C-061-i

課題名	C-061 広域モニ	ニタリングネ	ットワークによる黄砂の動態把握と予測・評価						
	に関する	る研究							
課題代表者名	西川雅高(独立行政法	去人国立環境	研究所 環境研究基盤技術ラボラトリー						
	環境分析化学研究室)								
研究期間	平成18-20年度 合計予算物		215,639千円(うち20年度 70,506千円)						
			上記の合計予算額には、間接経費49,764千円を含						
			む						

研究体制

(1)東アジアモニタリングネットワークによる黄砂動態の実時間的把握とデータ精度管理・ 利用法に関する研究(独立行政法人国立環境研究所)

(2) 黄砂の発生・輸送モデルへのデータ同化手法の開発と応用(九州大学)

(3) 黄砂粒子と大気汚染ガス成分の反応機構解明に関する研究(埼玉大学)

研究概要

1. 序(研究背景等)

中国沿岸部、韓国、日本で観測される黄砂現象は、中国内陸部およびモンゴルの砂漠・乾燥地帯 から発生する砂塵嵐が長距離輸送されることによって生じる現象である。黄砂は北東アジア地域に おける春季の大気エアロゾルの大部分を占め、地域のみならず地球規模の大気環境に大きな影響を 与えている。そのような黄砂現象の規模や回数の増加による社会的影響も懸念されている。最近、 黄砂粒子表面に SO₂などの大気汚染ガス成分が沈着することが指摘されている。北東アジア地域の 今後の産業活動の変化を考慮すると SO₂以外の大気汚染成分による相互反応機構についても注目す る必要がある。また、黄砂の発生・輸送の解明には数値シミュレーションが有効であるが、発生源 の評価が難しく、数値誤差の大きな要因となっている。このような北東アジア地域の共通課題であ る黄砂問題に対処することを目的として、モンゴル、中国、韓国、日本にまたがる黄砂モニタリン グネットワークが構築されてきた。本研究プロジェクトでは、そのようなネットワークにより得ら れるライダーや地上観測データと黄砂数値輸送モデルを同化融合する手法を確立し、黄砂の初期濃 度分布や発生源強度・分布を推定することや黄砂予報モデルの予報精度向上を目指している。

2. 研究目的

本プロジェクトでは、①ライダーを中心とする多点モニタリングネットワークの構築と化学天気 予報モデル(CFORS)との融合(サブテーマ1、2の連携)を行いモデル推定精度の向上に有効な 手法開発を行うこと、②黄砂と大気汚染物質の同時輸送現象について、ライダーおよび浮遊粒子状 物質(SPM)常時監視ネットワークデータを利用した気象学的解析とフィールド試料の化学成分分 析に基づく解析および室内実験による検証(サブテーマ1、2、3の連携)を行うこと、を主目的と する。ならびに、黄砂飛来量や輸送量の年々変動について多点観測とモデルの両面から解析するほ か、黄砂飛来情報に関する社会的貢献(環境省黄砂 HP への寄与)も目的としている。

3. 研究の方法及び結果

(1) モンゴル3局、中国1局、韓国1局、日本12局による、ライダーを中心とする多点ネット ワークが構築できた。ライダー常時観測システムは、地上から高度約10kmの対流圏内を輸送され るダストを高度別にモニタリングできる。このライダーシステムを中心とする黄砂の多点常時監視 ネットワークによるモニタリング結果をベースに新しい科学的知見を得た。日本に飛来する黄砂の 最も大きな発生源はゴビ砂漠であることが知られている。そのゴビ砂漠からの春季3ヶ月間の推定 発生量を、CFORSを基に計算すると、2006年(140 Tg)、2007年(140 Tg)、2008年(65 Tg)、 また、東経130度の経線上で高度1km以下の低層大気中に輸送される量は、2006年(4.4 Tg)、2007 年(5.8 Tg)、2008年(1.9 Tg)となった。2000年以降の黄砂観測の中で、2003年についで2008 年は日本への黄砂飛来が極端に少ない年であった。そして、3年間にわたるプロジェクト研究の中 では、2007年が日本への飛来量が最も多い年で、典型的な黄砂が何例か観測できた。2006年、2007 年の黄砂事例をもとに、大気汚染成分と黄砂の混合状態について、「きれいな黄砂」と「汚れた黄 砂」という大括りの概念で分け、その代表例の特徴を明らかにした。

