自然エネルギーを中心とする 今後のエネルギー対策について

2009年2月10日 飯田哲也 (いいだ てつなり)

環境エネルギー政策研究所 東京都中野区中野4-7-3 Tel 03-5318-3331 Fax 03-3319-0330 http://www. isep.or.jp/

©環境エネルギー政策研究所

国際的な潮流と動向

自然エネルギーの普及支援制度について

日本の自然エネルギー政策の課題と対応

石炭対策について

2009年1月

〇米国:オバマ新大統領就任:グリーン経済刺激策 「2050年に温室効果ガスを80%削減」

「自然エネルギー電力を2012年に10%、2025年に25%へ引き上げ」

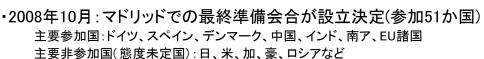
「自然エネルギー等に10年間で1,500億ドルを投資 し、500万人の『グリーン・ジョブ』を創出」

2008年12月

OEU: 自然エネルギーに関するEU指令採択

「2020年までにエネルギー需要の20%を自然エネルギーにより調達(電力の3割以上)」

「各国は、2010年までに行動計画を策定」


3

©環境エネルギー政策研究所

「国際自然エネルギー機関」(IRENA)の発足(2009年1月26日)

■背黒

- 2002年: ヨハネスブルグサミット(WSSD)以降のドイツのイニシアチブ 2004年: 自然エネルギー政策プラットホーム2004国際会議(ボン、ドイツ) 2005年: 北京自然エネルギー国際会議、2008年ワシントン自然エネルギー国際会議 REN21: 自然エネルギー政策促進のための国際的なマルチステークホルダー協力組織 日本からは飯田哲也@環境エネルギー政策研究所が参加

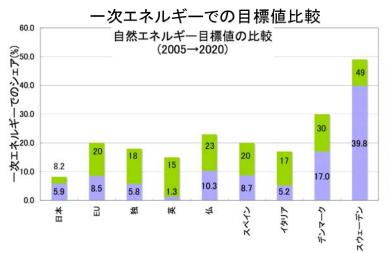
• 2009年1月26日: IRENA設立会議(ボン): 初期署名国75か国 ドイツ、スペイン、デンマークに加え、インド、韓国、イタリア、フランスなど さらに20か国程度は4月の第1次署名国に間に合う見込み

■目的と活動

- ・自然エネルギー政策や投資などに関する知識の支援と普及
- ・自然エネルギー投資資金調達の助言、人材育成 等

■日本の対応

- 政治判断抜きで、官僚の判断で参加見送りの方向。オブザーバー参加も最後に決定
- 環境エネルギー政策を巡るグローバルなソフトパワーの時代に、後ろ向きな日本



- ○世界主要国は、2020年に20%程度の自然エネルギー目標値を持っている。
- ○しかし日本の目標値(増分)は、諸外国の増分と比べて、著しく小さい
- ○地球温暖化対策の中で、日本では自然エネルギー政策が低い位置づけ

出典:欧州委員会「2008年自然エネルギー指令」(2008.1.23)、 長期エネルギー需給見通し

電力供給での目標値比較 50.0 45% (2030) 2010年以降中長期目標(増分) 40.0 2010年目標(増分) 置力分野での自然エネルギー導入目標比率(%) **肝道入済み自然エネルギー雷力** 27%('20) 32% ('20) 20% ('20) 25% ('25) 20.0 34%('20) 12.5%('10) 10.0 21%('10) 25% ('13) +1.63% 21% ('20) 10% ('12) ('14)10% (2010) 0.0 B 仏 独 英 中国 US 7% ('07) -100 4.5%('00) 1.5% ('00) 19% ('03) 水力+地熱 10% ('02) 14%('01) 15% ('00) - 17% ('05)

出典: •日本:経済産業省(RPS法)

