どうなってるの？
オゾン層の問題はまだ解決していません

要素 → 問題 → 対策

フロンとは
フロンの放出
フロンの削減（p.9）
フロンの利用の変遷（p.9）

オゾンとは
オゾン層の破壊
オゾン層の観測（p.7）

紫外線とは
紫外線の増加
紫外線の観測（p.7）
紫外線予防（p.6）

人体や生態系への影響（p.5.6）

フロンとは
フロンは、オゾン層を破壊する主な原因とされる人工の物質です。きわめて安定した性質を持ち、放出されたあと数十年から数百年も大気中に蓄積されます。いくつかの種類があり、まとめてフロンと呼ばれています。20世紀のはじめに発明され、安価で扱いやすかったため、冷蔵庫やエアコンの冷媒、スプレーの噴射剤などに使用されてきました。また、フロンは地球温暖化を促進する温室効果ガスでもあります。

オゾンとは
オゾンは、酸素原子（O）3個からなる薄い青色をした気体で、刺激臭があります。非常に不安定な物質のため、生成されてもすぐに分解します。殺菌・消臭・消毒・漂白などの作用があり、高濃度のオゾンを吸い込むと危険です。地表から10〜50km上空の成層圏に多く集まっていて、このオゾンの多い層をオゾン層と呼んでいます。

紫外線とは
太陽光は波長によって、赤外線、可視光線（目に見える光）、紫外線に分けられます。この3種類の中でも波長がもっとも短いのが紫外線（UV）で、UV-A、UV-B、UV-Cの3つがあります。このうち、人体や生態系にとって比較的害の少ないUV-Aはほとんどが地表まで到達します。UV-BとUV-Cは有害ですが、UV-Cはすべてがオゾン層で吸収され地表には届きません。UV-Bもほとんどがオゾン層で吸収されますし、一部は地表まで到達します。
オゾンとフロンと紫外線の関係

オゾン層では、オゾンが一定のバランスを保ちながら常に分解や生成を繰り返しており、分解には紫外線のエネルギーが使われています。つまり、オゾン層は、オゾンの分解や生成を繰り返すことで有害な紫外線を吸収し、地上の生物を守っています。紫外線の中でも特に生物に強力な害のあるUV-BのほとんどとUV-Cのすべてがオゾン層で吸収されるため、これまで地上にはあまり届いていませんでした。

しかし、フロンの影響でこの状況が変わりました。フロンは非常に分解しにくい物質で大気中に長期間とどまり、一部がオゾンの集まる成層圏に到達します。成層圏に達したフロンは紫外線により分解され、塩素を発生します。この塩素が、触媒として非常にたくさんのオゾンを分解してしまいます。大気中に多くのフロンが放出されるようになり、オゾンの分解・生成のバランスが崩れ、オゾン層は減少しはじめました。その結果、地表に届く有害な紫外線の量が増えはじめました。
オゾン層の特徴と現状

オゾン層の濃度は地域や季節によって異なります

オゾン層は地表から約10〜50km上空に広がっていますが、オゾンの量は、地域によって必ずしも同じではありません。北半球ではオホーツク海上空、南半球では南極海上空など、緯度の高いところで多く。

オゾン層の破壊は今も続いています

日本では、札幌、つくば、鹿児島、那覇の4箇所でオゾン量の観測が行われています。長期的な変化を見ると北の方ほどオゾンの減少が大きく、札幌、つくば、鹿児島では減少が確認できます。那覇では大きな変化は見られません。（右グラフ下）
オゾンホールってなんだろう

オゾンホール（オゾンの穴）とは、オゾン層が破壊されてオゾンの濃度が極端に薄くなった領域のことである。南極上空で見られます。人工衛星で撮ったオゾン濃度の状況図では、南極上空のオゾン層に穴があいたように見えるのでこう呼ばれています。オゾンホールは、毎年9〜10月頃（南極では春にあたる）に観測されます。

南極上空では、冬になると副層流の一部が西風（ジェット気流の一種）に取り巻かれて、この層内では約マナス80度と非常に低温になり、塩素や臭素などのオゾン層破壊物質が活性化されます。そして南極に日が当たりはじめると、春頃からオゾン層が破壊され、オゾンホールが生まれます。

オゾンホールの面積は、右のグラフに見られるように1980年代前半から1990年頃にかけて急激に大きくなりましたが、その後も徐々に拡大しています。また、右のグラフは南極で最もオゾンが減少する10月のオゾンの高度分布を示したもので、青線はオゾンの破壊が見られる前の平均値、紫線は2004年の平均値です。これを見ると、オゾン量はこの20年ほどの中にはオゾン量が特に14〜20km上空で大きく減少していることがわかります。