気象庁管轄の気象官署による現在天気報を元に、2007 年春季(3~5月)に日本に飛来した主な 黄砂イベントを抽出した。浮遊塵を報告する気象官署が5地点以上の場合のみを「広域黄砂日」と して、2007 年春季には9回の黄砂イベントが観測された。この9回のうち、積算黄砂日で100 [地 点・日]を上回る事例を大規模な黄砂イベントとみなせば、4月1~3日と5月8~9日の計2回が

C-061-ii

その範疇に入った。抽出した9イベントの内で、4月1~3日の事例、5月8~9日の事例の二つについて詳しく調べた。

前者では、寒冷前線を伴う低気圧の通過後に、南西諸島と北日本の一部を除く広範囲で SPM 高 濃度を観測した。3月31日夕方以降から100µg/m³を超過する SPM 濃度が観測され始め、翌4月1 日午前から150µg/m³を超過する SPM 高濃度が観測され、2日の日中には全測定局の3割以上が 150µg/m³を超過した。各測定局における SPM 濃度の極大値は、近年の黄砂事例の中ではかなりの 高濃度となった。高濃度 SPM の観測期間では、SO₂、NOx、O₃には濃度上昇は観測されず、気体状 の大気汚染物質を伴わない、いわゆる「汚れていない黄砂」の特徴を示した。松江におけるライダー 観測で、非球形粒子(黄砂)が下層大気で卓越していたことも裏付けとなる。

一方、後者(5月8~9日)は、多くの気象官署では黄砂と報じていないが、新潟県・大分県で観 測史上初の光化学オキシダント注意報を発令するなど、全国的なオゾン高濃度を観測した事例であ る。各測定局のSPM濃度は100 µg/m³前後で、4月1~3日の事例に比べて1/2から1/3程度である。 高気圧の勢力圏下にあり、前者の事例とは気象条件が大きく異なる。時間の経過に伴いSPM濃度 上昇局数が増加した。全国的なSO2濃度については、SPMよりもO3と同期した時間変化を示した。 NOxに見られるO3とほぼ逆フェイズの時間変化は、日中の光化学O3生成と夜間におけるO3とNO との消失反応サイクルが卓越したことを示している。長崎におけるライダー観測からは、高度約 2kmより下層では球形粒子(二次生成粒子)、それより上層で非球形粒子(黄砂)という2層構造 がみられ,地上で観測されたSPM濃度は、二次生成粒子と黄砂が混合した粒子質量濃度を観測し ていた可能性が指摘された。以上により2007年5月の事例は、汚染気体を伴う「汚れた黄砂」的 な濃度変化であることが示された。

既存のライダー観測システムによる継続的な観測を行うとともに、初年度および2年目に開発した実時間のデータ解析処理手法を適用して、実時間の黄砂情報の提供およびデータ同化実験(サブ テーマ2へのデータ提供を行った。また、測定精度管理に関して、特に黄砂濃度の導出に関わる偏 光解消度の地点間の差異とその要因、改善手法を考察した。精度管理確認したライダーネットワー クデータにより、2007年春季の黄砂現象を解析した。図1は2007年3月、4月、5月の10地点の 黄砂消散係数(光学的な黄砂濃度)の時間高度表示である。2007年春季には、3月の末から4月の 初め、5月初旬、5月下旬の3回の顕著な黄砂イベントがあったことが分かる(図中、□で囲んだ 部分)。2007年は黄砂の発生時期が遅く、特に5月26日前後に観測された黄砂は異例に遅い黄砂 であった。