- ・EU:Renewable Energy Road Map (COM(2006) 848 fina) 2007.1 ・ドイツ:ドイツ環境省(ガブリエル環境大臣スピーチ 2007.07.05)
- ・英国:ビジネス・企業・規制改革省によるRO目標値
- 中国: WWI "Powering China's Development The Role of Renewable Energy"(2007.11)
- ・US:オバマ次期大統領の選挙公約・加州:カリフォルニア州エネルギー委員会
- ・NY州:ニューヨーク州エネルギー委員会

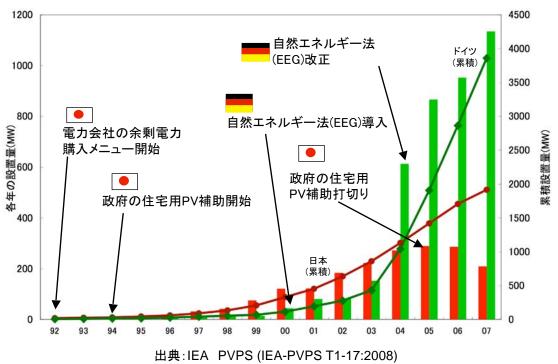
20世紀での自動車産業の役割を、21世紀は自然エネルギーが果たす

- ・ 風力発電5大国:ドイツの成功、世界一の米国、後を追うスペイン、インド、中国
- ・11年ぶりに米国の世界一奪回(グリーン・ニューディールの基礎)

■数字で見るドイツの成功

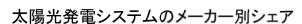
- (1) 電力供給の主力:自然エネ14%
- (2) CO2削減: 自然エネで1.1億トン
- (3) 産業経済効果: 自然エネで4兆F
- (4) 雇用効果:自然エネで26万人
- (5) 自然エネの地域の活性化効果
- (6) マネーのグリーン化(自然エネフ)ンドを通して)

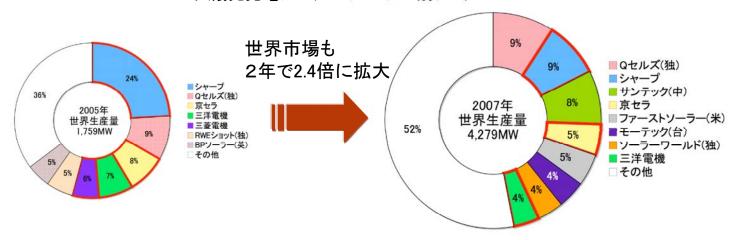
(出典:主要数値はドイツ環境省による,2007年)


■ドイツを逆転した米国

米国の風力発電は830万kW・50%増雇用(8.7万人、70%増)も石炭雇用(8.万人)を逆転

(出典:アメリカ風力協会)

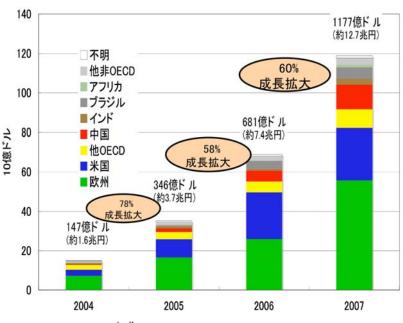

- 〇日本は、単年度では2004年、累積では2005年にドイツに抜かれて世界一から転落。
- ○その後はさらに差が広がっており、単年度導入ではスペインにも抜かれた。



©環境エネルギー政策研究所

太陽光発電システム生産量で世界一の座を陥落した日本

○2007年に、シャープが世界一の座をドイツのQ-cellsに明け渡し ○日本企業の合計シェアは、わずか2年間で47%から25%へ急落(22%の中国、 20%のドイツが肉薄)し、国際競争はいっそう激化



