Contract project-2004 With Ministry of the Environment, Japan

Ministry of the Environment

Air Pollution Control Technology In Fertilizer Manufacturing Industry

March 2005

Overseas Environmental Cooperation Center, Japan

Air Pollution Control Technology in Fertilizer Manufacturing Industry

Committee Members

Chairman:

Dr. K. Nishida, Researcher, Department of Urban and Environmental Engineering, Kyoto University (Retired)

Member:

Mr. S. Iwasaki, Director, Metocean Environment Inc. Dr. S. Fujii (P.E.), Takuma Co., Ltd. Mr. Y. Ogino (P.E.), Environment Technology L.R.C.

Prepared by

Dr. A. Hogetsu (P.E.), Research Commissioner, OECC

Urea Plant in Bangladesh

1. Air Pollution in Fertilizer Plant

<u>Fertilizer</u>	Raw materials
Nitrogenous F.	: ammonia, Chilean saltpeter, limestone + N ₂ ,
Phosphate F.	: phosphate rock
Potassium F.	: ore (ingredient ; KCI + NaCI), KCI, · · · ·
Coated F.	: N, P, K + thermo plasticity resin

<u>Pollutants</u>	<u>Origins of Pollutants</u>
Soot SOx NOx	Boiler, Dryer, Calcining furnace, etc.
Dust	Raw material stock yard, Raw material feed equipment, Belt conveyer, Bucket conveyer, Crusher, Mill, Sieve
HF	Phosphate fertilizer plant Reactor, Calcining furnace, Melting furnace, Phosphoric acid concentration plant
NH ₃ Solvent	Pelletizer, Dryer Coated fertilizer manufacturing process

2. Soot & Dust Collection

2-1 Gravitational, Inertial & Centrifugal Dust Collector

Centrifugal

Stokes' Law

V=(g/ 18 µ)(1 -) D² (cm/s)
V: settling velocity (cm/sec)
µ: gas viscosity (kg/ms)
g: gravitational acceleration (cm/s²)
1: particle density (g/cm³)
E: gas density (g/cm³)
D: particle diameter (cm)

Principle of dust collection ;

Centrifugal force (F) = mv^2/R ,(N)

m: particle mass (kg)

- V: particle velocity (m/ s)
- R: cyclone radius (m)

2. Soot & Dust Collection

2-2 Scrubbing Dust Collector

Mechanisms of Separation

- Adhesion of dust to water drops & water film by inertia force
- Adhesion by diffusion force among dusts
- Increase of coagulation force of particles by increasing moisture
- Moisture condensation triggered by dust as a nucleus
- Particle adhesion by bubbles

Typical Types of Scrubbers

Туре	Velocity	L/G	Р	Th.
	m / s	l / m³	kPa	μm
Spray	1~2	2~3	0.1~0.5	3
Packed	0.5~1	2~3	1~2.5	1
Jet	10~20	10~50	0~ -1.5	0.2
Venturi	60~90	0.3~1.5	3~8	0.1

Th. : Particle size of threshold to allowing 50 % removal

Packed tower

2. Soot & Dust Collection 2-4 Electrostatic Precipitator

Principle of dust collection ;

Structure of EP

2. Soot & Dust Collection 2-5 Selection of Dust Collector

Factors affecting Dust Collection:

dust concentration, particle size distribution, temperature of dust, apparent electric resistance rate, due point, gas temperature, composition of flue gas, gas volume, etc.

Applicable Range of Dust Collector

Туре	Particle	Working	Cutback	Pressure	Equipment	Running
	(µ m)	()	Level	Drop	Cost	Cost
			(%)	(mm H ₂ O)		
Gravity	1000~50	d.p. ~ 400	40 ~ 60	10~15	S	S
Inertia	100~10	d.p.~ 400	50 ~ 70	30 ~ 70	S	S
Centrifuge	100~3	d.p. ~ 400	85 ~ 95	50~150	М	Μ
Scrubbing	100~0.1	no- limit	80 ~ 95	300 ~ 800	M	L
Filtration	20~0.1	no- limit	90 ~ 99	100 ~ 200	М	М
EP	20~0.05	d.p. ~ 400	90~99.9	10~20	L	S~M

L: expensive M: average S: cheap

3. SOx Reduction Technology

Sources of SOx: Fuel SOx

- Boiler - Dryer - Calcining furnace - Melting furnace

4. NOx Reduction Technology

4-1 NOx Generation in Fertilizer Plant

<u>Air ratio ~ Retention time ~ Thermal NOx</u>

Thermal NOx Fuel NOx

NOx concentration increases at:

- higher temp. in combustion
- higher O₂ conc.
- longer retention in high temp. zone