2004年のオゾンホール

2004年のオゾンホールは、8月下旬に拡大し、9月22日に最大面積2,423万km²に達しました。これは、日本の面積の約70倍に相当します。2004年は比較的小規模でしたのが、大規模なオゾンホールは引き続き出現すると考えられます。

オゾンホール発見の衝撃

南極上空のオゾンの減少が最初に発見されたのは、1982年9月のことです。南極観測隊で日本の観測隊の志賀隊員が、上空のオゾン量が極端に減っていることに気づきました。また、同じ年の10月には、アメリカ南極観測所のファーマンも同じ状況に気づき、その後、1970年代後半からの南極上空におけるオゾンの減少を示す論文を1985年に発表しました。人工衛星で計測された画像を解析すると、南極上空のオゾン濃度が低いところだけが穴があったように見えるので、この現象は「オゾンホール」と呼ばれるようになりました。南極オゾンホールの画像は、世界に大きな衝撃を与えました。
紫外線による影響

オゾン層が破壊されると紫外線量が増加します

地上に到達する紫外線量は、オゾン量の減少によって増加することが知られています。日本では、1990年頃から札幌、つくば、鹿児島、栃木で紫外線量の観測をしていますが、観測開始以来、大きな変化は見られません。しかし、国庁でのオゾン量は長期間に減少しているため、紫外線量は1970年代と比べて最大で8％増加していると考えられています。

紫外線は、特にオゾンホールが拡大している南半球のニュージーランドやオーストラリアなどでより深刻な問題となっています。右のグラフは、ニュージーランドの夏期（12～2月）の平均オゾン量及び紫外線量の経年変化を示しています。2002年のUNEP（国連環境計画）環境影響評価パネル報告では、南北両半球の中高緯度の10箇所以上の観測点において、1980年前半より紫外線量が6～14％増加したと報告しています。

紫外線による生態系や人体への影響

オゾン層が破壊されると、地上に到達するUV-Bの量が増加します。UV-Bは、動植物の発育を妨げると生態系に影響を及ぼすだけでなく、人体に対しても、皮膚がん・白内障といった病気や免疫機能の抑制などの影響があるとされています。

紫外線に影響される疾患

<table>
<thead>
<tr>
<th>急性</th>
</tr>
</thead>
<tbody>
<tr>
<td>①日焼け（サンバーン、サンタン）</td>
</tr>
<tr>
<td>②雪目</td>
</tr>
<tr>
<td>③免疫機能低下</td>
</tr>
</tbody>
</table>

慢性

<table>
<thead>
<tr>
<th>皮膚</th>
</tr>
</thead>
<tbody>
<tr>
<td>①しぶわ（羹形皮膚）</td>
</tr>
<tr>
<td>②シミ・老人斑</td>
</tr>
<tr>
<td>③良性腫瘍</td>
</tr>
<tr>
<td>④前がん症（日光角化症＋悪性黒子）</td>
</tr>
<tr>
<td>⑤皮膚がん</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>目</th>
</tr>
</thead>
<tbody>
<tr>
<td>①白内障</td>
</tr>
<tr>
<td>②翼状片</td>
</tr>
</tbody>
</table>

紫外線の影響で変色したきゅうりの葉

写真提供：中島直美氏（国立環境研究所）

皮膚がん

写真提供：市橋正光氏（サンケアー研究所）

白内障

写真提供：藤本とも之氏（金沢医科大学）
海外の紫外線対策

古くから紫外線の防じょうに取り組んできたオーストラリアでは、紫外線対策が広く一般に浸透しています。

1980年代に始まった「サン・スマート(Sun Smart)」プログラムという紫外線対策プログラムでは、『スリップ・スロップ・スラップ』(slip slop slap)という合い言葉で、子供たちに「背中でのシャツを着よう」「日焼け止めクリームを塗ろう」「帽子をかぶろう」などと呼びかけています。さらに、学校では、「ノーハット・ノープレイ(No Hat No Play)」(帽子をかぶらない子どもは外で遊んではいけない)と指導しています。肌が出てくるところには日焼け止めクリームを塗ることを義務づけ、各クラスにクリームを常備するなど学校での紫外線対策が徹底しています。オーストラリアを見習って、他の国でも紫外線対策が広がっています。

