considered necessary to improve the lower limits of determination, refine the analytical methods, and make other

improvements.

As analytical methods continue to be improved, it will be essential in the future to determine and monitor the levels of these chemicals not only in foods but also in the air and other environmental media.

This survey also concurrently examined the state of dioxin intake, and the results obtained show that the mean value in fiscal 1997 was 0.81 (1.6) pg-TEQ/kg body weight, while in fiscal 1998 it was 0.93 (1.7) pg-TEQ/kg body weight, and the combined mean value for both years was 0.88 (1.7) pg-TEQ/kg body weight. The survey did not show any significant differences between fiscal 1997 and fiscal 1998.

The present survey provided only a one-time longitudinal study for the three-day period when the food samples fromeach household were counted as one sample. It is not possible to make simple comparisons between these results and the tolerable daily intake (TDI, 4 pg-TEQ/kg body weight/day), which is an indicator geared to the effects of continuous lifetime intake. Furthermore, the survey does not account for amounts absorbed from the air and other media. However, only one of the 48 samples exceeded the level of 4 pg-TEQ/kg body weight (4.8 pg-TEQ/kg body weight when values below the lower limit of determination were treated as zero). Unless it is conducted continuously over a somewhat longer period, a longitudinal survey like this one presents difficulties for evaluation of the mean level of intake from food by individual human beings. Consequently, if the cooperation of persons involved in the study could be ensured, it would be desirable to design ongoing surveys in order to study the same households over a longer period of time.

5. Future Plans

Starting in the next fiscal year, improvements will be made to methods for analyzing brominated dioxins while the work continues with collecting and organizing knowledge relating to the toxicity and state of exposure of these compounds (document surveys). Plans also call for the simultaneous implementation of pilot surveys to determine the actual status of brominated dioxin concentrations in environmental media.

In relation to dioxins, the findings of the Survey on Long-Term Impact of Exposure to Dioxins in the Air implemented during the last fiscal year will be taken into account in carrying out the Survey of Precise Exposure to Dioxins this fiscal year. This is to include a three-time food survey (duplicate method) of the same subjects who were surveyed last fiscal year. Needless to say, it will hardly be possible to make simple comparisons with the tolerable daily intake (TDI, 4 pg-TEQ/kg body weight/day) on the basis of a three- to four-time survey (the

subjects to be surveyed as a continuation from last fiscal year's study will have been surveyed four times, including last year). However, this should make it possible to obtain a clearer view of the variations between individual subjects with respect to each food surved.

List of members (omitted)

Isomers Measured Table 1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 0.1 0.1 0.1 0.01 0.0001 —
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 0.1 0.1 0.1 0.01 0.0001 —
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 0.1 0.1 0.1 0.01 0.0001 —
$\begin{array}{c} 5 \\ \hline \\$	1 0.1 0.1 0.1 0.01 0.0001 —
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \end{array} \end{array} \hspace{-0.2cm} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \hspace{-0.2cm} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} -0$	0.1 0.1 0.1 0.01 0.0001 —
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1 0.1 0.01 0.0001 —
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1 0.01 0.0001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.01 0.0001 —
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1
2,3,4,7,8-P ₅ CDF 0.5 1,2,3,4,7,8-H ₆ CDF 0.1 1,2,3,6,7,8-H ₆ CDF 0.1 1,2,3,7,8,9-H ₆ CDF 0.1	
1,2,3,4,7,8-H ₆ CDF 0.1 1,2,3,6,7,8-H ₆ CDF 0.1 1,2,3,7,8,9-H ₆ CDF 0.1	0.05
1,2,3,6,7,8-H ₆ CDF 0.1 1,2,3,7,8,9-H ₆ CDF 0.1	0.5
1,2,0,7,0,0 110 021	0.1
1,2,0,7,0,0 110 021	0.1
2.3.4.6.7.8-H ₆ CDF 0.1	0.1
3,5,2,5,7,5 220 022	0.1
7 1,2,3,4,6,7,8-H7 CDF 0.01	0.01
1,2,3,4,7,8,9-H ₇ CDF 0.01	0.01
8 1,2,3,4,6,7,8,9-O ₈ CDF 0.001	0.0001
3,4,4',5-T ₄ CB —	0.0001
Non-ortho 3,3',4,4'-T ₄ CB 0.0005	0.0001
3,3',4,4',5-P ₅ CB 0.1	0.1
3,3',4,4',5,5'-H ₆ CB 0.01	0.01
g 2',3,4,4',5-P ₅ CB 0.0001	0.0001
2',3,4,4',5-P ₅ CB	0.0001
2,3,3',4,4'-P ₅ CB 0.0001	0.0001
Mono-ortho 2,3,4,4',5-P ₅ CB 0.0005	.0005
	0.00001
2,3,3',4,4',5-H ₆ CB 0.0005	0.0005
2,3,3',4,4',5'-H ₆ CB 0.0005	0.0005
2,3,3',4,4',5,5'-H ₇ CB 0.0001	0.0001
2,2',3,4,4',5,5'-H ₇ CB 0.00001	_
Di-ortho 2,2',3,3',4,4',5-H ₇ CB 0.0001	

PCDDs and PCDFs: I-TEF(1988). Coplanar PCB: WHO/ICPS-TEF(1993)

Isomers analyzed	1	2	3	4	5	6
pg/g						
2,3,7,8-T4BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8-P5BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,4,7,8-H6BrDD/1,2,3,6,7,8-H6BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8,9-H6BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,3,7,8-T4BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8-P5BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,3,4,7,8-P5BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,4,7,8-H6BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.

N.D.: Under the lower limit of detection. For 4BR-compounds: 0.1pg/g. 5BRs:0.5pg/g. 6BRs:5pg/g.

Isomers analyzed	7	8	9	10	11	12
pg/g						
2,3,7,8-T4BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8-P5BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,4,7,8-H6BrDD/1,2,3,6,7,8-H6BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8,9-H6BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,3,7,8-T4BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8-P5BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,3,4,7,8-P5BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,4,7,8-H6BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.

N.D.: Under the lower limit of detection. For 4BR-compounds: 0.1pg/g. 5BRs:0.5pg/g. 6BRs:5pg/g.

Isomers analyzed	13	14	15	16	17	18
pg	g/g					
2,3,7,8-T4BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8-P5BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,4,7,8-H6BrDD/1,2,3,6,7,8-H6BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8,9-H6BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,3,7,8-T4BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8-P5BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,3,4,7,8-P5BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,4,7,8-H6BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,3,4,7,8-P5BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.

N.D.: Under the lower limit of detection. For 4BR-compounds: 0.1pg/g. 5BRs:0.5pg/g. 6BRs:5pg/g.

Isomers analyzed	19	20	21	22	23	24
pg/g						
2,3,7,8-T4BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8-P5BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,4,7,8-H6BrDD/1,2,3,6,7,8-H6BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8,9-H6BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,3,7,8-T4BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8-P5BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,3,4,7,8-P5BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,4,7,8-H6BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.

N.D.: Under the lower limit of detection. For 4BR-compounds: 0.1pg/g. 5BRs:0.5pg/g. 6BRs:5pg/g.

Isomers analyzed		25	26	27	28	29	30
	pg/g						
2,3,7,8-T4BrDD		N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8-P5BrDD		N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,4,7,8-H6BrDD/1,2,3,6,7,8-H6BrDD		N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8,9-H6BrDD		N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,3,7,8-T4BrDF		N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8-P5BrDF		N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,3,4,7,8-P5BrDF		N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,4,7,8-H6BrDF		N.D.	N.D.	N.D.	N.D.	N.D.	N.D.

N.D.: Under the lower limit of detection. For 4BR-compounds: 0.1pg/g. 5BRs:0.5pg/g. 6BRs:5pg/g.

Isomers analyzed	31	32	33	34	35	36
pg/g						
2,3,7,8-T4BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8-P5BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,4,7,8-H6BrDD/1,2,3,6,7,8-H6BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8,9-H6BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,3,7,8-T4BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8-P5BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,3,4,7,8-P5BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,4,7,8-H6BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.

N.D.: Under the lower limit of detection. For 4BR-compounds: 0.1pg/g. 5BRs:0.5pg/g. 6BRs:5pg/g.

Isomers analyzed	37	38	39	40	41	42
pg/g						
2,3,7,8-T4BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8-P5BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,4,7,8-H6BrDD/1,2,3,6,7,8-H6BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8,9-H6BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,3,7,8-T4BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8-P5BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,3,4,7,8-P5BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,4,7,8-H6BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.

N.D.: Under the lower limit of detection. For 4BR-compounds: 0.1pg/g. 5BRs:0.5pg/g. 6BRs:5pg/g.

Isomers analyzed	43	44	45	46	47	48
ı	og/g					
2,3,7,8-T4BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8-P5BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,4,7,8-H6BrDD/1,2,3,6,7,8-H6BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8,9-H6BrDD	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,3,7,8-T4BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,7,8-P5BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,3,4,7,8-P5BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
1,2,3,4,7,8-H6BrDF	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.

N.D.: Under the lower limit of detection. For 4BR-compounds: 0.1pg/g. 5BRs:0.5pg/g. 6BRs:5pg/g.

