Air Pollution Control Technology
In
Fertilizer Manufacturing Industry

March 2005

Overseas Environmental Cooperation Center, Japan
Air Pollution Control Technology in Fertilizer Manufacturing Industry

Committee Members

Chairman:
Dr. K. Nishida, Researcher, Department of Urban and Environmental Engineering, Kyoto University (Retired)

Member:
Mr. S. Iwasaki, Director, Metocean Environment Inc.
Dr. S. Fujii (P.E.), Takuma Co., Ltd.
Mr. Y. Ogino (P.E.), Environment Technology L.R.C.

Prepared by
Dr. A. Hogetsu (P.E.), Research Commissioner, OECC
Urea Plant in Bangladesh
1. Air Pollution in Fertilizer Plant

Fertilizer

<table>
<thead>
<tr>
<th>Nitrogenous F.</th>
<th>Phosphate F.</th>
<th>Potassium F.</th>
<th>Coated F.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ammonia, Chilean saltpeter, limestone + N₂</td>
<td>phosphate rock</td>
<td>ore (ingredient ; KCl + NaCl), KCl</td>
<td>N, P, K + thermo plasticity resin</td>
</tr>
</tbody>
</table>

Pollutants

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>Origins of Pollutants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soot, SOx, NOx</td>
<td>Boiler, Dryer, Calcining furnace, etc.</td>
</tr>
<tr>
<td>Dust</td>
<td>Raw material stock yard, Raw material feed equipment, Belt conveyer, Bucket conveyer, Crusher, Mill, Sieve</td>
</tr>
<tr>
<td>HF</td>
<td>Phosphate fertilizer plant------ Reactor, Calcining furnace, Melting furnace, Phosphoric acid concentration plant</td>
</tr>
<tr>
<td>NH₃</td>
<td>Pelletizer, Dryer</td>
</tr>
<tr>
<td>Solvent</td>
<td>Coated fertilizer manufacturing process</td>
</tr>
</tbody>
</table>
2. Soot & Dust Collection
2-1 Gravitational, Inertial & Centrifugal Dust Collector

Stokes’ Law

\[
V = \left(\frac{g}{18 \eta} \right) \left(\frac{\rho_1 - \rho}{\rho_2} \right) D^2 \quad \text{(cm/s)}
\]

- \(V \): settling velocity (cm/sec)
- \(\eta \): gas viscosity (kg/ms)
- \(g \): gravitational acceleration (cm/s^2)
- \(\rho_1 \): particle density (g/cm^3)
- \(\rho_2 \): gas density (g/cm^3)
- \(D \): particle diameter (cm)

Principle of dust collection:

Centrifugal force \(F = \frac{mv^2}{R} \), (N)

- \(m \): particle mass (kg)
- \(V \): particle velocity (m/s)
- \(R \): cyclone radius (m)

Gravity

Centrifugal

Inertia
2. Soot & Dust Collection

2-2 Scrubbing Dust Collector

Mechanisms of Separation
- Adhesion of dust to water drops & water film by inertia force
- Adhesion by diffusion force among dusts
- Increase of coagulation force of particles by increasing moisture
- Moisture condensation triggered by dust as a nucleus
- Particle adhesion by bubbles

Typical Types of Scrubbers

<table>
<thead>
<tr>
<th>Type</th>
<th>Velocity m / s</th>
<th>L/G l / m³</th>
<th>□ P kPa</th>
<th>Th. ★ m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spray</td>
<td>1~2</td>
<td>2~3</td>
<td>0.1~0.5</td>
<td>★ 3</td>
</tr>
<tr>
<td>Packed</td>
<td>0.5~1</td>
<td>2~3</td>
<td>1~2.5</td>
<td>★ 1</td>
</tr>
<tr>
<td>Jet</td>
<td>10~20</td>
<td>10~50</td>
<td>0~ -1.5</td>
<td>★ 0.2</td>
</tr>
<tr>
<td>Venturi</td>
<td>60~90</td>
<td>0.3~1.5</td>
<td>3~8</td>
<td>★ 0.1</td>
</tr>
</tbody>
</table>

