Contract project-2004
With Ministry of Environment, Japan

Air Pollution Control Technology In Thermal Power Plants

March 2005

Overseas Environmental Cooperation Center, Japan

Air Pollution Control Technology in Thermal Power Plant

Committee Members

Chairman:

Dr. K. Nishida, Researcher, Department of Urban and Environmental Engineering, Kyoto University (Retired)

Member:

Mr. S. Iwasaki, Director, Metocean Environment Inc.

Dr. S. Fujii (P.E.), Takuma Co., Ltd.

Mr. Y. Ogino (P.E.), Environment Technology L.P.C.

Prepared by

Dr. A. Hogetsu (P.E.), Research Commissioner, OECC

Generator Building, De-NOx, EP, De-SOx

1-2 Pollutants and Pollution Control in Coal Fire Power Plant

1-3 Pollutants and Pollution Control in Oil Fire Power Plant

1- 4 Pollutants and Pollution Control in Gas Fire Power Plant

BOG: Boil-off Gas

2. Measures against Fuel

2. Measures against Fuel

2-2 Oil and Gas Fuel Power Plants

Effect of fuel oil properties on exhaust gas quality

- 1. Residual Carbon Soot, Dust Dust collection
- 2. Nitrogen NOx Denitrication
- 3. Sulphur SOx Desulphurization
- 4. Ash Pressure drop, Heat transfer broke, Mechanical Wear, Corrosion Maintenance

Effect of fuel gas properties on exhaust gas quality

- 1. Impurity substances · · · · · None
- 2. Nitrogen · · · None NOx (thermal type) Denitrification
- 3. Sulphur · · · None

3-1-1 Coal Properties

	Effect of Coal Pro	perties on Pulverized	Coal Combustion
	0 Camabaratibilitar		! C - C

Enough of Court reportion on a union Edu Court Contraction				
Ignitability & Combustibility	optimum range	effects in case of off-spec.		
Fixed-C / volatile content	< 2.5~3.0	increase of non-burn loss		
Volatile content	> 20 %	unstable ignition		
Ignitability Index	> 35	hard ignition		
Button Index (viscosity)	<6~7	clogging, adhesion		

Grindability

Proper size	50 ~ 100 μ m	increase of non-burn loss
Dryness	$H_2O < 20 \%$	lowering mill performance

Slagging

		■ b _
Ash Melting Temp.	> 1,300	
Ash Alkaline Ratio	< 0.5	🐛 slagging
Fe ₂ O ₃ / CaO	< 0.3 ~ 3 <	
S / coal	< 2%	• •

Fouling

basic content;			
Na ₂ O, K ₂ O, CI	, CaO, S		

fouling on inner furnace, radiation heating surface

Wear-out	Nature	quart, Fe ₂ O ₃ ,S
		- · · · · · · · · · · · · · · · · · · ·

3-1-2 Coal Combustion

Combustion Mechanism of Pulverized Coal

Low NOx Combustion

- 1. Reduction of surplus air ratio (high volatile coal; 1.2 ~ 1.25)
- 2. Lowering combustion air temp. (normally 250 ~ 350
- 3. Two stage combustion (1st burner + 2nd burner)
- 4. Recycling exhaust gas (<20~30%)
- 5. Inner-furnace denitrification
- 6. Low NOx burner

slow mixture air & fuel promotion of unevenness comb. acceleration of flame heat radiation

1st Process

furnace > 900 HC decomposition

O₂ existing

reductant HC > chemical equivalent O₂

2nd Process
atmosphere temp. > reaction temp. of non-burned portion sufficient O₂

3-2-1 Oil Combustion

Oil Combustion Mechanism

Flame Combustion ... Evaporation Comb. + Decomposition Comb.

Effect of Fuel Oil Properties on Exhaust Gas Composition

Subs.	Con. wt%	Pollutants	Damages
N	0.01~0.6	NOx	Air pollution
S	0.2~3.0	SO_{2},SO_{3} SO_{4} (SOX)	Air pollution, corrosion clogging
Red. C	4.0~11.5	Dust	Dust, carbon adhere
Ash (Na, K, V,)	< 0.02	Adherents	Scaling, Vanadium attack, corrosion, mechanical wear, etc.