Individual Measureme	CIII (dioxins)		1	2		3		4		5		6	Tabl	7
Isomers Analyszed	na/a	WHO-TEF (1998)		1	2		3		4		5		0		/
2,3,7,8-T4CDD	pg/g	(1990)	N.D.	N.[`	N.C	١	N.D.		N.D.		N.D.		N.D.	
			IN.D.	0.06). 0.0		,. 0.58		0.05		0.18	IN.D.	0.17	IN.D.	0.0
1,3,6,8-T4CDD		_		0.00)9)2	0.12		0.03		0.16		0.17		0.0
1,3,7,9-T4CDD		_	N.D.	0.01 N.[J2 Ν.C		N.D.		N.D.		N.D.		N.D.	0.0
Other T4CDDs 1,2,3,7,8-P5CDD		1	N.D.	N.I		N.E		N.D.		N.D.		N.D.		N.D.	
Other P5CDDs		' _	N.D.	IN.L). 0.0			N.D.		IN.D.	0.02		0.03		
1,2,3,4,7,8-H6CDD		0.1	N.D.	N.[N.C		N.D.		N.D.		N.D.	0.03	N.D.	
1,2,3,6,7,8-H6CDD		0.1	N.D.	N.E		N.E		N.D.		N.D.		N.D.		N.D.	
1,2,3,7,8,9-H6CDD		0.1	N.D.	N.E		N.E		N.D.		N.D.		N.D.		N.D.	
		0.1	N.D.	N.I		N.E				N.D.		N.D.			
Other H6CDDs		0.01	N.D.			IN.L		N.D.						N.D.	
1,2,3,4,6,7,8-H7CDD		0.01	ND	0.02 N.E		NE	0.02		0.06		0.03		0.02		
Other H7CDD		0.0001	N.D.	N.I		N.E		N.D.				N.D.		N.D.	0.0
08CDD		0.0001	ND	0.09 N.F	0.0	JÖ	0.09		0.2		0.22		0.13	ND	0.0
2,3,7,8-T4CDF		0.1	N.D.	N.C		NI F	0.01		0.01		0.01	ND	0.01		
1,3,6,8-T4CDF		_	N.D.	N.I		N.E		N.D.		N.D.		N.D.		N.D.	
Other T4CDFs		0.05	ND	0.01 N.E		NE		N.D.		ND		N.D.		N.D.	
1,2,3,7,8-P5CDF		0.05	N.D.	N.E		N.C		N.D.		N.D.		N.D.		N.D.	
2,3,4,7,8-P5CDF		0.5	N.D.	N.[N.C		ND		N.D.			0.01		
Other P5CDFs		0.1	N.D.	N.C		N.C		N.D.		N.D.		ND	0.01		
1,2,3,4,7,8-H6CDF		0.1 0.1	N.D.	N.E		N.C		N.D.		N.D.		N.D.		N.D.	
1,2,3,6,7,8-H6CDF			N.D.	N.E		N.C		N.D.		N.D.		N.D.		N.D.	
1,2,3,7,8,9-H6CDF		0.1	N.D.	N.E		N.C		N.D.		N.D.		N.D.		N.D.	
2,3,4,6,7,8-H6CDF		0.1	N.D.	N.E		N.C		N.D.		N.D.		N.D.		N.D.	
OtherH6CDFs		0.01	N.D.	N.E		N.C		N.D.		N.D.		N.D.		N.D.	
1,2,3,4,6,7,8-H7CDF		0.01	N.D.	N.E		N.C		N.D.		N.D.		N.D.		N.D.	
1,2,3,4,7,8,9-H7CDF		0.01	N.D.	N.E		N.C		N.D.		N.D.		N.D.		N.D.	
Other H7CDFs		-	N.D.	N.E		N.C		N.D.		N.D.		N.D.		N.D.	
O8CDF		0.0001	N.D.	N.I		N.E		N.D.		N.D.		N.D.		N.D.	
TEQ(Total PCDDs)		-	(0.00000		0.00021		0.00062		0.00032		0.00021	0.0	30000
TEQ(Total PCDFs)		_	١,	0		0	0.0010		0.0060		0.0010		0.0060	0.0	
TEQ(Total PCDD/Fs)		_			0.00000		0.0012		0.0066		0.0013		0.0062		30000
3,4,4',5-T4CB(#81)		0.0001	N.D.	N.I		N.C		N.D.		N.D.		N.D.		N.D.	
3,3',4,4'-T4CB(#77)		0.0001		0.3).1	0.4		0.2		0.5			N.D.	
3,3',4,4',5-P5CB(#126)		0.1	N.D.	N.[0.2		0.1		0.3			N.D.	
3,3',4,4',5,5'-H6CB(#169)		0.01	N.D.	N.[N.C		N.D.		N.D.		N.D.		N.D.	
2',3,4,4',5-P5CB(#123)		0.0001	N.D.	N.I).	_		2 N.D.				N.D.		N.D.	
2,3',4,4',5-P5CB(#118)		0.0001		9		6	35		11		86		14		
2,3,4,4',5-P5CB(#114)		0.0005	N.D.	N.[).	N.C		N.D.				N.D.		N.D.	
2,3,3',4,4'-P5CB(#105)		0.0001		3		2	9		4		23			N.D.	
2,3',4,4',5,5'-H6CB(#167)		0.00001		1 N.E				N.D.			11			N.D.	
2,3,3',4,4',5-H6CB(#156)		0.0005	N.D.	N.E					1		12			N.D.	
2,3,3',4,4',5'-H6CB(#157)		0.0005	N.D.	N.[N.D				N.D.		N.D.	
2,3,3',4,4',5,5'-H7CB(#189)		0.0001	N.D.	N.[N.D				N.D.		N.D.	
TEQ(Non-ortho PCBs)		-	(0.00003	0.0000		0.020		0.010		0.030		0.020		
TEQ(Mono-ortho PCBs)		-		0.0012	0.000		0.0088		0.0020		0.019		0.0028		0.0003
TEQ(Total Co-PCBs)		_	1	0.0012	0.000	31	0.029)	0.012		0.049		0.023	(0.0003

0.0014

For Non-orthos:0.1pg/g. Mono-orthos:1pg/g.

TEQ(Total dioxins)

0.00082

0.030

0.019

0.050

0.029

0.00031

Individual Measurement (dioxins)

Individual Measureme	ent ((dioxins)		8	9	10		11		10	1	2		1.4
Isomers Analyszed	pg/g	(1998)		8	9	10		11		12	1	3		14
2,3,7,8-T4CDD	P8/ 8	1	N.D.	N.D.		1.D.		N.D.	N.D.		N.D.		N.D.	
1,3,6,8-T4CDD		l' _	IV.D.	0.09	0.14	1 .D.	0.16		.04	0.32	N.D.	0.05	1. D.	0.5
1,3,7,9-T4CDD		_		0.02	0.03		0.03		.01	0.06		0.01		0.06
Other T4CDDs		_	N.D.			I.D.		N.D.	N.D.		N.D.		N.D.	0.00
1,2,3,7,8-P5CDD		1	N.D.		•		0.02		11.5.	0.02			N.D.	
Other P5CDDs		l' _	14.5.	0.01	0.03		0.01			0.02			1.5.	0.04
1,2,3,4,7,8-H6CDD		0.1	N.D.			I.D.		N.D.	N.D.		N.D.		N.D.	0.01
1,2,3,6,7,8-H6CDD		0.1	N.D.			1.D.		N.D.	N.D.		N.D.		N.D.	
1,2,3,7,8,9-H6CDD		0.1	N.D.			I.D.		N.D.	N.D.		N.D.		N.D.	
Other H6CDDs		_	N.D.			I.D.		N.D.	N.D.		N.D.		N.D.	
1,2,3,4,6,7,8-H7CDD		0.01		0.05	0.02		0.03			0.03		0.04		0.02
Other H7CDD		-	N.D.		0.02 N	I D		N.D.		0.02	N D		N.D.	0.02
O8CDD		0.0001	14.5.	0.25	0.12		0.11		.07	0.22		0.2	1.5.	0.09
2,3,7,8-T4CDF		0.1	N.D.		0.03		0.03			0.03		0.01	N.D.	0.00
1,3,6,8-T4CDF		-	N.D.			I.D.		N.D.	N.D.		N.D.		N.D.	
Other T4CDFs		_	N.D.		0.04		0.01			0.01				0.02
1,2,3,7,8-P5CDF		0.05	N.D.		0.0 .		0.01			0.02			N.D.	0.02
2,3,4,7,8-P5CDF		0.5	N.D.		0.01		0.04			0.04		0.01		
Other P5CDFs		_	N.D.		0.02 N			N.D.	N.D.		N.D.		N.D.	
1,2,3,4,7,8-H6CDF		0.1	N.D.			I.D.		N.D.	N.D.		N.D.		N.D.	
1,2,3,6,7,8-H6CDF		0.1	N.D.			1.D.		N.D.	N.D.		N.D.		N.D.	
1,2,3,7,8,9-H6CDF		0.1	N.D.			1.D.		N.D.	N.D.		N.D.		N.D.	
2,3,4,6,7,8-H6CDF		0.1	N.D.			1.D.		N.D.		0.02			N.D.	
OtherH6CDFs		_	N.D.			I.D.		N.D.	N.D.		N.D.		N.D.	
1,2,3,4,6,7,8-H7CDF		0.01	N.D.			I.D.		N.D.	N.D.		N.D.		N.D.	
1,2,3,4,7,8,9-H7CDF		0.01	N.D.			I.D.		N.D.	N.D.		N.D.		N.D.	
Other H7CDFs		_	N.D.			I.D.		N.D.	N.D.		N.D.		N.D.	
O8CDF		0.0001	N.D.			I.D.		N.D.	N.D.		N.D.		N.D.	
TEQ(Total PCDDs)		_	1		0.00021	0	0.020	0.00000)70	0.020		00042		0.00021
TEQ(Total PCDFs)		_		0	0.0080		0.024		0	0.026		0.0060		0
TEQ(Total PCDD/Fs)		_		0.00053	0.0082		0.044	0.00000		0.046		0.0064	C	0.00021
3,4,4',5-T4CB(#81)		0.0001	N.D.			1.D.		N.D.	N.D.		N.D.		N.D.	
3,3',4,4' -T4CB(#77)		0.0001		0.2	0.5			N.D.		0.8		0.3		0.1
3,3',4,4',5-P5CB(#126)		0.1		0.1	0.2			N.D.		0.7		0.2		•
3,3',4,4',5,5'-H6CB(#169)		0.01	N.D.		J			N.D.		0.2	N.D.		N.D.	
2',3,4,4',5-P5CB(#123)		0.0001	N.D.					N.D.		3			N.D.	
2,3',4,4',5-P5CB(#118)		0.0001		20	21		47		3	84		42		4
2,3,4,4',5-P5CB(#114)		0.0005	N.D.			I.D.		N.D.			N.D.		N.D.	
2,3,3',4,4'-P5CB(#105)		0.0001		5	6	-	15	•	1	23		14		1
2,3',4,4',5,5'-H6CB(#167)		0.00001		3	2			N.D.	-	9			N.D.	
2,3,3',4,4',5-H6CB(#156)		0.0005		2	2			N.D.		9			N.D.	
2,3,3',4,4',5'-H6CB(#157)		0.0005	N.D.		_			N.D.		3			N.D.	
2,3,3',4,4',5,5'-H7CB(#189)		0.0001	N.D.		N	I.D.		N.D.			N.D.		N.D.	
TEQ(Non-ortho PCBs)		-		0.010	0.020		0.041		0	0.072		0.020		000010
TEQ(Mono-ortho PCBs)		_		0.0035	0.0037		0095	0.000		0.018	(0.0083		0.00050
TEQ(Total Co-PCBs)		_		0.014	0.024		0.051	0.000		0.090	`	0.028		.00051
		1												
TEQ(Total dioxins)		_		0.0014	0.00082	C	0.030	0.0)19	0.050		0.029	C	0.00031
<u> </u>		•	•											

