5.5 感覚への影響（嗅覚）

5.5.1 嗅覚

人間は外界からの情報入手手段として、視覚、聴覚、味覚、触覚、味覚のいわゆる5感を持ってい
る。これらのうち、嗅覚はどのようにかを認知する働きがあり、味覚とともに化学感覚といわれるも
のである。また、嗅覚はある限られた化学物質（臭気物質）にのみ反応する機能を持っている。人間
は主として視聴覚に頼って生活しているため、視覚と聴覚が発達しているが、これに比べると嗅覚は
原始的な感覚とされている。

食物の腐敗臭や物の焦げのにおい等は、危険なことが起こる前触れの情報を得る目的を持っている。
一方、香水、化粧品、フレーバー等にみられる芳香については、個人が生活を送る上では、情緒豊かな
生活を送るために必要な感覚であり、嗅覚がなくなったり場合を考えるとその重要性に気がつく。

空気中に浮遊するにおいは、吸気とともに鼻腔に入り、鼻内気流によって鼻腔の天井の部分にある
嗅粘膜に到着し、嗅粘膜を覆う粘液の中にとけ込む。嗅粘膜の中には感覚受容細胞である嗅細胞を
中心に嗅細胞（Bowman 腺）などがある。嗅細胞からは嗅腺毛が粘液中に長く伸びており、嗅細胞の先端
部（嗅小胞）も粘液中に突出している。粘液中に飛び込んだにおい分子は、嗅腺毛・嗅小胞にぶつかり
、細胞の膜の興奮を起こし、嗅細胞にインパルス（電気信号）を発生させると考えられる。嗅細胞
を出た嗅神経は、直接嗅覚の第一次嗅中枢である嗅球に入る。さらに大脳皮質へと刺激は伝達され何
のにおいてあるかが認知される1）。（図 5.5.1 参照）

図 5.5.1 鼻内気流及び嗅粘膜の微小構造 1）
5.5.2 嗅覚の特質

嗅覚の特性として、敏感な感覚であることを挙げることができる。人間の嗅覚は、犬などと比べるとかなり劣るが、その検知能力（嗅覚閾値）は多くの物質において、現実の分析機器の検出限界よりも優れた感度を示している（表5.5.1参照）。

においの物質濃度と嗅覚刺激の強さとの関には、(1) 式で示せるウェーバー（聴覚の物理学者）・フェヒナー（聴覚の物理学者）の法則（Weber-Fechnerの法則）が知られており、感覚の強さは刺激の強さ（物質濃度）の対数に比例する事を示している。

\[R = k \log S \] \((R: \text{感覚の強さ}, k: \text{定数}, S: \text{刺激の強さ}) \) (1)

すなわち、刺激の強さが10倍になっても、人間の感覚量は2倍にしか感じないことを表わしている。

日本の惡臭防止法で規制対象となっている特定悪臭物質等について、物質濃度（刺激の強さ）と6段階悪気強度（感覚の強さ）の関係が報告されている。（表5.5.2参照）。

同一の臭気を数分間聞いていると、その嗅覚の強さは著しく減少し、やがてはその臭気をまったく感じなくなってしまう。嗅覚刺激が大きければ大きいほど、また長時間であればあるほど、嗅覚疲労が大きくなり、またにおいの質によってその程度に違いがある。嗅覚疲労の大きい物質としては、アクロライン等の刺激臭があり、逆に疲労を起こしにくい物質としては、メチルメルカプタン、トリメチルアミン、イソギ草酸等の悪臭物質が知られている。

色について、色盲、色弱があるように、においについては嗅覚を持っているが、ある特定のにおいに対してだけ感じないか、または色的に感じ方が低い現象を、特異的無嗅覚症（Specific Anosmia）と呼んでいる。たとえば、青酸のにおいの感じない人が、白人が18.2%、女性4.5%見いだされている。

嗅覚機能は、種々の疾患に罹患した際に影響を受ける。慢性副鼻腔炎（鼻頭症）、アレルギー性鼻炎、鼻茸などの鼻の疾患に依って起こることがもっとも多く、その他頭部外傷、薬の副作用、ウイルス感染等で起こることがあり、全くにおいの感覚を失った場合を嗅覚脱失といい、正常に比べ弱くなった状態を嗅覚減退という。このような嗅覚障害は、嗅覚器官が障害されることにより起こる。

