Air Pollution Control Technology
In Steel Industry

March 2005

Overseas Environmental Cooperation Center, Japan
Air Pollution Control Technology in Steel Industry

Committee Members
Chairman:
Dr. K. Nishida, Researcher, Department of Urban and Environmental Engineering, Kyoto University) (Retired)

Member:
Mr. S. Iwasaki, Director, Metocean Environment Inc.
Dr. S. Fujii (P.E.), Takuma Co., Ltd.
Mr. Y. Ogino (P.E.), Environment Technology L.R.C.

Prepared by
Dr. A. Hogetsu (P.E.), Research Commissioner, OECC
Steel mill lives close together with neighboring people
(Kobe Steel Kakogawa Plant)
1. Iron & Steel Making Process and Air Pollutants

- Iron ore & coking coal
- Sintering machine
- Coke oven
- Hot stove
- Blast furnace
- Converter
- Continuous casting
- Pre-heating furnace
- Continuous annealing furnace
- Hot rolling
- Cold rolling
- Hot role steel
- Cold role steel
- BFG
- COG
- Slag
- Dust
- SOx
- NOx
- Boiler

Diagrams showing the process flow and air pollutants.
2. Process of Electric Furnace Plant and Air Pollutants

EBT: Electric Bottom Tapping

EBT: Electric Bottom Tapping
3. Coarse Particle Scattering Prevention

3-1 Coal Handling Process

- Water sprinkling
- Chemical spraying
- Wind shelter fence
- Hopper
- Coal cargo
- Chemical dosing
- Coke oven
- Quenching tower
- Screening
- Storage bin
- Coke production facility
- Dust collector
- Dust collection
3. Coarse Particle Scattering Prevention

3-2-1 Coke Production 🏗️ Coal Charging Process
3. Coarse Particle Scattering Prevention

3-2-2 Coke Production ▫ Coke Discharging Process

- Coke guide car
- Ground facilities
- connection valve
- Pre-duster
- bag filter
- stack
- quenching car
- suction hood
- coke guide car
- coke oven
- Ground facilities
3. Coarse Particle Scattering Prevention
3-3 Sintering Process

ESCS: Electrostatic Space Clear Super
3. Coarse Particle Scattering Prevention

3-4 Blast Furnace Process

- Coke bin
 - Bag filter
 - Wet scrubber

- Ore bin
 - Bag filter

- Surge hopper

- Charge conveyor

- Casting bed

- Torpedo car

- Slag ladle

- Hot stove

Flows and Emissions

- $Q = 13,000 \times 2 \, \text{m}^3/\text{m}$
 - 4 $\equiv 0.01 \, \text{mg/Nm}^3$

- $Q = 4,800 \, \text{m}^3/\text{m}$
 - 3 $\equiv 0.01 \, \text{mg/Nm}^3$

- $Q = 1,400 \, \text{m}^3/\text{m}$
 - 15 $\equiv 0.01 \, \text{mg/Nm}^3$

- $Q = 460 \, \text{m}^3/\text{m}$
 - 5-10 $\equiv 0.03 \, \text{mg/Nm}^3$

- $Q = 600 \, \text{m}^3/\text{m}$
 - 12-15 $\equiv 0.02 \, \text{mg/Nm}^3$
3. Coarse Particle Scattering Prevention

3-5 Steel Manufacturing Process (Converter)

- Bag filter
- EP

- Hot metal treatment center: 7,700 m³/m³, 5% 0.01 mg/Nm³
- Ladle repair: 4,000 m³/m³, 2% 0.03 mg/Nm³
- Desulphur slag scraper: 1,800 m³/m³, 20% 0.10 mg/Nm³
- Tundish yard: 7,500 m³/m³, 15% 0.01 mg/Nm³
- Desulphurization center: 7,500 m³/m³, 2% 0.03 mg/Nm³
- Hot metal pit: 7,500 m³/m³, 2% 0.03 mg/Nm³
- Ladle converter: 7,500 m³/m³, 2% 0.03 mg/Nm³
- Building exhaust: 14,200 x 2 m³/m³, 0.4% 0.03 mg/Nm³
3. Coarse Particle Scattering Prevention

