7.3 良質燃料対策

7.3.1 はじめに

良質な燃料を使用することにより、大気汚染物質の生成を抑制し、削減しようとするものである。燃料の種類を転換してしまいう方法（石炭焚きから重油かガス焚きに替える）。同一燃料の中でもより良質な燃料を使う（硫黄含有率の高いものから低いものに切り替える）方法とが採用されている。

7.3.2 良質燃料対策の必要性

事務所ビルや商業ビルが集中し都市化の進んだ地域では、それぞれのビルのボイラが排出基準を守っていても、発生源が集中しているため高濃度污染をもたらす。

この様な密集化したビル群では、敷地も少なく、規模も小さいことなどから排煙脱硫装置の設置は困難である。そこで、この様な地域に対しては、季節を限った燃料使用基準が有効となる。

7.3.3 大気汚染防止法による燃料使用基準

この基準は、次の二通りある。

(1) 季節による規制：札幌、東京など14都市で燃料中の硫黄分を規制する。

(2) 総量規制地域の規制：総量規制対象施設より小さい施設に対し規制しようとするもので、東京、大阪など24地域で、硫黄分0.3％以下の中から地域にあわせて規制する。

7.3.4 良質燃料使用による効果

(1) 気体燃料（天然ガス、LPG等）

7) 優れた過剰空気で燃焼し、燃焼効率が高い。
8) 硫黄分を含まないため硫黄酸化物、ばいじんの発生もない。
9) 窒素分を含まないため、FuelNOxの生成はない。（ただしThermalNOxには注意する必要がある）。

(2) 液体燃料（重油、軽油、灯油等）

7) 重質油ほどばいじんを発生するが、石炭に比べ、ばいじんの発生は少ない。
8) 重質油は硫黄分、窒素分を含んでいるため、硫黄酸化物や窒素酸化物を発生する。この場合には、排煙脱硫や排煙脱硝が行われる。
9) 重油脱硫により、硫黄分を除去した低硫黄重油燃焼では、硫黄酸化物の発生は少ないし、窒素酸化物の発生も少ない。これは脱硫げきの際に窒素分も同時に除去されるためと考えられる。図7.3.1重油中の硫黄分と窒素分の関係を参照されたい。
図 7.3.1 重油中の硫黄分と窒素分の関係

(3) 固体燃焼（歯車炭、無煙炭、亜炭、コークス）
7) 灰分、硫黄分を多く含んでいるため、ばいじんや硫黄酸化物が多量に出る。
1) 窒素分も含んでいるため、窒素酸化物も出る。
9) 燃焼管理が難しく、熟練を要する。
2) 大型燃焼施設では、微粉炭燃焼や流動層燃焼が行われ、ガス処理でばいじん、硫黄酸化物、窒素酸化物を除去している。

7.3.5 良質燃料の供給

1967年より統計がとられ、その年の燃料中の硫黄分が2.5％であったものが1980年には1.33％と低減した。図7.3.2に硫黄分別に見た重油供給の推移と平均硫黄含有率の推移を示す。なお、現在は1.1％前後で推移している。

このようにして、1985年には二酸化硫黄の環境基準を国内全域で達成した。
図7.3.2 硫黄分別に見た重油供給の推移と平均硫黄含有率の推移