 $For \ Non-orthos: 0.1pg/g. \quad Mono-orthos: 1pg/g.$

Individual Measurement (dioxins)

Isomers Analyszed	WHO-TEF		15	16	17	18	19	20	21
pg/			10	10	17	10	10	20	21
2,3,7,8-T4CDD	1	N.D.	N.D.	N.D	. N.D	. N.C). N.I	D. N.I	D.
1,3,6,8-T4CDD	_		0.08	0.26	0.5	0.46	0.1	0.16	0.51
1,3,7,9-T4CDD	_		0.03	0.06	0.08	0.17	0.02	0.02	0.11
Other T4CDDs	_	N.D.	N.D.	N.D		0.2 N.D			0.01
1,2,3,7,8-P5CDD	1	N.D.	N.D.		0.01	0.02 N.D		D. N.I	D.
Other P5CDDs	_		0.02	0.08	0.05	0.25	0.02	0.02	0.04
1,2,3,4,7,8-H6CDD	0.1	N.D.	N.D.	N.D	. N.D	. N.D). N.I	D. N.I	D.
1,2,3,6,7,8-H6CDD	0.1	N.D.	N.D.	N.D	. N.D	. N.D). N.I	D. N.I	D.
1,2,3,7,8,9-H6CDD	0.1	N.D.	N.D.	N.D	. N.D	. N.D). N.I	D. N.I	D.
Other H6CDDs	_		0.03	0.03 N.D		0.17	0.03 N.I	D. N.I	D.
1,2,3,4,6,7,8-H7CDD	0.01		0.03	0.06	0.08	0.09	0.04	0.04	0.02
Other H7CDD	_		0.02	0.03	0.04	0.08	0.03	0.02 N.I	D.
O8CDD	0.0001		0.11	0.3	0.6	0.36	0.23	0.15	0.1
2,3,7,8-T4CDF	0.1		0.03	0.02	0.01	0.05	0.02 N.I	D. N.I	D.
1,3,6,8-T4CDF	-	N.D.		0.01 N.D		0.06 N.D). N.I	D. N.I	D.
Other T4CDFs	_	N.D.		0.31	0.02	1.7	0.03 N.I	D .	0.02
1,2,3,7,8-P5CDF	0.05		0.01 N.D.	N.D		0.04 N.D). N.I	D. N.I	D.
2,3,4,7,8-P5CDF	0.5		0.01	0.01	0.02	0.05	0.01 N.I	D. N.I	D.
Other P5CDFs	_		0.01	0.02 N.D		0.62 N.D). N.I	D. N.I	D.
1,2,3,4,7,8-H6CDF	0.1	N.D.	N.D.	N.D		0.04 N.D). N.I	D. N.I	D.
1,2,3,6,7,8-H6CDF	0.1	N.D.	N.D.	N.D		0.03 N.D). N.I	D. N.I	D.
1,2,3,7,8,9-H6CDF	0.1	N.D.	N.D.	N.D	. N.D	. N.D). N.I	D. N.I	D.
2,3,4,6,7,8-H6CDF	0.1	N.D.	N.D.	N.D		0.06 N.D). N.I	D. N.I	D.
OtherH6CDFs	_	N.D.	N.D.	N.D		0.21 N.D). N.I	D. N.I	D.
1,2,3,4,6,7,8-H7CDF	0.01	N.D.		0.02	0.03	0.1 N.D). N.I	D. N.I	D.
1,2,3,4,7,8,9-H7CDF	0.01	N.D.	N.D.	N.D	. N.D	. N.D). N.I	D. N.I	D.
Other H7CDFs	-	N.D.	N.D.	N.D		0.05 N.D). N.I	D. N.I	D.
O8CDF	0.0001	N.D.	N.D.	N.D		0.06 N.D). N.I	D. N.I	D.
TEQ(Total PCDDs)			0.00031	0.00063	0.011	0.021	0.00042	0.00042	0.00021
TEQ(Total PCDFs)	-		0.0085	0.0072	0.011	0.046	0.0070	0	0
TEQ(Total PCDD/Fs)			0.0088	0.0078	0.022	0.067	0.0074	0.00042	0.00021
3,4,4',5-T4CB(#81)	0.0001	N.D.	N.D.	N.D	. N.D	. N.D). N.I	D. N.I	D.
3,3',4,4'-T4CB(#77)	0.0001		1	0.5	0.3	1	0.4	0.1	0.3
3,3',4,4',5-P5CB(#126)	0.1		0.2	0.1	0.1	0.2	0.2 N.I	O.	0.1
3,3',4,4',5,5'-H6CB(#169)	0.01	N.D.	N.D.	N.D	. N.D	. N.D). N.I	D. N.I	D.
2',3,4,4',5-P5CB(#123)	0.0001		2 N.D.	N.D	. N.D		1 N.I	D. N.I	D.
2,3',4,4',5-P5CB(#118)	0.0001		28	11	15	11	37	5	9
2,3,4,4',5-P5CB(#114)	0.0005	N.D.	N.D.	N.D	. N.D	. N.D). N.I	D. N.I	D.
2,3,3',4,4'-P5CB(#105)	0.0001		7	3	4	3	11	1	3
2,3',4,4',5,5'-H6CB(#167)	0.00001		6	2	3	2	10	1	2
2,3,3',4,4',5-H6CB(#156)	0.0005		3 N.D.		1	1	4 N.I	D .	1
2,3,3',4,4',5'-H6CB(#157)	0.0005	N.D.	N.D.	N.D	. N.D		1 N.I	D. N.I	D.
2,3,3',4,4',5,5'-H7CB(#189)	0.0001	N.D.	N.D.	N.D	. N.D	. N.D). N.I	D. N.I	D.
TEQ(Non-ortho PCBs)	-		0.020	0.010	0.010	0.020	0.020	0.000010	0.010
TEQ(Mono-ortho PCBs)	_		0.0053	0.0014	0.0024	0.0019	0.0075	0.00061	0.0017
TEQ(Total Co-PCBs)	_		0.025	0.011	0.012	0.022	0.028	0.00062	0.012
		1							
TEQ(Total dioxins)	-		0.034	0.019	0.034	0.089	0.035	0.0010	0.012

For Non-orthos:0.1pg/g. Mono-orthos:1pg/g.

Individual Measurement (dioxins)

Individual Measurement	(dioxins)		00	00		0.4		٥٢		00		0.7		00
Isomers Analyszed pg/g	WHO-TEF (1998)		22	23		24		25		26		27		28
2,3,7,8-T4CDD	1	N.D.	N.D.	1	N.D.		N.D.		N.D.		N.D.		N.D.	
1,3,6,8-T4CDD	· _		0.29	0.5		3.1		0.13		0.18		0.33		0.2
1,3,7,9-T4CDD	_		0.06	0.12		0.64		0.02		0.03		0.06		0.05
Other T4CDDs	_	N.D.	N.D.	0.12		0.07			N.D.		N.D.		N.D.	0.00
1,2,3,7,8-P5CDD	1	N.D.		0.02 1	N.D.	0.07	N.D.		N.D.		N.D.		N.D.	
Other P5CDDs	· _		0.03	0.05		0.31		0.02		0.04		0.03		0.04
1,2,3,4,7,8-H6CDD	0.1	N.D.	0.00	0.03	N.D.	0.0.	N.D.		N.D.	0.0	N.D.		N.D.	
1,2,3,6,7,8-H6CDD	0.1	N.D.		0.05 1			N.D.		N.D.		N.D.		N.D.	
1,2,3,7,8,9-H6CDD	0.1	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
Other H6CDDs	_	N.D.		0.03		0.12				0.06				0.03
1,2,3,4,6,7,8-H7CDD	0.01		0.08	0.3		0.05		0.03		0.04		0.05		0.03
Other H7CDD	_	N.D.	0.00	0.04		0.06				0.03		0.02		0.03
O8CDD	0.0001	11.5.	0.36	1.2		0.31	11.5.	0.15		0.19		0.28		0.2
2,3,7,8-T4CDF	0.1	N.D.	N.D.			0.02		0.02		0.02		0.02		0.02
1,3,6,8-T4CDF	-	N.D.	N.D.			0.01			N.D.		N.D.			0.01
Other T4CDFs	_		0.02	0.03		0.21				0.07		0.03		0.17
1,2,3,7,8-P5CDF	0.05	N.D.	N.D.		N.D.	V	N.D.		N.D.		N.D.		N.D.	•
2.3.4.7.8-P5CDF	0.5	N.D.		0.03		0.01		0.01		0.01		0.02		0.01
Other P5CDFs	-	N.D.	N.D.	0.00		0.05				0.03		0.02		0.02
1,2,3,4,7,8-H6CDF	0.1	N.D.		0.04 1	N.D.		N.D.		N.D.		N.D.		N.D.	
1,2,3,6,7,8-H6CDF	0.1	N.D.		0.04 1			N.D.		N.D.		N.D.		N.D.	
1,2,3,7,8,9-H6CDF	0.1	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
2,3,4,6,7,8-H6CDF	0.1	N.D.		0.04 1			N.D.		N.D.		N.D.		N.D.	
OtherH6CDFs	_	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
1,2,3,4,6,7,8-H7CDF	0.01		0.02	0.1			N.D.			0.02			N.D.	
1,2,3,4,7,8,9-H7CDF	0.01	N.D.	N.D.	1	N.D.		N.D.		N.D.		N.D.		N.D.	
Other H7CDFs	_	N.D.	N.D.	1	N.D.		N.D.		N.D.		N.D.		N.D.	
O8CDF	0.0001	N.D.	N.D.	1	N.D.		N.D.		N.D.		N.D.		N.D.	
TEQ(Total PCDDs)	-	(0.00084	0.031	(0.00053		0.00032		0.00042		0.00053		0.00032
TEQ(Total PCDFs)	_	(0.00020	0.028		0.0070		0.0070		0.0072		0.012		0.0070
TEQ(Total PCDD/Fs)	_		0.0010	0.059		0.0075		0.0073		0.0076		0.013		0.0073
3,4,4',5-T4CB(#81)	0.0001	N.D.	N.D.	1	N.D.		N.D.		N.D.		N.D.		N.D.	
3,3',4,4'-T4CB(#77)	0.0001		0.1	0.1		0.2		0.5		0.2		0.6		0.6
3,3',4,4',5-P5CB(#126)	0.1	N.D.		0.2		0.1			N.D.			0.3		0.1
3,3',4,4',5,5'-H6CB(#169)	0.01	N.D.	N.D.	1	N.D.		N.D.		N.D.		N.D.		N.D.	
2',3,4,4',5-P5CB(#123)	0.0001	N.D.	N.D.	1	N.D.		N.D.		N.D.				N.D.	
2,3',4,4',5-P5CB(#118)	0.0001		4	8		14		15		9		31		14
2,3,4,4',5-P5CB(#114)	0.0005	N.D.	N.D.	1	N.D.		N.D.		N.D.		N.D.		N.D.	
2,3,3',4,4'-P5CB(#105)	0.0001		1	2		4		5		3		10		4
2,3',4,4',5,5'-H6CB(#167)	0.00001	N.D.		2		2		3		2		7		3
2,3,3',4,4',5-H6CB(#156)	0.0005	N.D.		1		1		2	N.D.			3		1
2,3,3',4,4',5'-H6CB(#157)	0.0005	N.D.	N.D.	1	N.D.		N.D.		N.D.		N.D.		N.D.	
2,3,3',4,4',5,5'-H7CB(#189)	0.0001	N.D.	N.D.	1	N.D.		N.D.		N.D.		N.D.		N.D.	
TEQ(Non-ortho PCBs)	-	0.	000010	0.020		0.010		0.020	0	.000020		0.030		0.010
TEQ(Mono-ortho PCBs)	_		0.00050	0.0015		0.0023		0.0030		0.0012		0.0058		0.0023
TEQ(Total Co-PCBs)	-	(0.00051	0.022		0.012		0.023		0.0012		0.036		0.012
		•												
TEQ(Total dioxins)	_		0.0015	0.081		0.020		0.030		0.0088		0.049		0.019