3-6 Electric Furnace

- Roof exhausting system
- Bag filter
- Direct exhausting system

Conventional System

Doghouse System
4. Dust Collection System

4-1 Gravitational, Inertial & Centrifugal Dust Collector

Stokes’ Law

\[V = \frac{g}{18 \mu}(\rho_1 - \rho) D^2 \text{ (cm/s)} \]

- \(V \): settling velocity (cm/sec)
- \(\rho \): gas viscosity (kg/ms)
- \(g \): gravitational acceleration (cm/s²)
- \(\rho_1 \): particle density (g/cm³)
- \(\rho \): gas density (g/cm³)
- \(D \): particle diameter (cm)

Principle of dust collection:

Centrifugal force \(F = \frac{mv^2}{R} \) (N)

- \(m \): particle mass (kg)
- \(V \): particle velocity (m/s)
- \(R \): cyclone radius (m)
4. Dust Collection System

4-2 Scrubbing Dust collector

Principle of Scrubber Dust Collector:

Scrubbers:

- Reservoir type
- Pressurized water type
- Packed bed type
- Rotary type

Diagram showing dust droplets being dropped into water, forming a water film and impact disc, with water spray disc and fan runner.
4. Dust Collection System

4-3 Filter Type Dust Collector

Filtration Mechanism

Schematic of typical bag filter unit

Type:
(1) bag filter
(2) cartridge filter

Filter cloth:
(1) woven fabric
(2) non-woven fabric

Dust shake-off:
(1) intermittent
(2) continuous

Apparent filtration rate:
0.3~10 cm/s

\[P_i = P_0 + P_{th} \]

- Pi: inlet dust pressure
- P: gas pressure
- Pd: dust pressure
- Pth: pressure loss to be shaken off

- Filter bag
- Filter cloth
- Dust layer to be shaken off
- Thin film dust

Aperture 50~10 μm

Twisting
4. Dust Collection System
 4-4 Electrostatic Precipitator

Principle of dust collection:

- **Structure of EP**
 - high voltage DC generator
 - manhole
 - hammering drive
 - gas distribution plate
 - hammering device
 - collecting electrode
 - hopper
4. Dust Collection System

4-5 Selection of Dust Collector

<table>
<thead>
<tr>
<th>Collector</th>
<th>Applicable Particle (㎛)</th>
<th>Δp (mmH₂O)</th>
<th>Removal rate (%)</th>
<th>Equipment Cost (¥/ yNm³/h)</th>
<th>Operating Cost (¥/ yNm³/h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravity</td>
<td>1,000~50</td>
<td>10~15</td>
<td>40~60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inertial</td>
<td>100~10</td>
<td>30~70</td>
<td>50~70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centrifugal</td>
<td>100~3</td>
<td>50~150</td>
<td>85~95</td>
<td>300~2,200</td>
<td>100~1,000</td>
</tr>
<tr>
<td>Scrubbing</td>
<td>100~0.1</td>
<td>300~900</td>
<td>80~95</td>
<td>400~2,200</td>
<td>100~1,300</td>
</tr>
<tr>
<td>Filter</td>
<td>20~0.1</td>
<td>100~200</td>
<td>90~99</td>
<td>300~2,100</td>
<td>300~1,100</td>
</tr>
<tr>
<td>EP</td>
<td>20~0.05</td>
<td>10~20</td>
<td>90~99.9</td>
<td>400~4,400</td>
<td>100~1,000</td>
</tr>
</tbody>
</table>

Parameter

- particle distribution
- dust concentration
- specific gravity
- electric resistance rate
- flow rate
- due point
- gas temp.
5. Desulphurization Technology