Th. ★: Particle size of threshold to allowing 50 % removal

Packed tower
2. Soot & Dust Collection

2-3 Filter Type Dust Collector

Filtration Action in Filter Cloth

Flue gas → Clean gas
0.5~3 cm / s
dust
primary layer

Filter cloth

Dusting frequency
- intermittent
- continuous

Dusting drive
- vibration
- reverse air

Dusting frequency: 150 mg Hg dusting

Clean gas

Bag filter

Fan

Flue gas
2. Soot & Dust Collection
2-4 Electrostatic Precipitator

Principle of dust collection:

Structure of EP:
- discharge electrode
- high voltage DC generator
- manhole
- hammering drive
- gas distribution plate
- hammering device
- collecting electrode
- hopper
2. Soot & Dust Collection

2-5 Selection of Dust Collector

Factors affecting Dust Collection:
dust concentration, particle size distribution, temperature of dust, apparent electric resistance rate, due point, gas temperature, composition of flue gas, gas volume, etc.

Applicable Range of Dust Collector

<table>
<thead>
<tr>
<th>Type</th>
<th>Particle ($)</th>
<th>Working ($)</th>
<th>Cutback Level (%)</th>
<th>Pressure Drop (mm H₂O)</th>
<th>Equipment Cost</th>
<th>Running Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravity</td>
<td>1000~50 d.p. ~ 400</td>
<td>40~60</td>
<td>10~15</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Inertia</td>
<td>100~10 d.p. ~ 400</td>
<td>50~70</td>
<td>30~70</td>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Centrifuge</td>
<td>100~3 d.p. ~ 400</td>
<td>85~95</td>
<td>50~150</td>
<td>M</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Scrubbing</td>
<td>100~0.1 no-limit</td>
<td>80~95</td>
<td>300~800</td>
<td>M</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Filtration</td>
<td>20~0.1 no-limit</td>
<td>90~99</td>
<td>100~200</td>
<td>M</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>EP</td>
<td>20~0.05 d.p. ~ 400</td>
<td>90~99.9</td>
<td>10~20</td>
<td>L</td>
<td>S~M</td>
<td></td>
</tr>
</tbody>
</table>

L: expensive M: average S: cheap
3. SOx Reduction Technology

Sources of SOx: Fuel SOx
- Boiler
- Dryer
- Calcining furnace
- Melting furnace

Wet Type Absorption

\[
\begin{align*}
\text{Mg(HSO}_3\text{)}_2 + \text{Mg(OH)}_2 & \rightleftharpoons 2\text{MgSO}_3 + 2\text{H}_2\text{O} \\
\text{H}_2\text{SO}_3 + \text{Mg(OH)}_2 & \rightleftharpoons \text{MgSO}_3 + 2\text{H}_2\text{O} \\
\text{MgSO}_3 + \frac{1}{2}\text{O}_2 & \rightleftharpoons \text{MgSO}_4
\end{align*}
\]

\[
\begin{align*}
\text{SO}_2 + \text{H}_2\text{O} & \rightleftharpoons \text{H}_2\text{SO}_3 \\
\text{H}_2\text{SO}_3 + \text{Mg(OH)}_2 & \rightleftharpoons \text{MgSO}_3 + 2\text{H}_2\text{O} \\
\text{MgSO}_3 + \text{H}_2\text{SO}_3 & \rightleftharpoons \text{Mg(HSO}_3\text{)}_2 \\
\text{Mg(HSO}_3\text{)}_2 + 12\text{O}_2 & \rightleftharpoons \text{MgSO}_4 + \text{H}_2\text{SO}_3 \\
\text{MgSO}_3 + \frac{1}{2}\text{O}_2 & \rightleftharpoons \text{MgSO}_4
\end{align*}
\]
4. NOx Reduction Technology