N.D.: Under the lower limit of detection. For 4,5-substitutes: 0.01pg/g. 6,7-s:0.02pg/g. 8-s:0.05pg/g. For Non-orthos:0.1pg/g. Mono-orthos:1pg/g.

Individual Measurement (dioxins)

Individual Measurement Isomers Analyszed	(dioxins)		29	30		31		32		33		34		35
pg/g	(1998)					•						•		
2,3,7,8-T4CDD	1	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
1,3,6,8-T4CDD	_		0.09	0.06		0.12		0.07		0.22		0.15		0.05
1,3,7,9-T4CDD	_		0.03	0.01		0.02		0.01		0.04		0.04		0.01
Other T4CDDs	-	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
1,2,3,7,8-P5CDD	1	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
Other P5CDDs	-		0.01 N.D.		N.D.		N.D.			0.01		0.01	N.D.	
1,2,3,4,7,8-H6CDD	0.1	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
1,2,3,6,7,8-H6CDD	0.1	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
1,2,3,7,8,9-H6CDD	0.1	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
Other H6CDDs	_	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
1,2,3,4,6,7,8-H7CDD	0.01	N.D.		0.02		0.03		0.03	N.D.			0.03		0.02
Other H7CDD	-	N.D.		0.02		0.02	N.D.		N.D.			0.03		0.03
O8CDD	0.0001		0.15	0.24		0.24		0.17		0.09		0.21		0.27
2,3,7,8-T4CDF	0.1	N.D.		0.02		0.01		0.02	N.D.			0.01		0.02
1,3,6,8-T4CDF	_	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
Other T4CDFs	_	N.D.	N.D.			0.03	N.D.			0.01		0.02		0.04
1,2,3,7,8-P5CDF	0.05	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
2,3,4,7,8-P5CDF	0.5	N.D.		0.01	N.D.		N.D.		N.D.		N.D.			0.02
Other P5CDFs	-	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
1,2,3,4,7,8-H6CDF	0.1	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
1,2,3,6,7,8-H6CDF	0.1	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
1,2,3,7,8,9-H6CDF	0.1	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
2,3,4,6,7,8-H6CDF	0.1	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
OtherH6CDFs	-	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
1,2,3,4,6,7,8-H7CDF	0.01	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
1,2,3,4,7,8,9-H7CDF	0.01	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
Other H7CDFs	-	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
O8CDF	0.0001	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
TEQ(Total PCDDs)	-	0.	.000015	0.00022		0.00032		0.00032	0.0	000090		0.00032	(0.00023
TEQ(Total PCDFs)	_		0	0.0070		0.0010		0.0020		0		0.0010		0.012
TEQ(Total PCDD/Fs)	-	0.	.000015	0.0072		0.0013		0.0023	0.0	000090		0.0013		0.012
3,4,4',5-T4CB(#81)	0.0001	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
3,3' ,4,4' -T4CB(#77)	0.0001		0.4	0.8		0.2		0.6		0.3		0.3		8.0
3,3',4,4',5-P5CB(#126)	0.1	N.D.		0.3	N.D.			0.1	N.D.			0.1		0.3
3,3',4,4',5,5'-H6CB(#169)	0.01	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
2',3,4,4',5-P5CB(#123)	0.0001	N.D.	N.D.		N.D.			1		1		1		1
2,3',4,4',5-P5CB(#118)	0.0001		6	7		10		26		20		16		22
2,3,4,4',5-P5CB(#114)	0.0005	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
2,3,3',4,4'-P5CB(#105)	0.0001		2	2		3		7		8		4		7
2,3',4,4',5,5'-H6CB(#167)	0.00001		1 N.D.			1		6		3		2		5
2,3,3',4,4',5-H6CB(#156)	0.0005	N.D.	N.D.			1		2		3		2		2
2,3,3',4,4',5'-H6CB(#157)	0.0005	N.D.	N.D.		N.D.		N.D.			1	N.D.		N.D.	
2,3,3',4,4',5,5'-H7CB(#189)	0.0001	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
TEQ(Non-ortho PCBs)	-	0.	.000040	0.030	0	.000020		0.010	0.	000030		0.010		0.030
TEQ(Mono-ortho PCBs)	_	'	0.00081	0.00090		0.0018		0.0045		0.0049		0.0031		0.0041
TEQ(Total Co-PCBs)	-	(0.00085	0.031		0.0018		0.015		0.0049		0.013		0.034
		1												
TEQ(Total dioxins)	_	(88000.0	0.038		0.0031		0.017		0.0050		0.014		0.046

N.D.: Under the lower limit of detection. For 4,5-substitutes: 0.01pg/g. 6,7-s:0.02pg/g. 8-s:0.05pg/g. For Non-orthos:0.1pg/g. Mono-orthos:1pg/g.

Individual Measurement (dioxins)

Individual Measurement Isomers Analyszed	(dioxins) WHO-TEF		36	37		38		39		40		41		42
pg/	(g (1998)													
2,3,7,8-T4CDD	1	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
1,3,6,8-T4CDD	-		0.05	0.07		0.17		0.06		0.12		0.05		1.9
1,3,7,9-T4CDD	_		0.02	0.01		0.04		0.02		0.04		0.02		0.33
Other T4CDDs	_	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.			0.03
1,2,3,7,8-P5CDD	1	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
Other P5CDDs	_	N.D.					N.D.			0.01		0.01		0.14
1,2,3,4,7,8-H6CDD	0.1	N.D.			N.D.									
1,2,3,6,7,8-H6CDD	0.1	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
1,2,3,7,8,9-H6CDD	0.1	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
Other H6CDDs	_	N.D.		0.02		0.03	N.D.			0.02	N.D.			0.02
1,2,3,4,6,7,8-H7CDD	0.01		0.04	0.04		0.03	N.D.			0.04	N.D.			0.05
Other H7CDD	_		0.03	0.02		0.03	N.D.			0.04	N.D.			0.03
O8CDD	0.0001		0.72	0.37		0.2		0.18		0.35		0.07		0.39
2,3,7,8-T4CDF	0.1	N.D.	N.D.			0.02	N.D.		N.D.			0.02		0.01
1,3,6,8-T4CDF	_	N.D.	N.D.			0.01	N.D.		N.D.		N.D.		N.D.	
Other T4CDFs	-	N.D.	N.D.			0.05	N.D.		N.D.			0.01		0.14
1,2,3,7,8-P5CDF	0.05	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
2,3,4,7,8-P5CDF	0.5	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
Other P5CDFs	-	N.D.	N.D.			0.01	N.D.		N.D.		N.D.		N.D.	
1,2,3,4,7,8-H6CDF	0.1	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
1,2,3,6,7,8-H6CDF	0.1	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
1,2,3,7,8,9-H6CDF	0.1	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
2,3,4,6,7,8-H6CDF	0.1	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
OtherH6CDFs	-	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
1,2,3,4,6,7,8-H7CDF	0.01	N.D.		0.02	N.D.		N.D.			0.02	N.D.		N.D.	
1,2,3,4,7,8,9-H7CDF	0.01	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
Other H7CDFs	_	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
O8CDF	0.0001	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
TEQ(Total PCDDs)	-		0.00047	0.00044		0.00032	0	.000018		0.00044	0.0	0000070		0.00054
TEQ(Total PCDFs)	-		0	0.00020		0.0020		0		0.00020		0.0020		0.0010
TEQ(Total PCDD/Fs)	-		0.00047	0.00064		0.0023	0	.000018		0.00064		0.0020		0.0015
3,4,4',5-T4CB(#81)	0.0001	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
3,3',4,4'-T4CB(#77)	0.0001		0.1	0.3		0.5	N.D.			0.1		0.5		0.1
3,3',4,4',5-P5CB(#126)	0.1	N.D.	N.D.			0.2	N.D.		N.D.			0.2	N.D.	
3,3',4,4',5,5'-H6CB(#169)	0.01	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
2',3,4,4',5-P5CB(#123)	0.0001	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
2,3',4,4',5-P5CB(#118)	0.0001		3	7		22		2		5		17		5
2,3,4,4',5-P5CB(#114)	0.0005	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
2,3,3',4,4'-P5CB(#105)	0.0001	N.D.		2		8	N.D.			1		5		2
2,3',4,4',5,5'-H6CB(#167)	0.00001	N.D.		1		2	N.D.			1		5	N.D.	
2,3,3',4,4',5-H6CB(#156)	0.0005	N.D.	N.D.			2	N.D.		N.D.			2	N.D.	
2,3,3',4,4',5'-H6CB(#157)	0.0005	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
2,3,3',4,4',5,5'-H7CB(#189)	0.0001	N.D.	N.D.		N.D.		N.D.		N.D.		N.D.		N.D.	
TEQ(Non-ortho PCBs)	-	0	.000010 0	.000030		0.020		0	0	.000010		0.020	0	.000010
TEQ(Mono-ortho PCBs)	_			0.00091		0.0040		0.00020		0.00061		0.0033		0.00070
TEQ(Total Co-PCBs)	_			0.00094		0.024		0.00020		0.00062		0.023		0.00071
	•													
TEQ(Total dioxins)			0.00078	0.0016		0.026		0.00022		0.0013		0.025		0.0022

N.D.: Under the lower limit of detection. For 4,5-substitutes: 0.01pg/g. 6,7-s:0.02pg/g. 8-s:0.05pg/g. For Non-orthos:0.1pg/g. Mono-orthos:1pg/g.