データ同化をしない CFORS と比較すると、CFORS はこれらの黄砂イベントを定性的に再現する が、4月の黄砂イベントでは CFORS が過大評価、5月下旬の黄砂では過小評価していることが分かっ た。これらの3つのイベントについてはサブテーマ2でデータ同化実験が行われ、発生源、発生量 の定量的な評価が行われたが、これらのイベントはライダーネットワークデータによる同化の有効 性を示す良い例となった。2007年は、越境大気汚染によると推定される光化学オキシダントの事例 が報告されているが、ライダーで観測された球形エアロゾルにおいても、地域規模の現象の特徴を 示す時間変化と地点間の相関が見られた。

(2) 土壌性ダストの発生・輸送モデル CFORS に 4 次元データ同化手法を新たに導入した。この モデルを用いてライダー観測データを利用したデータ同化手法のパフォーマンスを、2007 年 3 月末 から 4 月初めに中国から日本各地で観測された高濃度の黄砂現象について適用して調べた。図 2 に 3 月 30 日から 4 月 2 日までのモデルで同化されたダストによる光学的厚さ AOD の地域分布を示す。

図 2 (左) モデルの光学的厚さ(トーン) と OMI Aerosol Index (コンター)の比較、
 (右)気象庁の黄砂観測点の分布

図には、NASA Aura 衛星に搭載された OMI (Ozone Monitoring Instrument) の Aerosol Index (AI) (コ ンター線;ただし 4 月 1 日は欠測) と気象庁の黄砂情報サイト (http://www.jma.go.jp /jp/ kosa/ index.html) に掲載された同日の観測地点も同時に示す。3 月 30 日に中国・モンゴル国境の東経 102 ~118 度、北緯 40~48 度付近でダストが発生し、低気圧とともに東進し、3 月 31 日に高濃度域は 渤海湾・朝鮮半島北部・中国東北部に達している。その後、4 月 1 日には濃度は減少するが、東北 地方から日本海・朝鮮半島南部の広範囲に AOD が 1 を越える領域が見られる。この高濃度域は AOD のレベルが更に低下するが、4 月 2 日は中国華北平野部から日本列島の広範囲に広がっている。 3 月 30 日から 4 月 2 日にかけてのモデルの結果は、気象庁の黄砂観測の範囲と良く対応し、OMI AI の日変化とも良く一致している。これは同化モデルの結果が、今回対象としたダストの発生から輪 送過程を良く再現していることを示している。総合的なモデル解析の結果、日本国内の 5 地点のラ イダー観測データをダスト発生・輸送モデルに同化することで、ダスト発生地域の発生量の最適化 が可能となり、モデルと観測データの一致性が向上するとともに、データ同化前の発生総量 57.9 Tg に比較して 57.8 % (約 21.2 Tg) の発生量の増大が必要とされた。

同化モデル結果は、衛星センサーOMI Aerosol Index (AI)や地上気象通報による観測結果とも良く 整合することが確認された。2007年5月上旬の黄砂エピソードを対象に、環境研究所の地上ライダー ネットワークのデータを同化したモデルを用いて黄砂の3次元輸送の解析を行った結果を図3に例 示する。解析には NASA CALIPSO 衛星に搭載された宇宙ライダーCALIOPの計測結果も用いた。図 には、データ同化ダストモデルで計算された黄砂の光学的厚さの水平分布と CALIPSO 衛星の軌道 を同時に示した。このように黄砂の発生源域でのモデルと観測の比較が可能となり、両者に良い一 致性があることを示すことができる。ライダーデータの同化は、アジア域のダストの発生・輸送モ デルの予測可能性を大きく向上させることが明らかになった。

図3 データ同化ダストモデルで計算された黄砂の光学的厚さとCALIPSO衛星の軌道

(3)サブテーマ1の観測結果が示すように、黄砂は大気汚染物質と混在し輸送される場合がある。 このいわゆる「汚れた黄砂」について、粒子表面にある種の大気汚染ガスが反応固定されることが 明らかにできれば、沈着後の環境影響、例えば動植物への影響などを考えるときの重要な知見であ る。

黄砂が長距離輸送過程で汚染気塊と混合すれば、個々の黄砂粒子上に SO₂や共存する汚染物質が 同時に沈着する可能性がある。HF、O₃、HNO₃、シュウ酸 (COOH)₂などの共存汚染物質は、黄砂粒 子上への SO₂の沈着・酸化に影響を与えるものと予測される。さらに、SO₂の沈着・酸化は、黄砂 粒子表面の濡れ特性や吸湿性を大きく変化させ、雲粒形成能力を増大させ、地球冷却化を導く可能 性をもつ。