5.5.3 においの生理的機能に及ぼす影響

嗅覚は精神面ののかかり合いが大きく、また個人差が大きい。人間を始め多くの動物は悪臭を感じると反射的に悪臭からの回避行動を起こす。これは本能的な危険予知の情報であり、危険からの回避の構えである。人間が危険に対する構えとして、無意識のうちに自律神経の交感神経機能亢進が起こる。刺激臭を含んだ悪臭に対して、大変驚愕するわけであるが、不快に感じる刺激を連続して受けるとこの近い状態が作られる。すなわち、悪臭を感じると大変不快な気分となる。不快な気分は無意識のうちに交感神経の緊張を起こす。交感神経の緊張状態は、脈拍数の増加、血圧の上昇、全身の血管に何かの影響を与える。悪臭による刺激が短時間であれば交感神経の緊張状態も刺激の消失とともに正常に復帰するが、刺激が長時間あるいは短時間でも頻繁に繰り返される場合には交感神
経の緊張状態が持続し、自律神経失調の状態となる。

よいにおいをかぐと呼吸が深くなるが、さらに強いにおいをかぐと呼吸を反射的に止める。薄いにおいから徐々においの濃度を高めていくと、初めは呼吸数の増加が起こるが、更に濃度を高くすると悪臭と感じるようになり、呼吸数と呼吸の深さが減少する。この呼吸の変化はにおいの情報が呼吸中枢に作用したためである。良いにおいをかいた場合に深く呼吸をすると同時に血圧に変化が起こり、気が静まる。ストレスの軽減にアプルやスパイシーフローラルなにおいやナツメグ、メール、ネロリ及びジグロのにおいが役立つことの報告もある。また、動物実験では、アンモニアやクロロホルムのような刺激臭の場合、薄い場合は血圧はいったん下がるが、その後上昇する現象がみられる。

食物を食べるばあい、良いにおいの食物に対しては食欲が高まり、悪いにおいのある食物に対しては食欲が低下し、時には吐き気を感じたり嘔吐することがある。動物実験では好ましいにおいの飼料、著しく食餌量を増加させる。つまり食物においを付加することによって摂食中枢の機能を亢進させることにより、飼餌量は増加する。

その他動物では生殖器系への影響がみられる。動物の発情期はにおいにより大きな影響を受ける。その他のにおいの影響としては睡眠への影響と精神的影響が考えられる。不快においが睡眠を妨げる原因となるとの報告がある。

5.5.4 においの効用とその利用

昔から人々は、咲く花のおいを嗅いで心を和ませたり、森林浴で心を落ち着けたりして、においにより気分が変わることが経験されている。人間は有史以前より、においを利用してきた様子が見られ、古代エジプトでは、すでに香料物質をミイラ作成時に用いており、また旧約聖書で香薬の調合の記録が載っている。また、日本では「香合せ」や「香道」が考え出され、また、衣類に「香」を焚きためたり、室内に「香」を焚いて客をもてなすという習慣が生まれていた。

現在、香料は食品、化粧品、飼料、家庭用品、その他の工業用途等の多くの分野で用いられており、その機能として、抗菌、抗酸化、消臭、マスキング、生理及び心理作用の機能を持っている。また、最近になり香りハンカチ、香りネクタイ等の香りグッズ等が販売されるようになってきた。その他住環境に香りを取り入れる傾向が見られ、室内芳香剤や空気清浄システムへの組み込み等が見られている。このような住環境への香りの導入には、アロマコロジー（Aromachology）という考え方があるとされている。

香りの持つ様々な心理的・生理的効果を利用して疾病の治療や生活に役立てようとする試みは、古くからヨーロッパにあったが、フランスの比較病理学者 Gattefosse はハーブや芳香生薬中の精油を利用するアロマテラピー（Aromatherapy）を考案した。これは内服、塗布、注射等の従来の治療法でなく、吸入、鼻腔内への直接噴霧等により治療する。香りによる心理療法である。この方法は、嗅覚の刺激により誘発された薬物の反応のみならず、快、不快、興奮、鎮静等の心理的効果が期待され、心身症の治療に有効な治療法であると認められるようになってきた。

一方、においの嗅覚刺激によりおこる生理的変化を利用し、におい・香料を健康常人の日常生活に用い、快適な生活を目指す研究が行われ、これに対して前記のアロマコロジーという言葉が使用されている。