Individual Measurement (dioxins)

Isomers Analyszed	pg/g	WHO-TEF (1998)		43	44			45		46		47		48
2,3,7,8-T4CDD		1	N.D.	N	.D.		N.D.		N.D.		N.D.		N.D.	
1,3,6,8-T4CDD		-		0.17		0.2		0.6		0.08		0.09		0.23
1,3,7,9-T4CDD		-		0.04	(0.04		0.1		0.02		0.02		0.03
Other T4CDDs		_	N.D.	N	.D.			0.01	N.D.		N.D.		N.D.	
1,2,3,7,8-P5CDD		1	N.D.		(0.01	N.D.			0.01	N.D.		N.D.	
Other P5CDDs		-		0.01	(0.03		0.05	N.D.			0.01	N.D.	
1,2,3,4,7,8-H6CDD		0.1	N.D.	N	.D.		N.D.		N.D.		N.D.		N.D.	
1,2,3,6,7,8-H6CDD		0.1	N.D.		(0.02	N.D.		N.D.		N.D.		N.D.	
1,2,3,7,8,9-H6CDD		0.1	N.D.	N	.D.		N.D.		N.D.		N.D.		N.D.	
Other H6CDDs		-	N.D.	N	.D.		N.D.		N.D.		N.D.		N.D.	
1,2,3,4,6,7,8-H7CDD		0.01		0.02	(80.0		0.05		0.04		0.04	N.D.	
Other H7CDD		_	N.D.		(0.03		0.02	N.D.			0.03		0.02
O8CDD		0.0001		0.12	(0.35		0.19		0.16		0.25		0.13
2,3,7,8-T4CDF		0.1		0.01	(0.01		0.01		0.01		0.01	N.D.	
1,3,6,8-T4CDF		-	N.D.	N	.D.		N.D.		N.D.		N.D.		N.D.	
Other T4CDFs		_		0.04	(0.01		0.03		0.01		0.03		0.01
1,2,3,7,8-P5CDF		0.05	N.D.	N	.D.		N.D.		N.D.		N.D.		N.D.	
2,3,4,7,8-P5CDF		0.5		0.01	(0.02		0.01		0.02	N.D.		N.D.	
Other P5CDFs		_	N.D.	N	.D.		N.D.		N.D.		N.D.		N.D.	
1,2,3,4,7,8-H6CDF		0.1	N.D.		(0.03	N.D.		N.D.		N.D.		N.D.	
1,2,3,6,7,8-H6CDF		0.1	N.D.		(0.02	N.D.		N.D.		N.D.		N.D.	
1,2,3,7,8,9-H6CDF		0.1	N.D.	N	.D.		N.D.		N.D.		N.D.		N.D.	
2,3,4,6,7,8-H6CDF		0.1	N.D.		(0.02	N.D.		N.D.		N.D.		N.D.	
OtherH6CDFs		_	N.D.	N	.D.		N.D.		N.D.		N.D.		N.D.	
1,2,3,4,6,7,8-H7CDF		0.01	N.D.		(0.03	N.D.		N.D.		N.D.		N.D.	
1,2,3,4,7,8,9-H7CDF		0.01	N.D.	N	.D.		N.D.		N.D.		N.D.		N.D.	
Other H7CDFs		_	N.D.	N	.D.		N.D.		N.D.		N.D.		N.D.	
O8CDF		0.0001	N.D.	N	.D.		N.D.		N.D.		N.D.		N.D.	
TEQ(Total PCDDs)		-		0.00021	0.	013		0.00052		0.010	(0.00043	0	.000013
TEQ(Total PCDFs)		_		0.0060	0.	018		0.0060		0.011		0.0010		0
TEQ(Total PCDD/Fs)		_		0.0062	0.	031		0.0065		0.021		0.0014	0	.000013
3,4,4',5-T4CB(#81)		0.0001	N.D.	N	.D.		N.D.		N.D.		N.D.		N.D.	
3,3',4,4'-T4CB(#77)		0.0001		0.3		0.3		0.5		0.2		0.1		0.1
3,3',4,4',5-P5CB(#126)		0.1		0.2		0.2		0.1			N.D.		N.D.	
3,3',4,4',5,5'-H6CB(#169)		0.01	N.D.		.D.		N.D.		N.D.		N.D.		N.D.	
2',3,4,4',5-P5CB(#123)		0.0001	N.D.		.D.			1			N.D.		N.D.	
2,3',4,4',5-P5CB(#118)		0.0001		13		18		20		20		3		4
2,3,4,4',5-P5CB(#114)		0.0005	N.D.		.D.		N.D.		N.D.		N.D.		N.D.	
2,3,3',4,4'-P5CB(#105)		0.0001		4		5		6		7		1		1
2,3',4,4',5,5' -H6CB(#167)		0.00001		2		4		3			N.D.	•	N.D.	-
2,3,3',4,4',5-H6CB(#156)		0.0005		2		2		2			N.D.		N.D.	
2,3,3',4,4',5'-H6CB(#157)		0.0005	N.D.		.D.		N.D.				N.D.		N.D.	
2,3,3',4,4',5,5'-H7CB(#189)		0.0001	N.D.		.D.		N.D.		N.D.	-	N.D.		N.D.	
TEQ(Non-ortho PCBs)		-		0.020		020		0.010		0.020		.000010		.000010
TEQ(Mono-ortho PCBs)		_		0.020		020		0.010		0.020		0.00040		0.00050
TEQ(Mono ortho PCBs)		_		0.0027		033		0.0037		0.0036		0.00040		0.00051
TEO/T-+-I dist.				0.000		054		0.001		0.047		0.0010		0.00050
TEQ(Total dioxins)		-		0.029	U.	054		0.021		0.047		0.0018		0.00052

 $N.D.: Under the lower limit of detection. \\ For 4,5-substitutes: 0.01pg/g. \\ 6,7-s:0.02pg/g. \\ 8-s:0.05pg/g. \\ For Non-orthos:0.1pg/g. \\ Mono-orthos:1pg/g. \\$

Table for 1997/8 Survey Results (ND = 0)