黄砂粒子表面に大気汚染物質が反応固定さ れるかどうか実験的検証を行った。実験用黄 砂粒子として蘭州黄土(黄砂堆積土壌)の微 粉末試料を用いた。SO2、HF、 シュウ酸ガス への黄砂粒子の暴露実験には、自作のガラス 製円筒型流通反応器を用いた。円筒型流通式 反応器の内側には必要に応じて 11 個までガ ラス製シリンダーを直列に配置出来るように なっており(図 4)、黄砂粒子をその内側に 約20mg塗布することが出来る。暴露実験で は、反応器前後での成分ガス濃度の測定、ま たは各シリンダー内側に塗布した黄砂粒子へ の成分ガスの沈着量を算出することにより、 沈着速度や沈着係数を求めることができる。 それぞれのガス成分の反応量を反応器の入 ロ・出口におけるガス濃度差や、イオンクロ マトグラフ法による反応固定量に基づいて分 析定量し、沈着係数(Udep)、沈着した Sの 酸化率(ORS)を算出した。

SO₂沈着に与える湿度影響を詳細に調べるために、円筒型流通式反応器に設置するガラス製シリンダー数を変化させ、実験ガスと黄砂粒子の接触時間(反応時間)を変化させ、SO₂の沈着係数 γ(-)を以下の速度式から求めた。

vを平均分子速度 (cm s⁻¹)、S / V を反応容器表面積と体積の比、k を一次反応速度定数 (s⁻¹)、[X] を SO₂ 濃度とすると、次式が得られる。

$$-\frac{d[X]}{dt} = \gamma \frac{\nu}{4} \frac{S}{V} [X] = k[X]$$
(1)

上式を時間 t で積分すると、以下の式が得られる。

ln[X] = -kt + constant (2) また、一次反応速度定数 k と沈着係数 γ との関係は、以下の式の通りである。

$$\gamma = 2r\frac{k}{v} \tag{3}$$

黄砂に SO₂を曝露する際の相対湿度(*R.H.*)を変化させ、各々の*R.H.*における沈着係数 γ_0 を算出 することが重要であると考えられるため、*R.H.*を<5、10、20、30、40、50、60、70、80%と変化 させた時の沈着係数を算出した。表1に、算出した沈着係数 γ_0 の結果を示した。やはり*R.H.* 60% 付近の相対湿度が、沈着係数 γ_0 に急激な影響を及ぼしていることが確認された。

これらのことから、黄砂と SO₂との反応において、*R.H.* は重要なファクターであり、*R.H.* によって、黄砂表面の状態が大きく変化することが確認された。そして、SO₂の沈着に関しては、SO₂曝露の際の *R.H.* が黄砂表面の反応場状態を左右すると考えられた。

表1 相対湿度の変化による SO2 の初期沈着係数および反応速度定数の違い

Conditions(R.H.)	5 %	10 %	20 %	30 %	40 %	50 %	60 %	70 %	80 %
Slope k	5.35	5.20	5.26	5.48	5.27	5.29	6.22	6.26	6.84
Uptake Coef. γ_0 (× 10 ⁻⁴)	1.16	1.13	1.14	1.19	1.14	1.15	1.35	1.36	1.48

SO₂とシュウ酸 (COOH)₂、SO₂と HF の 2 成分混合ガスによる暴露実験結果について説明する。 低分子ジカルボン酸の中でもシュウ酸は比較的高い割合で都市大気中に存在することが知られて いる。(COOH)₂単独および SO₂ + (COOH)₂ 曝露実験との間で、シュウ酸ガスの沈着量に顕著な差が 見られなかった。たとえば、相対湿度 5 %以下での暴露実験において、(COOH)₂の黄砂粒子への沈 着係数は、SO₂の約 2 倍程度の値を示した。両者の混合ガスへの暴露実験では、(COOH)₂の沈着が ほとんど影響を受けなかったのに対して、SO₂の沈着は 24%程度減少しており、SO₂沈着は(COOH)₂ の共存により抑制されることがわかった。

