RF-065 Tracing atmospheric nitrate in water environments using the triple oxygen isotopes as tracers (Abstract of the Final Report)

Contact persor	n Urumu Tsunogai
	Associate Professor, Earth and Planetary System Science,
	Faculty of Science, Hokkaido University
	N10 W8, Kita-ku, Sapporo, 060-0810, Japan
	Tel: +81-11-706-3586; Fax: +81-11-746-0394
	E-mail: urumu@mail.sci.hokudai.ac.jp

Total Budget for FY2006-FY2007 19,304,000Yen (**FY2007**; 9,307,000Yen)

Key Words atmospheric nitrate, triple oxygen isotopes, nitrous oxide, deposition rate, water environment

[Abstract]

We developed a rapid and sensitive analytical system to determine $\Delta^{17}O$ of NO₃⁻ through the isotopic analysis of N₂O which is quantitatively converted from NO₃⁻. Besides $\delta^{15}N$ and $\delta^{18}O$, we can determine $\Delta^{17}O$ under the precision of 0.2 ‰ for a sample that contain more than 20 nmol of NO₃⁻, through the continuous flow isotope ratio mass spectrometry for both N₂O directly and O₂ produced from N₂O. Besides, we determined $\Delta^{17}O$ values of NO₃⁻ in some natural water samples to quantify the fraction of depositional atmospheric NO₃⁻ (NO₃⁻ atm) within each NO₃⁻ pool. The NO₃⁻ atm fraction was 10±2 % in oligotrophic freshwater at Lake Mashu, 9±4 % in groundwater at Rishiri Island, 0 % in deep seawater, from 3±2 % in surface seawater in and around subarctic North

Pacific, 5 ± 2 % and 25 ± 5 % in coastal area at Tokyo Bay and Ishigaki Island, respectively. These values are consistent with the independent estimates based on direct observations on both the NO₃⁻_{atm} deposition rate and the new production rate in each area.

1. Introduction

Increased atmospheric deposition rate of fixed nitrogen species to both pelagic and coastal oceans could change phytoplankton activities qualitatively and quantitatively. Such changes result in significant variations in biogeochemical cycles, such as air-sea or air-land fluxes

Fig. 1 Triple oxygen isotope plot of atmospheric NO_3^- , as well as the other terrestrial oxygen compounds.

of climatically important gases and particles. The triple oxygen isotopic compositions ($^{18}O/^{16}O$ and $^{17}O/^{16}O$) of NO₃⁻ in water environments can be a useful tracer to quantify the contribution of NO₃⁻ atm to total NO₃⁻ in a water mass, because general NO₃⁻, the oxygen atoms of which are derived from either terrestrial O₂ or H₂O through the reactions such as nitrate remineralization or

nitrification, shows mass-dependent relative variations in between ¹⁷O and ¹⁸O, whereas NO₃⁻_{atm} displays an anomalous enrichment in ¹⁷O (Michalski et al., 2003; **Fig. 1**). By using Δ ¹⁷O signature defined by the following equation, we can distinguish NO₃⁻_{atm} (Δ ¹⁷O > 0) from the other NO₃⁻ in general (Δ ¹⁷O = 0).

$$\Delta^{17}O = \delta^{17}O - 0.52 \times \delta^{18}O$$

Besides, Δ^{17} O won't vary through mass-dependent isotope fractionation processes so that we can trace NO_{3 atm} irrespective of assimilation reactions subsequent to deposition.

2. Research Objective

In this study, we will develop a rapid and sensitive analytical system to determine Δ^{17} O of NO₃⁻ in nmol

quantities. The major points can be classified into the following two parts: (1) quantitative conversion of NO₃⁻ to N₂O (Tsunogai et al., 2008), and (2) Δ ¹⁷O analysis of N₂O using continuous-flow IRMS (CF-IRMS) (Tsunogai et al., 2002; Kawagucci et al., 2005; Komatsu et al., 2008). The simple reactions using spongy cadmium and sodium azide in an acetic acid buffer (McIlvine and Altabet, 2005) are adopted for the basic reaction to convert NO₃⁻ to N₂O. The Δ ¹⁷O values of N₂O are determined through the isotopic analysis of O₂ at the masses 32, 33, and 34, which is quantitatively produced from N₂O in a gold tube (Kaiser et al., 2007; **Fig. 2**), in addition to the direct N₂O isotopic analysis at the masses 44, 45, and 46.