PCDD/Fa)		TEQ (Total	TEQ	Food	Total dioxin	Dioxin in take per kg body weight
12						
10	12					4.8
18						3.6
9 0.0082 0.024 2.8 90 19 0.0074 0.028 2.5 88 27 0.013 0.036 1.8 88 6 5 0.0013 0.049 1.7 86 44 0.031 0.023 1.5 81 25 0.0073 0.023 2.4 73 3 0.0012 0.029 2.2 66 35 0.012 0.034 1.4 64 13 0.0064 0.028 1.8 62 17 0.02 0.012 1.8 61 30 0.0072 0.031 1.6 61 43 0.0062 0.023 1.9 55 48 0.0021 0.026 1.1 52 6 0.0062 0.023 1.9 55 48 0.0021 0.026 1.1 52 8 0.0073 0.023 1.4 45 41 0.0062 0.023 1.9 55 48 0.0071 0.028 1.8 61 41 0.0062 0.023 1.9 55 48 0.0073 0.021 0.026 1.1 52 49 0.0062 0.023 1.6 47 41 0.0060 0.023 1.6 47 41 0.0060 0.023 1.6 47 45 0.0081 0.024 1.7 45 46 0.0062 0.023 1.6 47 47 0.0066 0.012 1.8 33 8 0.0003 0.024 1.7 45 4 0.0066 0.012 1.8 33 8 0.0003 0.014 2.2 32 4 0.0075 0.012 1.9 37 4 0.0066 0.012 1.8 33 8 0.0003 0.014 2.2 32 4 0.0076 0.012 1.9 23 2 0.0023 0.014 1.4 29 16 0.0076 0.011 1.5 28 2 0.0076 0.011 1.5 28 2 0.0023 0.015 1.2 21 3 0.00090 0.0000 2.0 10 3 0.00090 0.0000 2.0 10 3 0.000000 0.0000 2.0 10 3 0.00000 0.00000 0.00000 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00						2.6
9 0.0082 0.024 2.8 90 19 0.0074 0.028 2.5 88 27 0.013 0.036 1.8 88 6 5 0.0013 0.049 1.7 86 44 0.031 0.023 1.5 81 25 0.0073 0.023 2.4 73 3 0.0012 0.029 2.2 66 35 0.012 0.034 1.4 64 13 0.0064 0.028 1.8 62 17 0.02 0.012 1.8 61 30 0.0072 0.031 1.6 61 43 0.0062 0.023 1.9 55 48 0.0021 0.026 1.1 52 6 0.0062 0.023 1.9 55 48 0.0021 0.026 1.1 52 8 0.0073 0.023 1.4 45 41 0.0062 0.023 1.9 55 48 0.0071 0.028 1.8 61 41 0.0062 0.023 1.9 55 48 0.0073 0.021 0.026 1.1 52 49 0.0062 0.023 1.6 47 41 0.0060 0.023 1.6 47 41 0.0060 0.023 1.6 47 45 0.0081 0.024 1.7 45 46 0.0062 0.023 1.6 47 47 0.0066 0.012 1.8 33 8 0.0003 0.024 1.7 45 4 0.0066 0.012 1.8 33 8 0.0003 0.014 2.2 32 4 0.0075 0.012 1.9 37 4 0.0066 0.012 1.8 33 8 0.0003 0.014 2.2 32 4 0.0076 0.012 1.9 23 2 0.0023 0.014 1.4 29 16 0.0076 0.011 1.5 28 2 0.0076 0.011 1.5 28 2 0.0023 0.015 1.2 21 3 0.00090 0.0000 2.0 10 3 0.00090 0.0000 2.0 10 3 0.000000 0.0000 2.0 10 3 0.00000 0.00000 0.00000 0.0000 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00	18	0.067	0.022	1.4	120	2.4
27		0.0082	0.024	2.8	90	1.8
S	19	0.0074	0.028	2.5	89	1.8
44	27		0.036	1.8	88	1.8
25	5	0.0013	0.049	1.7	86	1.7
3 0.0012 0.029 2.2 666 335 0.012 0.034 1.4 64 133 0.0064 0.028 1.8 62 177 0.022 0.012 1.8 61 330 0.0072 0.031 1.6 61 443 0.0062 0.023 1.9 55 466 0.021 0.026 1.1 52 66 0.0062 0.023 1.6 47 38 0.0023 0.024 1.7 45 28 0.0073 0.012 2.3 44 115 0.0088 0.025 1.2 41 41 0.0020 0.023 1.5 38 24 0.0075 0.012 1.8 33 8 0.0023 0.024 1.7 45 44 0.0066 0.012 1.8 33 8 0.0023 1.5 38 8 0.0023 0.024 1.7 45 44 0.0066 0.012 1.8 33 8 0.0023 1.5 38 8 0.0023 0.014 2.2 32 44 0.0075 0.012 1.9 37 4 0.0066 0.012 1.8 33 8 0.0003 0.014 2.2 32 45 0.0065 0.014 1.4 29 16 0.0078 0.011 1.5 28 26 0.0076 0.0012 1.9 23 27 0.0021 0.012 1.9 23 28 0.0023 0.015 1.2 21 30 0.0023 0.015 1.2 21 31 0.0013 0.013 1.5 21 33 0.000000 0.0050 2.0 10 31 0.013 0.013 0.018 1.6 5.0 42 0.0015 0.0001 1.8 40 42 0.0015 0.0001 1.8 33 1 0.0013 0.0018 1.6 5.0 44 0.0064 0.00062 1.9 2.4 3.6 45 0.0064 0.00061 1.8 40 28 0.00076 0.0001 1.8 33 1 0.00021 0.0001 1.8 33 1 0.00021 0.0001 1.8 40 42 0.0015 0.00071 1.8 40 43 0.0015 0.00071 1.8 40 44 0.00064 0.00062 1.9 2.4 3.6 45 0.00074 0.00061 1.8 33 1 0.00021 0.00061 1.9 2.7 40 0.00064 0.00062 1.9 2.4 3.6 40 0.00064 0.00062 1.9 2.4 3.6 40 0.00064 0.00062 1.9 2.4 3.6 40 0.00064 0.00062 1.9 2.4 3.6 40 0.00064 0.00062 1.9 2.4 3.6 40 0.00064 0.00062 1.9 2.4 3.6 40 0.00064 0.00062 1.9 2.4 3.6 40 0.00064 0.00062 1.9 2.4 3.6 40 0.00064 0.00062 1.9 2.4 3.6 40 0.00064 0.00062 1.9 2.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3	44	0.031	0.023	1.5	81	1.6
35	25	0.0073	0.023	2.4	73	1.5
13		0.0012	0.029	2.2	66	1.3
17		0.012	0.034	1.4	64	1.3
30		0.0064	0.028	1.8	62	1.2
43		0.022	0.012	1.8	61	1.2
46		0.0072	0.031	1.6	61	1.2
6 0.0062 0.023 1.6 47 38 0.0023 0.024 1.7 45 28 0.0073 0.012 2.3 44 15 0.0088 0.025 1.2 41 41 0.0020 0.023 1.5 38 24 0.0075 0.012 1.9 37 4 0.0066 0.012 1.8 33 8 0.00053 0.014 1.2 32 45 0.0065 0.014 1.4 2.9 32 45 0.0065 0.011 1.5 28 21 0.00021 0.012 1.9 23 22 0.0001 0.0015 1.2 21 33 0.000090 0.0015 1.2 21 34 0.0013 0.015 1.2 21 34 0.0013 0.015 1.2 21 34 0.0013 0.015 1.2 21 35 0.00000 0.0000 0.0000 1.8 4.0 40 0.00064 0.00062 1.8 3.3 1 0.0001 0.0001 1.8 4.0 22 0.0015 0.00071 1.8 4.0 22 0.0015 0.00071 1.8 4.0 40 0.00064 0.00062 1.9 2.4 3.6 47 0.0014 0.00041 1.8 3.3 1 0.00021 0.0012 2.0 2.8 37 0.00084 0.00094 1.7 2.7 40 0.00064 0.00062 1.9 2.4 20 0.00042 0.00062 2.2 2.3 29 0.000015 0.00062 2.2 2.3 29 0.000015 0.00062 2.2 2.3 29 0.000015 0.00062 2.2 2.3 29 0.000015 0.00062 2.2 2.3 29 0.000015 0.00062 2.2 2.3 29 0.000015 0.00062 2.2 2.3 29 0.000015 0.00062 2.2 2.3 29 0.000015 0.00062 2.2 2.3 29 0.000015 0.00062 2.2 2.3 29 0.000015 0.00062 2.2 2.3 29 0.000015 0.00062 2.2 2.3 29 0.000015 0.00062 2.2 2.3 29 0.000015 0.00062 1.9 0.0016 1.8 0.94 11 0.000070 0.00001 1.8 0.94 11 0.000070 0.00001 1.8 0.94 11 0.000070 0.00001 1.9 0.77 7 0.000080 0.00030 1.7 0.51 39 0.00018 0.00001 1.8 44 arricharticolumean 0.0016 0.0060 1.8 14				1.9		1.1
38	46	0.021		1.1		1.0
28			0.023	1.6		0.94
15			0.024		45	0.90
41 0.0020 0.023 1.5 38 24 0.0075 0.012 1.9 37 4 0.0066 0.012 1.8 33 8 0.00053 0.014 2.2 32 45 0.0065 0.014 1.4 29 16 0.0078 0.011 1.5 28 21 0.00021 0.012 1.9 23 26 0.0076 0.0012 2.4 21 32 0.0023 0.015 1.2 21 34 0.0013 0.013 1.5 21 33 0.000090 0.0050 2.0 10 31 0.0013 0.018 1.6 5.0 42 0.0015 0.00071 1.8 4.0 22 0.0010 0.00051 2.4 3.6 47 0.0014 0.00041 1.8 3.3 1 0.00021 0.0012 2.0 2.8 </td <td></td> <td></td> <td>0.012</td> <td></td> <td>44</td> <td>0.88</td>			0.012		44	0.88
24 0.0075 0.012 1.9 37 4 0.0066 0.012 1.8 33 8 0.00053 0.014 2.2 32 45 0.0065 0.014 1.4 29 16 0.0078 0.011 1.5 28 21 0.00021 0.012 1.9 23 26 0.0076 0.0012 2.4 21 32 0.0023 0.015 1.2 21 34 0.0013 0.013 1.5 21 33 0.000090 0.0050 2.0 10 31 0.0013 0.0018 1.6 5.0 42 0.0015 0.00071 1.8 4.0 42 0.0015 0.00071 1.8 4.0 47 0.0014 0.00041 1.8 3.3 1 0.00021 0.00041 1.8 3.3 37 0.00064 0.00062 1.9 2.4 20 0.00042 0.00062 1.9 2.4 20 0.00064 0.00061 2.9 2.2 2 0.000080 0.0081 2.1 1.7 14 0.0001 0.0						0.82
4						0.76
8 0.00053 0.014 2.2 32 32 45 0.0065 0.014 1.4 29 16 0.0078 0.011 1.5 28 21 21 0.00021 0.012 1.9 23 23 26 0.0076 0.0012 2.4 21 21 21 21 21 21 21 21 21 21 21 21 21						0.74
45						0.66
