9.10 NO、NO₂簡易測定法

9.10.1 はじめに

NO₂を主とした簡易測定法 \(^{1-5}\) は 9.12 に述べる微学調査の分野では注目されている方法の一つである。PTIO (2-Pheny I-4.4.5.5-tetramethylimidazoline-3-oxide-1-oxyl) を捕集剤とし、TEA (Triethanolamine) に混合したものを用いると NO と NO₂を同時に測定できる。

このことを利用し、分子拡散原理による小型サンプラを用いて大気中の NO、NO₂を簡便に測定する方法 \(^{6}\) について述べる。本方法のサンプラー及び付属品は市販されており、このほかにも NO₂測定用のパッチ式パーソナルサンプラーや \(^{6}\) などが市販されている。

9.10.2 サンプラーノの構造と捕集方法

サンプラーの捕集部は NO₂と NOx に分かれ、大気中の NO と NO₂はそれぞれの捕集部へ捕集される。サンプラーノの構造を図 9.10.1 に示す。

NO₂は図 9.10.1 の 2 の部分に捕集され、一方 NOx (NO + NO₂) は図 9.10.1 の 7 の部分に捕集されることから、捕集された NO 量は NOx−NO₂によって求められる。

[図 9.10.1 PTIO 法 NOx サンプラーソの構造図]

1. ポリエチレン多孔栓 (円筒型吸入口 25 個)
2. ステンレスメッシュ (80 メッシュ)
3. NO₂捕集エレメント
4. テフロンリング (厚さ 2 mm)
5. テフロン板 (厚さ 1.5 mm、直径 14 mm)
6. アクリル円筒 (内径 15 mm、外径 19 mm、長さ 26 mm)
7. NOx 捕集エレメント
9.10.3 サンプラーの準備

(1) 作業の調整
① NO₂ 吸収液（10% V/V TEA・アセトン溶液）
トリエタノールアミン（特級）20 mlをアセトン（特級）に溶かし、200 mlとする。
② NOₓ 吸収液（PTIO・TEA 溶液）*
PTIO 0.3 g を NO₂ 吸収液に溶かし、10 mlとする。
*）PTIO は常温でも分解するので要時調整し、冷却保存が望ましい。

(2) NO₂ 捕集エレメントの調整
直径 14.5 mm で打抜いたセルロース繊維紙（東洋 No.50）をテフロン網に置き、マイクロリングを用いて、NO₂ 吸収液 50 μl をろ纸上に滴る（dripping）させ、NO₂ 捕集エレメントとする。

(3) NOₓ 捕集エレメントの調整
直径 14.5 mm で打抜いたセルロース繊維紙（東洋 No.50）をテフロン網に置き、マイクロリングを用いて、NOₓ 吸収液 50 μl をろ纸上に滴る（dripping）させ、NOₓ 捕集エレメントとする。

9.10.4 サンプラーの組み立て

サンプラーの左右の側にそれぞれテフロン板、テフロンリングをいれる。次に、NO₂ 及び NOₓ 捕集エレメントをステンレス金網（80 メッシュ）2 枚で挟み、それを各捕集部に納め、ポリエチレン多孔栓をはめこみ固定する（図 9.10.1 分解構造図を参照）。このサンプラー本体を付属の安全ピン・クリップ付き固定パッチに装着し、ただちにチェック付きポリ袋に入れ、ステロール瓶（70 ml広口薬剤保存防湿容器が適当）中に密栓保存する。

9.10.5 堅素酸化物の捕集

(1) サンプラーを被験場所に暴露する。暴露時間は 24 時間を標準とする。このサンプラーを 24 時間暴露した場合、数 ppb から数 ppm までの濃度範囲の NOₓ 濃度の測定が可能である。
(2) 屋外空気の測定に用いるときは、付属シェルターの中にサンプラーを固定し、直射日光を避けるとともに、雨が直接当たらないようにする。
(3) 個人暴露量の測定に用いるときは、サンプラーを着衣などに着けて暴露する。

9.10.6 分析方法

(1) 試薬の調整
①スルファニル溶液
スルファニルアミド（特級）80 g をリン酸（特級）200 ml と水 700 ml を混合した溶液に溶かし、更
に水を加えて10とすること。冷暗所に保存する。

② NEDA溶液

N-(1-ナフチル)エチレンジアミンニ塩酸塩0.56gを水100mlに溶かす。冷暗所に保存する。

③ 発色試薬

スルファニル溶液10mlとNEDA溶液1mlを混合する。使用時調整する。

④ NO₂標準溶液

亜硝酸ナトリウムを105～110℃で4時間以上乾燥し、その1.50gを精粋し、水に溶かして10とすること。この溶液1mlの中にNO₂100μgを含む。

⑤ NO₃標準溶液

NO₂標準溶液を水で100倍に希釈し、さらにその0, 2, 4, 6, 8, 10mlをとり、それぞれ水で希釈し、100mlとし標準液（0～1.0μgNO₃/ml）を使用時調整する。

（2）分析操作

① 暴露されたサンプラーガのNO₂捕集部及びNOx捕集部の金網と共に、捕集エレメントをビンセットで取出し、それぞれ25ml共栓試験管に入れる。

② 水8mlを加え、30分間抽出後、軽く振り混ぜる。

③ これを2～6℃に冷却後、発色試薬2ml加えると同時に速やかに摺拌し、冷却したまま30分間放置する。

④ 室温に戻し、波長545nm付近の最大吸収波長で吸光度を測定する。

⑤ 暴露しなかった捕集エレメントについて同様の操作を行い、空試験値を測定する。

⑥ 段階的に調整したNO₂標準液（0～1.0μgNO₃/ml）の一定量（8ml）を正確にとり、発色試薬2mlを加え、同様の発色操作を行い検量線を作成する。

（3）濃度の算出

NO、NO₂濃度を（1）、（2）式で計算する。

NO濃度（ppb） = αₙₒ × \frac{Wₙₒ - Wₙₓ}{t} ... (1)

NO₂濃度（ppb） = αₙₓ × \frac{Wₙₓ}{t} .. (2)

ここに、

\(Wₙₒ \), \(Wₙₓ \) ：検量線に照らし求めたNOx及びNO₂捕集エレメントに捕集されたNO₂量（ng）

\(αₙₒ \), \(αₙₓ \)：ppb濃度換算係数（ppb・min/ng）

\(t \)：暴露時間（min）

通常、気温20℃、相対湿度70％とみなし、

\(αₙₒ = 60 \)

\(αₙₓ = 56 \) として算出する。

253