Besides the development of the analytical system, we also determine Δ^{17} O values of NO₃⁻ in some natural water samples in and around Japanese islands to clarify that Δ^{17} O tracer is useful for quantifying the fraction of depositional atmospheric NO₃⁻ (NO₃⁻ atm) within each NO₃⁻ pool.

3. Results and discussion

3.1 Analytical precision

For the samples that contain more than 4 nmol NO₃⁻, precisions are always better than ±0.12 ‰ and ±0.25 ‰ (1 σ) for both δ^{15} N and δ^{18} O. Besides, the δ^{15} N and δ^{18} O values of produced N₂O exhibit linear correlations with their original values in NO₃⁻ with the slope of 0.5 for δ^{15} N and close to 1 for δ^{18} O, suggesting that half of N atoms within the produced N₂O must be derived

Fig. 2 Schematic diagram of the system developed in this study for the triple oxygen isotope analysis of N_2O .

from original NO₃⁻, while the rest are derived from N₃H reagent. It is also suggested that all of O atoms within the produced N₂O must be derived from original NO₃⁻, while some kinetic isotope fractionations occur during the N₃H reduction. Through the corrections for the produced N₂O using the calibration lines, we can estimate accurate $\delta^{15}N$, $\delta^{18}O$ and thus $\Delta^{17}O$ of the original NO₃⁻.

We measured the variation in the Δ^{17} O values of the same N₂O as a function of introduced sample size. While they were found to be accurate and precise for the sizes larger than 5 nmol, the uncertainty of the measured Δ^{17} O increased with decreasing sample size less than 5 nmol. This is likely to be due to isotope exchange of the produced O₂ with an unidentified O reservoir. In conclusion, 20 nmol of NO₃⁻ give a 1 σ uncertainty of 0.2 ‰ for Δ^{17} O. Future identification and removal of the O reservoir will reduce the size drastically for Δ^{17} O measurement.

3.2 Field results

3.2.1 atmospheric NO₃ (NO₃ atm)

To define Δ^{17} O of atmospheric NO₃⁻, rainwater samples had been taken at Sapporo (n=12) and

Alaska (n=5) at least once every month from 2006 to 2007. The atmospheric NO₃⁻ exhibited clear ¹⁷O anomalies (**Fig. 3**). The average Δ ¹⁷O value is +24.8 ‰ with a 1 σ dispersion of ±2.8 ‰ and is in the same range as those previously reported for NO₃⁻ in atmospheric aerosol (Michalski et al., 2003; Kaiser et al., 2007), and those expected from the model tracing NO_x oxidation pathways (Michalski et al., 2003).

Fig. 3 Temporal variations of $\Delta^{17}O_{NO3}$ in rainwater taken at Sapporo (red) and Alaska (blue).

3.2.2 NO₃⁻ in oligotrophic lake (Lake Mashu)

We applied the Δ^{17} O tracer method to determine NO_{3 atm}/ NO_{3 total} ratios in Lake Mashu, so as to clarify the N-cycles within the lake. Lake Mashu is a oligotrophic subalpine crater lake, located in the eastern part of Hokkaido, Japan. The lake has no streams either entering or outflowing, so that the water is extremely clear. It undergoes overturn twice a year, in spring and autumn. Lake water was taken at June and August, 2007 as a part of GEMS/Water project, at the central part of the lake for every 20-50 m depth.

Lake Mashu NO₃⁻ exhibits clear ¹⁷O anomaly ($\Delta^{17}O = +2.5 \pm 0.5 \%$) in June (**Fig. 4**). Assuming that the $\Delta^{17}O$ value is +24.8 ± 2.8 ‰ for NO₃⁻ _{atm}, the NO₃⁻ _{atm} fraction is estimated to be 10±2 % in the lake water, and the rest (ca. 90 %) must be remineralized NO₃⁻, derived from remineralization in and around the lake. The vertically homogeneous distribution of both NO₃⁻ concentrations and $\Delta^{17}O$ values irrespective to the sampling depths in June 2007 suggest that most of the NO₃⁻