JIS C-Heavy Oil

3-2-2 Oil - NOx Generation

NOx Generation and its Control in Oil Combustion

Generation

Thermal NOx (N in Air)
Flame temp.
O₂ concentration
Retention time

Fuel NOx (N in Fuel)
O₂ concentration
Nitrogen in fuel

Control Measures

- 2-stage combustion
- ·Exhaust gas recycling
- ·Low NOx burner
- •Furnace size_expansion

Control of NOx Generation

+

Oscillating Combustion
Preventive Measures

4-1 Type of Dust Collectors

d.p.: dew point

S: small M: medium L: large

Type	Applic. Particle (µ m)	Operating ()	Cutback Level	Pressure Drop (mm H ₂ O)	Equipmen t Cost	Running Cost
Gravity	50	d.p. ~ 400	40 ~ 60 %	10 ~ 15	S	S
Inertia	10	d.p. ~ 400	50 ~ 70 %	30 ~ 70	S	S
Centrifuge	3	d.p. ~ 400	10 mg / m ³	50 ~ 150	M	M
Scrubbing	~0.1	no-limit	20 mg / m ³	300 ~ 800	M	L
Filtration	~0.1	no-limit	5 mg / m ³ or less	100 ~ 200	M	M
EP	~0.03	d.p. ~ 400	5 mg / m ³ or less	10 ~ 20	L	S

4-2 Gravitational, Inertial & Centrifugal Dust Collector

Stokes' Law

 $V=(g/18 \mu)(_{1}^{-}) D^{2} (cm/s)$

V: settling velocity (cm/sec)

g: gravitational acceleration (cm/s²)

μ: gas viscosity (kg/ms)

1: particle density (g/cm³)

: gas density (g/cm³)

D: particle diameter (cm)

Principle of dust collection;

Centrifugal

Centrifugal force (F) = mv^2/R (N)

m: particle mass (kg)

V: particle velocity (m/s)

R: cyclone radius (m)

4-3 Scrubbing Dust Collector water drop Principle of dust collection; media dust water film demister demister spray disc water impact disc packing demister fan runner Reservoir type **Pressurized** Packed bed type Rotary type water type

4-4 Filter Type Dust Separator

Pi = **P**f + Pth **∜twisting** aperture 50~10 µ m filter cloth dust layer to thin film dust be shaken off

Filtration Mechanism

Typical bag filter unit

Type:

- (1) bag filter
- (2) cartridge filter

Filter cloth:

- (1) woven fabric
- (2) nonwoven fabric

Dust shake-off:

- (1) intermittent
- (2) continuous

Apparent filtration rate:

0.3~10cm/s

4-5-1 Electrostatic Precipitator (EP)

Principle of dust collection

Exhaust gas properties;

·SO₃ mist

·composition of dust

·electric charge control

'selection of gas temp.

·dust removal on (+) electrode

4-5-2 Factors Working on EP

Advantages and disadvantages of EP

Advantages	Disadvantages	
large gas volume	initial cost – expensive	
fine particles of submicron	affection of apparent (- Cm)	
high temperature gas	system size- large	
wet type dust collection	high level accuracy in manufacturing	
suitable operation		
inexpensive maintenance		

4. Dust Collector 4-6 Ash Treatment

5. Flue Gas Desulphurization

5-1 Flue Gas Desulphurization Methods (FGD)

Method	Absorbent/ Adsorbent	Byproducts
	NaOH or Na ₂ SO ₃ solution	Na ₂ SO ₃ , NaNO ₃ , SO ₂ , gypsum
	NH3-water	(NH ₄) ₂ SO ₄ , SO ₂ , gypsum, S
	Slaked lime or	
	∤ limestone slurry	gypsum
Wet type	Mg(OH) ₂ -slurry	SO ₂ , gypsum (blended with
, , , , ,		slaked lime slurry)
1	Basic Al ₂ (SO ₄) ₃ -solution	gypsum
1	Dilute-H ₂ SO ₄	gypsum
Dry type	Activated carbon	(NH ₄) ₂ SO ₄ , gypsum, S, H ₂ SO ₄

most popularly used method in Japan

Lime & Gypsum Method ◄••••

- ·limestone cheap
- 'initial & operating cost economics
- 'system stability & safety
- gypsum stable sales