一方、シュウ酸ガスの沈着に対し SO2は影響を与えないことが明らかとなった。

4. 考察

(1)2007 年春季に発生した黄砂は 141 百万トンであり、2006 年(143 百万トン)と同じレベルで あり、平均よりもやや多い年であった。両年を比べると、2007 年の方が大気境界層以下に進入して きた割合が多い年であった。気象官署で報告された日本への飛来黄砂は 9 回あり、その中で、4 月 1~3 日と5月 8~9 日の2 例が対照的事例であった。前者が大気汚染物質との混ざりが少ない、所 謂、「汚れていない黄砂」、後者が大気汚染物質との混ざりが顕著な「汚れた黄砂」と区分できる ことが判った。空気塊の移動が遅い場合に、大気汚染物質と黄砂の混ざり度が高くなると推察され た。また、ライダーネットワークデータによる空間的実態把握を行った。データ同化をしない CFORS と同化による解析結果とを比較すると、CFORS はこれらの黄砂イベントを定性的に再現するが、4 月の黄砂イベントでは CFORS が過大評価、5 月下旬の黄砂では過小評価していることが分かった。 サブテーマ 2 と連携しデータ同化実験が行われ、発生源、発生量の定量的な評価が行われたが、日 本のライダーネットワークデータの精度がソウルや北京の輸送分布の推定に重要であることが 判った。

(2) ライダーネットワークデータを4次元同化変分法に組み込む方法を確立し、有効性の検証を 行った。2007年3月31日から4月2日に日本に飛来した事例についてデータ同化計算した。日本 の5地点のライダー観測データをもとに同化を実行し、ソウル、北京のライダー観測結果と同化解 析結果を比較し、その両結果の一致性が良好であることを確認できた。ソウル、北京の観測データ も同化することにより、ダスト発生量の推定精度が向上するものと考えられる。

(3) 各々のガスの沈着サイトは、金属酸化物ならびにその表面に形成された水膜の2種類が考え られる。黄砂に対する SO₂の沈着を考えると、SO₂には、沈着し易いサイト(局所的な水膜と数種 の金属酸化物(CaCO₃、Al₂O₃、MgO etc.))、ならびに沈着し難いサイト(SiO₂ etc.)が存在する。 一方、(COOH)₂の沈着は、いかなるサイトであっても一様に起こり得る。このことが、(COOH)₂ が SO₂よりも沈着係数が高くなった理由であり、さらに、(COOH)₂の存在により SO₂の沈着が抑制 されたのに対し、SO₂の存在が(COOH)₂の沈着に影響を与えなかった理由であると考えられる。

また、黄砂粒子表面で、沈着した SO₂の酸化過程は以下のように起こっていたと考えられる。金属酸化物表面には、水分の存在により、水膜が形成されることが示唆されており、本実験条件 (R.H. < 5%)でも、少量の水分が存在していることから、水膜が形成していると考えられる。この水膜への SO₂溶け込みを考え、その水膜がバルクの液相として機能し、酸化が進行すると考えられる。 た.H. 60%前後で、水膜の厚さが変極点を持って急激に増加し、SO₂の沈着係数が増大したことは、他研究報告と同様の結果となった。また、黄砂表面に沈着した SO₂の酸化は、(A) R.H.< 50% では、SO₂の溶解により、黄砂表面上の水分が酸性であるために、金属イオン触媒効果による液相 酸化が有利であり、R.H. 増加による表面水分量の増加が、金属イオンの溶存量の増加を引き起こし、 酸化率が湿度増加とともに増加を引き起こした。一方、(B) R.H. ≧ 50%では、SO₂沈着量がほぼ一定 であったことから、黄砂表面上のS(IV)濃度は減少し、さらにアルカリ土類金属が水膜中の酸性度 を上回り、金属イオン触媒効果による液相酸化を抑制したものと解釈できる。