75
<table>
<thead>
<tr>
<th>NO</th>
<th>物質</th>
<th>関連</th>
<th>NO</th>
<th>物質</th>
<th>関連</th>
<th>NO</th>
<th>物質</th>
<th>関連</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2-プタノール</td>
<td>0.47</td>
<td>2</td>
<td>2-エチルエタン</td>
<td>0.55</td>
<td>3</td>
<td>2-メチルエタン</td>
<td>0.00041</td>
</tr>
<tr>
<td>4</td>
<td>2-プロパノール</td>
<td>0.013</td>
<td>5</td>
<td>2-メチルプロピオン酸</td>
<td>0.00004</td>
<td>6</td>
<td>3-メチルエタン</td>
<td>0.00003</td>
</tr>
<tr>
<td>8</td>
<td>3-メチルペン</td>
<td>0.21</td>
<td>9</td>
<td>3-メチルイソプロピルアルコール</td>
<td>0.00022</td>
<td>10</td>
<td>3-メチルイソプロピルアルコール</td>
<td>0.0002</td>
</tr>
<tr>
<td>12</td>
<td>3-メチルイソプロピルアルコール</td>
<td>0.00002</td>
<td>13</td>
<td>3-メチルイソプロピルアルコール</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3-メチルイソプロピルアルコール</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3-メチルイソプロピルアルコール</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3-メチルイソプロピルアルコール</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3-メチルイソプロピルアルコール</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3-メチルイソプロピルアルコール</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3-メチルイソプロピルアルコール</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3-メチルイソプロピルアルコール</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3-メチルイソプロピルアルコール</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>3-メチルイソプロピルアルコール</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>3-メチルイソプロピルアルコール</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>3-メチルイソプロピルアルコール</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1-プロピルベンゼン</td>
<td>1.25</td>
<td>2</td>
<td>2-プロピルベンゼン</td>
<td>1.25</td>
<td>3</td>
<td>2-メチルニトロペンゼン</td>
<td>0.00002</td>
</tr>
<tr>
<td>4</td>
<td>2-プロピルベンゼン</td>
<td>1.25</td>
<td>5</td>
<td>3-メチルニトロペンゼン</td>
<td>0.00002</td>
<td>6</td>
<td>4-メチルニトロペンゼン</td>
<td>0.00002</td>
</tr>
<tr>
<td>8</td>
<td>3-メチルベンゼン</td>
<td>1.25</td>
<td>9</td>
<td>3-メチルニトロペンゼン</td>
<td>0.00002</td>
<td>10</td>
<td>3-メチルニトロペンゼン</td>
<td>0.00002</td>
</tr>
<tr>
<td>12</td>
<td>3-メチルニトロペンゼン</td>
<td>0.00002</td>
<td>13</td>
<td>3-メチルニトロペンゼン</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3-メチルニトロペンゼン</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3-メチルニトロペンゼン</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3-メチルニトロペンゼン</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3-メチルニトロペンゼン</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>3-メチルニトロペンゼン</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3-メチルニトロペンゼン</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3-メチルニトロペンゼン</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>3-メチルニトロペンゼン</td>
<td>0.00002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注: ppm 単位で表示された。
<table>
<thead>
<tr>
<th>噪音物質</th>
<th>1</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>アンモニア</td>
<td>0.1</td>
<td>0.6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>へキサメチレン</td>
<td>0.0001</td>
<td>0.0007</td>
<td>0.002</td>
<td>0.004</td>
<td>0.01</td>
<td>0.03</td>
<td>0.2</td>
</tr>
<tr>
<td>硫化水素</td>
<td>0.0005</td>
<td>0.006</td>
<td>0.02</td>
<td>0.06</td>
<td>0.2</td>
<td>0.7</td>
<td>8</td>
</tr>
<tr>
<td>硫化メチル</td>
<td>0.0001</td>
<td>0.002</td>
<td>0.01</td>
<td>0.05</td>
<td>0.2</td>
<td>0.8</td>
<td>2</td>
</tr>
<tr>
<td>二硫化メチル</td>
<td>0.0003</td>
<td>0.003</td>
<td>0.009</td>
<td>0.03</td>
<td>0.1</td>
<td>0.3</td>
<td>3</td>
</tr>
<tr>
<td>トリメチルアミン</td>
<td>0.0001</td>
<td>0.001</td>
<td>0.005</td>
<td>0.02</td>
<td>0.07</td>
<td>0.2</td>
<td>3</td>
</tr>
<tr>
<td>スチレン</td>
<td>0.03</td>
<td>0.2</td>
<td>0.4</td>
<td>0.8</td>
<td>2</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>プロピオン酸</td>
<td>0.002</td>
<td>0.01</td>
<td>0.03</td>
<td>0.07</td>
<td>0.2</td>
<td>0.4</td>
<td>2</td>
</tr>
<tr>
<td>n-ペソル</td>
<td>0.00007</td>
<td>0.0004</td>
<td>0.001</td>
<td>0.002</td>
<td>0.006</td>
<td>0.02</td>
<td>0.09</td>
</tr>
<tr>
<td>n-アミロール</td>
<td>0.0001</td>
<td>0.0005</td>
<td>0.0009</td>
<td>0.002</td>
<td>0.004</td>
<td>0.008</td>
<td>0.04</td>
</tr>
<tr>
<td>イソアミロール</td>
<td>0.00005</td>
<td>0.0004</td>
<td>0.001</td>
<td>0.004</td>
<td>0.01</td>
<td>0.03</td>
<td>0.3</td>
</tr>
<tr>
<td>トルエン</td>
<td>0.9</td>
<td>5</td>
<td>10</td>
<td>30</td>
<td>60</td>
<td>1×10^2</td>
<td>7×10^2</td>
</tr>
<tr>
<td>キシレン</td>
<td>0.1</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>酚酸エチル</td>
<td>0.3</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>20</td>
<td>40</td>
<td>2×10^2</td>
</tr>
<tr>
<td>メチルプロピオン酸</td>
<td>0.2</td>
<td>0.7</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>イソプロピノール</td>
<td>0.01</td>
<td>0.2</td>
<td>0.9</td>
<td>4</td>
<td>20</td>
<td>70</td>
<td>1×10^2</td>
</tr>
<tr>
<td>デヒドロ酢酸</td>
<td>0.002</td>
<td>0.01</td>
<td>0.05</td>
<td>0.1</td>
<td>0.5</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>デヒドロベンゾリド</td>
<td>0.002</td>
<td>0.02</td>
<td>0.05</td>
<td>0.1</td>
<td>0.5</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>n-プロピルペンゼン</td>
<td>0.0003</td>
<td>0.003</td>
<td>0.009</td>
<td>0.03</td>
<td>0.08</td>
<td>0.3</td>
<td>2</td>
</tr>
<tr>
<td>イソプロピルペンゼン</td>
<td>0.0009</td>
<td>0.008</td>
<td>0.02</td>
<td>0.07</td>
<td>0.2</td>
<td>0.6</td>
<td>5</td>
</tr>
<tr>
<td>n-ヘキサングリコール</td>
<td>0.0007</td>
<td>0.004</td>
<td>0.009</td>
<td>0.02</td>
<td>0.05</td>
<td>0.1</td>
<td>0.6</td>
</tr>
<tr>
<td>イソプロピルペンゼン</td>
<td>0.0002</td>
<td>0.001</td>
<td>0.003</td>
<td>0.006</td>
<td>0.01</td>
<td>0.03</td>
<td>0.2</td>
</tr>
</tbody>
</table>
(5.1) 引用文献
1) London County Council: Report of the County Medical Officer of Health and School Medical Officer for the year 1952, 157, The County Hall, Westminster Bridge, S.E.I., (1953)
2) 吉田克己：四日市の大気汚染と「四日市ぜんそく」について, 労働の科学, 19, 15 (1964)
3) 吉田克己：四日市の公害問題－四日市判決に関連して, 労働の科学, 28, 4-7 (1972)
8) 中央公害対策審議会専門委員會: 塩素酸化物等に係る環境基準についての専門委員会報告, 大気汚染研究, 7, 151-155, (1972)
9) 環境庁大気汚染局 : 大気汚染健康影響継続観察調査報告 (1991)

