8.1.5 中部に関する検討

中部における有望エリアの分布状況を表 8-6 に、有望エリアと送電線の位置関係を図 8-6 に示す。中部に関しては以下のことが分かる。

1) 中部の導入想定値（陸上）は 290 万 kW であるのに対して、有望エリアの合計は 340 万 kW となっている。
2) 有望エリアは、三重県、愛知県に多く存在し、中部全体の 78% を占めている。

表 8-6 中部における有望エリアの分布状況

<table>
<thead>
<tr>
<th>県</th>
<th>6.0～6.5m/s</th>
<th>6.5～7.0m/s</th>
<th>7.0～7.5m/s</th>
<th>7.5～8.0m/s</th>
<th>8.0～8.5m/s</th>
<th>8.5～9.0m/s</th>
<th>9.0m/s 以上</th>
<th>県別計</th>
</tr>
</thead>
<tbody>
<tr>
<td>長野県</td>
<td>13</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>34</td>
</tr>
<tr>
<td>岐阜県</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>静岡県</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>10</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>愛知県</td>
<td>16</td>
<td>15</td>
<td>24</td>
<td>23</td>
<td>16</td>
<td>2</td>
<td>1</td>
<td>97</td>
</tr>
<tr>
<td>三重県</td>
<td>25</td>
<td>37</td>
<td>35</td>
<td>38</td>
<td>23</td>
<td>11</td>
<td>1</td>
<td>169</td>
</tr>
<tr>
<td>風速区別計</td>
<td>60</td>
<td>71</td>
<td>73</td>
<td>78</td>
<td>44</td>
<td>14</td>
<td>1</td>
<td>340</td>
</tr>
</tbody>
</table>

単位：万 kW
図 8-6 中部における有望エリアと送電線の位置関係
8.1.6 関西に関する検討

関西における有望エリアの分布状況を表8-7に、有望エリアと送電線の位置関係を図8-7に示す。関西に関しては以下のことが分かる。

1) 関西の導入想定値（陸上）は320万kWであるのに対して、有望エリアの合計は327万kWとなっており、余裕幅は少ない。
2) 有望エリアは滋賀県、和歌山県、京都府に多く存在している。

表 8-7 関西における有望エリアの分布状況

<table>
<thead>
<tr>
<th>府県</th>
<th>6.0～6.5m/s</th>
<th>6.5～7.0m/s</th>
<th>7.0～7.5m/s</th>
<th>7.5～8.0m/s</th>
<th>8.0～8.5m/s</th>
<th>8.5～9.0m/s</th>
<th>9.0m/s以上</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>福井県</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>三重県</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>滋賀県</td>
<td>20</td>
<td>24</td>
<td>15</td>
<td>11</td>
<td>15</td>
<td>9</td>
<td>2</td>
<td>96</td>
</tr>
<tr>
<td>京都府</td>
<td>12</td>
<td>19</td>
<td>17</td>
<td>9</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>61</td>
</tr>
<tr>
<td>大阪府</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>兵庫県</td>
<td>20</td>
<td>17</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>48</td>
</tr>
<tr>
<td>奈良県</td>
<td>5</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>和歌山県</td>
<td>21</td>
<td>21</td>
<td>14</td>
<td>13</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>73</td>
</tr>
<tr>
<td>風速区分別計</td>
<td>85</td>
<td>96</td>
<td>63</td>
<td>45</td>
<td>25</td>
<td>10</td>
<td>2</td>
<td>327</td>
</tr>
</tbody>
</table>

単位：万kW
図 8-7 関西における有望エリアと送電線の位置関係
8.1.7 中国に関する検討

中国における有望エリアの分布状況を表 8-8 に、有望エリアと送電線の位置関係を図 8-8 に示す。中国に関しては以下のことが分かる。
1) 中国の導入想定値（陸上）は 320 万 kWh であるのに対して、有望エリアの合計は 407 万 kW となっており、十分な有望エリアがある。
2) 有望エリアは、山口県、広島県、島根県に多く存在する。中でも、中国山地周辺に集中している。

表 8-8 中国における有望エリアの分布状況

<table>
<thead>
<tr>
<th>県</th>
<th>6.0～6.5m/s</th>
<th>6.5～7.0m/s</th>
<th>7.0～7.5m/s</th>
<th>7.5～8.0m/s</th>
<th>8.0～8.5m/s</th>
<th>8.5～9.0m/s</th>
<th>9.0m/s 以上</th>
</tr>
</thead>
<tbody>
<tr>
<td>鳥取県</td>
<td>15</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>島根県</td>
<td>25</td>
<td>29</td>
<td>31</td>
<td>18</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>岡山県</td>
<td>15</td>
<td>17</td>
<td>10</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>広島県</td>
<td>30</td>
<td>32</td>
<td>26</td>
<td>15</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>山口県</td>
<td>25</td>
<td>44</td>
<td>36</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>風速区分別計</td>
<td>110</td>
<td>130</td>
<td>106</td>
<td>48</td>
<td>10</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