16 0.0078 0.011 1.5 28 21 0.00021 0.012 1.9 23 26 0.0076 0.0012 2.4 21 32 0.0023 0.015 1.2 21 33 0.000090 0.0050 2.0 10 31 0.0013 0.0013 1.5 21 31 0.0013 0.0018 1.6 5.0 42 0.0015 0.00071 1.8 4.0 22 0.0010 0.00051 2.4 3.6 47 0.0014 0.00041 1.8 3.3 1 0.00021 0.0012 2.0 2.8 37 0.0064 0.0094 1.7 2.7 40 0.0064 0.00062 1.9 2.4 20 0.00064 0.00062 1.9 2.4 20 0.00064 0.00062 2.2 2.3 29 0.00015 0.00062 2.2 2.3 29 0.00015 0.00062 2.2 2.3 29 0.00015 0.00062 2.1 1.7 14 0.00021 0.00061 1.8 1.7 14 0.00021 0.00061 1.8 0.0066 2.5 1.9 2 0.000080 0.00081 2.1 1.7 14 0.00021 0.00051 2.3 1.7 14 0.00021 0.00051 2.3 1.7 14 0.00021 0.00051 2.3 1.7 14 0.00001 0.00051 1.8 0.94 11 0.0000070 0.00040 1.9 0.77 7 0.000080 0.00030 1.7 0.51 39 0.000018 0.00020 1.6 0.35 (carthmetric) mean 0.0016 0.0060 1.8 17						0.64
21						0.58
26 0.0076 0.0012 2.4 21 32 0.0023 0.015 1.2 21 34 0.0013 0.013 1.5 21 33 0.000090 0.0050 2.0 10 31 0.0013 0.0018 1.6 5.0 42 0.0015 0.00071 1.8 4.0 22 0.0010 0.00051 2.4 3.6 47 0.0014 0.00041 1.8 3.3 1 0.00021 0.0012 2.0 2.8 37 0.0064 0.00094 1.7 2.7 40 0.00042 0.00062 1.9 2.4 20 0.00042 0.00062 2.2 2.3 29 0.000015 0.00086 2.5 2.2 2 0.000080 0.00081 2.1 1.7 14 0.00021 0.00051 2.3 1.7 36 0.00047 0.00031 1.7 1.3 48 0.000013 0.00051 1.8 0.94 11 0.000080 0.00000 1.9 0.77 7 0.000080 0.00000 1.6 0.35 mean						0.56
32 0.0023 0.015 1.2 21 34 0.0013 0.013 1.5 21 33 0.000090 0.0050 2.0 10 31 0.0013 0.0018 1.6 5.0 42 0.0015 0.00071 1.8 4.0 22 0.0010 0.00051 2.4 3.6 47 0.0014 0.00041 1.8 3.3 1 0.00021 0.0012 2.0 2.8 37 0.0064 0.00094 1.7 2.7 40 0.0064 0.0062 1.9 2.4 20 0.00042 0.00062 2.2 2.3 29 0.000015 0.00086 2.5 2.2 2 0.000080 0.00081 2.1 1.7 14 0.00021 0.00051 2.3 1.7 36 0.00047 0.00031 1.7 1.3 48 0.00013 0.00051 1.8 0.94 11 0.000070 0.00040 1.9 0.77 7 0.000088 0.00030 1.7 0.51 39 0.00018 0.0006 1.8 44 mean						0.46
34 0.0013 0.013 1.5 21 33 0.0000090 0.0050 2.0 10 31 0.0013 0.0018 1.6 5.0 42 0.0015 0.00071 1.8 4.0 22 0.0010 0.00051 2.4 3.6 47 0.0014 0.00041 1.8 3.3 1 0.00021 0.0012 2.0 2.8 37 0.00064 0.00094 1.7 2.7 40 0.00064 0.00062 1.9 2.4 20 0.00042 0.00062 2.2 2.3 29 0.000015 0.00086 2.5 2.2 2 0.000080 0.00081 2.1 1.7 14 0.00021 0.00051 2.3 1.7 36 0.00047 0.00031 1.7 1.3 48 0.000013 0.00051 1.8 0.94 11 0.0000080 0.00030 1.7 0.51 39 0.00018 0.00030 1.7 0.51 mean 0.0001 0.016 1.8 44 (arithmetric) 0.0016 0.0060 1.8 17						0.42
33						0.42
31						0.42
42 0.0015 0.00071 1.8 4.0 22 0.0010 0.00051 2.4 3.6 47 0.0014 0.00041 1.8 3.3 1 0.00021 0.0012 2.0 2.8 37 0.0064 0.0094 1.7 2.7 40 0.0064 0.0062 1.9 2.4 20 0.00042 0.0062 2.2 2.3 29 0.00015 0.0086 2.5 2.2 2 0.000080 0.0081 2.1 1.7 14 0.00021 0.00051 2.3 1.7 36 0.00047 0.00031 1.7 1.3 48 0.00013 0.00051 1.8 0.94 11 0.000070 0.00040 1.9 0.77 7 0.000080 0.00030 1.7 0.51 39 0.00018 0.0002 1.6 0.35 (a mean 0.0016 0.0060 1.8 17						0.20
22 0.0010 0.00051 2.4 3.6 47 0.0014 0.00041 1.8 3.3 1 0.00021 0.0012 2.0 2.8 37 0.00064 0.00094 1.7 2.7 40 0.00064 0.00062 1.9 2.4 20 0.00042 0.00062 2.2 2.3 29 0.000015 0.00086 2.5 2.2 2 0.000080 0.00081 2.1 1.7 14 0.00021 0.00051 2.3 1.7 36 0.00047 0.00031 1.7 1.3 48 0.000013 0.00051 1.8 0.94 11 0.0000000 0.00040 1.9 0.77 7 0.0000080 0.00030 1.7 0.51 39 0.00018 0.00020 1.6 0.35 (arithmetric) mean 0.0016 0.0060 1.8 17						0.10
47 0.0014 0.00041 1.8 3.3 1 0.00021 0.0012 2.0 2.8 37 0.00064 0.00094 1.7 2.7 40 0.00064 0.00062 1.9 2.4 20 0.00042 0.00062 2.2 2.3 29 0.00015 0.00086 2.5 2.2 2 0.000080 0.00081 2.1 1.7 14 0.00021 0.00051 2.3 1.7 36 0.00047 0.00031 1.7 1.3 48 0.000013 0.00051 1.8 0.94 11 0.0000070 0.00040 1.9 0.77 7 0.0000080 0.00030 1.7 0.51 39 0.00018 0.00020 1.6 0.35 mean 0.0016 0.0060 1.8 17						0.080
1 0.00021 0.0012 2.0 2.8 37 0.00064 0.00094 1.7 2.7 40 0.00064 0.00062 1.9 2.4 20 0.00042 0.00062 2.2 2.3 29 0.000015 0.00086 2.5 2.2 2 0.000080 0.00081 2.1 1.7 14 0.00021 0.00051 2.3 1.7 36 0.00047 0.00031 1.7 1.3 48 0.00013 0.00051 1.8 0.94 11 0.0000070 0.00040 1.9 0.77 7 0.000080 0.00030 1.7 0.51 39 0.00018 0.00020 1.6 0.35 (arithmetric) mean 0.0016 0.0060 1.8 17						0.072
37 0.00064 0.00094 1.7 2.7 40 0.00064 0.00062 1.9 2.4 20 0.00042 0.00062 2.2 2.3 29 0.000015 0.00086 2.5 2.2 2 0.000080 0.00081 2.1 1.7 14 0.00021 0.00051 2.3 1.7 36 0.00047 0.00031 1.7 1.3 48 0.000013 0.00051 1.8 0.94 11 0.0000070 0.00040 1.9 0.77 7 0.0000080 0.00030 1.7 0.51 39 0.00018 0.00020 1.6 0.35 mean 0.0091 0.016 1.8 44 (arithmetric) mean 0.0016 0.0060 1.8 17						0.066
40 0.00064 0.00062 1.9 2.4 20 0.00042 0.00062 2.2 2.3 29 0.000015 0.00086 2.5 2.2 2 0.000080 0.00081 2.1 1.7 14 0.00021 0.00051 2.3 1.7 36 0.00047 0.00031 1.7 1.3 48 0.000013 0.00051 1.8 0.94 11 0.0000070 0.00040 1.9 0.77 7 0.0000080 0.00030 1.7 0.51 39 0.000018 0.00020 1.6 0.35 mean 0.0091 0.016 1.8 44 (arithmetric) 0.0016 0.0060 1.8 17						0.056
20 0.00042 0.00062 2.2 2.3 29 0.000080 0.00081 2.1 1.7 2 0.000080 0.00051 2.3 1.7 36 0.00047 0.00031 1.7 1.3 48 0.000013 0.00051 1.8 0.94 11 0.0000070 0.00040 1.9 0.77 7 0.0000080 0.00030 1.7 0.51 39 0.00018 0.00020 1.6 0.35 mean 0.0091 0.016 1.8 44 (arithmetric) 0.0016 0.0060 1.8 17						0.054
29 0.000015 0.00086 2.5 2.2 2 0.000080 0.00081 2.1 1.7 14 0.00021 0.00051 2.3 1.7 36 0.00047 0.00031 1.7 1.3 48 0.00013 0.00051 1.8 0.94 11 0.0000070 0.00040 1.9 0.77 7 0.0000080 0.00030 1.7 0.51 39 0.00018 0.00020 1.6 0.35 (mean (arithmetric) 0.0016 1.8 17						0.048
2 0.0000080 0.00081 2.1 1.7 14 0.00021 0.00051 2.3 1.7 36 0.00047 0.00031 1.7 1.3 48 0.00013 0.00051 1.8 0.94 11 0.0000070 0.00040 1.9 0.77 7 0.0000080 0.00030 1.7 0.51 39 0.00018 0.00020 1.6 0.35 (mean (arithmetric) 0.0016 1.8 14 mean (0.0016 0.0060 1.8 17						0.046
14 0.00021 0.00051 2.3 1.7 36 0.00047 0.00031 1.7 1.3 48 0.000013 0.00051 1.8 0.94 11 0.000070 0.00040 1.9 0.77 7 0.000080 0.00030 1.7 0.51 39 0.00018 0.00020 1.6 0.35 0 mean (arithmetric) 0.0016 1.8 44 mean (0.0016 0.0060 1.8 17						0.044
36 0.00047 0.00031 1.7 1.3 48 0.000013 0.00051 1.8 0.94 11 0.0000070 0.00040 1.9 0.77 7 0.0000080 0.00030 1.7 0.51 39 0.000018 0.00020 1.6 0.35 0.00000 mean (arithmetric) 0.0016 1.8 44 mean (0.0016 0.0060 1.8 17						0.034 0.034
48 0.000013 0.00051 1.8 0.94 11 0.000070 0.00040 1.9 0.77 7 0.0000080 0.00030 1.7 0.51 39 0.000018 0.00020 1.6 0.35 mean 0.0091 0.016 1.8 44 (arithmetric) 0.0016 0.0060 1.8 17						0.034
11 0.0000070 0.00040 1.9 0.77 7 0.0000080 0.00030 1.7 0.51 39 0.000018 0.00020 1.6 0.35 (mean (arithmetric) 0.0016 1.8 44 mean (orithmetric) 0.0016 0.0060 1.8 17						0.026
7 0.0000080 0.00030 1.7 0.51 39 0.000018 0.00020 1.6 0.35 (mean 0.0091 0.016 1.8 44 (arithmetric) mean 0.0016 0.0060 1.8 17						0.019
39 0.000018 0.00020 1.6 0.35 (mean (arithmetric) 0.0016 1.8 44 mean 0.0016 0.0060 1.8 17						0.013
mean (arithmetric) 0.0091 0.016 1.8 44 mean 0.0016 0.0060 1.8 17						0.010
(arithmetric) 0.0016 0.0060 1.8 17						
mean 0.0016 0.0060 1.8 17		0.0091	0.016	1.8	44	0.88
		0.0016	0.0060	1.0	17	0.00
(arithmetric)		0.0016	0.0060	1.8	17	0.34
median 0.0023 0.013 1.8 33		0.0022	0.012	1 0	22	0.65