出典:野村證券金融経済研究所

7

〇21世紀における自然エネルギーは、「20世紀における自動車産業」と同じ役割を 果たす

自然エネルギーへの新規投資額の伸び

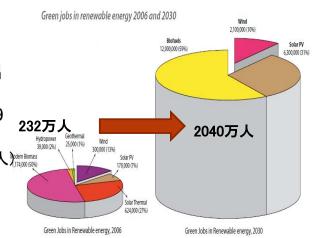
出典:New Energy Finance

自然エネルギー産業の急成長 (2008年7月時点での株式時価総額)

1 トヨタ自動車	16兆3780億円
7 ホンダ	6兆5503億円
8 キャノン	6兆5485億円
16 新日本製鐵	4兆0433億円
17 東京電力	3兆7745億円
18 日産自動車	3兆6753億円
Iberdrola Renovables(スペイン)	2兆9706億円
27 信越化学工業	2兆7741億円
Vestas(デンマーク)	2兆5242億円
First Solar(米)	2兆3612億円
34 東芝	2兆3278億円
45 京セラ	1兆7581億円
49 シャープ	1兆6605億円
50 三菱重工業	1兆6531億円
Renewable Energy Corp.(ノルウェー)	1兆5343億円
62 スズキ	1兆2996億円
Gamesa (スペイン)	1兆2933億円
75 東京ガス	1兆1103億円
Q-cells (ドイツ)	1兆757億円
EDP Renovaveis(ポルトガル)	1兆407億円
88 新日本石油	9754億円
	9

出典:環境エネルギー政策研究所

グリーン・ニューディールの中心は自然エネルギー市場と雇用


〇各国は、金融危機の中、「自然エネルギー産業」を内需拡大、雇用創出、世界市場での国際競争力向上のチャンスと捉え、官民の大規模投資を促進

世界で急増する自然エネルギー雇用

<u>(ILO)</u>

©環境エネルギー政策研究所

- ・ドイツはすでに26万人(2006)の雇用創出 -今後、50万人(2020)、71万人(2030)を見込む
- ・スペインは風力と太陽光で19万人の雇用創出 -直接雇用8.9万人、間接雇用9.9万人(2007)
- ・米国では、自然エネルギー全体で直接雇用19 万人、間接雇用25万人(2006)
 - -風力雇用(8.7万人、70%増)が石炭雇用(8.1万人) を逆転
- ・中国では、約94万人の雇用(2007)
 - 太陽熱で約60万人
- ・ブラジルはバイオエタノールで50万人の雇用

出典: "Green Jobs," UNEP, ILO, etc,.(2008)

国際的な潮流と動向

自然エネルギーの普及支援制度について

日本の自然エネルギー政策の課題と対応

石炭対策について

©環境エネルギー政策研究所

ドイツの固定価格買取制度:自然エネルギー法(2000年)の成功

○電源ごとの固定価格

- ・20年間の価格保証で投資リスクを回避
- ・コストの低下に応じて、買取価格を引き下げ
 - 毎年段階的に低下する価格
 太陽光発電は▲5%/年の低下
 (2009年から▲8%/年,2011年から▲9%/年)
- ·価格例
 - 太陽光: ~約65円/kWh - 風力: ~約11円/kWh
 - バイオマス: ~約14円/kWh など

〇電力会社を通して需要家が公平な負担

- ·2007年度 1.9ユーロ/月·世帯(約230円) → 2017年度 2.8ユーロ/月·世帯(約330円)
- ・その後も自然エネルギーの導入は進むが(2020年に25%の見通し)、コスト低下の効果によって、段階的に費用負担は低減していく見込み