(5.2) 参考文献
1) 山添文雄 : 環境汚染と農業, 種類・影響・検定・対策 博友社, 東京 (1975)
4) 藤原義: 低濃度域二酸化イオウによる植物の障害発現とその診断に関する研究, 電中研農電研報告, 研究報告 : T4401 (1974)
5) 戸塚緑 : 植物の生長におよばす二酸化イオウの影響, 国公研研究報告 No.10, 317-332 (1979)
6) T.W. Ashenden; The effects of long-term exposures to SO2 and NOx pollution on the growth of Dactylis glomerata L. and Poa pratensis L., Environ. Pollut., 18. 249-258 (1979)
(5.3) 引用文献

2) 堤川一男, 濁口周一郎, 大久保秀世, 石津善雄, 金指元計; 各種金属材料および防錆被覆の大気腐食に関する研究 (第5報), 防食技術, 16, 153-158 (1967)

3) Graedel, T. E., ; Copper patinas formed in the atmosphere -1. Introduction, Corrosion Science, 27, 639-657 (1987)

4) 外川純人; 大気の腐食性の分類システムに関する国際共同暴露試験（ISOCORRAG）について, 防錆管理, 37, 55-66 (1993)

5) 久松敬弘; 鉄層をもつ鋼の大気腐食, 防食技術, 20, 207-212 (1971)

(5.4) 参考文献

2) Chalson, R. J. et al.; The direct measurement of atmospheric light scattering coefficient for studies of visibility and pollution. Atmospheric Environment, 1, 469-478 (1967)

(5.5) 引用文献

1) 悪臭法令研究会: 新訂ハンドブック 悪臭防止法, ぎょうせい (1996)

2) 永田好男, 竹内教文: 三点比較式臭袋法による臭気物質の濃度測定結果, 日本環境衛生センター所報, 17, 77-89 (1990)

3) 高木貞敬, 渋谷達明; 匂いの化学, 朝倉書店 (1996)