5. 本研究により得られた成果

(1)科学的意義

ライダーネットワークデータを用いた輸送モデルの検証やデータ同化手法が確立され、黄砂現象の実時間の把握、発生地域と発生量の推定、正確な予報などへの応用が期待される。データ同化手法は、ライダー観測のみならず地上観測データや衛星観測データ等の同化も可能であり、今後の黄砂モデルへの総合的なデータ同化システムの構築の目処を与える成果を得た。大気汚染成分と輸送気塊中で混合し汚れた黄砂が飛来していることがネットワークデータにより明らかになり、実証的実験によりメカニズム解明ができた。たとえば、HF やシュウ酸による黄砂粒子表面における SO2の沈着抑制作用が明らかになったが、この作用は気相のままで長距離移流する SO2の記者・酸化が促進すれば、表面の濡れ特性が変化し、黄砂粒子が雲凝結核として働く可能性を高くする。

- (2) 地球環境政策への貢献
- 1) 日中韓環境大臣会合(TEMM)の合意事項である、黄砂の共同観測に関する実務者会議に貢献。
- 2) 環境省が運用を開始した黄砂飛来情報 HP(ライダー黄砂観測データ提供ページ)中の、ライ ダーネットワーク観測データ(光学的厚さデータと黄砂消散係数の時間高度表示データ)を実 時間(1時間毎に)で提供することに貢献。
- 3) モンゴルの気象に関する JICA 技術協力プログラムにおいて実施した黄砂モニタリングネットワークの構築に貢献。

6. 研究者略歴

課題代表者:西川雅高

1952 年生まれ、東京理科大学大学院工学研究科修了、理学博士、 現在、独立行政法人国立環境研究所環境研究基盤技術ラボラトリー 環境分析化学研究室・室長

主要参画研究者

- (1):1)西川雅高(同上)
 - :2) 杉本伸夫

1954年生まれ、大阪大学大学院基礎工学研究科修了、理学博士、

現在、独立行政法人国立環境研究所大気圏環境研究領域遠隔計測研究室・室長

- (2):鵜野伊津志
 1955年生まれ、北海道大学大学院工学研究科修了、工学博士、
 現在、九州大学応用力学研究所・教授
- (3):坂本和彦
 1945 生まれ、東京大学大学院理学系研究科博士課程修了、理学博士、現在、埼玉大学大学院理工学研究科・教授

7. 成果発表状況(本研究課題に係る論文発表状況。)

- (1) 査読付き論文
 - Kimio Arao, Joji Ishizaka, Nobuo Sugimoto, Ichiro Matsui, Atsushi Shimizu, Ikuko Mori, Masataka Nishikawa, Kazuma Aoki, Akihiro Uchiyama, Akihiro Yamazaki, Hiroki Togawa, Jun'ichi Asano: SOLA, 2, 100-103, doi:10.2151/sola.2006-026 (2006) "Yellow Sand Dust Event on 13 April 2003 over Western Kyushu, Japan"
 - Kimio Arao, Masataka Nishikawa, Shiro Hatakeyama, Akinori Takami, Shigeo Matsuyama and Tadahiro Hayasaka: Journal of Environmental Studies, Nagasaki University, 9(1), 23-30 (2006) "Atmospheric Turbid Conditions due to Fine Particles in Recent Years at Nagasaki, Japan"
 - 3) Y. Hara, I. Uno and Z. Wang: Atmos Environ, 40, 6730-6740 (2006)
 - "Long-term variation of Asian dust and related climate factor".
 - K. Yumimoto and I. Uno: Atmos Environ, 40, 6836-6845 (2006)
 "Adjoint inverse modeling of CO emission over the East Asian region using for dimensioonal variational data assimilation".
 - 5) Katsuyuki Takahashi, Motohiro Hirabayashi, Kiyoshi Tanabe, Yasuyuki Shibata, Masataka Nishikawa, Kazuhiko Sakamoto: Water Air Soil Pollut., 185, 305-310 (2007) doi:10.1007/s11270-007-9454-5
 "Radiocarbon Content in Urban Atmospheric Aerosols"
 - 6) K. Yumimoto, I. Uno, N. Sugimoto, A. Shimizu and S. Satake: Geophys. Res. Lett., 34, 8, L08806 (2007) doi:10.1029/2006GL028551
 "Adjoint Inverse Modeling of Dust Emission and Transport over East Asia"
 - 7) A. Sorimachi and K. Sakamoto: Water Air and Soil Pollution: Focus 7, 181–186 (2007) "Laboratory measurement of dry deposition of ozone onto northern Chinese soil samples"
 - 8) A. Sorimachi and K. Sakamoto: Atmospheric Environment, 41, 2862–2869 (2007)
 "Laboratory measurement of the dry deposition of sulfur dioxide onto northern Chinese soil samples"
 - 9) Y. Hara, I. Uno, K. Yumimoto, M. Tanaka, A. Shimizu, N. Sugimoto, Z. Liu: Geophys. Res. Lett., 35, L23801 (2008) doi:10.1029/2008GL035630
 "Summertime Taklimakan dust structure"
 - K. Yumimoto, I. Uno, N. Sugimoto and A. Shimizu: SOLA, 4, 89-92 (2008)
 "MODIS AOT Based Inverse Modeling for Asian Dust"
 - K. Yumimoto, I. Uno, N. Sugimoto, A. Shimizu, A. Liu and D. M. Winker: Atmos. Chem. Phys., 8, 2869-2884 (2008)
 "Dependence of Acien Dept Emission and Tennen at her Adiaint Investigation and International Medical Medical Advisory (2008)