'04 '05 '06

20年間固定価格の保証

11

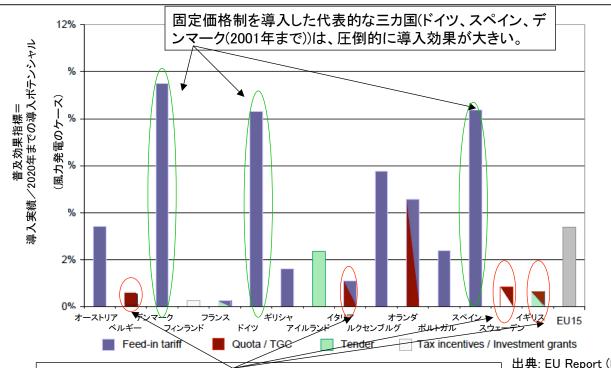
'24 '25 '26

○固定価格制(FIT)が主流になった欧州(EU27)

- •固定価格制(FIT):20ヶ国+英国、固定枠制(RPS):5ヶ国
- ・オランダ、オーストリアが早い時点でRPSからFITに移行
- ・RPSの目標達成見込みが半分程度の英国は、2010年からRPSに加えてFITを採用予定

固定価格制 (FIT) —	オーストリア、キプロス、チェコ、デンマーク、エストニア、スペイン、フランス、ドイツ、ギリシャ、ハンガリー、アイルランド、イタリア(太陽光)、ラトビア、リトアニア、ルクセンブルグ、マルタ、オランダ、ポルトガル、スロバキア、スロベニア、英国(5MW以下)
	ベルギー、イタリア(太陽光はFIT)、ポーランド、スウェーデン、英国(5MW以下はFIT)

ORPS(固定枠制)が主流に見える米国だが


・2007年末で25州+D.C.がRPSを導入済み

- ・カリフォルニア、ミシガン、イリノイ、ミネソタ、ロードアイランド及びハワイの6州が導入済み
- ・フロリダ、メイン、マサチューセッツ、ニュージャージー、ニューヨーク、ヴァーモント、オレゴン及びウ イスコンシンが導入検討中

©環境エネルギー政策研究所

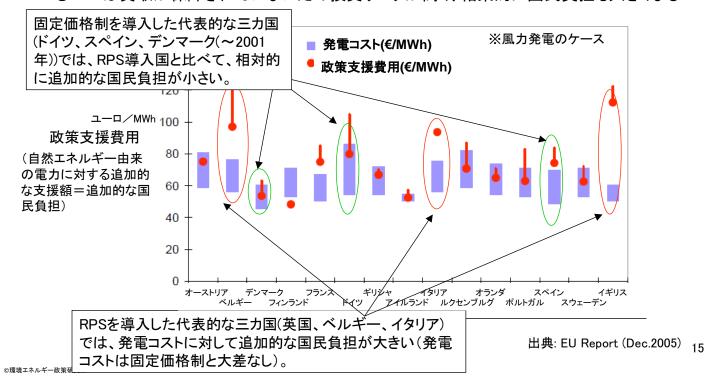
①EU各国の実証調査により、FITの「普及効果」の優位性が明らかに

RPSを導入した代表的な4カ国(英国、ベルギー、イタリア、スウェーデン) は、導入効果が極端に乏しい。

出典: EU Report (Dec.2005)

(注)Quota:固定枠制(RPS制)

TGC: Tradable Green Certificates (グリーン証書)


Tender:入札制

13

②EU各国の実証調査により、FITの「費用効率性」の優位性が明らかに

OFITの発電コストは高くなるのではないかという懸念もあるが、EUの実証調査によれば、 RPSと大差なし

ORPSは買取が保障されていないため投資リスクが高く、結果的に国民負担も大きくなる

欧州委員会の評価

〇各国の実績を評価した欧州委員会は、次のように結論している (2008年1月23日)

well-adapted feed in tariff regimes are generally the most efficient and effective support schemes for promoting renewable electricity.