皮膚がん増加のシナリオ

オゾン層の破壊が進むと、今後、どのような影響が現れてくるのでしょうか。

オゾン層の破壊が進むと、フロンなどのオゾン層破壊物質の大気中濃度が上昇します。モントリオール議定書に取り入れられたオゾン層破壊物質の削減が数年にわたる改正での規制強化がそれぞれ守られるとした場合、大気中の窒素濃度（フロンガスから分解された窒素がオゾンを破壊します）と皮膚がんの増加数が、今後どのように変化するかを予測したのが左のグラフです。

グラフをみると、もし何も対策が行われていなかったら、大気中の窒素濃度はどんどん高まり、それにつれて、皮膚がんの増加数も加速度的に増えていくことが分かります。たとえ、もっとも厳しい規制におそらく対策が進み、現在考えられる最良のシナリオで推移したとしても、皮膚がんは今後40〜50年は増えることを続けます。
オゾン層を守るために ①

世界的にオゾン層や紫外線の観測が行われています

オゾン層の破壊が注目されるようになってから、オゾン層の観測の重要性があらためて認識され、全世界でオゾン層の観測システムが整備されました。観測方法には何種類かがあり、主なものに、地上に到達する紫外線の強度比を測定して観測する方法（全量観測）、オゾンの高度分布を求める方法（反転観測）、ゴム気球に測定器を付けて飛ばす方法（オゾンゾーン観測）があります。また、人工衛星による観測も各国で実施されています。観測地は現在、下の地図のようにあわせて229箇所ありますが、北半球の中緯度に多く、北半球低緯度や南半球に少ない状況で、これからさらに整備する必要があります。

一方、紫外線の観測は、各国が違った観測器を使用してそれぞれ個別に実施しており、国際的に組織された観測網はありません。日本では、気象庁の札幌・つくば・那覇の観測所のほか、国立環境研究所の有害紫外線モニタリングネットワークに参加する各地の観測所で観測が実施されています。

世界のオゾン観測所の分布

オゾンや紫外線を観測する機器

[図: 全量観測、反転観測、オゾンゾーン観測]
オゾン層を守るための国際的取組み

オゾン層破壊の問題が認識されるようになってから、国際的な取組みとして初めて合意されたのが、1985年の「オゾン層の保護のためのウィーン条約」でした。1987年には、オゾン層破壊物質の具体的な規制内容を含んだ「オゾン層を破壊する物質に関するモントリオール議定書」が採択されました。その後、予想を上回るスピードでオゾン層の破壊が進んだことから、モントリオール議定書は何度か見直され、オゾン層破壊物質の削減のスケジュールが早められています。また、現在も毎年締約国会議が開催されています。

日本でのフロンの削減

日本では、ウィーン条約とモントリオール議定書に加入することにあわせて、1988年に「特定物質の規制等によるオゾン層の保護に関する法律（オゾン層保護法）」を制定し、モントリオール議定書で規制の対象となっているオゾン層破壊物質（フロンなど）を対象に製造の規制や排出抑制の努力義務などを取り決めました。2001年には、「特定製品に係るフロン類の回収及び破壊の実施の確保等に関する法律（フロン回収破壊法）」が制定され、オゾン層を守るための取組みが進めています。これらの取組みの結果、日本のCFC（クロロフルオロカーボン）の出荷量は1990年以降減少し、1990年代の後半にはほぼゼロになりました。HCFC（ハイドロクロロフルオロカーボン）も近年は減少傾向にあります。一方で、これらのフロンの代わりに用いられるHFC（ハイドロフルオロカーボン）の出荷量は増加しています。

フロン類の濃度

フロンは安定した性質を持ち分解されにくいため、出荷量を削減してから大気中における濃度が減少はじめるまでは時間がかかります。大気中に多く蓄積されているオゾン層破壊物質に、CFC、HCFC等があります。CFCの大気中濃度は、1990年代前半までは増加傾向にありました。その後は横ばいか、やや減少しています。しかし、HCFCはいまだに削減が進められています。トリクロロエタン（CHCl₃）は大気中の寿命が比較的短く、使用の抑制に伴って濃度が減少しています。
オゾン層を守るために②

使われるフロンは時代とともに変わってています

1928年に発明されたCFCは、冷蔵庫の冷媒（冷却剤）やスプレーの噴射剤などに使用されてきましたが、1980年代に入り、オゾン層破壊物質として規制されるようになりました。その後、CFCに代わりHCFCなどの物質が使われるようになりましたが、CFCほどではないもののオゾン層を破壊してしまうため、やがてこれも規制の対象となりました。次に、代替フロンと呼ばれるHFCが開発され、使用されるようになりましたが、オゾン層を破壊しないものの、地球温暖化の原因物質であるため、使用の抑制が進められています。現在は、インプトンなどオゾン層にも地球温暖化にも影響のない物質（ノンフロン）の使用が広がりはじめています。