characterized by both NO₃⁻ depletion at surface 0 - 100 m and enrichment at 200 m depth in comparison with those in June, probably because the NO₃⁻ assimilation rate is faster than the remineralization rate at surface 0 – 100 m while the remineralization rate is faster than the NO₃⁻ assimilation rate at the deeper part. To quantify the absolute rates, we used the Δ^{17} O tracer because the Δ^{17} O values won't vary through mass-dependent isotope fractionation processes such as assimilation reactions. In conclusion, the depletion of NO₃⁻ concentration at the lake surface on August relative to those in June is mostly due to assimilation of NO₃⁻ by phytoplankton at the surface. On the other hand, the enrichment of NO₃⁻ concentration at the 200 m depth on August relative to those in June is mostly due to remineralization of NO₃⁻.

3.2.2 NO₃⁻ in ground water (Rishiri Island)

We applied the Δ^{17} O tracer method to determine NO_{3 atm}/NO_{3 total} ratios within the groundwater system at Rishiri Island, a conical volcanic Island having a diameter of 8 km, located in the northern offshore of Hokkaido, Japan. The island has no major streams on surface, so that most portions of rain water run through into the groundwater system in the island and seep in and around the shore area as springs.

All the spring waters in Rishiri exhibit clear ¹⁷O anomaly ($\Delta^{17}O = +2.5 \pm 0.8 \%$). Assuming that the $\Delta^{17}O$ value is +24.8 ± 2.8 ‰ for NO₃ atm, the NO₃ atm fraction is estimated to be 9±5 % in the spring water NO₃ total. While the total NO₃ contents in the spring water coincide well with those in rain water at Rishiri, about 90 % of deposited NO₃ atm had been substituted by NO₃ re during the flow through the ground, from recharge on higher altitude until seepage around the shore. Most of the deposited NO₃ atm is assimilated quickly into the biogeochemical N-cycle in the island.

Furthermore, the N-cycle in the island attain steady state, thus it discharge almost the same quantity

of NO_3^- with the influx.

3.2.3 Oceanic NO_3^- (in and around subarctic North Pacific)

We also applied the Δ ¹⁷O tracer method to determine the distribution of NO_{3 atm}/ NO_{3 total}

Fig. 5 <u>Schematic diagram showing the distribution of $\Delta^{17}O_{NO3}$ in ocean surface.</u>

ratios in and around the subarctic North Pacific. In comparison with the other open ocean area, the area that can be characterized by enrichment of nitrate even at the surface due to active upwelling of deeper water. In Sep. 2006, surface (mixed layer) seawater samples were taken at the area of open ocean (n=5), Okhotsk sea (n=2), and Bering sea (n=4) at the depths of 0 - 10 m, using R/V Mirai (JAMSTEC). Besides, sub-surface seawater samples until bottom were taken at 3 of the surface sampling stations.

The absence of a significant ¹⁷O anomaly in the deep waters more than 400 m depth suggests a minor contribution of NO_{3⁻atm} in the deep sea environments, in line with general understandings that most NO₃⁻ in deep sea water has been remineralized from sinking organic nitrogen. On the other hand, all the surface seawater samples exhibit small but definite ¹⁷O anomaly (**Fig. 5**). While the samples taken at the active upwelling region of the off Kamchatka area that can be characterized by annual average nitrate concentration more than 10 μ M exhibit relatively small Δ ¹⁷O values of 0.3 \pm 0.1 ‰, the other area exhibit almost uniform Δ ¹⁷O values of +0.9\pm0.3 ‰. Assuming that the Δ ¹⁷O value is +24.8 ±2.8 ‰ for NO_{3⁻atm}, these average Δ ¹⁷O values corresponds to NO_{3⁻atm} fraction of 1.2 \pm 0.5 % and 3.6 \pm 1.3 %, respectively. These values are basically consistent with the independent estimates based on direct observations on both the NO_{3⁻atm} deposition rate and the new production rate in each area. By determining the Δ ¹⁷O values of NO_{3⁻atm} even in oceanic area, including their temporal variations.