5-1 Flue Gas Desulphurization in Steel Mill

<table>
<thead>
<tr>
<th>Method</th>
<th>Reaction</th>
<th>Byproduct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activated carbon</td>
<td>$\text{SO}_2 + \text{H}_2\text{O} + 1/2\text{O}_2 \xrightarrow{\text{β}} \text{H}_2\text{SO}_4$</td>
<td>H_2SO_4</td>
</tr>
</tbody>
</table>
| Caustic soda | $2\text{NaOH} + \text{SO}_2 \xrightarrow{\text{β}} \text{Na}_2\text{SO}_3 + \text{H}_2\text{O}$
$\text{Na}_2\text{SO}_3 + \text{H}_2\text{O} + \text{SO}_2 \xrightarrow{\text{β}} 2\text{NaHSO}_3$ | Na_2SO_4 |
| Ammonia | $2\text{NH}_4\text{OH} + \text{SO}_2 \xrightarrow{\text{β}} (\text{NH}_4)_2\text{SO}_3 + \text{H}_2\text{O}$
$(\text{NH}_4)_2\text{SO}_3 + \text{SO}_3 + \text{SO}_2 + \text{H}_2\text{O} \xrightarrow{\text{β}} 2\text{NH}_4\text{HSO}_3 + \text{H}_2$ | $(\text{NH}_4)_2\text{SO}_4$ |
| Slaked lime | $\text{CaO} + \text{SO}_2 \xrightarrow{\text{β}} \text{CaSO}_3$
$\text{CaSO}_3 + \text{O}_2 \xrightarrow{\text{β}} 2\text{CaSO}_4$ | CaSO_4 |

Limestone - Gypsum Process

SOx Rem. > 90%

- most popularly used method
- In Japan

- limestone 便宜
- initial & operating cost 经济
- systems stability 稳定 & 安全
- gypsum 市场
5. Desulphurization Technology
5-2 Limestone-Gypsum Process

Reaction

\[
\begin{align*}
SO_2 + CaO & \rightarrow CaSO_3 \\
2CaSO_3 + O_2 & \rightarrow 2CaSO_4 \\
CaCO_3 + SO_2 & \rightarrow CaSO_3 + CO_2
\end{align*}
\]
5. Desulphurization Technology

5-3 Coke Oven Gas Desulphurization Process

<table>
<thead>
<tr>
<th>System</th>
<th>DeSOx-chemical</th>
<th>Catalyst</th>
<th>Byproduct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Takahax-Hirohax</td>
<td>NH₃</td>
<td>naphtoquinone salfonic acid soda</td>
<td>(NH₄)₂SO₄ + H₂SO₄</td>
</tr>
<tr>
<td>Takahax-Reduction Decomposition</td>
<td>Na₂CO₃</td>
<td>naphtoquinone salfonic acid soda</td>
<td>crude S</td>
</tr>
<tr>
<td>Fumax-Hemibau</td>
<td>NH₃</td>
<td>picric acid</td>
<td>H₂SO₄</td>
</tr>
<tr>
<td>Stred Ford-Combax flue gas De-Sox</td>
<td>Na₂CO₃</td>
<td>anthoraquinone sulfonic acid soda metavanadate soda Tartaric acid soda</td>
<td>gypsum</td>
</tr>
<tr>
<td>Diamox-claus</td>
<td>NH₃</td>
<td>none</td>
<td>pure S</td>
</tr>
<tr>
<td>Salfiban-claus</td>
<td>alkanol amine</td>
<td>none</td>
<td>pure S</td>
</tr>
</tbody>
</table>

COG refining process

1. Coke oven
2. Primary cooler
3. Booster
4. De-SOx saturator
5. Naphthalene scrubber
6. Benzene scrubber
7. Final cooler
8. Refined COG
5. Desulphurization Technology

5-4 Takahax-Hirohax Process

Desulphurized COG

Absorber

Oxidation tower

Service tank

Heat exchanger

Reaction tower

Gas washer

Gas washer

COG

EP

wastewater

air

wastewater

waste gas

water

Air

Reaction

\[NH_3 + H_2O \rightarrow NH_4OH \]

\[NH_4OH + H_2S \rightarrow NH_4HS + H_2O \]

\[NH_4OH + HCN \rightarrow NH_4CN + H_2O \]

\[NH_4HS + 1/2O_2 \rightarrow NH_4OH + S \]

\[NH_4CN + S \rightarrow NH_4NCS \]