4-1 NOx Generation in Fertilizer Plant

Air ratio ~ Retention time ~ Thermal NOx

NOx concentration increases at:
- higher temp. in combustion
- higher O_2 conc.
- longer retention in high temp. zone
4. NOx Reduction Technology

4-2 NOx Control Methods

<table>
<thead>
<tr>
<th>NOx Reduction Methods</th>
<th>Decreasing effect</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improving operating condition</td>
<td>Thermal NOx</td>
<td>Fuel NOx</td>
</tr>
<tr>
<td>Lower air ratio combustion</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Lower heat load</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Decreasing pre-heat air temp.</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Improving equipment configuration</td>
<td>Thermal NOx</td>
<td>Fuel NOx</td>
</tr>
<tr>
<td>2-stege combustion</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Rich-lean burner</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Exhaust gas recirculation</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Steam or water injection</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Low NOx burner</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>mixing accelerate type</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>flame-divided type</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>self-circulate type</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>stepwise combustion type</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Emulsion combustion</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>
5. Dust Scattering Prevention

Dust generating equipment & location designated by air pollution control law
- belt conveyer
- bucket conveyer
- crusher, mill
- sieve
- ore stock yard

Equipment protected work shop environment from dust scattering
- silo, hopper for raw material & product
- transporting equipment except belt & bucket conveyer
- packing machine, etc.

Measures
- outdoor stock with sheet cover (phosphate rock)
- indoor allocation
- closed cover, negative pressure
- Sealed dust collecting cover
- dust collecting hood

- cyclone
- bag filter
6. NH₃ Removal Technology

1. **Permissible NH₃ emission:**
 1~ 5 ppm at boundary of premise (set forth by prefecture governors)

\[
Q = 0.108 \times H_e^2 \times C_m
\]

- **Q**: gas volume (Nm³ / h)
- **He**: effective height of exhausting outlet (m)
- **C_m**: concentration at boundary line of premise (ppm)

2. **In compound fertilizer plant:**

<table>
<thead>
<tr>
<th>Process</th>
<th>Origin</th>
<th>Abatement</th>
</tr>
</thead>
<tbody>
<tr>
<td>pelletizer & drying</td>
<td>(NH₄)₂SO₄</td>
<td>reservoir type wet scrubber</td>
</tr>
<tr>
<td></td>
<td>(NH₄)₃PO₄</td>
<td>pressurized water scrubber</td>
</tr>
<tr>
<td></td>
<td>CO(NH₂)₂</td>
<td>packed bed water scrubber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(NH₄ removal 7090%, 2050ppm)</td>
</tr>
</tbody>
</table>

3. **In urea plant**

- Fan
- Demister
- Rectification plate
- Guide vane
- Pelletizing tower
- NH₃ ≤ several 10 ppm

Water
7. F Removal Technology

Generation of F

- reaction & condensation process for H₃PO₄ production
- reaction process for Ca(H₂PO₄)₂ production
- reaction furnace for fused P and calcined P production

HF, SiF₄
(with greater hydrophile property)

1st Absorption tower
2nd Absorption tower

water
exhaust gas
NaOH (2 %)
to wastewater treatment
8. Odors Abatement technology