3.2.4 Oceanic NO₃⁻ (coastal ocean)

We also applied the Δ^{17} O tracer method to determine NO₃ atm/ NO₃ total ratios in coastal surface ocean water at Tokyo Bay (summer) and off Ishigaki Island. They exhibit NO₃ atm enrichment up to 7 % (5 % on average) and 30 % (25 % on average), respectively. While the sites are located in coastal area, both area can be characterized by nitrate depletion relative to the subarctic North Pacific area during the sampling periods. Besides, both area located close to NO₃ atm source on land area. Both the relatively small $NO_{3}^{-}re$ contribution from sub-surface depths due to vertical stratification of water masses and high depositional flux of $NO_{3}^{-}atm$ results in the observed $NO_{3}^{-}atm$ enrichment at surface.

References

- Kaiser J., M. G. Hastings, B. Z. Houlton, T. Rockmann, D. M. Sigman (2007) Triple Oxygen Isotope Analysis of Nitrate Using the Denitrifier Method and Thermal Decomposition of N₂O, *Analytical Chemistry*, 79(2), 599-607.
- Kawagucci, S., U. Tsunogai, S. Kudo, F. Nakagawa, H. Honda, S. Aoki, T. Nakazawa and T. Gamo (2005) An analytical system for determining Δ^{17} O in CO₂ using continuous flow-isotope ratio MS. *Analytical Chemistry* 77, 4509-4514.
- Komatsu, D.D., T. Ishimura, F. Nakagawa, and U. Tsunogai (2008) Determination of the ¹⁵N/¹⁴N, ¹⁷O/¹⁶O, and ¹⁸O/¹⁶O ratios of nitrous oxide by using continuous-flow isotope ratio mass spectrometry. *Rapid Communications in Mass Spectrometry*, 22, 1587-1596 (2008)
- McIlvin M. R. and M. A. Altabet (2005) Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater, *Analytical Chemistry*, 77, 5589-5595
- Michalski G., Z. Scott, M. Kabiling, and M. H. Thiemens (2003) First measurements and modeling of Δ ¹⁷O in atmospheric nitrate. *Geophysical Research Letters*, 30(16), doi: 10.1029/2003GL017015.
- Tsunogai, U., F. Nakagawa, D.D. Komatsu, and T. Gamo (2002) Stable carbon and oxygen isotopic analysis of atmospheric carbon monoxide using CF-IRMS by isotope-ratio monitoring of CO. *Analytical Chemistry*, 74, 5695-5700.
- Tsunogai, U., T. Kido, A. Hirota, S.B. Ohkubo, D.D. Komatsu, F. Nakagawa (2008) Sensitive determinations of stable nitrogen isotopic composition of organic nitrogen through chemical conversion to N₂O. *Rapid Communications in Mass Spectrometry*, 22: 345-354.

Major Publications

chemical conversion to N₂O."

continuous-flow isotope ratio mass spectrometry."

- Tsunogai, U., T. Kido, A. Hirota, S.B. Ohkubo, D.D. Komatsu, F. Nakagawa : *Rapid Communications in Mass Spectrometry*, 22: 345-354 (2008)
 "Sensitive determinations of stable nitrogen isotopic composition of organic nitrogen through
- 2) Komatsu, D.D., T. Ishimura, F. Nakagawa, and U. Tsunogai : *Rapid Communications in Mass Spectrometry*, 22, 1587-1596 (2008)
 "Determination of the ¹⁵N/¹⁴N, ¹⁷O/¹⁶O, and ¹⁸O/¹⁶O ratios of nitrous oxide by using
- Sasakawa, M., U. Tsunogai, S. Kameyama, F. Nakagawa, Y. Nojiri, A. Tsuda : Journal of Geophysical Research, 113, C03012, doi: 10.1029/2007JC004217 (2008)

"Carbon isotopic characterization for the origin of excess methane in subsurface seawater."

- 4) Kawagucci, S., U. Tsunogai, S. Kudo, F. Nakagawa, H. Honda, S. Aoki, T. Nakazawa, M. Tsutsumi, and T. Gamo : *Atmos. Chem. Phys.*, in press.
 "Long-term observation of mass-independent oxygen isotope anomaly in stratospheric CO₂."
- 5) Tsunogai, U. (2007) Isotope analysis. In: *Environmental Chemistry*, The Fifth Series of Experimental Chemistry (ed. The Chemical Society of Japan), 20-2, 256-265, Maruzen, Tokyo (in Japanese).