"Numerical Modeling of Asian Dust Emission and Transport by Adjoint Inversion using Lidar Observation Network"

- 12) I. Uno, K. Yumimoto, A. Shimizu, Y. Hara, N. Sugimoto, Z. Wang, Z. Liu and D. M. Winker: Geophys. Res. Lett., 35 (2008) doi:10.1029/2007GL032329
- "3D structure of Asian Dust Transport revealed by CALIPSO Lidar and a 4DVAR Dust Model"
 13) 鵜野伊津志、弓本桂也、杉本伸夫、清水厚:大気環境学会誌、43 (4), 191-197 (2008)
 「随伴モデリングを用いた東アジア域のダストの発生・輸送の逆推定」

- 14) Y. Hara, K. Yumimoto, I. Uno, A. Shimizu, N. Sugimoto, Z. Liu, D. M. Winker: Atmos. Chem. Phys. Discuss., 8, 8715-8742 (2008)
 "Asian Dust Outflow in the PBL and Free Atmosphere retrieved by NASA CALIPSO and an assimilated Dust Transport Model"
- 15) 高橋克行、森育子、西川雅高、全浩、坂本和彦:エアロゾル研究、23(3), 194-199 (2008) 「北京と東京における都市大気エアロゾル中の炭素成分の特徴」
- 16) Ikuko Mori, Zijie Sun, Miyuki Ukachi, Kimiyo Nagano, Cameron W. McLeod, Alan G. Cox, Masataka Nishikawa: Anal Bioanal Chem, 391, 1997-2003 (2008), doi: 10.1007/s00216-008-2076-y
 "Development and certification of the new NIES CRM 28: urban aerosols for the determination of multielements"
- 17) 早崎将光、大原利眞、黒川純一、鵜野伊津志、清水厚:大気環境学会誌、43(4), 225-237 (2008) 「2007 年 5 月 8-9 日に発生した広域的な光化学オゾン汚染:観測データ解析」
- 18) 杉本伸夫:大気環境学会誌、43(5), 295-300 (2008) 「大気汚染指数 API から見た中国の大気環境の変化」
- 19) Y. Hara, K. Yumimoto, I. Uno, A. Shimizu, N, Sugimoto, Z. Liu and D. M. Winker: Atmos. Chem. Phys., 9, 1227-1239 (2009)
 "Asian dust outflow in the PBL and free atmosphere retrieved by NASA CALIPSO and an assimilated dust transport model"
- 20) I.Uno, K. Eguchi, K. Yumimoto, T. Takemura, A. Shimizu, M. Uematsu, Z. Liu, Z. Wang, Y. Hara and N. Sugimoto: *Nature Geoscience*, 2(8), DOI:10.1038/NGE00583(2009)