種類	用途	オゾン破壊係数（ODP）	地球温暖化係数（GWP）	生産規制スケジュール	濃度上昇
CFC	電気冷蔵庫	0.6-1.0	4,600-14,000	1996年以降全廃	2010年以降全廃
	カーティヤン			(推計) 2030年以降全廃	
	窓用冷蔵空调設備			(推計) 2040年以降全廃	
	超低温用冷蔵空调設備			2020年以降は、薬物の冷蔵空调設備のみ	
	超低温用冷蔵空调設備			2015年以降全廃	
HKFC	ルームエアコン	0.001-0.52	120-2,400	1996年以降全廃	2015年以降全廃
	窓用冷蔵空调設備			2016年以降は、薬物の冷蔵空调設備のみ	
	超低温用冷蔵空调設備			2015年以降全廃	
HBFC	ブロモメノルメタン	0.02-7.5	470	1996年以降全廃	2015年以降全廃
	漬物、農薬	0.12	-	2002年以降全廃	2002年以降全廃
	医薬品、防腐剤			2005年以降全廃	

【オゾン破壊係数（ODP）】CFCの中で最もよく使われていた「CFC-11」の単位重量あたりのオゾン破壊係数を1とした場合の相対値
【地球温暖化係数（GWP）】二酸化炭素（CO2）の単位重量あたりの地球温暖化係数を1とした場合の相対値

オゾン層の問題は地球温暖化と密接に関係しています

オゾン層は太陽光線を吸収することによって、上空の成層圏を形成し、現在の気候を維持しています。そのため、オゾン層の破壊は、気候にも影響を与えます。また、地球温暖化の進行がオゾン層の回復に及ぼす影響についても、研究が進められています。

オゾン層破壊物質であるフロンは強力な温室効果ガスでもあるため、フロンを排出しないようにすることは、オゾン層の保護とともに温帯化の防止に役立ちます。また、HFCなどの代替フロンは、オゾン層を破壊することはありませんが、温室効果ガスであり、これらの物質も削減していく必要があります。
わたしたちにできること

オゾン層のことをもっと知りましょう

オゾン層については、書籍やインターネットのホームページでも多くの情報が得ることができます。下記のサイトを参考に、自分の関心のあることから勉強していきましょう。

ノンフロン製品を選びましょう

日本では、CFCの生産はすでに全廃されていま

すが、HCFCやHFCなどのフロンガスは、ま

das生産・使用されています。これから新たに冷

蔵庫などを買うときは、フロンが使われていな

いノンフロン製品を選ぶようにしましょう。また、

フロンを使用したスプレー商品などはできるた

け使わないようにしましょう。

フロンの回収に協力しましょう

私たちが使っている製品の中には、まだフロ

ンが使われているものが多くあります。フロン

を使用した製品がそのまま廃棄されると、フロ

ンが大気中にもれてしまう可能性もあります。冷

蔵庫やエアコンを捨てると、家電リサイ

クル券を買って、小売店などに引き取ってもら

いましょう。また、新しい車を購入したり、現

在使っている車を車検に出す際には、自動車の

リサイクル料金を支払いましょう。リサイクル

料金には、カーエアコンからフロンを回収し破

壊する費用が含まれています。

オゾン層に関する参考サイト

環境省「オゾン層を守ろう（ハンブレット）」
http://www.env.gouv.jp/ozone/h15pamph/index.htm

環境省「紫外線保健指導マニュアル」

気象庁「オゾン層破壊」
http://www.data.kishou.go.jp/oobs-emp/hp/3-0ozon.html

気象庁「紫外線情報」
http://www.jma.go.jp/jp/uv/

経済産業省「守ろうオゾン層防ごう地球温暖化」

有害紫外線モニタリングネットワーク
http://www-cger2.nies.go.jp/ozone/uv/uv.html

NPO法人「ストップ・フロン全国連絡会」
http://www.jason-web.org/

日本科学技術振興財団「地球を守る」
http://kankyo.jsf.or.jp/
環境省
地球環境局 環境保全対策課 フロン等対策推進室
平成16年7月発行
〒100-8975 東京都千代田区霞ヶ関1-2-2
TEL 03-5521-8329
FAX 03-3581-3348
URL http://www.env.go.jp/