4	CAS No.: 55-63-0	Substance: Nitroglycerin
Chemical	Substances Control Law Refer	rence No.: 2-1574
PRTR La	w Cabinet Order No.: 1-236	
Molecular Formula: C ₃ H ₅ N ₃ O ₉		Structural Formula:
Molecular Weight: 227.09		CH ₂ ONO ₂
		CHONO ₂
		CH ₂ ONO ₂

1. General information

The aqueous solubility of this substance is $1.38 \times 10^3 \text{ mg/L} (20^{\circ}\text{C})$, and the partition coefficient (1-octanol / water) (log Kow) is 1.62. The vapor pressure is $2.00 \times 10^{-4} \text{ mmHg} (= 0.0267 \text{ Pa}) (20^{\circ}\text{C})$. Biodegradability as assessed with the shaker flask method using activated sludge is 53.6% degradation (30°C) in a five-day period. In terms of hydrolyzability, the half-life is calculated to be 1.0 - 10 years (at 25°C, pH = 8 - 7) or 2.6 - 26 years (18°C, pH = 8 - 7).

This substance is a Class 1 Designated Chemical Substance under the Law concerning Reporting, etc. of Releases to the Environment of Specific Chemical Substances and Promoting Improvements in Their Management (PRTR Law). Its primary uses and release sources are as a base material for dynamite, as a base compound in smokeless powder, and as a pharmaceutical. Nitroglycerine is almost never shipped in liquid form to locations outside the factory; it is processed into dynamite on the factory premises. Domestic production (shipment) and import quantities in FY2001 were from 100 to less than 1,000 tons. Production and import quantities under the PRTR law are 100 tons.

2. Exposure assessment

Total release to the environment in FY2003 under the PRTR Law came to 1.3 tons, all of which was reported. The quantity of reported release was 1.2 tons into the atmosphere and 0.088 tons into public water bodies. Chemical Industry accounted for high levels of reported release.

Release to the atmosphere accounted for the greatest quantity of release to the environment. However, the distribution into the different media in the environment predicted by means of a multimedia model was 66.4% for water bodies and 32.1% for soil.

It was not possible to establish a predicted environmental concentration (PEC) that indicates exposure to aquatic organisms, as environmental concentrations have not been obtained.

3. Initial assessment of ecological risk

With regard to acute toxicity, reliable information of a 96-hour EC_{50} growth inhibition value of 400 µg/L was found for the algae *Pseudokirchneriella subcapitata*, a 48-hour LC_{50} value of 32,000 µg/L was found for the crustacea *Daphnia magna* (water flea), and a 96-hour LC_{50} value of 1,670 µg/L was found for the fish *Lepomis macrochirus* (bluegill). Accordingly, an assessment factor of 100 was used, and a predicted no effect concentration (PNEC) of 4 µg/L was obtained based on the acute toxicity values. As reliable data could not be obtained for chronic toxicity, a value of 4 µg/L obtained from the acute toxicity for the algae was used as the PNEC for the substance.

As sufficient data on environmental concentrations to enable assessment have not been obtained at present, it was not possible to assess the ecological risk. Trends in production quantities and environmental release quantities should be determined, and at the same time a study should be conducted to assess the need for determination of the

Hazard	Hazard assessment (basis for PNEC)				Exposure assessment			
Species	Acute / chronic	Endpoint	Assessment factor	Predicted no effect concentration PNEC (µg/L)	Water body	Predicted environmental concentration PEC (μg/L)	PEC/ PNEC ratio	Result of assessment
Algae	Acute	EC_{50} growth inhibition	100	4	Freshwater	-	-	×
guo					Seawater	—	-	
Conclusio	ons							
Conclusio	ons		0	Conclusions				Judgment
Conclusi	ons Impo envin	ossible of risk cl ronmental release of	C haracterizati quantities sh	Conclusions ion. Trends nould be deter	in product	ion quantition quantition quantition quantition quantition quantition quantition quantition quantition quantiti	es and time a	Judgment ×
Conclusi Ecological risl	DNS Impo envin study	ossible of risk cl ronmental release of y should be cond	C haracterizati quantities sh lucted to a	Conclusions ion. Trends nould be deten assess the no	in product rmined, and eed for de	tion quantities at the same etermination	es and time a of the	Judgment ×
Conclusi	Impo envin study envin	ossible of risk cl ronmental release o y should be cond ronmental concentr	C haracterizati quantities sh lucted to a ation.	Conclusions ion. Trends nould be deter assess the ne	in product rmined, and eed for de	tion quantition at the same etermination	es and time a of the	Judgment ×
Conclusi Ecological risl	Impo envir study envir envir	ossible of risk cl ronmental release of y should be cond ronmental concentr No need of further	C haracterization quantities should be a lucted to a ation. work \blacktriangle :	Conclusions ion. Trends nould be deter assess the no Requiring inf	in product rmined, and eed for de formation co	tion quantition at the same etermination	es and time a of the	Judgment ×