Removal rate

\(S, \text{CN} > 90\sim99\% \)
5. Desulphurization Technology

5-5 Fumax Process

Absorption

\[\text{NH}_3 + \text{H}_2\text{O} \rightarrow \text{NH}_4\text{OH} \]
\[\text{NH}_4\text{OH} + \text{H}_2\text{S} \rightarrow \text{NH}_4\text{HS} + \text{H}_2\text{O} \]

Regeneration

\[\text{NH}_4\text{HS} + \frac{1}{2}\text{O}_2 \rightarrow \text{NH}_4\text{OH} + \text{S} \]

\[\text{S} + \text{O}_2 \rightarrow \text{SO}_2 \]
\[\text{SO}_2 + \frac{1}{2}\text{O}_2 \rightarrow \text{SO}_3 \]
\[\text{SO}_3 + \text{H}_2\text{O} \rightarrow \text{H}_2\text{SO}_4 \]

Picric acid:

COG

Absorber

Regenerator

Evaporator

AIR

Mist catcher

H\textsubscript{2}S scrubber

NH\textsubscript{3} scrubber

Mixing t.

to H\textsubscript{2}SO\textsubscript{4} plant

H\textsubscript{2}SO\textsubscript{4} recovery
6. NOx Control Technology

6-1-1 NOx Generation

N & S Contents in Fuels

<table>
<thead>
<tr>
<th>Fuel</th>
<th>N</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid wt%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>coal</td>
<td>0.7~2.2</td>
<td>0.3~2.6</td>
</tr>
<tr>
<td>coke</td>
<td>0.6~1.4</td>
<td>0.2~1.0</td>
</tr>
<tr>
<td>crude oil</td>
<td>0.03~0.34</td>
<td>0.1~3.0</td>
</tr>
<tr>
<td>C-oil</td>
<td>0.2~0.4</td>
<td>0.2~0.3</td>
</tr>
<tr>
<td>B-oil</td>
<td>0.08~0.35</td>
<td>0.2~0.3</td>
</tr>
<tr>
<td>A-oil</td>
<td>0.005~0.08</td>
<td>0.2~0.3</td>
</tr>
<tr>
<td>light oil</td>
<td>0.004~0.006</td>
<td>0.03~0.5</td>
</tr>
<tr>
<td>kerosene</td>
<td>0.0005~0.01</td>
<td>0.001~0.2</td>
</tr>
<tr>
<td>COG-crude</td>
<td>0~9</td>
<td>1.5~7</td>
</tr>
<tr>
<td>COG-fine</td>
<td>0.02~0.5</td>
<td>0.05~0.7</td>
</tr>
<tr>
<td>BFG</td>
<td>tr</td>
<td>tr</td>
</tr>
<tr>
<td>LDG</td>
<td>tr</td>
<td>tr</td>
</tr>
<tr>
<td>LPG, LNG</td>
<td>tr</td>
<td>tr</td>
</tr>
</tbody>
</table>

- JIS K2205 kinematic viscosity (cSt, mm2/s)
- C-heavy oil: 50 ~1,000, B-heavy oil: 20~50, A-heavy oil: 20~20
6. NOx Control Technology

6-1-2 Factors in NOx Generation & Reduction

Causes of generation

- N in fuel
- O₂ con.
- Flame temp.
- Retention time

Reduction methods

- Fuel alternation
 - Change of fuel
 - heavy oil → light oil → gas

- Fuel denitrification
 - Denitrification of COG

- Changing operating conditions
 - Low air ratio combustion
 - Lowering dry hot air temperature
 - Changing thermal load

- Remodeling combustion system
 - Multistage combustion
 - Recirculation of exhaust gas
 - Addition of steam or water
 - Low NOx burner
6. NOx Control Technology

6-2-1 Fuel Improvement
1. Use of low N and low S fuel (S N)
2. Denitrification of COG N 1~9 g/m³ 800~1,000 º, 4~6 sec.