5. Flue Gas Desulphurization

5-2 Wet Type Lime & Gypsum Method FGD System

5. Flue Gas Desulphurization

5-3 Simplified FGD System

Comparison of Simplified FGD with Conventional FGD

-	_	
	Lime & Gypsum Method	Simplified FGD Semi-dry Method Intrafurnace Desulphurization + Water Spray Method
Alkali	Ca CO ₃ powder	CaCO ₃ powder
	$SO_2 + H_2O H_2SO_4$	CaCO ₃ CaO + CO ₂
Reaction	H ₂ SO ₃ + 1/2O ₂ H ₂ SO ₄	SO ₂ + CaO + 1/2O ₂ CaSO ₄
	$CaCO_3 + H_2SO_4 + H_2O$	SO ₂ + CaO + 1/2H ₂ O
	$CaSO_4 + 2H_2O + CO_2$	CaSO ₃ + 1/2H ₂ O
	useful gypsum	no wastewater
Advantages	large flue gas	compact size, less space
	high-level removal	simple process, excellent in economics
	wastewater treatment	slagging inside boiler
Disadvantages	anticorrosion material	lower removal
	large area	lower alkali utilization
	high maintenance cost	
Cost		
Equipment	100	20~30
Operation	100	75~80

6. Flue Gas Denitrification

6-1 NOx Abatement Method

Reduction of NOx Generation & Denitrification Methods

Method	Applicability	NOx red. (%)
Flue gas recirculation	T-NOx	70~80
Low NOx burner	F-NOx, T-NOx	10~25
Staged burners	F-NOx, T-NOx	40~70
SCR	F-NOx, T-NOx	80~90
SNCR	F-NOx, T-NOx	60~80

T-NOx: Thermal NOx

F-NOx: Fuel NOx

Denitrification Process

Process	Method
Dry Process SCR (Selective catalytic reduction) SNCR (Selective non-catalytic reduction) NSCR (Non-selective catalytic reduction) Catalytic cracking	NH ₃ , catalyst NH ₃ , Gas temp. 800~ 1,000 catalyst (Pt) + CH ₄ ,or CO, or H ₂ catalyst (Pt,····)
Wet Process	NOx + SOx removal complicate process wastewater treatment

6. Flue Gas Denitrification

6-2 NH₃ Catalytic Reduction Process

SCR Process

Ammonia Catalytic Reduction Process

Catalyst

support: ceramic (Ti, Al, · · ·)

catalyst: metals

shape: granule, grid-form

honeycomb, plate

control: denirification rate

catalyst bed draft loss

Reaction

$$4NO + 4NH_3 + O_2 4N_2 + 6H_2O$$

 $2NO_2 + 4NH_3 + O2 3N_2 + 6H_2O$

7. Stack

Stack height & Draft force

```
( a g)H_0 + Peb Vg^2 / 2g · g + h > 0

( a g)H_0: theoretical draft force (kg/m^2)
a: air specific weight at atmosphere temp. (kg/m^3)
g: exhaust gas "

H_0: stack height from datum level (m)
Peb: effective blower pressure (kg/m^2)
Vg: exhaust gas outlet velocity (m/s)
g: gravitational acceleration (m/s^2)
h: total pressure loss in exhaust gas route = ·V2 / 2g· g (kg/m^2)
: resistance coefficient
V: flue gas velocity in route (m/s)
```


8. Environmental Management System

- 1. Environmental Management System
 - Trend of environmental management
 - Organization for env. management & control
 - Mission
 - Pollution control system

ISO 14000

- 2. Cooperation with Local Government
 - Cooperation in pollution control measures
 - Handling of complaints
 - Env. protection agreement
- 3. Data disclosing
- 4. Education and Training of Employees
- 5. Monitoring
- 6. Greening of Power Station
- 7. Measures against Accident and Emergency
 - Accident
 - Emergency

9. Energy Saving

