Air Pollution Control Technology
In
Glass Manufacturing Industry

March 2005

Overseas Environmental Cooperation Center, Japan
Air Pollution Control Technology in Glass Manufacturing Industry

Committee Members

Chairman:
Dr. K. Nishida, Researcher, Department of Urban and Environmental Engineering, Kyoto University (Retired)

Member:
Mr. S. Iwasaki, Director, Metocean Environment Inc.
Dr. S. Fujii (P.E.), Takuma Co., Ltd.
Mr. Y. Ogino (P.E.), Environment Technology L.R.C.

Prepared by
Dr. A. Hogetsu (P.E.), Research Commissioner, OECC
Asahi Glass Co., Ltd. Kashima Plant

Product: Flat glass, Automotive glass, others
1. Glass Manufacturing Process and Air Pollutants

- **Quartz sand**
- **Soda ash**
- **Limestone**
- **Cullet**
- **Others**

Pot furnace
- **Tempering furnace**
- **Bending furnace**
- **Laminating process**

Tank furnace
- **Decorating**
- **Firing oven**

Pot furnace
- **Manual forming**
- **Annealing**

- **SOx, NOx**
- **Dust**
- **Heavy oil**

- **Sheet glass**
- **Glasses for car**
- **Others**
- **Fluorescent tube**
- **Optical glass**
- **Flit**
- **Bottle, Container**
2. Soot & Dust Reduction

2-1 Reduction by means of Fuel and Furnace Operation

Causes of Dust

- Fuel — Dust (soot, ash, heavy metal)
- Raw Material — Scattered substances (ash, heavy metal)
- Non-uniform mixing fuel and air

Dust Reduction Method in Soda-Lime Glass Melting

- Switching fuel; Solid — Liquid — Gas
 Heavy oil — Kerosene
- Effective atomization of fuel
- Careful manipulation of air supplying
- Adequate proportion of furnace configuration to flame shape
- Reviewing particle size of batch (glass raw material)
- Adjustment of batch moisture content in batch wise charge
- No direct striking surface of batch with flame
2. Soot & Dust Reduction

2-2 Properties of Dust and Applicable Scope of Dust Collection

<table>
<thead>
<tr>
<th>Flue gas (400~600 °C)</th>
<th>Dust</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂ 8~9%</td>
<td>Dust conc. 0.2~0.4 g/Nm³</td>
</tr>
<tr>
<td>CO₂ 10%</td>
<td>Particle size ~ 0.5 µm 25%</td>
</tr>
<tr>
<td>H₂O 10%</td>
<td>0.5~ 0.3 µm 50%</td>
</tr>
<tr>
<td>SOₓ 500~1,500ppm</td>
<td>0.3~0.1 µm 20%</td>
</tr>
<tr>
<td>NOₓ 400~600ppm</td>
<td>0.1 µm ~ 5%</td>
</tr>
</tbody>
</table>

- **Soda-Lime Glass Melting Furnace Flue Gas**

Dust Collection

- Tabacco smoke
- Oil smoke
- Flue dust
- Cement
- Pulverized coal
- Fly ash
- Cyclone
- Spray tower
- Packed tower
- Cyclone scrubber
- Venturi / jet scrubber
- Bag filter
- EP
2. Soot & Dust Reduction

2-3 Filter Dust Collector

Filtration Action in Filter Cloth

Flue gas
0.5~3 cm/s
P 250 dust
primary layer

Filter cloth

Clean gas

Dusting frequency
- intermittent
- continuous

Dusting drive
- vibration
- reverse air

Clean gas

Fan

Bag filter

Dusting frequency

Dusting drive

Flue gas

Clean gas

Dust

Flue gas
2. Soot & Dust Reduction

2-4 Electrostatic Precipitator

Feature
- Less influence of flue gas & dust
- Low pressure loss

Peeling dust from electrode
- Dry EP: hammering impact
- Wet EP: flow down with water film

Factors affecting dust collection
- particle size
- temperature, moisture, \(\text{SO}_3 \)

Diagram:
- Discharging electrode
- Dust collecting electrode
- Dust removal (%)
- Discharge current (mA)

Legend:
- A: re-scattering
- B: normal
- C: frequent occurring of sparks
- D: counter electric dissociation
3. SOx Reduction Method

3-1 Desulphurization using Caustic Soda

\[
\begin{align*}
\text{SO}_2 + 2 \text{NaOH} & \rightarrow \text{Na}_2\text{SO}_3 + \text{H}_2\text{O} \\
\text{Na}_2\text{SO}_3 + \text{H}_2\text{O} + \text{SO}_2 & \rightarrow 2\text{NaHSO}_3
\end{align*}
\]

NaOH

\[
\begin{align*}
\text{Na}_2\text{SO}_3 + \frac{1}{2}\text{O}_2 & \rightarrow \text{Na}_2\text{SO}_4 \\
\text{NaHSO}_3 + \text{NaOH} & \rightarrow \text{Na}_2\text{SO}_3 + \text{H}_2\text{O}
\end{align*}
\]
3. SOx Reduction Method

3-2 Desulphurization using Magnesium Hydroxide

Glass Melting Furnace

Waste Heat Boiler

Mg(OH)₂ + SO₃ \rightleftharpoons MgSO₃ + H₂O

Mg(OH)₂ + 2SO₂ \rightleftharpoons Mg(HSO₃)₂

MgSO₃ + 1/2O₂ \rightleftharpoons MgSO₄

Mg(HSO₃)₂ + Mg(OH)₂ \rightleftharpoons 2MgSO₃ + 2H₂O

Diatomaceous Earth Filter

Dehydrated cake

Wastewater

Stack
3. SOx Reduction Method

3-3 Dry-type Flue Gas Desulphurization

- Flue gas: \(\text{SO}_2, \text{SO}_3, \text{CO}_2 \)
- \(\text{Na}_2\text{SO}_4 \), \(\text{Na}_2\text{SO}_3 \), \(\text{Na}_2\text{CO}_3 \)
- Washing water
- Compressed air
- Reaction tower
- Cooling tower
- Stack