6-2-2 Combustion Improvement
1. Low air ratio operation O₂ 1% NOx 10%
2. Multistage combustion 1ˢᵗ stage air ratio: 80~90% NOx
 rest air 2ⁿᵈ stage combustion 20%
3. Steam or Water injection flame temp. NOx
 no-change in generated calorie

4. Exhaust gas circulation

Injected steam
6. NOx Control Technology

5. Low-NOx burner

Wide-angle burner tile

Double-stage combustion burner

Self-circulate combustion burner

- **tile angle (degree)**
- **primary air ratio**
- **total air ratio: 1.1**
- **O₂ in exhaust gas %**

- **tile angle**
- **exhaust gas**
- **primary air**
- **secondary air**
- **gas**
- **oil**
- **fuel**
- **ring nozzle**
- **circulating gas**
6. NOx Control Technology

6-3 Denitrification of Exhaust Gas

De-NOx: Dry Type Selective Contact Reduction using NH₃

\[
6\text{NO} + 4\text{NH}_3 \rightarrow 5\text{N}_2 + 6\text{H}_2\text{O} \\
6\text{NO}_2 + 8\text{NH}_3 \rightarrow 7\text{N}_2 + 12\text{H}_2\text{O}
\]
Items to be considered at factory construction & operation
1. Environmental impact assessment
2. Environmental standards & emission standards
3. Planning of plant & air pollution control equipment
4. Operation control & worker training
5. Environmental monitoring
6. Environmental management system
Measurement Items

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>Emission Standard</th>
<th>EQS</th>
</tr>
</thead>
<tbody>
<tr>
<td>dust</td>
<td>Suspended particle matter</td>
<td></td>
</tr>
<tr>
<td>sulfur oxide</td>
<td>SO$_2$ (sulfur oxide)</td>
<td></td>
</tr>
<tr>
<td>nitrogen oxide</td>
<td>NO$_2$ (nitrogen oxide)</td>
<td></td>
</tr>
<tr>
<td>Cd, its compounds</td>
<td>CO</td>
<td></td>
</tr>
<tr>
<td>Cl, HCl</td>
<td>Photochemical oxidant</td>
<td></td>
</tr>
<tr>
<td>F, HF, SinF${2n+2}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb, its compounds</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Telemeter System

- **Q SO$_x$ NO$_x$**
- **Q SO$_x$ NO$_x$**
- automatic measurements
- site center
- administration center
8. Resources Saving

Dust Generation & Utilization

Dust Generation at 3 million-ton Crude Steel Production (t / y)

<table>
<thead>
<tr>
<th>Process</th>
<th>Dry Dust Collector</th>
<th>Wet Dust Collector</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material / Pig</td>
<td>111,000</td>
<td>38,000</td>
<td>149,000 (61%)</td>
</tr>
<tr>
<td>Iron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel</td>
<td>33,000</td>
<td>60,000</td>
<td>93,000 (38%)</td>
</tr>
<tr>
<td>Rolling</td>
<td>2,700</td>
<td>300</td>
<td>3,000 (1%)</td>
</tr>
<tr>
<td>Total</td>
<td>146,700 (60%)</td>
<td>98,300 (40%)</td>
<td>245,000 (100%)</td>
</tr>
</tbody>
</table>

- Dust generation in Integrated Iron Works: 4.9% of crude steel
- Ingredient of Dust: Iron Oxide, Limestone, etc.
- Utilization: Raw Material for
 Sintering, Zn, ZnCO3, Neutralizing wastewater, BF
9. Energy Saving

Energy source ratio (%)

Integrated Steel Production
- electricity: 11.5%
- heavy oil: 25.3%
- coke: 41.1%
- coal: 14.5%
- others: 7.6%

Non-Integrated Steel Production
- electricity: 51.7%
- fuel oil: 34.5%
- LPG: 4.4%
- light oil: 7.9%
- others: 1.5%

Energy saving Method
- high efficient equipment & improving operation
- reducing the number of unit operations & changing to continuous process
- waste heat recovery