4. NOx Reduction Technology					Domo	rke	
4-2 NOx Control Methods	Decreasing effect		heat	heat heat hease ease			
NOx Reduction Methods	Therr	nal	Fuel	lowering efficienc	lowering out put	enlarginç equipme	dust incr
Improving operating condition	NO	X	NOx				
Lower air ratio combustion Lower heat load							
Decreasing pre-heat air temp.							
Improving equipment configuratio 2-stege combustion	n						
Rich-lean burner							
Exhaust gas recirculation Steam or water injection							
Low NOx burner							
flame-divided type							
self-circulate type							
Emulsion combustion							

5. Dust Scattering Prevention

<u>Dust generating equipment</u> <u>& location designated by air</u> pollution control law

- belt conveyer
- bucket conveyer
- crusher, mill
- sieve
- ore stock yard

<u>Measures</u>

- outdoor stock with sheet cover (phosphate rock)

<u>Equipment protected work shop</u> <u>environment from dust scattering</u>

- silo, hopper for raw material
 & product
- transporting equipment except belt & bucket conveyer
- packing machine, etc.

- indoor allocation
- closed cover, negative pressure
- Sealed dust collecting cover
- dust collecting hood

cyclone
bag filter

6. NH₃ Removal Technology

1. <u>Permissible NH₃ emission</u>:

1~ 5 ppm at boundary of premise (set forth by prefecture governors)

$Q = 0.108 X He^2 X Cm$

- Q : gas volume (Nm³ / h)
- He : effective height of exhausting outlet (m)

Cm: concentration at boundary line of premise (ppm)

2. In compound fertilizer plant :

Process pelletizer & drying $(NH_4)_3PO_4$

Origin $(NH_4)_2SO_4$ $CO(NH_2)_2$

Abatement

reservoir type wet scrubber pressurized water scrubber packed bed water scrubber (NH₄ removal 70~90%, 20~50ppm)

7. F Removal Technology

Generation of F

8. Odors Abatement technology

8-1 Abatement Processes

Deodorizing Method

Incineration method

direct incineration regenerative thermal oxidizer catalytic incineration

Scrubbing method

<u>Adsorption method</u>

recovery type fixed bed fluidized bed concentration type honeycomb replacement type

Biological method

soil bed packed tower

Deodorizer, masking agent

Process

decompose to CO₂, H₂O by heat at 800 regeneration, heat efficiency > 80% using catalysis at 200~ 350 , rem. > 99%

scrubbing by chemical solution water, acid, alkaline, oxidant, etc.

activated carbon, steam regeneration activated c., heat regeneration by N₂ gas

separating odor from low concentration gas replacing saturated adsorbent or oxidant

biodegradation by microorganisms using soil bacteria using bio-film on the media

deodorize or easing offending gas

8. Odors Abatement technology

8-2 Troubles in Abatement Processes (examples)

Deodorizing Method	Trigger	Trouble
<u>Combustion method</u> direct incineration regenerative thermal ox. catalytic incineration	NOx mixture of Cl ₂ , paint, etc. mixture of Cl ₂ , paint, S, etc.	permission level HCI , clogging catalyst deterioration
Adsorption method		
recovery type		
fixed bed	mixture of ketone, high B.P. substance	firing, deterioration of activated carbon
fluidized bed concentration type	high temp. of exhaust gas	A.C. deterioration
honeycomb	mixture of cyclohexane	firing
replacement type	conc. > several ppm	short term A.C. replacement
Biological method		-
soil bed	drying of soil	malfunction
packed tower	slow acclimatization	slow starter
Scrubbina	less sprinkling water	malfunction

dust in gas

clogging internals

9. Solvent Recovery & Abatement technology

1. Sources of Generation coated fertilizer (thermoplasticity resin)

2. Abatement

recovery of solvent brings profit production cost reduction residual solvent value recovery cost pollution control

3. Abatement Process

 cooling condensation method cool down flue gas below vapor pressure

absorption & dispersion method absorbing of solvent to absorbent with lower vapor pressure

adsorption & dispersion method

applicable to compositions with low vapor pressure and nonexistence of antagonist. Adsorbed at under pressure or lower temp.. adsorber: fixed bed, moving bed, fluidized bed adsorbent: A.C., silica gel, molecular sieve, aluminum gel regeneration method: heated gas, steam, heat transfer, extraction under decompression

10. Environmental Management System

- 1. Environmental Management System
 - Organization for Environmental Control
 - ISO 14000 series---- PDCA cycle
 - Responsible for environmental protection
- 2. Environmental Control Manual - Operation Standard Manual
- 3. Education & Training
 - legally qualified expert of environment control
 - training program and preparation of manual
- 4. Environmental Control at Work Shop
- **5. Environment Monitoring**
 - maintaining monitoring system
 - monitoring of air pollution state
 - legal emission permissible level