8-1 Abatement Processes

<table>
<thead>
<tr>
<th>Deodorizing Method</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incineration method</td>
<td>decompose to CO_2, H_2O by heat</td>
</tr>
<tr>
<td>direct incineration</td>
<td>at $\approx 800^\circ$</td>
</tr>
<tr>
<td>regenerative thermal oxidizer</td>
<td>regeneration, heat efficiency $> 80%$</td>
</tr>
<tr>
<td>catalytic incineration</td>
<td>using catalysis at $200\sim 350^\circ$, rem. $> 99%$</td>
</tr>
<tr>
<td>Scrubbing method</td>
<td>scrubbing by chemical solution</td>
</tr>
<tr>
<td>water, acid, alkaline, oxidant, etc.</td>
<td></td>
</tr>
<tr>
<td>Adsorption method</td>
<td>activated carbon, steam regeneration</td>
</tr>
<tr>
<td>recovery type</td>
<td>activated c., heat regeneration by N_2 gas</td>
</tr>
<tr>
<td>fixed bed</td>
<td>separating odor from low concentration gas</td>
</tr>
<tr>
<td>fluidized bed</td>
<td>replacing saturated adsorbent or oxidant</td>
</tr>
<tr>
<td>concentration type</td>
<td></td>
</tr>
<tr>
<td>honeycomb</td>
<td></td>
</tr>
<tr>
<td>replacement type</td>
<td></td>
</tr>
<tr>
<td>Biological method</td>
<td>biodegradation by microorganisms</td>
</tr>
<tr>
<td>soil bed</td>
<td>using soil bacteria</td>
</tr>
<tr>
<td>packed tower</td>
<td>using bio-film on the media</td>
</tr>
<tr>
<td>Deodorizer, masking agent</td>
<td>deodorize or easing offending gas</td>
</tr>
</tbody>
</table>
8. Odors Abatement technology

8-2 Troubles in Abatement Processes (examples)

<table>
<thead>
<tr>
<th>Deodorizing Method</th>
<th>Trigger</th>
<th>Trouble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combustion method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>direct incineration</td>
<td>NOx ✓</td>
<td>permission level ✓</td>
</tr>
<tr>
<td>regenerative thermal ox.</td>
<td>mixture of Cl₂, paint, etc.</td>
<td>HCl ✓, clogging</td>
</tr>
<tr>
<td>catalytic incineration</td>
<td>mixture of Cl₂, paint, S, etc.</td>
<td>catalyst deterioration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adsorption method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>recovery type</td>
<td>mixture of ketone, high B.P.</td>
<td>firing, deterioration of activated carbon</td>
</tr>
<tr>
<td>fixed bed</td>
<td>substance</td>
<td>A.C. deterioration</td>
</tr>
<tr>
<td>fluidized bed</td>
<td>high temp. of exhaust gas</td>
<td></td>
</tr>
<tr>
<td>concentration type</td>
<td>mixture of cyclohexane</td>
<td>firing</td>
</tr>
<tr>
<td>honeycomb</td>
<td>conc. > several ppm</td>
<td>short term A.C. replacement</td>
</tr>
<tr>
<td>replacement type</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>soil bed</td>
<td>drying of soil</td>
<td>malfunction</td>
</tr>
<tr>
<td>packed tower</td>
<td>slow acclimatization</td>
<td>slow starter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scrubbing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>less sprinkling water</td>
<td>malfunction</td>
</tr>
<tr>
<td></td>
<td>dust in gas</td>
<td>clogging internals</td>
</tr>
</tbody>
</table>
9. Solvent Recovery & Abatement technology

1. **Sources of Generation**
 coated fertilizer (thermoplasticity resin)

2. **Abatement**
 recovery of solvent brings profit → production cost reduction
 residual solvent value → recovery cost → pollution control

3. **Abatement Process**
 - cooling condensation method
 cool down flue gas below vapor pressure

 - absorption & dispersion method
 absorbing of solvent to absorbent with lower vapor pressure

 - adsorption & dispersion method
 applicable to compositions with low vapor pressure and non-
 existence of antagonist. Adsorbed at under pressure or lower temp..
 adsorber: fixed bed, moving bed, fluidized bed
 adsorbent: A.C., silica gel, molecular sieve, aluminum gel
 regeneration method: heated gas, steam, heat transfer,
 extraction under decompression
10. Environmental Management System

1. Environmental Management System
 - Organization for Environmental Control
 - ISO 14000 series—— PDCA cycle
 - Responsible for environmental protection

2. Environmental Control Manual
 - Operation Standard Manual

3. Education & Training
 - legally qualified expert of environment control
 - training program and preparation of manual

4. Environmental Control at Work Shop

5. Environment Monitoring
 - maintaining monitoring system
 - monitoring of air pollution state
 - legal emission permissible level