良く調整された固定価格制度(FIT)は、一般的に、再生可能エネルギーの普及に、もっとも費用効率的かつ普及効果的な支援スキームである。

出典: Commission of The European Communities, "The Support of electricity from renewable energy sources" SEC(2008)57 (23.1.2008)

〇世界の本流の認識

- ■欧州委員会報告 (2005年12月、2008年1月) 「適切に設計されたFITは一般に もっとも効果的かつ効率的」
- ■IEA「エネルギー技術見通し2008」 (2008年6月)
- 「自然エネルギー技術の促進には、 一般的にFITがRPSよりも効果的」
- ■IEA「自然エネルギーの普及」 (2008年10月) 「FITは、太陽光発電のように、まだコスト 差が大きい技術の普及促進に適する」

○経産省と新エネ部会の認識

- ■新エネ部会緊急報告 (2008年6月24日)
- ・IEAドイツレビュー(2007年)の一カ所 の記述のみを引用して、FIT批判

- IEAドイツレビュー(2007年)の問題性
- •FITに劣ることが理論&実証の両面で論 証されているRPSを勧めており、その欠 点に触れてない
- •EU全体での統一政策もFITの方向性で ある事実を無視している
- ・電力価格と並んで重要な設備価格の視 点が欠けている。
- 普及段階の異なる技術(太陽光と風力) を一緒に論じている

17

©環境エネルギー政策研究所

IEAの最新の評価【IEA, Deploying Renewables (2008)】

OIEAの最新の自然エネルギー政策を分析した報告では、技術の成熟度に応じた支援策の組 み合わせが望ましいと指摘している。具体的には、

·太陽光等の未成熟な技術:FIT等

(p24, Key message)


less mature technologies further from economic competitiveness need, very stable low-risk incentives, such as capital cost incentives, feed-in-tariffs(FITs) or tenders.

For low-cost gap technologies such as on-shore wind or biomass combustion, other more market-oriented instruments like feed-inpremiums and TGC systems with technology banding may be more appropriate.

(p24、主要なメッセージ)

未成熟な技術は経済的な競争力よりも安定した低リスク の支援策(初期補助金、FIT、入札など)が必要である。 コスト差の縮まった技術(陸上風力やバイオマス発電など) はもう少し市場志向の支援策(固定プレミアム価格、技術 毎に区切った固定枠制度など)が適切である。

・風力、バイオマス等の成熟した技術:RPS等

特定市場

大量市場

時間

(注) 本図は現状の一例であり、実際の政策ミックスや支 援施策実施タイミングは各国の状況や競合技術のコスト によって異なる。

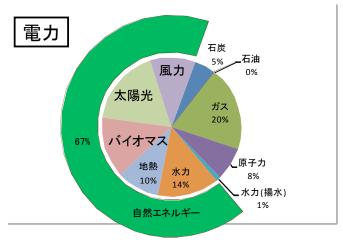
FIT: 固定価格買取制度

FIP: 固定価格買取制度の一種で、市場価格(変動)に固 18 定プレミアム価格を上乗せした価格で買い取る制度

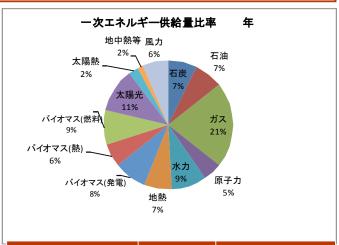
国際的な潮流と動向

自然エネルギーの普及支援制度について

日本の自然エネルギー政策の課題と対応


石炭対策について

©環境エネルギー政策研究所


2050年 日本の自然エネルギービジョン

· 日本でも自然エネルギーは大きな可能性がある

- □ 国内エネルギー需要の50%以上を自然エネルギーで自給し、CO2排出量を70%以上削減。
 - □ 電力:太陽光、バイオマス、風力、水力、地熱(自然エネルギー比率:67%)
 - □ 熱:バイオマス、太陽熱、地熱、地中熱等(自然エネルギー比率:31%)

※2050年の電力量の全体は8366億kWh (参考:2000年の電力量は10,427億kWh)

評価指標	2000年	2050年
CO2排出削減率	基準年	76.1%
自然エネルギー比率	5.4%	59.7%
エネルギー自給率	5.4%	51.0%

19