図 8-8 中国における有望エリアと送電線の位置関係
8.1.8 四国に関する検討

四国における有望エリアの分布状況を表8-9に、有望エリアと送電線の位置関係を図8-9に示す。四国に関しては以下のことが分かる。

1）四国の導入想定値（陸上）は130万kWであるのに対して、有望エリアの合計は149万kWとなっており、一定的余裕はあることが分かる。
2）有望エリアは、愛媛県、高知県、徳島県に多く分布しているが、系統がほとんど整備されていないところもある。

表8-9 四国における有望エリアの分布状況

<table>
<thead>
<tr>
<th>県</th>
<th>6.0～6.5m/s</th>
<th>6.5～7.0m/s</th>
<th>7.0～7.5m/s</th>
<th>7.5～8.0m/s</th>
<th>8.0～8.5m/s</th>
<th>8.5～9.0m/s</th>
<th>9.0m/s以上</th>
<th>県別計</th>
</tr>
</thead>
<tbody>
<tr>
<td>徳島県</td>
<td>3</td>
<td>11</td>
<td>14</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>香川県</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>愛媛県</td>
<td>22</td>
<td>18</td>
<td>15</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>22</td>
<td>64</td>
</tr>
<tr>
<td>高知県</td>
<td>13</td>
<td>15</td>
<td>12</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>13</td>
<td>47</td>
</tr>
<tr>
<td>風速区分別計</td>
<td>38</td>
<td>46</td>
<td>43</td>
<td>18</td>
<td>4</td>
<td>0</td>
<td>38</td>
<td>149</td>
</tr>
</tbody>
</table>

図8-9 四国における有望エリアと送電線の位置関係
8.1.9 九州に関する検討

九州における有望エリアの分布状況を表 8-10 に、有望エリアと送電線の位置関係を図 8-10 に示す。九州に関しては以下のことが分かる。

1) 九州の導入想定値（陸上）は 320 万 kW であるのに対して、有望エリアの合計は 348 万 kW となっており、余裕幅は少ない。
2) 有望エリアは鹿児島県と熊本県に多く存在しており、九州全体の 71% を占めている。

九州は導入ポテンシャルが北海道、東北に次いで全国で三番目に大きく（658 万 kW、表 5-4）、その有望エリアは全域に分散していることから、九州全域を系統整備検討エリアと位置付け、その導入想定値は 320 万 kW とする。

表 8-10 九州における有望エリアの分布状況

<table>
<thead>
<tr>
<th>県</th>
<th>6.0～6.5m/s</th>
<th>6.5～7.0m/s</th>
<th>7.0～7.5m/s</th>
<th>7.5～8.0m/s</th>
<th>8.0～8.5m/s</th>
<th>8.5～9.0m/s</th>
<th>9.0m/s以上</th>
<th>県別計</th>
</tr>
</thead>
<tbody>
<tr>
<td>福岡県</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>佐賀県</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>長崎県</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>熊本県</td>
<td>52</td>
<td>41</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>108</td>
</tr>
<tr>
<td>大分県</td>
<td>11</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>宮崎県</td>
<td>15</td>
<td>17</td>
<td>11</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>鹿児島県</td>
<td>30</td>
<td>41</td>
<td>32</td>
<td>24</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>140</td>
</tr>
<tr>
<td>風速区別計</td>
<td>118</td>
<td>117</td>
<td>68</td>
<td>32</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>348</td>
</tr>
</tbody>
</table>

単位：万 kW
図 8・10 九州における有望エリアと送電線の位置関係
8.1.10 沖縄に関する検討

沖縄における有望エリアの分布状況を表 8-11 に、有望エリアと送電線の位置関係を図 8-11 に示す。沖縄に関しては以下のことが分かる。

1) 沖縄の導入想定値（陸上）は 60 万 kW であるのに対して、有望エリアの合計は 166 万 kW となっており、十分な風力有望エリアがある。
2) 既設送電線は需要の大きな南部側に集中している一方、有望エリアは県内の中部から北部に多く存在している。

<table>
<thead>
<tr>
<th>地域</th>
<th>風速区分</th>
<th>6.0～6.5m/s</th>
<th>6.5～7.0m/s</th>
<th>7.0～7.5m/s</th>
<th>7.5～8.0m/s</th>
<th>8.0～8.5m/s</th>
<th>8.5～9.0m/s</th>
<th>9.0m/以上</th>
</tr>
</thead>
<tbody>
<tr>
<td>沖縄県北部</td>
<td></td>
<td>30</td>
<td>26</td>
<td>19</td>
<td>7</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>沖縄県中部</td>
<td></td>
<td>7</td>
<td>16</td>
<td>18</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>沖縄県南部</td>
<td></td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>風速区分別計</td>
<td></td>
<td>37</td>
<td>43</td>
<td>43</td>
<td>30</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

単位：万 kW
図 8-11 沖縄における有望エリアと送電線の位置関係