Desulphurization rate: 50~90% \(0.05 \text{g/ Nm}^3 \)
4. NOx Reduction Method

4-1 Reduction of Nitrate in Raw Material

NOx generation : NaNO₃ (oxidation, refining agent)

Reduction Method :

1. Reducing NaNO₃ additives
 - Quantity of pull : 100 t / day
 - Flue gas volume : 17,000 m³ / h
 - Trial calculation : NaNO₃ : silica sand = 0.5 : 100 NOx 169 ppm
 - = 0.3 : 100 = 102 reduction 67 ppm

2. Changing refining agent (Sb₂O₃ ⌂ Na₂O ⌂ Sb₂O₅ ⌂₆H₂O)

 Sb₂O₃ + O₂ ⇌ high temp. Sb₂O₅ ⇌ high temp. Sb₂O₃ + O₂ ⇌ + thermal NOx ⇌

 Na₂O ⌂ Sb₂O₅ ⌂₆H₂O ⇌ low temp. Na₂O ⌂ Sb₂O₅ + 6H₂O ⇌

 high temp. Na₂O ⌂ Sb₂O₃ + O₂ ⇌
4. NOx Reduction Method
4-2 NOx Reduction Related to Fuel

Furnace temp. 1,500 ~ 1,600 °C Thermal NOx ▶ Fuel NOx

N in Fuels

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Nitrogen (wt %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal</td>
<td>0.7 ~ 2.2</td>
</tr>
<tr>
<td>C-heavy oil</td>
<td>0.2 ~ 0.4</td>
</tr>
<tr>
<td>A-heavy oil</td>
<td>0.0005 ~ 0.08</td>
</tr>
<tr>
<td>Light oil</td>
<td>0.004 ~ 0.006</td>
</tr>
<tr>
<td>Kerosene</td>
<td>0.0005 ~ 0.01</td>
</tr>
<tr>
<td>LNG</td>
<td>Tr.</td>
</tr>
<tr>
<td>LPG</td>
<td>Tr.</td>
</tr>
</tbody>
</table>

- JIS K2205 kinematic viscosity (cSt, mm²/s)
 - C-heavy oil: 50 ▶ ~1,000, A-heavy oil: ▶ 20
4. NOx Reduction Method

4-3 NOx Reduction by Furnace Operation Method

1. Declining Glass Melting Temp.
 - chemical composition ---- melting at lower temp.
 - using the largest possible quantity of cullet

2. Lowering Primary Air Pressure
 - lowering air pressure for fuel injection
 - ex. 4 kg/cm² → 3 kg/cm² → NOx ↓ 24%

3. Lowering Secondary Air Volume
 - decreasing air ratio ex. 1.2 → 1.1 → NOx ↓ 25%

4. Lowering Furnace Temp. (Max. Temp.)
 - allotting fuel distribution to maintain uniform temp. in furnace
 - electric boosting

5. Combustion Control Work Standards
4. NOx Reduction Method

4-4 Using Low NOx Burner

1. Hydraulic burner

- Low O₂ combustion ex. Air 170 → 120 m³/h → NOx → 25~30%

2. Supersonic burner
- Primary air: 30~40% less than conventional burner → lower NOx

3. Laidlaw burner
- Town gas is used instead of primary air → NOx → 20~25%

Burner	Heavy oil use ratio	NOx conc. ratio
Air atomizing | 1.00 | 1.00
Hydraulic | 0.88 | 0.62
5. Removing Toxic Substances

5-1 Cd & its Compounds

- Bag filter
- EP

Generating Source

special glass
- neutron cut-off glass
- others

dust & soot in volatilized fume

- CdS
- CdCO₃
5. Removing Toxic Substances
5-2 Pb & its Compounds

Crystal glass, TV-CRT, flit

Melting furnace

NaOH tank

Humidity controlling tower

500 μ
Particle 0.01~1 μm
Electric R. 10^{12} Ω cm

special EP

Stack

needle shaped discharge electrode
5. Removing Toxic Substances
5-3 F & its Compounds

Dry type defluorination

- Flue gas
- Air
- Water
- Cooling tower
- Ca(OH)$_2$ powder
- Bag filter
- Dust tank

Dust:
- CaF$_2$, Ca(OH)$_2$
- CaCO$_3$, CaSO$_4$

Removal:
- F > 95%
- Dust > 98%

Wet type defluorination

- Flue gas
- Air
- Heat exchanger
- Venturi scrubber
- Absorption tower
- Oxidation tower
- Oxidation
- NaOH
- Slaked lime

Removal:
- F > 95%
- Dust > 75%
6. Environmental Management System

Items to be considered at factory construction & operation

1. **Environmental impact assessment**
2. **Environmental standards & emission standards**
3. **Planning of plant & air pollution control equipment**
4. **Operation control & worker training**
5. **Environmental monitoring**
6. **Environmental management system**
7. Energy Saving Technology

1. How to promote energy saving
 - Basic policy
 - Understanding current state
 - Goal
 - Measures

2. Energy saving methods
 - Acceleration of glass melting
 - increasing cullet use ratio
 - refining of grain of raw material
 - moisture control of batch
 - improvement of fusibility by glass composition
 - Combustion
 - combustion control
 - work standards
 - preventing of air intrusion
 - improvement & change of burner
 - Heat insulation & reduction of cooling air
 - Waste heat recovery
 - Others
 - introduction of cogeneration system & inverter control
 - development thinner & lighter glass bottle
 - stabilization of production process