Table for 1997 Survey Results (ND = 0)

	TEQ (Total PCDD/Fs) [pg-TEQ/g]	TEQ (Total C-PCBs) [pg-TEQ/g]	Food intake [kg/day]	Total dioxin intake per person [pg-TEQ]	Dioxin in take per kg body weight (average weight: 50kg) [pg-TEQ/day•kg]
12	0.046	0.090	1.8	240	4.8
18	0.067	0.022	1.4	120	2.4
19	0.0074	0.028	2.5	89	1.8
44	0.031	0.023	1.5	81	1.6
35	0.012	0.034	1.4	64	1.3
17	0.022	0.012	1.8	61	1.2
43	0.0062	0.023	1.9	55	1.1
28	0.0073	0.012	2.3	44	0.88
41	0.0020	0.023	1.5	38	0.76
16	0.0078	0.011	1.5	28	0.56
26	0.0076	0.0012	2.4	21	0.42
34	0.0013	0.013	1.5	21	0.42
33	0.0000090	0.0050	2.0	10	0.20
42	0.0015	0.00071	1.8	4.0	0.080
47	0.0014	0.00041	1.8	3.3	0.066
37	0.00064	0.00094	1.7	2.7	0.054
40	0.00064	0.00062	1.9	2.4	0.048
20	0.00042	0.00062	2.2	2.3	0.046
29	0.000015	0.00086	2.5	2.2	0.044
36	0.00047	0.00031	1.7	1.3	0.026
48	0.000013	0.00051	1.8	0.94	0.019
11	0.0000070	0.00040	1.9	0.77	0.015
mean (arithmetric)	0.010	0.014	1.9	41	0.81
mean (arithmetric)	0.0014	0.0040	1.8	13	0.26
median	0.0018	0.0080	1.8	21	0.42

Table for 1998 Survey Results (ND = 0)

	TEQ (Total PCDD/Fs) [pg-TEQ/g]	TEQ (Total C-PCBs) [pg-TEQ/g]	Food intake [kg/day]	Total dioxin intake per person [pg-TEQ]	Dioxin in take per kg body weight (average weight: 50kg) [pg-TEQ/day•kg]
10	0.044	0.051	1.9	180	3.6
23	0.059	0.022	1.6	130	2.6
9	0.0082	0.024	2.8	90	1.8
27	0.013	0.036	1.8	88	1.8
5	0.0013	0.049	1.7	86	1.7
25	0.0073	0.023	2.4	73	1.5
3	0.0012	0.029	2.2	66	1.3
13	0.0064	0.028	1.8	62	1.2
30	0.0072	0.031	1.6	61	1.2
46	0.021	0.026	1.1	52	1.0
6	0.0062	0.023	1.6	47	0.94
38	0.0023	0.024	1.7	45	0.90
15	0.0088	0.025	1.2	41	0.82
24	0.0075	0.012	1.9	37	0.74
4	0.0066	0.012	1.8	33	0.66
8	0.00053	0.014	2.2	32	0.64
45	0.0065	0.014	1.4	29	0.58
21	0.00021	0.012	1.9	23	0.46
32	0.0023	0.015	1.2	21	0.42
31	0.0013	0.0018	1.6	5.0	0.10
22	0.0010	0.00051	2.4	3.6	0.072
1	0.00021	0.0012	2.0	2.8	0.056
2	0.0000080	0.00081	2.1	1.7	0.034
14	0.00021	0.00051	2.3	1.7	0.034
7	0.0000080	0.00030	1.7	0.51	0.010
39	0.000018	0.00020	1.6	0.35	0.0070
mean (arithmetric)	0.0082	0.018	1.8	47	0.93
mean (arithmetric)	0.0017	0.0085	1.8	21	0.41
median	0.0043	0.019	1.8	39	0.78

Table for 1997/8 Survey Results (ND = 0.5)

	TEQ (Total	TEQ (Tatal C-DCBa)	Food	Total dioxin	Dioxin in take per kg body weight
	PCDD/Fs) [pg-TEQ/g]	(Total C-PCBs) [pg-TEQ/g]	intake [kg/day]	intake per person [pg-TEQ]	(average weight: 50kg) [pg−TEQ/day∙kg]
12	0.058	0.090	1.8	270	5.4
10	0.056	0.051	1.9	200	4.0
9	0.026	0.025	2.8	140	2.8
18	0.076	0.023	1.4	140	2.8
23	0.067	0.023	1.6	140	2.8
19	0.025	0.028	2.5	130	2.6
5	0.021	0.050	1.7	120	2.4
25	0.025	0.024	2.4	120	2.4
27	0.030	0.037	1.8	120	2.4
3	0.021	0.030	2.2	110	2.2
13	0.024	0.029	1.8	95	1.9
44	0.039	0.024	1.5	95	1.9
17	0.035	0.014	1.8	88	1.8
30	0.025	0.032	1.6	91	1.8
35 43	0.030 0.024	0.035 0.024	1.4	91	1.8
28	0.024	0.024	1.9 2.3	91 87	1.8 1.7
26	0.025	0.0076	2.4	78	1.7
38	0.023	0.025	1.7	80	1.6
8	0.021	0.015	2.2	79	1.6
6	0.024	0.024	1.6	77	1.5
24	0.025	0.013	1.9	72	1.4
29	0.021	0.0072	2.5	71	1.4
41	0.022	0.024	1.5	69	1.4
4	0.024	0.013	1.8	67	1.3
14	0.021	0.0069	2.3	64	1.3
21	0.021	0.013	1.9	65	1.3
22	0.021	0.0069	2.4	67	1.3
33	0.021	0.011	2.0	64	1.3
46	0.034	0.027	1.1	67	1.3
2	0.021	0.0072	2.1	59	1.2
15 20	0.026	0.026 0.0070	1.2	62	1.2
1	0.021 0.021	0.0076	2.2	62 57	1.2 1.1
11	0.021	0.0078	1.9	53	1.1
16	0.025	0.013		57	1.1
34	0.021	0.014	1.5	53	1.1
40	0.021	0.007	1.9	53	1.1
45	0.024	0.015	1.4	55	1.1
42	0.021	0.0071	1.8	51	1.0
47	0.021	0.0068	1.8	50	1.0
48	0.021	0.0069	1.8	50	1.0
37	0.021	0.0073	1.7	48	0.96
7	0.021	0.0067	1.7	47	0.94
36	0.021	0.0067	1.7	47	0.94
31	0.021	0.0079	1.6	46	0.92
32	0.022	0.016		46	0.92
39	0.021	0.0066	1.6	44	0.88
mean	0.027	0.019	1.8	83	1.7
(arithmetric)	0.005	0.015	1.0	70	4.5
mean (arithmetric)	0.025	0.015	1.8	76	1.5
median	0.022	0.014	1.8	68	1.4
	order of concen		1.0	00	1.5

Table for 1997 Survey Results (ND = 0.5)

	TEQ (Total PCDD/Fs) [pg-TEQ/g]	TEQ (Total C-PCBs) [pg-TEQ/g]	Food intake [kg/day]	Total dioxin intake per person [pg-TEQ]	Dioxin in take per kg body weight (average weight: 50kg) [pg-TEQ/day•kg]
12	0.058	0.090	1.8	270	5.4
18	0.076	0.023	1.4	140	2.8
19	0.025	0.028	2.5	130	2.6
44	0.039	0.024	1.5	95	1.9
17	0.035	0.014	1.8	88	1.8
35	0.030	0.035	1.4	91	1.8
43	0.024	0.024	1.9	91	1.8
28	0.025	0.013	2.3	87	1.7
26	0.025	0.0076	2.4	78	1.6
29	0.021	0.0072	2.5	71	1.4
41	0.022	0.024	1.5	69	1.4
33	0.021	0.011	2.0	64	1.3
20	0.021	0.0070	2.2	62	1.2
11	0.021	0.0068	1.9	53	1.1
16	0.025	0.013	1.5	57	1.1
34	0.021	0.014	1.5	53	1.1
40	0.021	0.0070	1.9	53	1.1
42	0.021	0.0071	1.8	51	1.0
47	0.021	0.0068	1.8	50	1.0
48	0.021	0.0069	1.8	50	1.0
37	0.021	0.0073	1.7	48	0.96
36	0.021	0.0067	1.7	47	0.94
mean (arithmetric)	0.028	0.017	1.9	82	1.6
mean (arithmetric)	0.026	0.013	1.8	73	1.5
median	0.022	0.012	1.8	67	1.4

Table for 1998 Survey Results (ND = 0.5)

	TEQ (Total PCDD/Fs) [pg-TEQ/g]	TEQ (Total C-PCBs) [pg-TEQ/g]	Food intake [kg/day]	Total dioxin intake per person [pg-TEQ]	Dioxin in take per kg body weight (average weight: 50kg) [pg-TEQ/day•kg]
10	0.056	0.051	1.9	200	4.0
9	0.026	0.025	2.8	140	2.8
23	0.067	0.023	1.6	140	2.8
5	0.021	0.050	1.7	120	2.4
25	0.025	0.024	2.4	120	2.4
27	0.030	0.037	1.8	120	2.4
3	0.021	0.030	2.2	110	2.2
13	0.024	0.029	1.8	95	1.9
30	0.025	0.032	1.6	91	1.8
8	0.021	0.015	2.2	79	1.6
38	0.022	0.025	1.7	80	1.6
6	0.024	0.024	1.6	77	1.5
24	0.025	0.013	1.9	72	1.4
4	0.024	0.013	1.8	67	1.3
14	0.021	0.0069	2.3	64	1.3
21	0.021	0.013	1.9	65	1.3
22	0.021	0.0069	2.4	67	1.3
46	0.034	0.027	1.1	67	1.3
2	0.021	0.0072	2.1	59	1.2
15	0.026	0.026	1.2	62	1.2
1	0.021	0.0076	2.0	57	1.1
45	0.024	0.015	1.4	55	1.1
7	0.021	0.0067	1.7	47	0.94
31	0.021	0.0079	1.6	46	0.92
32	0.022	0.016	1.2	46	0.92
39	0.021	0.0066	1.6	44	0.88
mean (arithmetric)	0.026	0.021	1.8	84	1.7
mean (arithmetric)	0.025	0.017	1.8	78	1.5
median	0.023	0.020	1.8	70	1.4

